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Soft, flexible freestanding neural stimulation and recording electrodes
fabricated from reduced graphene oxide

Abstract
There is an urgent need for conductive neural interfacing materials that exhibit mechanically compliant
properties, while also retaining high strength and durability under physiological conditions. Currently,
implantable electrode systems designed to stimulate and record neural activity are composed of rigid materials
such as crystalline silicon and noble metals. While these materials are strong and chemically stable, their
intrinsic stiffness and density induce glial scarring and eventual loss of electrode function in vivo. Conductive
composites, such as polymers and hydrogels, have excellent electrochemical and mechanical properties, but
are electrodeposited onto rigid and dense metallic substrates. In the work described here, strong and
conductive microfibers (40-50 μm diameter) wet-spun from liquid crystalline dispersions of graphene oxide
are fabricated into freestanding neural stimulation electrodes. The fibers are insulated with parylene-C and
laser-treated, forming "brush" electrodes with diameters over 3.5 times that of the fiber shank. The fabrication
method is fast, repeatable, and scalable for high-density 3D array structures and does not require additional
welding or attachment of larger electrodes to wires. The electrodes are characterized electrochemically and
used to stimulate live retina in vitro. Additionally, the electrodes are coated in a water-soluble sugar
microneedle for implantation into, and subsequent recording from, visual cortex.
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Abstract 

There is an urgent need for conductive neural interfacing materials that exhibit mechanically-

compliant properties while also retaining high strength and durability in physiological 

conditions. Currently, implantable electrode systems designed to stimulate and record neural 

activity are comprised of rigid materials such as crystalline silicon and noble metals. While 

these materials are strong and chemically stable, their intrinsic stiffness and density induce 

glial scarring and eventual loss of electrode function in vivo. Conductive composites, such as 

polymers and hydrogels, have excellent electrochemical and mechanical properties, but are 

electrodeposited onto rigid and dense metallic substrates. In the work described here, strong 

and conductive microfibres (40-50 µm diameter) wet-spun from liquid crystalline dispersions 

of graphene oxide are fabricated into freestanding neural stimulation electrodes. The fibres 

were insulated with parylene-C and laser-treated, forming “brush” electrodes with diameters 

over 3.5 times that of the fibre shank. The fabrication method is fast, repeatable, and scalable 

for high density 3-D array structures and does not require additional welding or attachment of 

larger electrodes to wires. The electrodes are characterized electrochemically and used to 

stimulate live retina in vitro. Additionally, the electrodes are coated in a water-soluble sugar 

microneedle for implantation into, and subsequent recording from, visual cortex. 

 

1. Introduction 

Devices that are capable of high fidelity and long-term communication with the nervous 

system have the potential to address some of the most debilitating medical conditions. There 

are several successful  examples of such bionic, or cyberonic, devices including the cochlear 

implant,[1] cochlear nucleus prosthesis,[2] retinal prosthesis,[3] brain-machine interface 

(BMI),[4] and deep brain stimulation (DBS) electrodes for the treatment of conditions 

including depression, essential tremor, chronic pain, and epilepsy.[5] For some of these 



 

devices, there is potential benefit in increasing the spatial resolution of stimulation and/or 

recording, in particular for retinal prostheses and BMIs. High resolution electrical 

communication with the nervous system is a non-trivial task, especially in applications that 

involve long-term passive recording of neural activity.[6] Insertion of electrodes into the brain 

leads to damage of blood vessels, capillaries, and cells, and breaches the highly selective 

blood-brain barrier.[7] Less destructive non-invasive neural recording techniques such as 

fMRI, fNIRS, and EEG avoid tissue reactions at the expense of spatial and temporal 

resolution and are not currently portable therefore they are not suitable for BMI 

applications.[8] Additionally, none of these methods are capable of stimulating neural tissue.    

 Penetrating electrodes inevitably cause some degree of damage during insertion. 

Options to avoid invasive surgery will likely come from optogenetic solutions in which light-

sensitive molecules are incorporated into the membranes of excitable cells.[9] It has been 

suggested that the initial electrode implantation site may heal over time, but it is the long-

term presence of a foreign object that leads to poor prognosis for chronic recording 

applications. In other words, the initial “stab wound” will heal eventually, but it is the long-

term irritation, and subsequent cellular activation, at the implant site that leads to loss of the 

electrode-neuron interface.[10] However, 2-photon imaging has been used to show an 

immediate microglial response to electrode insertion whereby microglial cells extended 

processes toward the electrode within 30-45 minutes and began the transition to their 

“frustrated” phenotype (T-cell mode) after 6 hours.[11] Initial damage sends the signal for 

microglial activation and migration to the implantation site, which, if tissue irritation 

continues, progresses until microglia form the dense glial sheath that is a familiar detriment 

to chronic neural communication.[7] Additionally, long-term breach of the highly-selective 

blood-brain barrier (BBB) eventually leads to secretion of neurotoxins that kill neurons 

proximal to the electrode, thereby diminishing the signal of interest permanently.[12] 



 

 Contributing factors believed to adversely affect the quality of the electrode-tissue 

interface in a chronic time window include electrode size,[13, 14] density of electrode 

material,[15] skull tethering mechanisms and associated micromotion of the implant,[16] and 

mechanical compliance of the electrode itself.[17, 18] Considering the aforementioned 

characteristics, the ideal implantable electrode will be small, soft, mechanically-strong, and 

have a density similar to neural tissue. Present implantable electrodes are made from rigid 

materials such as noble metals, stainless steel, or crystalline silicon, though the density and 

stiffness of these materials render them non-ideal for chronic interaction with neural tissue.  

A soft, flexible electrode has the potential to stifle the foreign body response, but 

presents a new challenge: surgical insertion. Flexible fibres have been inserted into tissue 

using dissolvable coatings such as gelatin,[19] silk,[20] and maltose.[21] Carbon nanotube bundle 

electrodes on flexible substrates have been inserted into the brain using a rigid gold wire 

carrier.[22] In addition to favourable mechanical properties, the surface chemistry of implanted 

electrodes has been studied to enhance biocompatibility. Functionalization with, or 

simultaneous administration of, penetrating electrodes with anti-inflammatory agents,[23] anti-

oxidants,[24]  neurogenic factors,[25] zwitterionic hydrogels,[26] and bioactive conducting 

polymers[27] has also been proposed to attenuate the foreign body response to implanted 

devices. In terms of device hardware, untethered and fully wireless cortical implants have 

been developed to alleviate displacement-induced strain and shear forces at the electrode-

tissue interface.[28]  

 The availability of low-density and high-strength makes carbon-based materials such 

as graphene and carbon nanotubes promising candidates as implantable electrode materials. 

Several carbonaceous materials have seen wide application as successful biomaterials.[29] 

Some examples of application include graphene for cell scaffolds,[30] carbon fibre dopamine 

sensors,[31] carbon fibre neural recording devices,[25, 32] carbon nanotube neural recording 



 

devices,[33] carbon nanotube/agarose hybrid materials for tissue engineering,[34] and nitrogen-

doped diamond stimulating electrodes.[35] Two recent publications describe graphene oxide 

(GO) conductive polymer hybrid films as successful neural interfacing electrodes.[36, 37] The 

more recent of the two, by Tian et al, describes electrochemical deposition of a PEDOT/GO 

hybrid film onto gold wires (100 µm diameter).[37] The coating demonstrated enhanced and 

robust electrochemical properties in comparison to iridium oxide and supported cell growth. 

It has been shown previously that non-smooth electrodes, such as conductive polymers and 

porous or roughened surfaces are likely to enhance the quality of the neural interface by 

reducing the fluid gap between electrode and tissue and by reducing the electrical impedance 

and increasing the capacitance at the electrode tissue interface.[27]  

 A risk with hybrid metal/polymer structures is that they are prone to failure in chronic 

settings due to material density and mechanical compliance mismatch with brain tissue. For 

long-term applications, it is perhaps more suitable to have the entire electrode and connection 

wire made of one flexible and strong material—a freestanding electrode/wire system. 

Additionally, as electrodes get smaller (≤ 200 µm diameter)—to improve stimulation efficacy 

of retinal ganglion cells, for example—wire-to-electrode attachment becomes a significant 

challenge.[38] For the work described in this article, we chose reduced graphene oxide fibres 

because they are facile to produce into long continuous yarns and avoid the common issues of 

electrical attachment that other carbonaceous materials face. 

 In this work, we propose a new neural interfacing electrode material and 

configuration that is assessed using techniques specific to neuronal stimulation. We describe 

a unique “brush” electrode comprised of wet-spun liquid crystal graphene oxide (LCGO) 

fibre and parylene-C insulation. A 532 nm laser cutter is used to open the insulation and 

remove the end of the fibre, forming a brush-like electrode at the end of the shank that is 

roughly 3.5 times larger than the shank itself and appears to have an exceptionally large real 



 

surface area. Laser excimer procedures have been used previously to reduce thin films of 

graphene oxide to enhance electrical conductivity.[39] However, in this work, the entire fibre 

is thermally-reduced before electrode fabrication begins to ensure optimal electrical 

conductivity through the shank.[40] Following electrochemical characterization, the electrodes 

are used to stimulate rat retinal ganglion cells during whole cell patch clamp recordings and 

coated in a water-soluble sucrose microneedle to penetrate visual cortex to enable acquisition 

of high quality neural signals.  

 

2. Results and Discussion 

2.1 Electrode fabrication 

Long (>10 metres), conductive (30 mS cm-2) fibres were wet-spun from liquid crystalline 

(LC) dispersions of graphene oxide (GO) (Figure S1, see supplementary information) and 

reduced in vacuum at 220 ˚C.[40] The LC state of the dispersion greatly enhances the 

spinnability of the fibres, as well as the mechanical properties.[40] LCGO fibres coagulated 

with CaCl2 have a Young’s modulus of 11.2 GPa, whereas crystalline silicon and Pt have 

Young’s moduli as high as 168 GPa and 47 GPa, respectively. It has been suggested 

previously that both size and elastic modulus play a role in the extent of glial scarring around 

brain implants, whereby 50 µm diameter implants lead to less extensive foreign body reaction 

and greater proximal neuron survival compared with a 200 µm implant.[14] Larger electrode 

leads, such as those currently used for commercially-available implantable electrode systems 

will have much greater stiffness values due to both the increased size and higher elastic 

modulus of the materials used to build those devices.   

 Stimulation electrodes for electrochemical characterization and electrophysiology 

experiments were fabricated using 8-10 mm of reduced LCGO fibre (Figure 1). The entire 

electrode was coated with parylene-C (a polymer well-known for its biocompatibility and 



 

pin-hole free coatings for electronics packages and neural prostheses[41]) then laser ablated to 

create an open electrode at the end (Figure 1c). The laser ablation approach did not work for a 

parylene-C coated PtIr wire due to the high powers required to sever the wire (Figure S2, see 

supplementary information). Laser ablation has been used previously to selectively remove 

parylene-C from electrode tips of the UTAH (Blackrock Microsystems) neural recording 

array.[42] In that instance, the electrodes themselves remained intact following laser treatment. 

 

Figure 1. Fabrication and imaging of LCGO brush electrodes. (a) LCGOs are attached to PTFE (insulated) 
insulated copper wires (approximately 1 mm diameter) using conductive silver-based epoxy, followed by (b) 
parylene-C coating. (c) Laser ablation with 250 mW opens the electrode end, creating a “brush” electrode. (d) 
Laser treatment leads to an amorphous electrode with extraordinary surface roughness and porosity.  



 

 

Using LCGO fibres as the electrode material, low laser powers (230-250 mW) cut through 

both the coating and the fibre. At the low laser powers used in this work, the laser must be 

accurately focused on an individual fibre to ablate it, leaving out-of-focus fibres untouched. 

For 3D arrays, shaping and insulation removal may be controlled by simply adjusting the 

laser focus to ablate individual fibres. The mechanical properties of the brush electrode are 

retained following the fabrication steps as illustrated in Figure 2.  

 

Figure 2. LCGO electrode pressed into clay (a) and released (b) to demonstrate flexibility and elastic 
deformation. (c) High magnification microscope image of electrode tip following laser ablation. (d) LCGO fiber 
(not laser ablated) encased in sucrose microneedle and (e) dissolved microneedle after 3 minutes in room 
temperature tap water.   

 



 

Figure 2a, shows an electrode pushed into a piece of clay until it was nearly bent in half, then 

then retracted (Figure 2b), restoring its original shape and, hence, demonstrating elastic 

deformation. Elasticity was enhanced with parylene-C coating. The expanded and, therefore 

less dense, end of the brush electrode is potentially much softer than the original fibre. If the 

electrode itself is much softer, there is a greater chance of neuronal integration and 

diminished chance of glial activation at the interface.[18] As a result, the electrode is too soft 

for direct insertion into neural tissue. Hence, we have coated the electrode in a water-soluble 

sucrose microneedle to provide the mechanical stability for surgical implantation (Figure 2d). 

This technique has been demonstrated elsewhere for transdermal drug delivery as well as 

mechanical support for a polyimide neural probe.[21, 43] The needle shown in Figure 2d 

dissolved in approximately 3 minutes time in room temperature tap water resulting in the 

exposed LCGO electrode shown in Figure 2e.    

 The major point of interest in this fabrication technique lies in the ability to form a large 

surface area electrode at the end of a small wire generating a continuous, flexible, and 

freestanding neural probe with no need for welding or bonding of a larger electrode.  

2.2 Electrochemical characterization 

EIS and cyclic voltammetry (CV) were acquired using 50 mM PBS as the electrolyte and a 3-

electrode electrochemical cell.  



 

 

Figure 3. (a) Cyclic voltammograms for 4 LCGO electrodes fabricated using the same laser parameters as those 
employed for both in vitro and in vivo experiments. The water window is indicated by dotted lines in which no 
electrolysis of water occurs. (b) Collated impedance spectroscopy of the same 4 LCGO electrodes along with 
equivalent circuit modelling (inset). Error bars indicate standard deviation of the data collected at each 
frequency. (c) Example of cyclic voltammetry using single LCGO electrode at several scan rates to determine 
the double layer capacitance. This method is described in more detail in supplementary information Figure S5 
(d) Optical microscope image of end of LCGO electrode and 120 µm Pt/Ir wire as indicated.   

 

EIS spectra acquired from parylene-C coated samples could not be fitted to any simple 

equivalent circuit due to the high impedance of the coating, resulting in current magnitudes 

that were close to the noise level of the measuring equipment. The phase angle of parylene-C 

coated LCGO wires at 100 kHz was -86˚± 4.2˚, a nearly entirely capacitive response at high 

frequency, confirming a pinhole-free, high impedance parylene-C coating. Laser ablation of 

the fibre led to a 1000-fold drop in electrode/solution impedance and the phase angle at 100 

kHz dropped to -13˚ ± 1.6˚. Following EIS sweeps, a linear equivalent circuit was used to fit 

the data and extract capacitance and series resistance values. The linear circuit (Figure 



 

3b,inset) contains a series resistance (Rs) and a constant phase element (CPE). A CPE is used 

to model electrochemical behaviour of electrodes that have surface inhomogeneity, such as 

fractal or porous electrodes.[44] LCGO fibres have extremely large surface roughness and 

nano-porosity following laser ablation as evidenced by scanning electron microscopy (SEM) 

(Figure 1d). Geometric surface area (GSA) values have been used for all capacitance and 

charge injection capacity calculations. Attempts to confidently estimate real surface area 

have, to date, been unsuccessful. However, considering the low fundamental capacitance 

values measured for basal plane the surface area enhancement could be very high.[45] 

Additionally, it is likely that small pockets have opened up between the parylene-C and 

LCGO fibre near the electrode—an effect possibly exaggerated by CV scans. Manufacturers 

of parylene-C quote a dielectric strength of 220 volts/µm, meaning that for a 2 µm film, 440 

volts would be required to breach insulation (VSI Parylene, Inc.). For CV scans between -600 

and 600 mV, residual parylene-C films of 200-300 nm thickness would be removed assuming 

laser treatment does not change the chemical structure of the polymer. It has been shown that 

thermal treatment of parylene-C can increase bonding strength to substrates which will have 

an effect at the end of the electrode following laser treatment.[46]  

Using EIS and circuit modelling, a double layer capacitance (Cdl) value was extracted for 

LCGO electrodes of 16 ± 1 μF. Charge injection capacity (Qinj) was calculated using the 

following: 

                                                                  𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 =
𝐶𝐶𝑑𝑑𝑑𝑑 × 𝑉𝑉𝑤𝑤
𝐺𝐺𝐺𝐺𝐺𝐺

                                                                   (1)  

Where Vw is the voltage threshold to electrolysis (+0.9 V for LCGO) and GSA is geometric 

surface area of the electrode tip only assuming only a disc electrode is exposed to solution. 

This yielded an extraordinarily high Qinj of 46 ± 2.9 mC/cm2. It is highly likely that charge 

transfer is occurring not only at a disc electrode at the tip, but likely within the parylene-C 



 

sheath, as well as on the outside of the brush. Hence, the Qinj value is potentially artificially 

inflated. LCGO electrodes do not have a uniform geometric shape as a result of both the wet-

spinning and the laser fabrication technique. To improve this estimation, we model the GSA 

of the brush electrode using a GSA based on either a disc electrode or a larger cone electrode 

(Supplementary Information Figure S3). The worst case (e.g., lowest Qinj value) would 

involve calculating Qinj assuming the electrolyte is in contact with the entire brush, as well as 

the tip (GSA_cone). Hence, GSA would be the surface area of a cone. Using this method 

yields a Qinj of 14.2 mC/cm2, which is comparable to conducting polymer electrodes 

fabricated with PEDOT.[47] A range of other common and experimental neural stimulation 

materials are compared with LCGO in Table 1.    

Material Qinj (mC/cm
2
) Qinj  

mechanism 
Water Window  
(Vs Ag|AgCl) 

Pt*,N 0.05-0.15*, 0.26N Faradaic/Capacitive -0.6  to 0.8 V  

Roughened Pt
! 0.13-0.364 Faradaic/Capacitive -0.6  to 0.8 V  

Act-IrOx* 1-5 Faradaic -0.6 to 0.8 V 
CNTs* 1-1.6 Capacitive -1.5 to 1.0 V 

PEDOT* 15 *Faradaic -0.9 V to 0.6 V 
TiN* 1 Capacitive -0.8 to 1.1 V 

N-doped Diamond
$ 0.1-0.2 Capacitive -1.1 to 1.1 V 

GO-doped PEDOT
# 1-4.5 Faradaic -0.6 to 0.6 V 

LCGO
N 

46 ± 2.9 (n=4) [EIS_Disc] 
14 ± 0.9 (n=4) [EIS_Cone] 
62 ± 5.1  (n=4) [CV_Disc] 
19± 1.6 (n=4) [CV_Cone] 

Capacitive -1 to 0.9 V 

Table 1. Charge injection capacity value (Qinj) for several materials used to fabricate neural interfacing 
electrodes. For LCGO, two different methods (EIS vs CV) and two different GSA values (Disc vs Cone) are 
used to estimate Qinj.  Further information about this procedure is in the text. References from table: *Cogan 
(2008),[47]!Green et al (2014),[48] $Garrett et al (2012),[49] #Tian et al (2013),[37] Nthis work 



 

 

The large Qinj values measured for these electrodes is almost definitely a consequence of the 

inherent porosity and resultant large electrochemical surface area (e.g., surface roughness) 

(Figure 1d). To estimate this roughness factor, we consider the double layer capacitance 

values measured for smooth, glassy carbon electrodes. Braun et al measure a double layer 

capacitance of glassy carbon of 20 μF/cm2.[50] Glassy carbon is a microcrystalline construct 

of graphite exposing both edge planes and basal planes to the electrolyte, making it a 

reasonable model for LCGO electrodes.[50] Considering this value of 20 μF/cm2, we can 

compare directly to the value we measure from EIS modelling, which is 12.9 mF/cm2 if we 

consider our exposed electrode area to be that of a cone (largest possible overestimation of 

GSA). Using both of these values, we estimate a roughness enhancement factor of 12.9×10-

3/20×10-6 = 645.    

Qinj derived from CV yielded high values of 62 mC/cm2 and 19 mC/cm2 for disc and cone 

GSA models, respectively. This method is illustrated in Figure S5. These results are similar 

to those calculated using EIS models, though slightly larger. Direct current (DC) techniques 

such as CV, however, are generally not considered an accurate model for stimulation 

electrodes due to the short pulse times used during neural stimulation protocols. EIS uses a 

range of alternating current (AC) frequencies to capture, broadly, the electrochemical 

phenomena occurring at the electrode in solution. Finally, for comparison and validation of 

our method, we performed EIS on a 200 µm diameter Pt disc electrode using the same set-up 

(Figure S4—supplementary information). We modelled the Pt electrode with an equivalent 

circuit and extracted a Cdl of 0.46 mF/cm2. Using Equation 1, we calculated the Qinj of Pt as 

0.26 mC/cm2—comparable to literature values (Table 1). The value is slightly inflated from 

those typically observed for smooth Pt surfaces because the electrode was cut with a razor 



 

blade to remove a insulation, thereby roughening the surface and potentially exposing more 

Pt to solution than just a disc electrode.   

2.3 Retinal ganglion cell stimulation 

A whole-mount retina preparation was used in conjunction with intracellular patch clamp 

recording to determine the safety and efficacy of stimulating neuronal tissue with LCGO 

electrodes (Figure 4a). The LCGO electrode, isolated with 259 mW laser power, was 

lowered using a micromanipulator until the retina was visibly indented. Biphasic current 

pulses (500 µs/phase) were delivered through the LCGO electrode while a whole-cell patch 

clamp recording was used to monitor spiking activity of a single RGC. The amplitude of the 

current pulse was increased until 100% efficacy was achieved (Figure 6c). A logistic fit was 

used to determine threshold-to-50% efficacy (‘b’ in Equation 2). The response probability 

P(R=1|S) was determined by fitting the data to the logistic function:  

                                         𝑃𝑃(𝑅𝑅 = 1|𝐺𝐺) =
𝑑𝑑

1 + 𝑒𝑒−𝑎𝑎(𝐴𝐴𝐴𝐴𝐴𝐴+𝑏𝑏)                                                (2) 

 

 

 



 

Where ‘d’ is a proportionality constant between 0 and 1, ‘Amp’ is the amplitude of the 

biphasic pulse used to stimulate the tissue, ‘a’ is a constant controlling how rapidly the spike 

probability increases, and ‘b’ is the value of Amp for which half the maximal value of the 

spike probability is achieved.  

This procedure was performed for n=8 RGCs, yielding an average ‘b’ of 103 ± 87 µA using 

500 µs pulse width, which means 5.1×10-2 ± 4.3×10-2 µC were injected into the tissue, which 

is well within the electrolysis limits for this electrode (Table 1). The charge density required 

for 50% stimulation is 90 µC/cm2 for an electrode having a radius of 95.4 µm. A model for 

safe tissue stimulation has been proposed by Shannon:[51] 

                                                         log �
𝑄𝑄
𝐺𝐺
� = 𝑘𝑘 − log (𝑄𝑄)                                                               (3) 

Figure 4. In vitro electrophysiology using LCGO stimulating electrodes. (a) Whole retinas were explanted and 
placed retinal ganglion cell side up in a perfusion chamber. The LCGO electrodes were placed on the inner 
limiting membrane while patch clamp recordings were acquired from individual RGCs. (b) 3D reconstruction of 
a sample RGC. (c) Response probability for a sample cell. The blue dots show the raw probability (ratio of 
number of direct response to total number of stimuli) and the red line shows a sigmoidal curve fit. (d) Sigmoidal 
curve fits for all 8 RGCs stimulated 



 

Where ‘Q’ is charge per phase, ‘A’ is electrode geometrical surface area, and ‘k’ is a constant 

derived from experiments where the boundary between safe and unsafe tissue stimulation was 

determined. According to Equation 3, the LCGO electrode k-value is 0.668 for stimulation 

of RGCs. According to this model, the stimulation protocol used in this work to activate 

RGCs lies well within the safe limit for disc electrodes (k=1.5). In reality the charge density 

will be less as the electrolyte is undoubtedly able to penetrate within the brush leading to a 

spreading of the charge across a much larger area than a confined disc. Using Shannon’s 

model, it can also be determined that safe stimulation is linearly related to electrode diameter 

rather than electrode area. This effect is likely due to the “edge effect” of disc electrodes in 

which larger current densities are experienced at the outer perimeter of the electrodes. The 

LCGO electrodes described here have a unique ‘brush’ conformation that may negate the 

edge effect, though further investigation is required.  

 

2.4 In vivo implantation of LCGO electrode  

A LCGO electrode was coated with a water-soluble sucrose microneedle. This method of 

forming a microneedle has been previously employed for drug delivery, as well as flexible 

polyimide electrode insertion into neural tissue.[21, 43] Spontaneous neural bursting activity 

was observed approximately 30 seconds after electrode implantation, suggesting sugar 

dissolution and exposure of electrode active site. The sugar dissolved much more quickly in 

the brain than it did in the benchtop test with room temperature tap water because sugar’s 

solubility in water increases with temperature. The LCGO electrode was extracted from the 

brain after a 15 minute recording window and was still structurally intact. Additionally, the 

sugar had completely dissolved around the shank and electrode tip. Figure 5 illustrates both 



 

the insertion and extraction of the sucrose-coated LCGO electrode and includes a sample of 

neural recording.  

 

Figure 5. Flexible electrode insertion into feline visual cortex. (a) LCGO electrode is coated in a rigid sucrose 
carrier needle and (b) implanted into the brain. (c, d) LCGO electrode was removed from brain after 15 minutes 
of recording; sugar needle is completely dissolved. (e) Neural activity recorded within 20 seconds of 
implantation, confirming sucrose dissolution. (f) Magnified image of action potential recorded with LCGO 
electrode.  

 

Though this electrode was originally intended for neural stimulation applications, the 

implantation experiment revealed the potential to make high quality recordings from neural 

populations in the brain using LCGO electrodes. This opens up the possibility of closed-loop 

neural interfaces in which stimulation electrodes can also be used for recording. It is obvious 

from Figure 5c,d that electrode insertion led to bleeding. The fabrication of sugar needles, as 



 

well as insertion procedures, should be improved markedly to avoid such trauma in future 

applications.    

3. Conclusion 

It is strongly suggested, both empirically and theoretically, that small, mechanically-

compliant electrodes should comprise the next generation of neural interfaces.[18] Though 

there are several materials that possess favourable electrochemical, surface, mechanical, and 

electrical properties, their fabrication and incorporation into biomedical devices remains a 

challenge. In this work, we use wet-spun reduced graphene oxide fibres to fabricate 

electrodes for electrochemical characterization and electrophysiology experiments. While a 

majority of conductive, compliant materials—such as conductive polymers and hydrogels—

are electrodeposited onto dense, rigid substrates such as Pt or Au microwires, high strength 

fibres such as the ones presented here can function as free-standing penetrating electrodes. 

Using parylene-C as a biocompatible insulator and laser ablation to selectively open and 

expand the end of the fibre, we have fabricated a freestanding, flexible, small diameter shank 

that is seamlessly attached to a large diameter (~200 µm) brush-like electrode. Using this 

process, there is no need for welding a larger electrode onto the end of a small diameter wire, 

nor is there any interface between mismatched materials. Both EIS and CV confirm that the 

LCGO electrodes have high charge injection capacity in the range of tens of mC/cm2. We 

demonstrate that the electrodes are effective at stimulating retinal ganglion cells and can be 

inserted into cortex by encasing the electrodes in a water-soluble sucrose microneedle. 

Spiking activity was recorded from cortex confirming that the needle had dissolved and that 

the electrode was active. The high quality recording we observed makes these electrodes a 

promising candidate for electrode arrays that can stimulate or recording using any electrode, 

thus enabling closed-loop, self-regulating implantable devices.  



 

4. Experimental Section 

 Electrode fabrication: Wet-spinning of GO Fibres was carried out with a custom-built 

wet-spinning apparatus and CaCl2 as a coagulation bath as described previously.[40] Dried GO 

fibres were obtained by air drying under tension at room temperature. Reduced fibres were 

prepared by overnight annealing at 220 °C under vacuum. Reduced  fibres (40-50 µm 

diameter) were cut into 8-10 mm pieces and attached to copper wires using conductive Ag 

epoxy (ITW Chemtronics, CW2400). Electrodes were coated with 2 µm of Parylene-C in a 

thermal evaporator (Labcoter 2; Specialty Coatings Systems, Inc). Removal of insulation was 

performed using a Nd:Yag 532 nm laser (Oxford Lasers) at a frequency of 5000 Hz, feed rate 

of 1mm/s, and powers ranging from 67-249 mW. Laser power was chosen as a percentage of 

attenuated power, but was measured immediately before each cut was made due to 

fluctuations in diode power. For comparison, Pt/Ir (90/10) wire electrodes having 200 µm 

diameter were attached to copper wires and insulated with acrylic paint, but were exposed 

using a blade to remove end of wire rather than a laser.   

 Electrochemistry: Cyclic voltammetry (CV) and electrochemical impedance 

spectroscopy (EIS) were performed in a 3-electrode electrochemical cell. The electrolyte 

solution was room temperature (25 °C), pH 7.4, 50 mM phosphate buffered saline (PBS). An 

Ag/AgCl reference electrode (CHI Instruments, Inc), a large surface area platinum auxiliary 

electrode, Solatron SI1287 potentiostat, Solartron SI1260 Impedance/Gain-Phase analyser 

were used for CV and EIS. Corrware/Corrview and Zplot/Zview software (Scribner 

Associates, Inc.) were used for instrument control and visualisation of results. Distance 

between reference and working electrodes was kept at 2-3 cm for all measurements. Three 

consecutive CV sweeps from 0 to 1.6 V vs. Ag/AgCl at 50 mV/s were employed to clean the 

electrode surface following laser ablation, while sweeps from -1.7 to 1.5 V were used to 

determine the water window (e.g., threshold to electrolysis) of LCGO electrodes. EIS using a 



 

50 mV amplitude sinusoidal voltage was used to characterize charge transfer characteristics 

of electrodes, determine the extent of parylene-C removal on the LCGO electrodes following 

laser ablation, and ultimately develop an equivalent circuit model.  

 Stimulation of retina: Whole cell intracellular data came from Long-Evans rats 

ranging from 1 to 6 months in age. Methods conformed to the policies of the National Health 

and Medical Reserach Council of Australia (NHMRC) and were approved by the Animal 

Experimentation Ethics Committee of the University of Melbourne (Ethics Approval #: 

1112084). Animals were initially anesthetized with a mixture of ketamine and xylazine prior 

to enucleation. After enucleation, the rats were sacrificed with an overdose of pentobarbital 

sodium (intracardiac). Dissections were carried out in dim light conditions. After hemisecting 

the eyes behind the ora serrata, the vitreous bodies were removed, and the retinas cut into two 

pieces.  The retinas were left in a perfusion dish with carbogenated Ames medium (Sigma) at 

room temperature. Pieces of retina were mounted onto a glass slide, ganglion cell layer up, 

and held in place with a perfusion chamber and stainless steel harp fitted with Lycra threads 

(Warner Instruments). Once mounted in the chamber, the retina was perfused (4-6 mL/min) 

with carbogenated Ames medium at room temperature. LCGO stimulating electrodes were 

lowered onto the retina,  until a slight depression on the retina was observed, and placed 150-

200 µm away from the retinal ganglion cell (RGC) of interest (Figure 4a). Whole cell 

intracellular recordings were obtained using standard procedures.[52] Intracellular recordings 

(n=8) were obtained while cells were stimulated with a train of 100 biphasic pulses of fixed 

amplitude from the extracellular stimulating electrode. After each stimulus train, the 

amplitude of the biphasic pulse was increased and applied to the tissue. Responses were 

recorded and determined to be “stimulus evoked” if they were within 5 ms of the delivered 

stimulus. Following recordings, cells were fixed, stained, and imaged using confocal 

microscopy and 3D reconstruction.[53]  



 

In vivo implantation of LCGO electrodes: Methods conformed to the policies of the National 

Health and Medical Research Council of Australia and were approved by the Animal Ethics 

Committee of the Victorian Eye and Ear Hospital. An LCGO electrode was coated with a 

sucrose microneedle vehicle using a drawing lithography technique.[21, 43] An anesthetised 

adult, male feline was placed in a stereotaxic frame and a craniotomy was performed over the 

visual cortex. The dura mater was removed carefully and the wound irrigated with sterile 

saline. The LCGO electrode was positioned with a micromanipulator and inserted into the 

tissue at a velocity of 4 mm/s (See supplementary 3:Video of Surgical Insertion). A platinum 

needle electrode was placed in the skin folds at the back of the neck and used as a reference 

for recording. Recordings were made immediately following implantation of the electrode 

using a Bioamp (World Precision Instruments ISO-80). After a 15 min recording period, the 

electrode was retracted slowly initially in bursts, then removed at 4 mm/s. Neural tracings 

were bandpass filtered (300-5000 kHz) and spikes were counted in IgorPro (Wavemetrics).[54] 
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