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sensitized solar cells (QDSCs) is highly important. While ZnS is one of the most widely used passivation
material in QDSCs, an alternative material based on ZnSe which was deposited on CdS/CdSe/TiO2
photoanode to form a semi-core/shell structure has been found to be more efficient in terms of reducing
electron recombination in QDSCs in this work. It has been found that the solar cell efficiency was improved
from 1.86% for ZnSe0 (without coating) to 3.99% using 2 layers of ZnSe coating (ZnSe2) deposited by
successive ionic layer adsorption and reaction (SILAR) method. The short circuit current density (Jsc)
increased nearly 1-fold (from 7.25 mA/cm2 to13.4 mA/cm2), and the open circuit voltage (Voc) was
enhanced by 100 mV using ZnSe2 passivation layer compared to ZnSe0. Studies on the light harvesting
efficiency (ηLHE) and the absorbed photon-to-current conversion efficiency (APCE) have revealed that the
ZnSe coating layer caused the enhanced ηLHE at wavelength beyond 500 nm and a significant increase of the
APCE over the spectrum 400-550 nm. A nearly 100% APCE was obtained with ZnSe2, indicating the
excellent charge injection and collection process in the device. The investigation on charge transport and
recombination of the device has indicated that the enhanced electron collection efficiency and reduced
electron recombination should be responsible for the improved Jsc and Voc of the QDSCs. The effective
electron lifetime of the device with ZnSe2 was nearly 6 times higher than ZnSe0 while the electron diffusion
coefficient was largely unaffected by the coating. Study on the regeneration of QDs after photoinduced
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efficient even when the QDs were coated with a thick ZnSe shell (three layers). For comparison, ZnS coated
CdS/CdSe sensitized solar cell with optimum shell thickness was also fabricated, which generated a lower
energy conversion efficiency (η = 3.43%) than the ZnSe based QDSC counterpart due to a lower Voc and FF.
This study suggests that ZnSe may be a more efficient passivation layer than ZnS, which is attributed to the
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ABSTRACT  

Research on development of efficient passivation materials for high performance and stable 

quantum dot sensitized solar cells (QDSCs) is highly important. While ZnS is one of the most 

widely used passivation material in QDSCs, an alternative material based on ZnSe which was 

deposited on CdS/CdSe/TiO2 photoanode to form semi core/shell structure has been found more 

efficient in terms of reducing electron recombination in QDSCs in this work. It has been found 

that the solar cell efficiency was improved from 1.86% for ZnSe0 (without coating) to 3.99% 

using 2 layers of ZnSe coating (ZnSe2) deposited by successive ionic layer adsorption and 

reaction (SILAR) method. The short circuit current density (Jsc) increased nearly one fold (from 

7.25 mA/cm2 to13.4 mA/cm2) and the open circuit voltage (Voc) was enhanced by 100 mV using 

ZnSe2 passivation layer compared to ZnSe0. Studies on the light harvesting efficiency (ηLHE) 

and the absorbed photon-to-current conversion efficiency (APCE) have revealed that the ZnSe 

coating layer caused the enhanced ηLHE at wavelength beyond 500 nm and a significant increase 

of the APCE over the spectrum of 400-550 nm. A nearly 100% APCE was obtained with ZnSe2, 

indicating the excellent charge injection and collection process in the device. The investigation 

on charge transport and recombination of the device has indicated that the enhanced electron 

collection efficiency and reduced electron recombination should be responsible for the improved 

Jsc and Voc of the QDSCs. The effective electron lifetime of the device with ZnSe2 was nearly 6 

times higher than ZnSe0 while the electron diffusion coefficient was largely unaffected by the 

coating. Study on the regeneration of QDs after photo-induced excitation has indicated that the 

hole transport from QDs to the reduced species (S2-) in electrolyte was very efficient even the 

QDs were coated with a thick ZnSe shell (three layers). For comparison, ZnS coated CdS/CdSe-

sensitized solar cell with optimum shell thickness was also fabricated, which generated a lower 
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energy conversion efficiency (η = 3.43%) than ZnSe-based QDSC counterpart due to a lower Voc 

and FF.  This study suggests that ZnSe may be a more efficient passivation layer than ZnS 

attributed to the type II energy band alignment of the core (CdS/CdSe quantum dots) and 

passivation shell (ZnSe) structure, leading to more efficient electron-hole separation and slower 

electron recombination.  

    

1. Introduction 

Quantum dots-sensitized solar cells (QDSC) are devices which adopt a similar device structure 

with traditional dye-sensitized solar cells (DSSC) but using semiconductor quantum dots (QDs) 

as light absorbing material. Generally speaking, QDSC consist of QDs coated TiO2 based 

mesoporous film as photoanode, a liquid electrolyte containing S2-/Sn
2- based redox couple, and a 

counter electrode.  QDs are particles with sizes less than the Bohr radius for that material. Due to 

quantum confinement, QDs possess unique optical and electronic properties such as particle size-

dependent energy band gap and optical properties as well as multiple exciton generation.1-4 The 

light absorption coefficient of QDs is normally in the order of 105 cm-1,5-6 which is ten times 

higher than the light absorption of the well-known light absorber based on ruthenium-complex 

dye. In addition, the dipole property of QDs is also believed to benefit the interfacial charge 

separation process in QDs solar cells. Because of these merits, it is predicated that the theoretical 

solar energy conversion efficiency of QDs-based solar cells is around 44%,7 which is much 

higher than the Shockley-Queisser energy conversion limit for a single junction solar cell (31-

33%).  

Materials based on CdS and CdSe are the most widely investigated semiconductor QDs for 

QDSC owing to their easy synthesis.3, 8 CdS/CdSe QDs can be deposited on TiO2 film by a 
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method called successive ionic layer adsorption and reaction method (SILAR). In this method, a 

TiO2 film was dipped in a solution of Cd2+ and then in S2-/Se2- containing solution in sequence to 

complete one deposition cycle for formation of CdS or CdSe. The particle size of the QDs is 

controlled by the number of deposition cycle. The QDs that are introduced to the TiO2 film by 

SILAR directly contact with TiO2 nanoparticles, which is believed to benefit a more efficient 

charge transfer of the device.9  

Although many efforts have been made in the past, the performance of QDSC still significantly 

lags behind that of DSSC due to a more serious charge recombination process and lower QDs 

coverage in the photoanode. So far, the best efficiency with DSSC is 13% while the performance 

of champion QDSC is around 7%.10-11  Thus, an in-depth understanding of the parameters that 

govern the performance of QDSC is important for developing new strategies for improving the 

device performance. 

Similar to DSSC, the performance of a QDSC is controlled by the competition between the 

desirable process of photo-induced electron generation and subsequent electron injection and 

collection and the process of electron recombination.12-14 However, compared to DSSC, QDSC 

suffer a much more complex electron recombination process.15-16 Besides the charge 

recombination with oxidized species in liquid electrolyte which is normally the main 

recombination route in DSSC, the charge recombination process in QDSC also includes the 

recombination of photogenerated electron with hole of QDs and with oxidized species of the 

electrolyte before electron injection; and after electron injection, the back reaction of the injected 

electron at the conduction band of TiO2 with hole of QDs and with surface defects of TiO2. 

These processes are much more serious than those in traditional DSSC. As a consequence, both 

the electron injection efficiency and electron collection efficiency of QDSCs are generally lower 
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compared to DSSCs.7, 15, 17-18 In addition, Zhu et al have reported that Auger recombination in 

QDs due to surface charging by ploysulfide electrolyte can also impede the charge transfer from 

QDs to TiO2, resulting in reduced charge injection efficiency.19   

Besides device performance, stability is another important issue related with QDSCs. Due to 

their extremely small particle size, QDs normally possess a much higher density of surface 

defects in the form of dangling bonds. Under illumination, free radicals generated by the 

dangling bond can interact with species such as oxygen, resulting in oxidization of QDs.20  

To address above issues, researchers have developed a strategy based on surface coating CdS or 

CdSe QDs with a passivation shell layer of large bandgap material such as ZnS to protect QDs 

from photodegradation and to reduce recombination in QDs.20-22 Compared to CdSe and CdS, 

ZnS has a more negative minimum conduction band edge (Ecb) and a more positive maximum 

valence band edge (Evb), leading to a Type I energy alignment of the core/shell structure. In this 

structure, the energy barrier of the ZnS shell prevents the transport of both electron and hole 

from QDs to electron and hole acceptor species in the liquid electrolyte. As a consequence, 

although the electron back reaction from QDs to the electrolyte is suppressed, the hindrance of 

the desired hole transport from QDs to the electrolyte causes reduced charge separation in QDs.22 

Hence, a delicate control of the thickness of the shell passivation layer to ensure that the benefit 

from the reduced recombination surpasses the loss in charge separation is very critical for 

improving the performance of QDSCs.  

Nevertheless, theoretically the negative impact of the passivation layer on charge separation in 

QDSC can be overcome using a type II core/shell energy alignment. In Type II core/shell 

structure, both the Ecb and Evb of the shell material are higher than those of the core material. 
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Hence, the transport of hole from QDs core to the shell material is energetically favorable while 

the transport of electron from QDs to the shell is blocked. As a consequence, an efficient charge 

separation and reduced electron recombination can be achieved. Through material screening, we 

have found that ZnSe is one of such suitable passivation materials for CdSe/CdS QDs to form a 

type II core-shell structure. The schemes showing the structure of the photoanode of the QDSC 

and the energy band alignment of the materials involved in the photoanode are illustrated in 

Figure 1(a, b). As illustrated in Fig. 1 (b), the Evb of ZnSe is higher than that of both CdS and 

CdSe but is more negative than the redox potential of sulfide/polysulfide, enabling the transfer of 

hole from CdSe/CdS to ZnSe then to sulfide/polysulfide feasible. Meanwhile, due to the more 

negative Ecb of ZnSe compared to that of CdSe and CdS, the electron transfer from CdS/CdSe 

QDs to Sn
2- in the electrolyte is blocked, forcing the injection of electron to TiO2. The benefit of 

ZnSe as a type II shell layer on device performance has been reported with CuInS2 and CdSe 

based QDSCs.23 In addition, Yan et al have reported accelerated charge separation and more 

efficient charge collection with solar cells sensitized with ZnSe/CdSe/ZnSe quasi-quantum 

well.24 In addition, a strong charge separation in CdS/ZnSe core/shell nanoparticles was also 

observed by Boldt et al.25 More recently, Soni et al., have reported that thicker ZnSe shell in 

CdSe/CdS/ZnSe “QD/shell” structure did not harm their device performance. Instead it 

contributed to a better electron-hole pair separation thanks to the Type II energy band 

alignment.26 Similar phenomenon has also been reported by Ivanov et al.27 and Verma et al. 28 

respectively. 
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(a)                                                                  (b) 

Figure 1. Schematic diagram of the photoanode (a) and the energy band alignment of the 

materials for the ZnSe/CdS/CdSe quantum dots solar cell (b). 

Despite this, research on QDSC based on CdS/CdSe QDs using ZnSe as shell layer is still very 

limited, in particular the impact of ZnSe coating on the charge transport and recombination of the 

device is not well understood. In this work, we have investigated the effect of ZnSe coating layer 

on the performance and charge transport and recombination of CdS/CdSe -sensitized solar cells. 

It has been found that, compared to the device without ZnSe shell, a nearly two-fold 

enhancement of the energy conversion efficiency was achieved with the CdS/CdSe based QDSC 

with a two SILAR layers of ZnSe coating (ZnSe2). The study on electron transport and 

recombination has confirmed that the ZnSe coating layer significantly suppressed the electron 

recombination in the solar cells. In the meantime, the transport of hole from the QDs to the 

reduced species (S2-) of the liquid electrolyte was still very efficient even with thick ZnSe 

coating (3 layers), suggesting a high charge separation process.  

2. Experimental  
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Fabrication of CdS/CdSe sensitized TiO2 film 

All the chemicals used in this work were purchased from Sigma Aldrich unless otherwise stated.  

A TiO2 compact layer was deposited on a clean fluorine doped tin-oxide (FTO, TEC15, 2.2 mm 

thickness, Pilkington) glass substrate by spray pyrolysis according to the procedure reported 

previously.29-30 After that, a layer of TiO2 film was deposited by doctor-blading using a 

commercial paste (Dyesol DSL, 18NR-T).  The films were allowed to relax in air for a couple of 

minutes and dried on a hotplate at 100°C for 10 minutes before being sintered at 500°C for 30 

minutes to remove all organic materials to form a mesoporous structure. The thickness of the 

film was around 12 µm and the average TiO2 particle size was around 20 nm.  

The procedure for deposition of CdSe and CdS nanocrystals on the TiO2 film by successive ionic 

layer adsorption and reaction (SILAR) was reported previously.8, 31 Briefly, the TiO2 film was 

firstly dipped in 0.02 M Cd(NO3)2.4H2O methanol aqueous solution (methanol/water=1:1, v/v) 

to adsorb a layer of Cd2+ on TiO2 surface. After washing to remove excessive Cd2+, the film was 

then immersed in a Se2- precursor solution for 1 min to complete one deposition cycle. The Se-

precursor solution was prepared by dissolving 0.03 M SeO2 and 0.06 M NaBH4 in absolute 

ethanol in a three neck flask under nitrogen atmosphere.32 The solution was magnetic stirred for 

around 75 - 90 mins until it became semi-transparent with dark maroon color. The color of the 

sensitized TiO2 films changed from white to maroon with the increase of deposition cycle of 

CdSe. Through optimized deposition procedure, five SILAR deposition cycles of CdSe (CdSe5) 

were used in this work, which produced CdSe QDs with average particle size around 3.9 nm as 

determined by HR-TEM based on the measurement of at least 200 particles.20 
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The CdSe-sensitized photoanode was subsequently dipped in 0.02 M Cd(NO3)2.4H2O in 

methanol and then in 0.02 M Na2S.9H2O in methanol/water (1:1, v/v) solution for one minute 

each to load CdS QDs. The film was rinsed with methanol solvent for 1 minute and then dried by 

blowing nitrogen gas. 5 SILAR deposition cycles for CdS were adopted to make CdS/CdSe/TiO2 

film. The average particle size of the deposited CdS was around 3.0 nm.20 

The ZnSe coating layer was deposited on the CdS/CdSe/TiO2 film via SILAR method as well. 

Briefly, 0.1 M Se-precursor solution was prepared by mixing 0.1 M SeO2 and 0.2 M NaBH4 in 

deionised water in a three-neck flask. The solution was magnetic stirred for one hour until it 

became transparent. The CdS/CdSe-sensitized TiO2 electrode was dipped in 0.1 M 

Zn(CH3COO)2.2H2O aqueous solution and then in the prepared Se-precursor solution to 

complete one deposition layer of ZnSe (ZnSe1). The same procedure was repeated when 

depositing a thicker ZnSe shell. For clarity, the different SILAR coating layer, N, is shown by 

ZnSeN (N = 0 - 3) in the following. The prepared ZnSe/CdS/CdSe/TiO2 photoanode was stored 

in a petri dish covered with Al foil to prevent possible photodegradation before cell assembly. It 

is worth to mention that the attempt to see the difference in the SEM images of the TiO2 film 

coated with or without CdSe/CdS/ZnSe quantum dots was failed due to the extremely thin layer 

of QDs particles. 

The ZnS coating layer with optimum thickness (2 SILAR deposition layers, ZnS2)) was prepared 

using 0.1 M Zn(CH3COO)2.2H2O and 0.1 M Na2S.9H2O aqueous solution as the precursor 

solution for Zn2+ and S2- respectively. One minute of dipping in each precursor solution and then 

rinsing in deionised water were performed for ZnS deposition. 

Fabrication of quantum dot sensitized solar cells 
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Cu2S counter electrode for the QDSCs was made using a brass foil (Cu:Zn = 64:27) which was 

firstly treated in 32% HCl solution at 70°C for 20 minutes to dissolve Zn. The foil was then dried 

on a hotplate at 100°C for one hour before being dipped in a polysulfide electrolyte solution 

consisting of 1 M sulfur, 1 M Na2S.9H2O and 0.1 M NaOH in methanol/water (7:3 v/v) for 20 

minutes to form Cu2S. The electrode was then dried on a hotplate before being used to assemble 

solar cells. QDSC was assembled by sealing the prepared QDs-sensitized photoanode with the 

Cu2S counter electrode together using a Surlyn film (Solarnix, 25 µm) as spacer. The distance 

between the electrodes was filled with a polysulfide liquid electrolyte with the same 

compositions as used to make Cu2S electrode.  

Material and device characterization 

The light absorbance and transmittance of the CdS/CdSe co-sensitized TiO2 films with different 

ZnSe coating layer was determined by a UV-visible spectrophotometer (Varian Cary 50) and the 

reflectance of the photoanode was measured by a UV-visible  spectrometer with integrated 

sphere (Varian, Cary 5000). The current density (J) - voltage (V) performance of the CdSe/CdS-

sensitized solar cells was measured with a solar simulator equipped with 150 W Xenon lamp. A 

reference silicon solar cell (Fraunhofer ISE) was employed to calibrate the illumination intensity 

of the solar simulator to 100 mW/cm2 (AM1.5). At least three cells were made for each ZnSe 

coating layer. The incident photon-to-current conversion efficiency (IPCE) spectra of the QDSC 

was measured as a function of wavelength provided by a 150 W Xe lamp light source coupled to 

a monochromater (Cornerstone 260). The photocurrent generated by the cell at each wavelength 

was recorded by a source measurement unit (Keithley 236). The photovoltage decay of the cell 

was recorded using an electrochemical workstation (VersaSTAT3) after switching off the light 

source which was provided by a light emitting diode (LED, 627 nm).14   
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The stepped light-induced measurement of photocurrent and photovoltage (SLIM-PCV) was 

used to determine the effective electron lifetime (τn) and electron diffusion coefficient (Dn) of the 

solar cell.33 The measurement was performed using a freshly prepared device and using a 635 nm 

diode laser as the light source. The Jsc or Voc decays were obtained at different laser intensity 

recorded by a multimeter (ADCMT 7461A). For electron lifetime measurement, the laser 

intensity was stepped down to provide a small voltage change (less than 1 mV). For Dn 

measurement, the laser intensity was stepped down to obtain less than 10% change in the 

photocurrent. The electron density (nt) in the photoanode film was determined by charge 

extraction method using a nanosecond switch (AsamaLab).34 To enhance the signal of the 

measurement, the photoanode with thickness of TiO2 film around 7.0 μm was used in the SLIM-

PCV measurement. 

Transient absorption spectroscopy (TAS) was used to monitor the lifetime of photogenerated 

species of the QDs-sensitized photoanode on the nanosecond to millisecond timescale. The 

CdS/CdSe QDs-sensitized TiO2 film was covered by a slice of FTO glass (2.2 mm, 7 Ω/square, 

TEC®) coated with a thin layer of platinum and sandwiched with a Surlyn film (25 µm) acting as 

a spacer. The space between the photoanode and the Pt coated FTO electrode was filled with S2-

/Sn
2- redox electrolyte with the same composition to the one used for QDSC. An inert electrolyte 

composed of 1M NaOH in methanol/water (7:3, v/v) was used to measure the charge 

recombination in QDs in the absence of electron and hole acceptor in the electrolyte.  Six to eight 

nanosecond pulse width laser pulses using a Q-switched Nd-YAG laser (532 nm, 10 Hz, INDI 

Quanta-Ray, Spectra-Physics) were used to photoexcite the QD-sensitized TiO2 film (pump). 

The probe wavelength was 700 nm and was provided by a current-controlled (BENTHAM 605) 

quartz halogen lamp (IL1). A 700 nm band pass filter was employed between the probe lamp and 
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the sample to prevent photoexcitation of the sample by the probe beam. A system consisting of 

monochromator (CM110, SP), a silicon photoreceiver (HCA-S-200M, Germany) and a digital 

oscilloscope (DPO 4054, Tektronix) was used to record the optical signals. A previous study by 

Palomares et al. has assigned the transient absorption signal at 700 nm to photoinduced holes in 

the CdS/CdSe QDs following electron injection into TiO2.18 Similar consideration was also used 

in this work. The TA signals were averaged using 512 laser pulses at 1 Hz by picking only one 

pulse per every ten using a laser shutter controlled by a digital delay generator (DG535, Stanford 

Research). The time resolution of the setup was around 100 ns.  

Results and Discussion 

Solar cell performance 

The performance of the solar cells with different ZnSe shell layer on CdS/CdSe/TiO2 film is 

shown in Figure 2.  One striking feature that can be seen in Figure 2(a) is that, compared to the 

cell without coating (ZnSe0), the photocurrent density of the cell with ZnSe coating is much 

higher, a phenomenon normally observed in QDSC using passivation layer.21, 35-36 The short-

circuit current density (Jsc) of the solar cell increases with the increase of the coating layer up to 

2 (ZnSe2). The Jsc increases significantly from 7.25 mA/cm2 for ZnSe0 to 10.6 mA/cm2 for 

ZnSe1. And a further increase of Jsc is obtained with ZnSe2 with Jsc = 13.4 mA/cm2. In the 

meantime, the Voc of the cell is enhanced with ZnSe coating until ZnSe2 which produced a 100 

mV higher Voc compared to that of ZnSe0. As a consequence, the conversion efficiency of the 

solar cell is increased over one fold from 1.86% for ZnSe0 to 3.99% for ZnSe2. Nevertheless, 

further increase of the thickness of shell layer to ZnSe3 leads to the decrease of both the Jsc and 
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Voc of the solar cell. The characteristic parameters for the performance of the solar cells are 

summarized in Table 1.  

     

(a)                                                                   (b) 

Figure 2. J-V (a) and IPCE (b) plots for the CdS/CdSe-sensitized solar cells with different ZnSe 

coating layer. 

Table 1. Characteristic parameters for the performance of the CdSe/CdS-sensitized solar cells 

with different ZnSe coating layer. 

ZnSe layer 
 

η (%) 
 

Voc (mV) 
 

Jsc (mA/cm2) 
 

FF 

0 1.86 489 7.25 0.52 

1 2.82 538 10.6 0.49 

2 3.99 580 13.4 0.51 

3 3.56 567 11.9 0.53 
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The plots of incident photon-to-current conversion efficiency (IPCE) of the corresponding cells 

are shown in Figure 2(b). It is known that Jsc of a solar cell is the integration of IPCE over the 

solar spectrum of interest. As expected, the IPCE shows the trend of ZnSe0 < ZnSe1 < ZnSe3 < 

ZnSe2, which is consistent with the variation of Jsc of corresponding cells. It is noticed that the 

QDSC with ZnSe coating show much higher IPCE in the spectral wavelength range from 400 to 

600 nm. Especially, the IPCE for ZnSe2 is over 80% in the spectral wavelength range of 420-600 

nm, indicating the excellent energy conversion efficiency. Nevertheless, the IPCE drops 

significantly at the wavelength beyond 600 nm for all the devices, which is mainly due to the 

decreased light absorption as indicated by the light absorption spectrum of the corresponding 

photoanode for these devices in Fig. 3(a). The light absorption spectrum of the CdS/CdSe/TiO2 

photoanode with different ZnSe coating layer (Figure 3(a)) reveals that the light absorption of all 

the photoanode with ZnSe coating is close to unity at the spectral wavelength below 550 nm. For 

the film without ZnSe coating, a nearly 100% light absorption is obtained in the wavelength 

range between 400-500 nm. The light absorption of the photoanodes decreases at the wavelength 

beyond 550 nm. However, the extent of the decrease is different, leading to higher light 

absorption obtained with the photoanode with thicker ZnSe coating compared to the film with 

thinner shell layer.  

APCEIPCE LHEcollinjLHE ×=××= ηηηη                   (Eq1) 

IPCE of a QDSC depends on three parameters according to Eq1:  1) light harvesting efficiency 

(ηLHE); 2) electron injection efficiency (ηinj); and 3) electron collection efficiency (ηcoll). In order 

to find out which parameter(s) is responsible for the change of Jsc, the ηLHE of the device with 

different ZnSe coating layer was determined by measuring the light absorption coefficient (α) 
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and the thickness (d) of the sensitized TiO2 film (LHE = 1-exp(-αd)) according to the method 

reported previously .37-38 The light absorption coefficient was determined by )ln(1

2

2/

TiO

TiOQD

T
T

d
−=α  

where TQD/TiO2 is the transmittance of the QDs coated photoanode and TTiO2 is the transmittance 

of bare TiO2 film. The light reflectance due to scattering of QDs nanoparticle is assumed weak 

and is not considered here. The ηLHE of the photoanode with different ZnSe coating layer is 

shown in Figure 3(b). Apparently, the trend of ηLHE is consistent with the variation of the light 

absorption of the photoanode with different ZnSe coating layer. However, as mentioned above, 

the light scattering of QDs particles was not considered in the calculation of ηLHE. Nevertheless, 

as shown in Figure 3(c), all the photoanodes show significant light reflectance at spectral 

wavelength beyond 550 nm. Because of this, the calculated ηLHE may not be reliable in the 

longer spectral wavelength over 550 nm. Therefore, the following discussion on the ηLHE and 

APCE of the cells is only focus on the results in the spectral wavelength range of 400-550 nm 

where the light reflectance is weak and negligible although the results in the whole wavelength 

(400-700 nm) are shown.  

As can be seen in Figure 3(b), the ηLHE of all the CdSe/CdS QDs coated TiO2 film is close to 

100% at the spectral wavelength below 500 nm regardless whether a ZnSe coating was used or 

not, consistent with the strong light absorption of the CdS/CdSe QDs. The result also suggests 

that the contribution of ZnSe shell to the light absorption of the photoanode is very small at 

shorter wavelength. In contrast, the contribution of ZnSe passivation layer to the light absorption 

and the ηLHE of the photoanode is clearly seen at the wavelength beyond 500 nm. The ηLHE 

increases with the increase of the coating layer. Theoretically, the energy bandgap of bulk ZnSe 

is around 2.7 eV, which is very unlikely to contribute the light absorption of the CdS/CdSe/TiO2 
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photoanode at wavelength longer than 460 nm. Therefore, the enhanced light absorption at 

longer wavelength is probably due to the interaction between ZnSe shell and CdS/CdSe QDs 

because of partial overlap of the exciton wave function of the core (CdSe/CdS) and shell (ZnSe) 

materials.39 Similar phenomenon for improved IPCE was also observed in ZnS coated CdSe QDs 

solar cells.40  

              

(a)                                                                   (b) 

       

                               (c)                                                                              (d)            
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Figure 3. Comparison of the light absorbance (a); light harvesting efficiency (ηLHE) (b); light 

reflectance (c) and the absorbed photon-to-current conversion efficiency (APCE) (d) for the 

CdS/CdSe-sensitized solar cells with different ZnSe coating layer. 

The absorbed photon-to-current conversion efficiency (APCE) which is the product of ηinj and  

ηcoll according to Eq1 is shown in Figure 3(d). As can be seen, the APCE of the cells varies in the 

same trend with IPCE in the wavelength range of 400 nm- 550 nm with ZnSe2 > ZnSe3 > 

ZnSe1> ZnSe0, which suggests that the change in the light harvesting efficiency of the cell with 

different ZnSe coating may not be the main reason for the different Jsc. Instead, the electron 

injection efficiency, ηinj, and/or electron collection, ηcoll, should be responsible for the enhanced 

IPCE and Jsc.  

ηinj of the QDSC is driven by the energy offset (Eoffset) between the Ecb of CdS and CdSe 

quantum dots and the Ecb of bulk TiO2. As illustrated in Figure 1(b), the theoretical Ecb of bulk 

CdSe and CdS is over 200 mV higher that of TiO2 and this value should be even higher due to 

quantum confinement of CdS and CdSe QDs, which leads to upshift of the Ecb of the materials. 

Hence, the Eoffset should be sufficient to drive the transfer of electron from CdS and CdSe to 

TiO2.41  

Nevertheless, previous research on DSSC has reported that the conduction band of TiO2 film can 

be modified by adsorption of material such as ruthenium dye complex because of the acidic 

nature of the molecule.14 Such a change in Ecb of TiO2 can in turn cause the variation of Eoffset 

and the Voc of the device. Although the surface of TiO2 is mainly covered with CdSe/CdS QDs 

and ZnSe is expected to coat on CdS instead of TiO2 in this work, it cannot rule out that part of 

TiO2 surface could be covered by ZnSe nanocrystals, modifying its surface property. Thus it is 
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necessary to identify the variation of Ecb of the photoanode and its effect on the Eoffset and Voc of 

the device due to ZnSe coating.  The variation of Ecb can be determined by monitoring the open 

circuit voltage of the cell against total electron density.29 As shown in Figure 4(a), except ZnSe1 

which shows a bit higher Voc than the other cell at a constant electron density, the difference in 

voltage between ZnSe0, ZnSe2 and ZnSe3 is less than 20 mV. Therefore, the influence of ZnSe 

coating on the conduction band of the CdS/CdSe/TiO2 film is indeed very small and should not 

significantly affect the energy driving force for the electron injection from CdSe/CdS QDs to 

TiO2 and the Voc of the device. 

The efficient electron injection process of the CdS/CdSe solar cells with ZnSe coating is 

reflected by the very high APCE for the device with ZnSe2. The APCE is over 90% at the 

wavelength beyond 450 nm. It suggests that the electron injection efficiency of the cell was 

probably close to 100% and is not the limiting factor for the device performance. However, for 

other cells, especially the cell without ZnSe coating, the ηinj might not be as efficient as the one 

with coating due to possible electron recombination with polysulfide electrolyte.  

The electron collection efficiency in a mesoporous TiO2 film is governed by the competition 

between electron transport and electron recombination. It has been well accepted that the 

transport of electron in a mesoporous TiO2 film is governed by a process of electron 

trapping/detrapping.7, 13, 17, 42-43 In this process, the free electron at the conduction band of TiO2 

falls in the trap states (defects) and then jump back to the conduction band of TiO2 again if the 

electron has sufficient energy. The electron which falls in the deep trap states and fails to return 

to the conduction band of TiO2 contributes to charge recombination. Due to the 

trapping/detrapping process, both the effective electron lifetime, τn, and the effective electron 

diffusion coefficient, Dn, in QDSC differ from the electron lifetime and diffusion coefficient of 
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single crystal TiO2.44 The electron diffusion length, Ln, which is the product of Dn and τn (

nnn DL τ= ), relative to the thickness of TiO2 film determines the electron collection efficiency.   

As shown in Figure 4(b), the Dn of the cell with different ZnSe coating layer are nearly identical, 

suggesting that the impact of ZnSe coating on Dn is very small.  This is just what is expected 

because the ZnSe nanocrystals mainly anchored on CdS/CdSe QDs rather than on TiO2 particle. 

Therefore, it should not affect the surface property of TiO2 film.  

In contrast to Dn, the influence of ZnSe coating layer on τn is more pronounced. As shown in 

Figure 4(c), compared to the cell without coating (ZnSe0), the cell with ZnSe coating show a 

much higher τn. A nearly 6-fold enhancement of τn is obtained with ZnSe2. The improved τn 

should be attributed to the suppression of charge recombination between photogenerated 

electrons from CdSe and CdS QDs with the oxidized species Sn
2- in the electrolyte owing to the 

surface passivation by ZnSe shell and energy barrier provided by the shell.45 However, τn 

decreases slightly beyond two ZnSe coating layers. The study on the regeneration of cations of 

QDs with ZnSe3 by transient absorption spectroscopy has confirmed that hole transport in the 

device was not a problem (Figure 7), ruling out the possibility that the decreased electron 

lifetime is due to electron recombination in QDs. Hence, the reduced electron lifetime of the cell 

with ZnSe3 should be related with the increased electron recombination with the electrolyte due 

to a high density of hole at the ZnSe shell layer. Since the charge separation of type II core-shell 

alignment increases with the increase of shell thickness,26-27 it is reasonable to believe that the 

density of hole in the shell material and density of electron in the core and then in TiO2 film 

increase with the shell thickness. The high density of hole in the shell can attract more negatively 

charged species in the liquid electrolyte including both S2- and Sn
2- in the TiO2 film through static 
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Coulomb attraction force, resulting in increased charge recombination between free electron on 

TiO2 nanoparticles with Sn
2-.46    

            

(a)                                               (b) 

     

(c) 

Figure 4. Comparison of the plots of (a) total electron density vs voltage; (b) effective diffusion 

coefficient and (c) effective electron lifetime of the CdS/CdSe sensitized solar cells with 

different layers of ZnSe shell coating. 

Given that Dn is largely unaffected while τn is significantly enhanced using ZnSe coating, it is 

expected that the electron diffusion length, Ln, which is the square root of product of Dn and τn 
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should follow the same trend with τn, that is, ZnSe0 < ZnSe1< ZnSe3 < ZnSe2. This is in 

consistent with the change of Jsc and APCE of the cells, explaining that the increase of APCE  

and Jsc should be attributed to the enhanced charge collection efficiency. 

Since the ZnSe coating has negligible influence on the Ecb of CdS/CdSe sensitized TiO2 film as 

shown above, hence we can also investigate the evolution of τn by photovoltage decay. As 

illustrated in Figure 5(a), a very rapid photovoltage decay is observed with ZnSe0. The Voc of the 

cell decays to nearly zero volt within 10 s in dark. In contrast, the decay is dramatically slowed 

down with ZnSe coating. The thicker is the coating layer, the slower the photovoltage decays. 

For the cell with ZnSe3, a voltage of more than 50 mV is still noticeable even after 100s in dark, 

confirming the charge retention effect of the passivation layer in the photoanode through 

hindering electron recombination with Sn
2- in the electrolyte. The τn for the devices with different 

photovoltage decay behavior was then calculated according to Eq. 247 where kB and q are 

Boltzmann constant and elemental charge, respectively. 

1−






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nt                    (Eq.2) 
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(a)                                                                        (b) 

Figure 5. Comparison of the plots of (a) photovoltage decay and (b) the effective electron 

lifetime of the CdS/CdSe-sensitized solar cells with different ZnSe coating layer. 

As illustrated in Figure 5(b), the τn of the solar cell increases with the increase of ZnSe coating 

layer from ZnSe0 to ZnSe2, a trend consistent with the results in Figure 4(c). Nevertheless, the 

highest τn was obtained with ZnSe3 instead of ZnSe2 as shown in Figure 4(c). This discrepancy 

is ascribed to the approach used to derive the electron lifetime from photovoltage decay. 

According to Barnes et al, the ideality factor of the solar cell should be taken into account when 

deriving electron lifetime from photovoltge decay plot using Eq 2.48 However, such factor was 

not considered in this work. In addition, the different thickness of the TiO2 films used for the 

measurement by SLIM-PCV and by photovoltage decay may be another reason for the different 

results. The thickness of the TiO2 film for SLIM-PCV measurement in Figure 4 was 7 μm in 

order to obtain better signals while 12 μm TiO2 film was used in the device for photovoltage 

decay measurement.  

The enhanced τn not only affects Jsc through improving the charge collection efficiency but also 

the open circuit voltage of the solar cell according to Eq. 3.49  

)
][

( 2−=
nrbcb

inj
oc Skn

I
In

q
kTV                           (Eq. 3) 

Where Iinj is the flux of charge injected to TiO2 film from the light absorber, k is the Boltzmann 

constant, and T is the absolute temperature, q is the elemental charge; ncb is density of electrons 

in the conduction band, krb is the recombination reaction rate with the oxidized species in the 

electrolyte, which is inverse to τn. 
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In the work, given that the parameters including T and [Sn
2-] are constant, the different Voc of the 

cell is determined by Iinj, ncb and krb. Theoretically Iinj is proportional to Jsc.50 In order to 

determine the effect of Iinj on Voc of the cells, the dependence of open circuit voltage on Jsc of the 

cells is compared using a 635 nm LED as light source as shown in Figure 6.  It is found that the 

Voc of the cells at a constant Jsc increases with the increase of the ZnSe coating layer. 

Furthermore, the difference in Voc at a constant Jsc is very close to the change of Voc in the J-V 

plot of the devices shown in Figure 2(a). For example, the voltage of ZnSe0 cell is 70 mV lower 

than that of ZnSe2 in Figure 6, close to the Voc difference of these cells (91 mV) in Figure 2. It 

suggests that Iinj is not the main reason for the different Voc. In addition, as shown in Figure 4 (a), 

the conduction band of the cells is very similar (difference is less than 50 mV) and Figure 4(c) 

shows the trend of electron lifetime at a constant electron density is similar to the change of Voc 

of the cells. It infers that the enhanced Voc of the cell with ZnSe coating should be mainly 

attributed to the enhanced τn (reduced krb).  

 

Figure 6. Comparison of plots of Jsc vs open circuit voltage of the CdS/CdSe-sensitized solar 

cells with different ZnSe coating layer 
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Electron – hole recombination and hole regeneration dynamics using transient absorption 

spectroscopy (TAS)  

It is usually believed that a shell layer may impede the transport of hole from QDs to the reduced 

species in the electrolyte because of the increased spatial distance. To test whether the hole 

transport in the QDSC device is efficient or not and whether it is a performance limiting factor, 

the recombination and regeneration of photon-induced holes in the CdS/CdSe with TiO2 

electrons or with polysulfide electrolyte was studied using the cell with the thickest ZnSe coating 

(ZnSe3) by transient absorption spectroscopy (TAS). The absorption of the photoinduced holes 

of CdS/CdSe in the TAS at 700 nm probe wavelength overlaps with the weak absorption by 

trapped TiO2 electrons.18 The transient absorption traces measured for a ZnSe3 sample in an inert 

electrolyte (black) and in the same electrolyte but containing the polysulfide mediator (red) are 

shown in Figure 7. The TAS spectra were fitted according to a stretched exponential function as 

shown in Eq. 4 to 6. The detailed fitting parameters for both hole and electron are shown in 

Table 2. 51 

)()
)(

(

0

)
)(

(

0 )()()(
)( −

−

+

+ −
−

=

−
+

= ∆+∆=∆
e

e
t

t
h

t

t
WW

h

WW eeO∆ehO∆tO∆
β

tt
β

           (4) 

    )1(
ββ

ττ Γ= WW
oβs                                                                                     (5) 

      dueu u−∞ −

∫=







Γ

0

111 β

β
                                                                          (6)                                                                                                       

where ΔOD (t) is the change of optical density with time (t); ΔODt=0 is the initial change in 

absorption magnitude for holes (h+) or for TiO2 (e-); β is the stretching parameter; τWW is the 
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characteristic stretched relaxation time; Γ() is the gamma function; and τobs is the observed 

lifetime representing the mean of the distribution of lifetimes. 

 

Figure 7. Transient absorption spectra and corresponding fitting curves of ZnSe3 coated 

CdS/CdSe/TiO2 photoanode in the absence (denote as inert) and presence of S2-/Sn
2- redox 

couple in the electrolyte (denote as EL).   

As shown in Table 2, the observed hole lifetime, τobs_h+, is two orders of magnitude longer in the 

absence than that in the presence of the polysulfide electrolyte with τobs_h+ = 4.33×10-4 s  for 

inert electrolyte and τobs_h+ = 4.07×10-6 s for polysulfide electrolyte, respectively. It indicates 

highly efficient regeneration efficiency of the ZnSe3/CdS/CdSe QDs even with the thick shell 

coating. The cell with thinner ZnSe shell should be more efficient due to the reduced spatial 

distance for charge transfer between CdS/CdSe QDs and the sulfide/polysulfide electrolyte. The 

photogenerated electron in the photoanode recombines with hole of QDs when the photoanode 

contacts with the inert electrolyte. In contrast, in the presence of the polysulfide electrolyte, 

electron transfer of S2- in the electrolyte to the valence band of ZnSe/CdS/CdSe core-shell QD 

intercepts the recombination of hole with TiO2 electrons, leading to an initial faster decay of the 

TA signal. As a result, the lifetime of CB electrons in the TiO2 in the presence of polysulfides 
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electrolyte increase, which is reflected as the long but weak TA signal extending into the 

millisecond timescale. These results are qualitatively similar to that reported by Palomares et 

al.,18 suggesting that regeneration of QDs is not the limiting factor for the performance of QDSC 

with ZnSe coating. It is worth to note that TAS measurement of un-coated Cd/CdSe-sensitized 

TiO2 photoanode were also attempted, but the results were inconclusive possibly due to photo-

degradation of the uncoated photoanode especially in the inert electrolyte.20 

Table 2. Summary of the fitting parameters for the transient absorption spectrum of both hole 

and electron in TiO2 using ZnSe3 coated CdS/CdSe/TiO2 photoanode.  

Fitting parameters for hole: 

Electrolyte ΔOD_h+
t=0 τww_h+ (s) β_h+ Γ_h+ τobs_h+  (s) 

Inert 8.00E-04 3.61E-06 0.20 24.00 4.33E-04 
redox electrolyte 4.04E-04 5.23E-07 0.31 2.41 4.07E-06 

 

Fitting parameters for TiO2 electron (e-): 

Electrolyte ΔOD_e-
t=0 τww_e- (s) β_e- Γ_e- τobs_e-  (s) 

Inert 8.11E-05 5.29E-03 0.89 0.94 0.006 
redox electrolyte 8.11E-05 3.39E-02 0.50 1.00 0.07 

 

Comparison of ZnSe with ZnS passivation coating 

The CdS/CdSe QDSC with optimum ZnS coating layer (two SILAR layers) was also prepared to 

compare with the device with ZnSe2 passivation coating. The comparison of the J-V plots of the 

cells is shown in Figure 8(a). Interestingly, the same Jsc (13.4 mA/cm2) was generated by both 

cells. However, compared to the cell with ZnSe2 coating, the device with ZnS coating has a 
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slightly lower Voc and FF, leading to lower performance (3.43%). The investigation on the 

electron recombination of the devices by photovoltage decay shows that ZnSe2 based cell has a 

slightly higher τn than ZnS2 (Figure 8(b)), which is also demonstrated by the slower decay plot 

of ZnSe2 compared to ZnS (inset in Figure 8(b)). This may explain the slightly higher Voc of the 

former. This result suggests that the ZnSe may be a more efficient passivation material than ZnS 

for suppression of electron recombination and facilitation of charge separation in QDSCs. 

        

(a)                                                                     (b) 

Figure 8. Comparison of the plot of (a) J-V and (b) electron lifetime as a function of voltage for 

CdSe/CdS-sensitized solar cells with ZnSe and ZnS coatings (two layers). Inset: photovoltage 

decay plots of the devices. 

Conclusions 

This work has demonstrated clearly that the performance of CdSe/CdS QDs -sensitized solar cell 

could be significantly improved using ZnSe shell layer. The efficiency of the solar cells 

increased from 1.86% (with no coatings) to 3.99% using ZnSe2 shell layer (ZnSe2) owing to the 

significantly improved Voc and Jsc.  
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The investigation of the charge transport in the photoanode by transient photovoltage decay and 

photocurrent spectroscopy has confirmed that the effective electron lifetime was improved up to 

6 times with two layer of ZnSe coating compared to the cell without coating. In the meantime, it 

is found that the impact of the passivation layer on the electron diffusion coefficient of the solar 

cell was very small. As a consequence, the electron diffusion length of the device is expected to 

vary in the sequence of ZnSe2 > ZnSe3 > ZnSe1 > ZnSe0, consistent with the Jsc and IPCE. 

Therefore, it is believed that the enhanced electron diffusion length with ZnSe shell should be 

responsible for the enhanced Jsc of the QDSC through increasing the charge collection efficiency 

of the device. However, further increase the thickness of the shell to ZnSe3 led to the reduced 

electron lifetime although the hole transport from QDs to polysulfide electrolyte of the ZnSe3 

device was still very efficient. This suggests that thickness of the shell layer for type II alignment 

still needs to be carefully controlled for optimum device performance. In addition, comparing to 

the QDSCs using ZnS coating, the cell with ZnSe coating produced a better performance because 

of a lower electron recombination. It suggests that ZnSe may be a more efficient passivation 

material for QDSCs. 
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