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The small heat shock proteins αB-crystallin and Hsp27 suppress SOD1
aggregation in vitro

Abstract
Amyotrophic lateral sclerosis is a devastating neurodegenerative disease. The mechanism that underlies
amyotrophic lateral sclerosis (ALS) pathology remains unclear, but protein inclusions are associated with all
forms of the disease. Apart from pathogenic proteins, such as TDP-43 and SOD1, other proteins are
associated with ALS inclusions including small heat shock proteins. However, whether small heat shock
proteins have a direct effect on SOD1 aggregation remains unknown. In this study, we have examined the
ability of small heat shock proteins αB-crystallin and Hsp27 to inhibit the aggregation of SOD1 in vitro. We
show that these chaperone proteins suppress the increase in thioflavin T fluorescence associated with SOD1
aggregation, primarily through inhibiting aggregate growth, not the lag phase in which nuclei are formed. αB-
crystallin forms high molecular mass complexes with SOD1 and binds directly to SOD1 aggregates. Our data
are consistent with an overload of proteostasis systems being associated with pathology in ALS.
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Abstract (150 words) 

 

 

Amyotrophic lateral sclerosis is a devastating neurodegenerative disease. The mechanism that 

underlies ALS pathology remains unclear, but protein inclusions are associated with all forms 

of the disease. Apart from pathogenic proteins, such as TDP-43 and SOD1, other proteins are 

associated with ALS inclusions including small heat shock proteins. However, whether small 

heat shock proteins have a direct effect on SOD1 aggregation remains unknown. In this study 

we have examined the ability of small heat shock proteins B-crystallin and Hsp27 to inhibit 

the aggregation of SOD1 in vitro. We show that these chaperone proteins suppress the  

increase in thioflavin T fluorescence associated with SOD1 aggregation primarily through 

inhibiting aggregate growth, not the lag phase in which nuclei are formed. B-crystallin 

forms high molecular mass complexes with SOD1 and binds directly to SOD1 aggregates. 

Our data are consistent with an overload of proteostasis systems being associated with 

pathology in ALS.  
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Introduction 

 

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that is 

characterised by the progressive and selective death of upper and lower motor neurons, 

leading to loss of muscle control, muscle atrophy and invariably death, generally within 3-5 

years of diagnosis. Neurodegeneration in ALS has been attributed to a variety of processes 

including glutamate excitotoxicity, oxidative stress, disruption of neurofilaments and axonal 

transport, protein aggregation, mitochondrial dysfunction, endoplasmic reticulum stress, and 

(most recently) dysfunctional RNA metabolism (Pasinelli & Brown 2006).  Although the 

cause of sporadic forms of ALS remains a mystery, there is a rapidly growing list of genes in  

which mutations cause familial ALS (fALS; accounting for 5-10% of all ALS cases). These 

include SOD1 (Rosen et al. 1993), alsin (Yang et al. 2001), senataxin (Chen et al. 2004), 

FUS/TLS (Kwiatkowski et al. 2009; Vance et al. 2009), VAPB (Nishimura et al. 2004), TDP-

43 (Kabashi et al. 2008; Sreedharan et al. 2008), optineurin (Maruyama et al. 2010), VCP 

(Johnson et al. 2010) and c9orf72 (DeJesus-Hernandez et al. 2011). In common with other 

neurodegenerative diseases, such as Alzheimer’s disease, Creutzfeldt-Jakob disease, 

Parkinson’s disease, and Huntington’s disease, there is growing evidence that protein 

aggregates are closely associated with degeneration in all forms of ALS (Leigh et al. 1991; 

Ticozzi et al. 2010). Indeed, there are some that consider ALS a proteinopathy (Strong et al. 

2005).   

 

The best-studied fALS cases are from families possessing mutations in the gene encoding 

copper/zinc superoxide dismutase (Cu/Zn SOD, SOD1). There are over 140 different 

mutations dispersed over the whole sequence of the SOD1 gene that can cause ALS. What 

these mutations have in common is the ability to destabilise the structure of the protein, 

shortening its half-life (Borchelt et al. 1994) and increasing its propensity to aggregate into 

oligomeric forms (Banci et al. 2007) and form insoluble material in cells (Prudencio et al. 

2009). Predictions using the Chiti-Dobson equation (that predicts aggregation propensity) 

have suggested that protein instability and aggregation propensity is a risk factor for SOD1 

associated fALS (Wang et al. 2008b).  It is thought that the mutant versions of SOD1 never  

realise their proper native structure, and therefore can cause cellular malfunction if they are 

not rapidly removed (Hart 2006). In vitro SOD1 follows a two phase kinetic model of 

aggregation that is common to most amyloid forming proteins, which includes a (rate-

limiting) lag phase in which oligomeric nuclei are formed, followed by a rapid growth phase 
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and subsequent plateau phase in which aggregate growth has reached an equilibrium 

(Chattopadhyay et al. 2008).  

 

Although mutant SOD1 is aggregation prone, it is maintained in a soluble form in young mice 

(Wang et al. 2009). This is presumably due to the efficient network of processes in place in 

cells to maintain protein homeostasis (proteostasis). It is thought that with aging these 

proteostasis systems can become overloaded or defective, resulting in persistent deposits of 

aggregated protein associated with disease pathology (Ben-Zvi et al. 2009). Aggregates of 

SOD1 are found in motor neurones and astrocytes in fALS patients and mutant SOD1 

expressing mice (Bruijn et al. 1998). The accumulation of this misfolded protein signifies a  

breakdown in the quality control system that prevents protein aggregation or an inability of 

these systems to cope with the increased load brought about by mutant SOD1 expression in 

ALS (Wang et al 2009). There are many other proteins associated with SOD1 deposits in vivo 

including molecular chaperones HSP70 and B-crystallin, and structural proteins such as 

vimentin, neurofilament heavy chain and tubulin (Bergemalm et al. 2010). The reason why 

these proteins are present in these deposits is unknown, however, it has been proposed that, at 

least in the case of chaperones, it may signify their failed attempt to keep the aggregating 

protein soluble in solution (Muchowski & Wacker 2005). 

 

The small heat shock proteins (sHsps) B-crystallin and Hsp27 are of particular interest  

because they co-localise with astrocytic inclusions in humans (Kato et al. 1997), and both 

Hsp25 (the mouse ortholog of human Hsp27) and B-crystallin increase in abundance in the 

spinal cord as ALS progresses in mouse models (Vleminckx et al. 2002; Wang et al. 2008a; 

Wang et al. 2005).  B-crystallin and Hsp25 have also been identified as components of 

inclusions from mutant SOD1 (G127X, G93A, D90A and G37R) mice using proteomics 

techniques on isolated inclusions (Bergemalm et al 2010) and detergent insoluble fractions 

(Basso et al. 2009). Moreover, SOD1 can be immunoprecipitated using B-crystallin 

antibodies in cell models of SOD1 associated ALS (Shinder et al. 2001). In HEK293 cells over-

expression of B-crystallin has been shown to suppress mutant SOD1 aggregation (Karch & 

Borchelt 2010), and B-crystallin has been shown to inhibit the movement of SOD1 into the  

insoluble fraction of tissue homogenates from mutant SOD1 mice when incubated at 37
o
C 

(Wang et al 2005). Hsp27 has been shown to protect cultured neurons from SOD1 

proteotoxicity (Patel et al. 2005) but this conflicts with work in cell culture models that reports 
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that Hsp27 over-expression does not protect Neuro2a cells from SOD1-associated toxicity 

(Krishnan et al. 2006). In animal models, knock-down of B-crystallin does not affect the 

amount of insoluble SOD1 nor does it significantly alter lifespan of transgenic mice (Karch & 

Borchelt 2010). Similarly, while over-expression of Hsp27 slows the early phase of disease it 

does not alter lifespan of SOD1 mice (Sharp et al. 2008). This may be, at least in part, due to 

the fact that robust expression of B-crystallin and Hsp25 is largely restricted to glial cells. 

However, there have been no studies that have investigated whether B-crystallin or Hsp27 

directly interact and suppress the aggregation of SOD1 outside of the complex cellular milieu. 

The aim of this work was therefore to examine the ability and mechanism by which the sHsps 

B-crystallin and Hsp27 suppress SOD1 aggregation in vitro.   

 

 

Results and Discussion 

 

Previous work has demonstrated that SOD1 is aggregation prone in its apo and disulphide 

reduced state (Chattopadhyay et al 2008; Furukawa et al. 2008). Moreover, a large proportion 

of human mutant SOD1 is found to exist in a demetallated and reduced form in transgenic 

mouse models (Jonsson et al. 2006). In the current study we have used DTT and EDTA to 

reduce the disulphide bonds and remove bound metal ions to promote aggregation of SOD1. 

We observed that, under the conditions used in this study, there was no increase in ThT  

fluorescence associated with WT SOD1 until high concentrations of DTT (50 mM) were used 

(Figure 1A). In the presence of 50 mM DTT, WT SOD1 aggregation was defined by a lag 

phase of ~5 h and maximum ThT fluorescence was reached after ~10 h of incubation. 

Similarly, G93A SOD1 aggregation was dependent on the presence of DTT, however, lower 

concentrations (10 mM) were required to initiate aggregation (Figure 1B). This is consistent 

with work that shows that native state of G93A SOD1 is more destabilised than WT SOD1 

(Svensson et al. 2010). However, when high concentrations of DTT were used (50 mM), the 

rate of aggregation of G93A SOD1 was very similar to WT SOD1 under the same conditions. 

This indicates that while the SOD1 mutations destabilise the native conformation, when WT 

SOD1 is destabilised by extreme conditions it will aggregate at a similar rate.  These data are  

consistent with computational (Wang et al 2008b) and cell culture models (Prudencio et al 

2009), that indicate a correlation between aggregation propensity of SOD1 and disease 

severity.. 
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Previous studies have reported that although over-expression of B-crystallin can reduce 

insoluble aggregate formation in cell models of SOD1 aggregation, knock-down of B-

crystallin in a G93A SOD1 mouse model of ALS does not affect the total amount of insoluble 

protein measured (Karch & Borchelt 2010). As a result, it was not clear if the suppression of 

aggregation in cell models was due to a direct role in halting aggregation or whether boosting 

the capacity of the cell’s proteostasis machinery was enough to quell aggregation. In order to 

test whether sHsps could indeed directly suppress SOD1 aggregation we used our in vitro 

aggregation assay and recombinant forms of B-crystallin and Hsp27. Co-incubation of 

G93A SOD1 with B-crystallin resulted in a significant decrease in ThT fluorescence 

associated with SOD1 aggregation (Figure 2A) but it did not alter the lag phase (which  

remained at ~ 5 h in the presence or absence of B-crystallin). These results are consistent 

with B-crystallin having a direct role in suppressing SOD1 aggregation in cell models over-

expressing B-crystallin. The lack of an obvious change in phenotype upon knockout of B-

crystallin in the G93A SOD1 mouse model of ALS may be attributable to the overlap in 

chaperone function of the small heat shock proteins, i.e. other members of the sHsp family 

may have compensated for the loss of B-crystallin in these mice.  Alternatively, B-

crystallin may not be expressed at sufficient levels in neurons where SOD1 aggregation 

occurs in these mice. In support of this, it is well documented that B-crystallin expression in 

motor neurones is low in comparison to surrounding glia (Vleminckx et al 2002) and the 

initial stages of SOD1 aggregation occurs in motor neurones in mice (Stieber et al. 2000).   

 

We next tested whether the Hsp27 is also able to inhibit G93A SOD1 aggregation in vitro. As 

seen for B-crystallin, co-incubation of G93A SOD1 with Hsp27 resulted in a decrease in 

ThT fluorescence associated with SOD1 aggregation (Figure 2B). Again, the presence of 

Hsp27 did not significantly alter the lag phase. However, at a molar ratio of 1:0.01 

(SOD1:chaperone) Hsp27 was significantly less effective at inhibiting G93A SOD1 

aggregation when compared to B-crystallin (B-crystallin 78 ± 5% compared to Hsp27 54 ± 

6%, p<0.05). This data indicates that the ability of Hsp27 to suppress SOD1 proteotoxicity in 

cultured neurons (Patel et al 2005) is likely to be attributable to the chaperone activity of 

Hsp27. This is consistent with increased survival of motor neurons in early stage disease in  

Hsp27 over-expressing SOD1 mice (Sharp et al 2008).  The lack of an effect on longevity in 

this model is most likely attributable to an overwhelming of the chaperone: as disease 

progressed Hsp27 levels in motor neurons decreased (Sharp et al 2008).  
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Previous cell culture experiments have detected the formation of stable complexes between 

G93A SOD1 aggregates and αB-crystallin, however, it was unclear whether this interaction 

was a direct one or mediated through another (unidentified) factor (Shinder et al 2001). The 

binding of sHsps to SOD1 aggregates may account, at least in part, for the depleted levels of 

Hsp25 reported in the cytosolic fractions of motor neurons in G93A SOD1 mice (Maatkamp 

et al. 2004). Stable complexes between SOD1 and sHsps may also explain the presence of 

Hsp25 and αB-crystallin in the insoluble fractions of spinal cord extracts from transgenic 

mice with ALS symptoms (Wang et al 2008a; Wang et al 2005). Therefore, to test if B-

crystallin is capable of binding directly to SOD1 and forming a stable complex with it, we  

incubated WT SOD1 with 50 mM DTT in the absence or presence of B-crystallin. 

Aggregation of WT SOD1 when incubated alone was more rapid in this assay than seen 

previously (compare the green line in Figure 1A with the blue line in Figure 3A) due to the 

increased rate of shaking used for this assay, i.e. 300 revolutions per minute (rpm) versus 120 

rpm. The rate of agitation is known to play a significant role in the kinetics of aggregation due 

to it promoting nuclei formation and therefore secondary nucleation (Knowles et al 2009; Xue 

et al 2008). Addition of B-crystallin resulted in a concentration-dependent decrease in ThT 

fluorescence associated with WT SOD1 aggregation, such that, a molar ratio of 1:1 

(SOD1:B-crystallin), there was nearly complete inhibition (Figure 3A). Size exclusion 

chromatography and SDS-PAGE of the fractions eluting from the column demonstrated that,  

prior to incubation, SOD1 elutes as a single peak at an elution volume of 15.8 mL, consistent 

with its dimeric form in the native state (Figure 3B). B-crystallin primarily elutes as a broad 

peak centred at an elution volume of 11.1 mL due to its polydisperse oligomeric state (Haley 

et al 1998). The sample containing both WT SOD1 and B-crystallin (at a 1:1 molar ratio) 

eluted primarily as a very broad peak centred at an elution volume of 10.8 mL. This peak 

contains both SOD1 and B-crystallin. Moreover, there was a decrease in intensity of the 

dimeric SOD1 peak (i.e. at an elution volume of 15.8 mL). These data are consistent with the 

formation of a high molecular mass complex between SOD1 and B-crystallin. The 

formation of a high molecular mass complex between B-crystallin and aggregating proteins 

reflects the well-described ‘holdase’ type chaperone mechanism of sHsps and is thought to  

enable a maintenance of aggregating protein in solution (Ecroyd & Carver 2009).  
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Taken together, our observations are consistent with the sHsps inhibiting SOD1 aggregation 

through an effect upon the growth phase of the aggregation kinetics rather than upon the lag 

phase. That is, while both B-crystallin and Hsp27 significantly reduced the extent of SOD1 

aggregation, the lag phase of the reaction was not significantly changed in the presence or 

absence of the chaperones (see Figure 2 and Figure 3A). If a two-phase kinetic model is used 

to model the aggregation process of SOD1, these data imply that both Hsp27 and αB-

crystallin inhibit SOD1 aggregation by acting primarily upon fibril elongation rather than the 

formation of fibril nuclei. Thus, our data suggests that sHsps bind to larger oligomeric species 

formed during SOD1 aggregation rather than partially folded monomers and pre-nuclei 

oligomers. Such a mechanism is consistent with recent work in which αB-crystallin has been  

reported to be capable of binding to preformed fibrils and, in doing so, suppress further fibril 

formation (Shammas et al. 2011; Waudby et al. 2010). Moreover, in both humans and mouse 

models of ALS, B-crystallin is primarily associated with the insoluble inclusions (Basso et 

al 2009; Bergemalm et al 2010; Kato et al 1997). Thus, we directly tested whether B-

crystallin is capable of binding to mature SOD1 aggregates using a dot blot assay (Figure 3C). 

After centrifugation and washing, a proportion of aggregated SOD1 could be detected in the 

pellet (P). In contrast, when aggregated WT SOD1 and B-crystallin were incubated together 

B-crystallin was also detected in the pellet (P) fraction, consistent with it binding to 

aggregated SOD1. There was no apparent difference in the amount of SOD1 in the pellet 

fraction when B-crystallin was incubated with this aggregated sample. The ability of B- 

crystallin to bind to aggregated forms of SOD1 may, at least in part, explain the presence of 

B-crystallin in SOD1 positive inclusions in ALS patients and its association with inclusions 

in mouse models.  

  

In summary the in vitro model of SOD1 aggregation used in this study has provided evidence 

that the sHsps B-crystallin and Hsp27 can directly interact with and inhibit SOD1 

aggregation. These findings, along with those that show that upregulation of sHsps (and other 

chaperones, such as Hsp70) protect against SOD1 proteotoxicity (Gifondorwa et al. 2007; 

Kalmar et al. 2012; Sharp et al 2008) raises the question as to why inclusion formation still 

occurs in vivo. A possible explanation is that systems that normally act to maintain  

proteostasis are overloaded by the increased burden brought about by SOD1 aggregation, or 

the decrease in the soluble pool of chaperone proteins that occurs because of this, or both. It is 

important to note that the aggregation assays in this study were exclusively conducted under 
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reducing conditions. While disulfide bond reduction is thought to be an important step in the 

monomerisation and subsequent aggregation of SOD1 (Chattopadhyay et al 2008; Karch et al. 

2009), several theories of SOD1 toxicity focus upon oxidative stress as an important factor in 

ALS pathogenesis (Pasinelli & Brown 2006). Moreover, previous studies with G93A SOD1 

mice have identified heterogeneous SOD1 aggregates which varied in form with disease 

progression (Sasaki et al. 2005). Given that different reaction conditions (in vitro) have been 

reported to produce differing species of SOD1 aggregates (Chattopadhyay et al 2008; Rakhit 

et al. 2002; Stathopulos et al. 2003) it is possible that the cellular conditions and aggregation 

pathway also vary with disease progression. This may, at least in part, explain the 

contradictory reports of protection from sHsps in the literature.  

 

While the rapid and predictable progression of SOD-related ALS confirms the ability of toxic 

G93A SOD1 species to evade in vivo proteostatic systems, the mechanism by which G93A 

SOD1 evades these systems remains unknown. This study was able to confirm the ability of 

Hsp27 and αB-crystallin to inhibit G93A SOD1 aggregation in vitro. Since previous studies 

have suggested that overexpression of chaperones is insufficient to attenuate the progression 

ALS in mouse models (Krishnan et al. 2008) further investigation to clarify the mechanism by 

which mutant SOD1 escapes the proteostatic machinery might provide clues to a possible 

treatment for ALS. 
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Figure legends 

 

Figure 1 – The reduction-dependent aggregation of SOD1 in vitro. Wild-type (a) or G93A 

(b) SOD were incubated at 30 M in 10 mM potassium phosphate buffer containing 5 mM 

EDTA, pH 7.4 whilst shaking (300 rpm for 5 min each cycle, 15 min cycles) at 37ºC in the 

absence (red) or presence of 10 mM (blue) or 50 mM (green) DTT. The buffer alone sample 

is also shown (orange). The amount of ThT fluorescence (excitation at 440 nm and emission 

at 490nm) was monitored over time using a microplate-reader and the change in ThT 

fluorescence is reported as a mean ± SEM of three replicates. The data is representative of 3 

independent experiments.  

 

Figure 2 -  The small heat shock proteins B-crystallin and Hsp27 inhibit the in vitro 

aggregation of G93A SOD1. G93A SOD1 was incubated at 30 M in 10 mM potassium 

phosphate buffer containing 5 mM EDTA, pH 7.4 whilst shaking (300 rpm for 5 min each 

cycle, 15 min cycles) at 37ºC in the absence or presence of (a) B-crystallin, or (b) Hsp27. 

The amount of ThT fluorescence (excitation at 440 nm and emission at 490nm) was 

monitored over time using a microplate-reader and the change in ThT fluorescence is reported 

as a mean ± SEM of three replicates. The data is representative of at least 3 independent 

experiments. Molar ratios (SOD1: chaperone) are shown on the right. 

  

Figure 3 –B-crystallin inhibits the in vitro aggregation of WT SOD 1 by forming a 

stable complex. (a) Wild-type SOD1 was incubated at 30 M in 10 mM potassium phosphate 

buffer containing 5 mM EDTA, pH 7.4 whilst shaking (120 rpm for 5 min each cycle, 15 min 

cycles) at 37ºC  in the absence or presence of B-crystallin and the amount of ThT 

fluorescence (excitation at 440 nm and emission at 490nm) was monitored over time using a 

microplate-reader. Molar ratios (SOD1: chaperone) are shown on the right. Inset: The percent 

inhibition of the increase in ThT fluorescence afforded by B-crystallin. Results shown are 

mean ± SEM of three replicates. (b) Size exclusion chromatography and SDS-PAGE of the 

eluate to establish whether B-crystallin prevents WT SOD1 aggregation by forming a 

complex with it. Samples containing non-incubated WT SOD1 (30 M, blue), αB-crystallin  

alone (30 M, purple) or WT SOD 1 and αB-crystallin (at a molar ratio of 1:1 and recovered 

at the end of the assay described in a) (orange) were applied to a Superdex 200 HR 10/30 

column and eluted with PBS at a flow rate of 0.5 mL/min. Eluate from the column was 
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collected into 0.5 mL fractions. The sample loaded onto the column (L) (diluted five-fold 

with PBS) and every second fraction eluting between 8 to 17 mL were subjected to SDS-

PAGE analysis.  (c) Immuno-dot blot used to detect the interaction of αB-crystallin with 

aggregated SOD1. Aggregated WT SOD1 (20 M) was incubated in the absence or presence 

of αB-crystallin (20 M) for 1 h at 37°C. Control samples consisted of buffer alone or αB-

crystallin alone.  All samples were collected and centrifuged for 30 min at 4°C and the soluble 

(S) and pellet (P) fractions separated. Pellet fractions were washed twice with PBS and then 

the soluble and pellet fractions were spotted onto a nitrocellulose membrane in duplicate. 

Membranes were blotted with antibodies specific to SOD1 or αB-crystallin. The results 

shown are representative of two independent experiments.   

  

 



Figure 1
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Supplementary Figure 1 –Negative control GST does not inhibit the in vitro aggregation 

of WT SOD1 or form a stable complex with its aggregated form. (a) Wild-type SOD1 

was incubated at 30 µM in 10 mM potassium phosphate buffer containing 5 mM EDTA, pH 

7.4 whilst shaking (120 rpm for 5 min each cycle, 15 min cycles) at 37ºC in the absence or 

presence of GST and the amount of ThT fluorescence (excitation at 440 nm and emission at 

490nm) was monitored over time using a microplate-reader. The molar ratio (SOD1: GST) 

used was 1:1. Inset: The percent inhibition of the increase in ThT fluorescence afforded by 

GST. Results shown are mean ± SEM of three replicates. (b) Immuno-dot blot used to detect 

any interaction of GST with aggregated SOD1. Aggregated WT SOD1 (20 µM) was 

incubated in the absence or presence of GST (20 µM) for 1 h at 37°C. Control samples 

consisted of buffer alone or GST alone.  All samples were collected and centrifuged for 30 

min at 4°C and the soluble (S) and pellet (P) fractions separated. Pellet fractions were washed 

twice with PBS and then the soluble and pellet fractions were spotted onto a nitrocellulose 

membrane in duplicate. Membranes were blotted with antibodies specific to SOD1 or GST. 

The results shown are representative of two independent experiments.  
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