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Linear Code Implies Public-Key Traitor Tracing
with Revocation

Vu Dong Tô and Reihaneh Safavi-Naini

School of Information Technology & Computer Science,
University of Wollongong, NSW 2522, Australia

Abstract. It was shown in [K. Kurosawa et al., Proc. PKC’02, LNCS
2274, pp. 172–187, 2002] that a public-key (k, n)-traitor tracing scheme,
called linear-coded Kurosawa–Desmedt scheme, can be derived from an
[n, u, d]-linear code such that d ≥ 2k + 1. In this paper, we show that
the linear-coded Kurosawa–Desmedt scheme can be modified to allow
revocation of users, that is to show a revocation scheme can be derived
from a linear code. The overhead of the modified scheme is very efficient:
there is no extra user secret key storage, the public encryption key size
remains the same, and the ciphertext size is of length O(k). We prove
the modified scheme is semantically secure against a passive adversary.
Since the Boneh–Franklin scheme is proved to be equivalent to a slight
modification of the corrected Kurosawa-Desmedt scheme, we show that
we can also modify the Boneh–Franklin scheme to provide user revoca-
tion capability for this scheme. We also look at the problem of permanent
removing a traitor in the Boneh-Franklin and prove some negative re-
sults.

1 Introduction

Digital content distribution is an important application of global networking.
In such an application, data suppliers want their digital content to be available
to authorized users only. The number of authorized users is large enough so
that broadcasting data is much more efficient than establishing a secure channel
between the data supplier and each individual authorized user.

In a public-key (k, n)-traitor tracing scheme, there are n users, each holds a
secret decryption key (or a decoder device). The encryption key is made public
and the data supplier can use this public key to encrypt the digital content
and broadcast the corresponding ciphertext. Authorized users, using their secret
decryption keys, should be able to decrypt the broadcast messages. If a coalition
of up to k users collude to form a pirate decryption device, upon capturing this
pirate device, the system uses tracing algorithm to identify at least one of the
colluders.

Kurosawa–Desmedt [12] and Boneh–Franklin [2] proposed public key traitor
tracing schemes based on the difficulty of decision Diffie–Hellman problem. To
avoid linear attack [18,2], the Kurosawa–Desmedt scheme is modified to become
the corrected Kurosawa–Desmedt scheme. It is an important property that the



corrected Kurosawa–Desmedt scheme can be generalized to use any linear code.
It is shown that a public-key (k, n)-traitor tracing scheme, called linear-coded
Kurosawa–Desmedt scheme [13], can be derived from an [n, u, d]-linear code such
that d ≥ 2k+1 and the Boneh–Franklin scheme is equivalent to the linear-coded
Kurosawa–Desmedt scheme where Reed–Solomon code is used.

In both Kurosawa–Desmedt and Boneh–Franklin schemes, broadcast data
can be decrypted by all legitimate users and it is not possible to target the data
to a subgroup of users. Trace and revoke schemes [1,7,16,22,21,17,20,5,6,19,11]
have the extra property that users can be revoked and so the broadcast targeted
to a subgroup of users. In schemes [1,7,16,22,21] the encryption key is secret so it
only supports one data provider. The scheme [5] by Dodis et al is the first trace
and revoke scheme that has CCA2 security. The scheme [11] by Kim et al is a
modification of Dodis scheme, it has CCA2 security and the ciphertext size is half
that of Dodis’s scheme. Most of public-key revocation schemes are polynomial
based that make use of the Shamir’s secret sharing technique, in which there
is a correspondence between the secret key held by each user with a value of
the polynomial at a specific point; and when a user is revoked, the information
of the polynomial value corresponds to the revoked user is broadcasted in the
ciphertext.

In this paper, we show that the linear-coded Kurosawa–Desmedt and the
Boneh–Franklin schemes can be modified to have user revocation capability.
It is interesting that in modifying these schemes we do not introduce any more
complexity in the key generation process. Users will keep exactly the same secret
keys as the original schemes. The public encryption key in the linear-coded
Kurosawa–Desmedt remains the same as it is in the modified scheme. For the
Boneh–Franklin scheme, only one more group element is added into the public
encryption key. The ciphertext size is as efficient as other revoke schemes [17,
20,11,19,6]. For a tracing threshold k, our modified schemes can afford up to
2k−1 user revocation and the ciphertext consists of 2k field elements and 2k+2
group elements. We also prove the semantic security for our proposed revocation
schemes.

Dodis et al. [6] introduced the notion of scalable system. A broadcast system
is server-side scalable if any party can broadcast messages, this can be accom-
plished by using public key approach. A broadcast system is client-side scalable
if it supports increasing number add-user and remove-user operations. Our pro-
posed revocation schemes are server-side scalable but not client-side scalable
since they cannot remove more than 2k users. The only known scalable scheme
is the Dodis et al. scheme [6]. In this paper, we look at the possibility of repeat-
edly permanent-removing users by modifying only the public key and public
parts of users keys. If it is possible to do so then we would have a client-side
scalable scheme. Unfortunately, we prove that it is not possible, at least, for
the Boneh–Franklin scheme. We consider the first case when we remove a user
by modifying only the public encryption key so that the decryption key of the
removed user become invalid in the new encryption-decryption system, however,
the remained non-removed users should have their decryption keys remain valid.



We show that it is impossible to do so. The second case we consider is to remove
a user by modifying the public encryption key and the public parts of users keys
(which are the rows of the public matrix). We show that it is also impossible to
do so in this case.

The rest of the paper is organized as follows. In section 2, we give a model of
traitor tracing scheme. The Boneh–Franklin scheme, the corrected Kurosawa–
Desmedt and the linear-coded Kurosawa–Desmedt schemes are reviewed in sec-
tion 3. In section 4, we present revocation functionality for these three schemes.
In section 5, we look at the problem of permanently removing a user in the
Boneh–Franklin scheme and prove some negative results.

2 Preliminaries

An [n, u, d]-linear code is a linear code contains n codewords, dimension u and
the minimum Hamming distance d. The parity check matrix for an [n, u, d]-linear
code is a matrix of size (n − u) × n and any d − 1 columns vectors are linear
independent. The notation · denotes the inner product of two vectors.

Let q > n be a prime number. Let Gq be a group of prime order q. The
Decision Diffie–Hellman problem in Gq is to determine whether w = uv given
g, gu, gv, gw where g is chosen random from Gq and u, v, w are chosen random
from Zq.

2.1 Model of Traitor Tracing

A (k, n)-traitor tracing scheme with revocation has four components.
Key Generation: given a security input 1�, the key generation procedure out-
puts an encryption key PK and n user decryption keys SK1, . . . , SKn. The
encryption key PK is made public so any data supplier can use it to broadcast
data. Decryption key SKi is given to the user i to keep secretly.
Encryption: taken as input a message M , the encryption key PK and a revoked
set of users R, the encryption procedure E outputs the corresponding ciphertext
C = EPK(R, M). If the scheme do not support revocation (for instance, the
linear-coded Kurosawa–Desmedt scheme and the Boneh–Franklin scheme) then
R is always an empty set.
Decryption: taken as input a ciphertext C = EPK(R, M) and a decryption key
SKi, the decryption procedure D outputs the message M if i �∈ R.
Traitor Tracing: if up to k users collude to form a pirate decryption box then
upon capturing this pirate device, the traitor tracing procedure can identify
at least one of the colluders. It is assumed that the pirate decryption box is
resettable to the initial state.
There are two types of tracing: open-box tracing and black-box tracing. In open-
box tracing, it is assumed that the pirate box can be opened and the pirate
keys inside the box can be obtained. In black-box tracing, the tracing algorithm
cannot open the decoder box and access the stored keys. However it can make
queries and see the responses. That is, it can send encrypted contents to the box
and see the outputs of the box.



3 Previous Public-Key Traitor Tracing Schemes

In this section, we look at three public-key traitor tracing schemes: the Boneh–
Franklin (BF) scheme [2], the linear-coded Kurosawa–Desmedt (LC-KD’) scheme
and the corrected Kurosawa–Desmedt (corrected KD) scheme [13].

3.1 Boneh–Franklin Scheme

Below is the description of the Boneh–Franklin traitor tracing scheme for n users
and collusion threshold k.
Key Generation: Let Gq be a group of order prime q and g be a group gener-
ator. It is assumed that the Decision Diffie-Hellman problem in Gq is hard.

Let A be the following (n − 2k) × n matrix

A =




1 1 1 . . . 1
1 2 3 . . . n
12 22 32 . . . n2

13 23 33 . . . n3

...
...

1n−2k−1 2n−2k−1 3n−2k−1 . . . nn−2k−1




.

Since A has full rank, the equation Ax = 0 has a nullspace of dimension 2k. Let
Γ be an n × 2k matrix whose columns are 2k independent solutions x1, . . . , x2k

of Ax = 0. Let γ(1), γ(2), . . . , γ(n) denote the n row vectors of Γ , each of length
2k. The matrix Γ is made public.

Choose random b = (b1, . . . , b2k) ∈ Z2k
q . Let Γ ·b = e = (e1, . . . , en). Let h1 =

gb1 , . . . , h2k = gb2k . Choose random r1, . . . , r2k in Zq and let y = hr1
1 . . . hr2k

2k .
We have y = ga with a = b1r1 + . . . + b2kr2k. (It is commented in [13] that, it is
redundant to store system secret values r1, . . . , r2k. Instead, we can just choose
a random a and let y = ga.)
Public encryption key is PK = (y, h1, . . . , h2k).
Note that the matrix Γ is made public.
User secret decryption keys. For each 1 ≤ i ≤ n, let vi = a/ei. Decryption
key for user i is the vector θ(i) = vi γ(i). This decryption key can be thought
of as two-part key. The first part is the row vector γ(i) of the public matrix Γ .
User i only needs to keep the second part vi secret.
Discrete Log (DL) Representation. A vector θ = (θ1, θ2, . . . , θ2k) ∈ Z2k

q satisfying

y = hθ1
1 hθ2

2 . . . hθ2k

2k (1)

is called a DL-representation of the DL-element y with respect to the DL-base
h1, . . . , h2k. The condition (1) is equivalent to

a = θ · b = θ1b1 + . . . + θ2kb2k . (2)

We note that the decryption key for user i, θ(i) = vi γ(i) ∈ Z2k
q , is a scalar

multiple of the ith row vector γ(i) of the matrix Γ . It is also a DL-representation
of y with respect to h1, . . . , h2k since, θ(i) · b = vi (γ(i) · b) = viei = a.



Encryption: a message M ∈ Gq is encrypted as

〈 Myr, hr
1, h

r
2, . . . , h

r
2k 〉

where r is randomly chosen in Zq.
Decryption: Any DL-representation θ ∈ Z2k

q of y with respect to h1, . . . , h2k

can be used to decrypt

M =
Myr

(hr
1)θ1(hr

2)θ2 . . . (hr
2k)θ2k

.

Decryption key of each user is a DL-representation so they can use it to decrypt
the ciphertext.
Traitor tracing: a collusion of c users can generate a pirate key from their c
keys θ(u1), . . . , θ(uc) as follows

θpirate = µ1 θ(u1) + . . . + µc θ(uc), where µ1 + . . . + µc = 1 .

The pirate key θpirate is called a convex combination of the colluders’ keys θ(u1),
. . . , θ(uc). It is easy to verify that θpirate is a DL-representation of y with respect
to h1, . . . , h2k. Since θ(ui) is a scalar multiple of γ(ui), the pirate key θpirate is a
linear combination of γ(u1), . . . , γ(uc). The BF tracing algorithm bases on this
fact. It uses the Berlekamp’s algorithm to identify all of the colluders u1, . . . ,
uc. In Berlekamp’s algorithm, given a linear combination of γ(u1), . . . , γ(uc) as
input, it outputs all the indices u1, . . . , uc.

3.2 Linear-Coded Kurosawa–Desmedt (LC-KD’) Scheme

Below is the description of the LC-KD’ scheme for n users and collusion thresh-
old k.
Key Generation: Let Gq be a group of order prime q and g be a group gener-
ator. It is assumed that the Decision Diffie-Hellman problem in Gq is hard.

Let C be an [n, u, d]-linear code over Zq whose distance d ≥ 2k + 1. Let
m = n − u, we have m ≥ d − 1 ≥ 2k. (In the corrected KD scheme, it is chosen
that m = d−1 = 2k.) Let H be the parity check matrix for C. Let Γ = HT then
Γ is a matrix of size n × m. Let γ(1), γ(2), . . . , γ(n) denote the n row vectors of
Γ , each of length m ≥ 2k. Any (d − 1) rows of Γ are linear independent.

Choose random b = (b1, . . . , bm) ∈ Zm
q such that γ(i) · b �= 0 for i = 1, . . . , n.

Let h1 = gb1 , . . . , hm = gbm , and Γ ·b = e = (e1, . . . , en). Then ei = γ(i) ·b �= 0.
Public encryption key is PK = (g, h1, . . . , hm).
Note that the matrix Γ is made public.
User secret decryption keys. The decryption key for user i is ei.
Encryption: a message M ∈ Gq is encrypted as

〈 Mgr, hr
1, h

r
2, . . . , h

r
m 〉

where r is randomly chosen in Zq.



Decryption: Each user i uses the ith row of Γ , γ(i), and his secret ei to decrypt
as follows

M =
M gr

[
(hr

1)
γ
(i)
1 . . . (hr

m)γ
(i)
m

]1/ei
.

3.3 The Corrected Kurosawa–Desmedt Scheme

The corrected KD scheme chooses an [n, n − 2k, 2k + 1]-Reed Solomon code.
The matrix Γ in this case has size n × 2k and the ith row vector of Γ is γ(i) =
(1, i, i2, . . . , i2k−1). Let f(x) = b1 + b2x + . . . + b2kx2k−1 then in the matrix
equation Γ · b = e = (e1, . . . , en) we have ei = γ(i) · b = f(i). Thus, the secret
key for user i is the polynomial value ei = f(i).
Encryption: a message M ∈ Gq is encrypted as

〈gr, M hr
1, h

r
2, . . . , h

r
2k 〉

where r is randomly chosen in Zq.
Decryption: Each user i uses the secret key ei = f(i) to decrypt as follows

M =
(M hr

1)(h
r
2)

i(hr
3)

i2 . . . (hr
2k)i2k−1

(gr)f(i) .

4 Modified Schemes with Revocation

In this section, we show that revocation schemes can be derived from linear
codes. We propose revocation technique for the three schemes: the linear-coded
Kurosawa–Desmedt scheme, the corrected Kurosawa–Desmedt scheme and the
Boneh–Franklin scheme. The advantage of the proposed schemes is that no user
secret keys needed to change. There is no changes in public encryption keys,
except in the BF scheme, a single group element is added to the public key. The
security is provable (semantic security against passive adversary). The proposed
revocation schemes are threshold schemes, up to 2k − 1 users can be revoked
where k denotes the collusion threshold. Broadcast ciphertexts contain 2k field
elements and 2k + 2 group elements which is as efficient as other revocation
schemes such as Naor–Pinkas [17], Tzeng–Tzeng [20], Tô et al [19], and Kim et
al [11].

4.1 LC-KD’ with Revocation

Revocation: Let R be a subset of {1, . . . , n} such that 1 ≤ |R| < 2k. R rep-
resents the set of revoked users. Choose β = (β1, . . . , βm), such that in the
equation Γ · β = ε = (ε1, . . . , εn), we have εi = 0 if and only if i ∈ R. This can
be done because any 2k rows of Γ are linear independent.

Let η1 = gβ1 , . . . , ηm = gβm .



A message M ∈ Gq is encrypted as

〈 gr1 , M gr2 , β1, . . . , βm, hr1
1 ηr2

1 , . . . , hr1
mηr2

m 〉
where r1, r2 are random numbers in Zq.
Decryption. User i first calculates εi = γ(i) · β. If εi = 0 then i is revoked.
Otherwise, i �∈ R, and user i can use secret value ei and the vector γ(i) of the
public matrix Γ to decrypt

(M gr2
1 )

(
(gr1)ei

(hr1
1 ηr2

1 )γ
(i)
1 . . . (hr1

2kηr2
2k)γ

(i)
2k

)1/εi

= M .

4.2 The Corrected Kurosawa–Desmedt Scheme

If R = {i1, . . . , ic}, 1 ≤ c < 2k, is the revoked user set then in the revocation
procedure we need to find a vector β = (β1, . . . , β2k) such that in the equation
Γ · β = ε = (ε1, . . . , εn) we have εi = 0 if and only if i ∈ R. Consider the
polynomial g(x) = β1 + β2 x + . . . + β2k x2k−1 formed by the vector β. We have
εi = γ(i) · β = g(i). Thus g(i) = 0 if and only if i ∈ R. That means g(x) can
be written as g(x) = (x − i1) . . . (x − ic)z(x) where z is a polynomial of degree
up to 2k − c whose roots are not in the set U = {1, . . . , n}. In particular, if the
number of revoked user is 2k then z(x) is a non-zero number in Zq.

In summary, for the corrected KD scheme, the revocation procedure is as
follows.
Revocation. Let R = {i1, . . . , ic}, 1 ≤ c < 2k, be the revoked user set. Choose
a random polynomial z(x) of degree up to 2k − c such that z(i) �= 0 for all
i = 1, . . . , n. Let g(x) = (x − i1) . . . (x − ic)z(x) = β1 + β2 x + . . . + β2k x2k−1.
Let η1 = gβ1 , . . . , η2k = gβ2k .

A message M ∈ Gq is encrypted as

〈 gr1 , M gr2 , β1, . . . , β2k, hr1
1 ηr2

1 , . . . , hr1
2kηr2

2k 〉
where r1, r2 are random numbers in Zq.
Decryption. User i first calculates εi = g(i) = β1 + β2 i + . . . + β2k i2k−1. If
g(i) = 0 then i is revoked. For i �∈ R, εi = g(i) = (i− i1) . . . (i− ic)z(i) �= 0. User
i then uses secret value ei = f(i) to decrypt

(M gr2
1 )
(

(gr1)f(i)

(hr1
1 ηr2

1 )(hr1
2 ηr2

2 )i(hr1
3 ηr2

3 )i2 . . . (hr1
2kηr2

2k)i2k−1

)1/g(i)

= M .

4.3 BF with Revocation

For the BF scheme, the public encryption key is slightly changed. A single group
element is added to the encryption key.
The new encryption key is PK ′ = (g1, y, h1, . . . , h2k).
The added element g1 is an arbitrary generator of Gq, indeed, we can choose
g1 = g.



Revocation. Let R be a subset of {1, . . . , n} such that 1 ≤ |R| < 2k. R rep-
resents the set of revoked users. Choose β = (β1, . . . , β2k), such that in the
equation Γ · β = ε = (ε1, . . . , εn), we have εi = 0 if and only if i ∈ R. This can
be done because any 2k rows of Γ are linear independent.

Let η1 = gβ1
1 , . . . , η2k = gβ2k

1 .
A message M ∈ Gq is encrypted as

〈 yr1 , M gr2
1 , β1, . . . , β2k, hr1

1 ηr2
1 , . . . , hr1

2kηr2
2k 〉

where r1, r2 are random numbers in Zq.
Decryption. User i first calculates εi = γ(i) · β. If εi = 0 then i is revoked.
Otherwise, i �∈ R, user i can use his decryption key θ(i) = vi γ(i) to decrypt

(M gr2
1 )

(
yr1

(hr1
1 ηr2

1 )θ
(i)
1 . . . (hr1

2kηr2
2k)θ

(i)
2k

)1/(viεi)

= M .

4.4 Semantic Security for Revocation

We show that the proposed revocation schemes are semantically secure against
a passive adversary who controls up to 2k − 1 users assuming the difficulty of
the DDH problem in the group Gq. We give a security proof for the linear-
coded Kurosawa–Desmedt (LC-KD’) scheme. The proof can be easily adjusted
for other schemes.
Model of Adversary. The following game models an Adversary A who controls
up to 2k − 1 users and an Oracle who represents the revocation scheme.

1. Adversary adaptively chooses a set Ausers of up to 2k−1 users that it controls.
2. Given Ausers, for a given security parameter λ, the Oracle runs the key

generation procedure and gives the Adversary the public encryption key
together with all secret keys of the users in Ausers under the control of the
Adversary.

3. The Adversary then produces two challenge messages M0 and M1 and gives
them to the Oracle.

4. The Oracle selects a random bit r ∈ {0, 1} and gives the Adversary back the
ciphertext of Mr encrypted with the revoked set R = Ausers.

5. The Adversary output a bit r′.

The advantage of the adversary A is defined as AdvA(λ) = |Pr(r = r′)−1/2|.
We say that the revocation scheme is semantically secure if AdvA(λ) is negligible.

Theorem 1 states that the linear-coded Kurosawa–Desmedt revocation
scheme is semantically secure, the proof is given in the full version of the paper.

Theorem 1. The LC-KD’ revocation scheme is semantically secure against a
collusion of up to 2k − 1 revoked users assuming the difficulty of the DDH prob-
lem.



5 Permanent User Removal

In a revocation scheme, we can remove a traitor permanently by always including
the traitor in the revoked user set. However, in a threshold revocation scheme
such as our proposed schemes, the number of revoked users is limited so we can-
not use it to remove many traitors. Dodis et al. [6] define a scheme to be scalable
if any party can broadcast messages using public key (server-side scalable) and
if it supports increasing number of add-user and remove-user operations (client-
side scalable).

Our proposed revocation schemes are server-side scalable but not client-side
scalable since they cannot remove more than 2k − 1 users. The only known
scalable scheme is the Dodis et al. scheme [6]. In this scheme, everytime after
removing v users, it allows legitimate users update their secret keys. So the time
line is divided into many “windows”, and in each window, v users are removed. To
calculate new secret key, legitimate users need to use their old secret key together
with a single update information broadcasted by the system administrator. The
only problem with this scheme is, in each key update time, the same update
information is used for all users. Even a revoked user, if by any chance he has
this update information, he can use it to update his key to a valid key in the new
session. Therefore, as emphasized in their paper, the Dodis et al. scheme is only
secure against window adversary. That is, it is secure against up to a threshold
of v revoked users who are subsequently revoked in the same window. This make
the scheme vulnerable under the collusion of as small as two revoked users who
are revoked in two different windows. It remains as an open problem to design
a scalable scheme that is secure against a collusion of a threshold number of
arbitrary revoked users.

In this section, we look at the possibility of repeatedly removing permanently
users by modifying only the public key and public parts of users keys. If it is
possible to do so then we would have a scalable scheme. Unfortunately, we prove
that it is not possible, at least, for the BF scheme. Section 5.1 considers the case
when we remove a user by modifying only the public encryption key. Section 5.2
considers the case when we remove a user by modifying the public encryption
key and the public parts of users keys (which are the rows of the public matrix).

5.1 Modifying Public Key, Keeping User Keys Unchanged

Consider the Boneh–Franklin scheme. Let y = ga, h1 = gb1 , h2 = gb2 , . . . ,
h2k = gb2k be the current public encryption key. The user decryption key is
θ(i) = vi γ(i).

For simplicity, assume now we want to remove user n. We want to change
the public encryption key become y′ = ga′

, h′
1 = gb′

1 , h′
2 = gb′

2 , . . . , h′
2k = gb′

2k .
For each i = 1, . . . , n−1, in order to have user i remained valid, the decryption

key θ(i) = vi γ(i) must be a DL-representation of the new DL-element y′ with
respect to the new DL-base h′

1, . . . , h′
2k. Therefore,

a′ = θ(i) · b′ = vi(γ(i) · b′), ∀i = 1, . . . , n − 1 .



We want the decryption key of the removed user n, θ(n) = vn γ(n), to become
invalid. That is, the vector θ(n) is not a DL-representation of the new DL-element
y′ with respect to the new DL-base h′

1, h′
2, . . . , h′

2k:

θ(n) · b′ = vn(γ(n) · b′) �= a′ .

We will prove that this cannot be achieved.

Theorem 2. Let A be a full rank matrix of size (n − 2k) × n and let Γ be an
n×2k matrix whose columns are 2k linear independent solutions of the equation
Ax = 0. Let γ(1), . . . , γ(n) denote the n row vectors of Γ .

If for some vectors b, b′ of length 2k, and some non-zero numbers a, a′, v1,
v2, . . . , vn we have v1(γ(1) · b) = v2(γ(2) · b) = . . . = vn(γ(n) · b) = a and
v1(γ(1) · b′) = v2(γ(2) · b′) = . . . = vn−1(γ(n−1) · b′) = a′, then it holds that
vn(γ(n) · b′) = a′.

From Theorem 2, we can see that the secret key of user n, θ(n), remains valid
for the new decryption with the new public encryption key.

We have proved in this section that it is impossible to remove a user by
changing only the public encryption key and keeping all user secret keys fixed.
In the next section, we will see a method by Silja Mäki to remove an user by
changing public encryption key together with the matrix Γ .

5.2 Silja Mäki’s Attempt: Changing Public Key Together with
Public Parts of User Keys

In BF scheme, the user decryption key θ(i) = vi γ(i) can be viewed as two parts.
The secret part vi is kept by the user and the public part γ(i) is kept by the
system. Mäki’s [14] idea is to keep the secret part vi unchanged while the public
part of the key, γ(i), is changing whenever the system wants to remove a colluder.

Below is a summary of Mäki’s modification to BF

1. Replace b = (b1, b2, . . . , b2k) with b′ = (b′
1, b

′
2, . . . , b

′
2k), that is, replace h1 =

gb1 , . . . , h2k = gb2k by h′
1 = gb′

1 , . . . , h′
2k = gb′

2k .
2. Replace the matrix Γ with the new matrix Γ ′ whose 2k columns vectors

also are 2k linear independent solutions of the equation Ax = 0. Denote the
n row vectors of Γ ′ by γ(1)′, γ(2)′, . . . , γ(n)′. Matrix Γ ′ is chosen so that
the vector θ(i)′ = viγ

(i)′ is a DL-representation of y with respect to the
new DL-base h′

1, h′
2, . . . , h′

2k. In the other words, the row vectors γ(i)′ must
satisfy θ(i)′ · b′ = vi(γ(i)′ · b′) = a.

3. Make the first n − 1 row vectors γ(1)′, γ(2)′, . . . , γ(n−1)′ of the matrix Γ ′

public so that each user i, 1 ≤ i ≤ n − 1, can use the corresponding new
vector with his secret key vi to form the new decryption key θ(i)′ = vi γ(i)′

for the future decryption.
4. The last row vector γ(n)′ of the matrix Γ ′ is kept secret so that the removed

user n cannot form the decryption key.
5. Since AΓ ′ = 0, the tracing remains the same.



However, Mäki also presented a successful attack, in which the removed user n
by looking at the matrix Γ and the first n−1 rows of matrix Γ ′ can calculate the
last row γ(n)′ of Γ ′. Therefore, the removed user can obtain the new decryption
key for himself.

We can eliminate this attack by choosing the matrix Γ ′ so that even the
user n can calculate the last row vector γ(n)′ but he cannot use it to form the
decryption key. That is γ(n)′ must be chosen so that the vector θ(n)′ = vn γ(n)′

is not a DL-representation of y with respect to the new DL-base h′
1, h′

2, . . . , h′
2k.

Or equivalently, θ(n)′ · b′ = vi(·γ(n)′ · b′) �= a. However, we will prove that this
cannot be done.

Theorem 3. Let A be a full rank matrix of size (n − 2k) × n and let Γ , Γ ′ be
two n×2k matrices both of whose 2k columns are linear independent solutions of
the equation Ax = 0. Let γ(1), . . . , γ(n) and γ(1)′, . . . , γ(n)′ respectively denote
row vectors of Γ and Γ ′.

If for some vectors b, b′ of length 2k, and some non-zero numbers a, a′, v1,
v2, . . . , vn we have v1(γ(1) · b) = v2(γ(2) · b) = . . . = vn(γ(n) · b) = a and
v1(γ(1)′ · b′) = v2(γ(2)′ · b′) = . . . = vn−1(γ(n−1)′ · b′) = a′, then it holds that
vn(γ(n)′ · b′) = a′.

From Theorem 3, if for all i, 1 ≤ i ≤ n − 1, user i can combine the new
vector γ(i)′ with vi to get the new decryption key θ(i)′ = vi γ(i)′ then the last
vector γ(n)′ also makes a valid decryption key θ(n)′ = vn γ(n)′. Since AΓ ′ = 0
and n − 1 row vectors of Γ ′ is publicly known, the removed user n can calculate
the last row γ(n)′ and hence obtain the valid decryption key θ(n)′.

6 Conclusion

In this paper, we have shown that from an [n, u, d]-linear code such that
d ≥ 2k + 1, it is possible to construct a public-key (k, n)-traitor tracing scheme
with revocation. We demonstrate this technique for three schemes: the Boneh–
Franklin scheme, the corrected Kurosawa–Desmedt scheme and the linear-coded
Kurosawa–Desmedt scheme. The security of our proposed revocation schemes
is provable (semantic security against passive adversary). It seems that CCA2
security can be also achieved if we use Cramer and Shoup approach [4] to modify
our schemes.

We also look at the problem of permanently removing a user to make the
system scalable. We prove that it is impossible to obtain a remove-user procedure
for the Boneh–Franklin scheme where all the secret part of user keys are kept
unchanged and only the public encryption key and the public part of user keys are
allowed to modified. Dodis et al [6] is the only known scalable scheme, however
it is only secure against “window adversary”, which is not a strong model. It
remains as an open problem to design a public key traitor tracing with revocation
which is fully scalable.
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