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ESI-MS investigation of an equilibrium between a bimolecular quadruplex
DNA and a duplex DNA/RNA hybrid

Abstract

Electrospray ionization mass spectrometry (ESI-MS) conditions were optimized for simultaneous
observation of a bimolecular qDNA and a Watson-Crick base-paired duplex DNA/RNA hybrid. The DNA
sequence used was telomeric DNA, and the RNA contained the template for telomerase-mediated telomeric
DNA synthesis. Addition of RNA to the quadruplex DNA (qDNA) resulted in formation of the duplex DNA/
RNA hybrid. Melting profiles obtained using circular dichroism spectroscopy confirmed that the DNA/RNA
hybrid exhibited greater thermal stability than the bimolecular gDNA in solution. Binding of a 13-substituted
berberine (1) derivative to the bimolecular gDNA stabilized its structure as evidenced by an increase in its
stability in the mass spectrometer, and an increase in its circular dichroism (CD) melting temperature of 10°C.
The DNA/RNA hybrid did not bind the ligand extensively and its thermal stability was unchanged in the
presence of (1). The gDNA-ligand complex resisted unfolding in the presence of excess RNA, limiting the
formation of the DNA/RNA hybrid. Previously, it has been proposed that DNA secondary structures, such as
qDNA, may be involved in the telomerase mechanism. DNA/RNA hybrid structures occur at the active site of
telomerase. The results presented in the current work show that if telomeric DNA was folded into a gDNA
structure, it is possible for a DNA/RNA hybrid to form as is required during template alignment. The
discrimination of ligand (1) for binding to the bimolecular qDNA over the DNA/RNA hybrid positions it as
a useful compound for probing the role(s), if any, of antiparallel qDNA in the telomerase mechanism.

Disciplines
Medicine and Health Sciences | Social and Behavioral Sciences

Publication Details

Birrento, M. L., Bryan, T. M., Samosorn, S. & Beck, J. L. (2015). ESI-MS investigation of an equilibrium
between a bimolecular quadruplex DNA and a duplex DNA/RNA hybrid. Journal of the American Society for
Mass Spectrometry, 26 (7), 1165-1173.

This journal article is available at Research Online: http://ro.uow.edu.au/smhpapers/2884


http://ro.uow.edu.au/smhpapers/2884

ESI-MS Investigation of an Equilibrium between a Bimolecular

Quadruplex DNA and a Duplex DNA/RNA Hybrid

Monica L. Birrento', Tracy M. Bryan®, Siritron Samosorn” and Jennifer L. Beck'**
'School of Chemistry, University of Wollongong, New South Wales, AUSTRALIA, 2522

’Centre for Medical and Molecular Bioscience, University of Wollongong, New South

Wales, AUSTRALIA, 2522

3Children’s Medical Research Institute, 214 Hawkesbury Road, Westmead NSW 2145,
Australia and University of Sydney, NSW 2006, AUSTRALIA

* Department of Chemistry, Srinakharinwirot University, Bangkok 10110, THAILAND
Running Title: ESI-MS of quadruplex DNA and a DNA/RNA hybrid

Keywords: Quadruplex DNA; quadruplex RNA; DNA/RNA hybrid, electrospray ionization
mass spectrometry;, tmnscription; telomerase; oncogenes, transcriptional control; substrate

realignment

Abbreviations: electrospray ionization mass spectrometry, ESI-MS; NH4sOAc, ammonium
acetate; ESI, electrospray ionization; qDNA, quadruplex DNA; qRNA, quadruplex RNA;

circular dichroism, CD.
Address reprint requests to corresponding author*:
Professor Jennifer Beck

Phone: 61-2-42 214177
Fax: 61-2-42 214287

Email: jbeck@uow.edu.au



Abstract

Electrospray ionization mass spectrometry (ESI-MS) conditions were optimized for
simultaneous observation of a bimolecular gDNA and a Watson-Crick base-paired duplex
DNA/RNA hybrid. The DNA sequence used was telomeric DNA, and the RNA contained the
template for telomerase-mediated telomeric DNA synthesis. Addition of RNA to the gDNA
resulted in formation of the duplex DNA/RNA hybrid. Melting profiles obtained using
circular dichroism spectroscopy confirmed that the DNA/RNA hybrid exhibited greater
thermal stability than the bimolecular qDNA in solution. Binding of a 13-substituted
berberine (1) derivative to the bimolecular qDNA stabilized its structure as evidenced by an
increase in its stability in the mass spectrometer, and an increase in its (CD) melting
temperature of 10°C. The DNA/RNA hybrid did not bind the ligand extensively and its
thermal stability was unchanged in the presence of (1). The gDNA-ligand complex resisted
unfolding in the presence of excess RNA, limiting the formation of the DNA/RNA hybrid.
Previously, it has been proposed that DNA secondary structures, such as qDNA, may be
involved in the telomerase mechanism. DNA/RNA hybrid structures occur at the active site
of telomerase. The results presented in the current work show that if telomeric DNA was
folded into a qDNA structure, it is possible for a DNA/RNA hybrid to form as is required
during template alignment. The discrimination of ligand (1) for binding to the bimolecular
gDNA over the DNA/RNA hybrid, positions it as a useful compound for probing the role(s),

if any, of antiparallel gDNA in the telomerase mechanism.



Introduction

Over the last fifteen years, the application of electrospray ionization mass spectrometry (ESI-
MS) to analyse non-covalent secondary structures of DNA and its complexes with ligands
has grown considerably. ESI-MS can be used to screen for interactions with drug molecules,
to determine binding stoichiometries, and to compare relative stabilities of DNA-ligand
complexes [1]. The first complexes analysed were double-stranded Watson-Crick base-paired
DNA bound with anticancer agents such as the anthracyclines [2]. More recently, DNA

quadruplexes (QDNA) have been analysed [3-5].

Quadruplex DNA (or RNA) structures are formed from the association of four guanosine
residues in a stretch of contiguous guanosine residues to form a square planar arrangement
via Hoogsteen base-pairing [6]. They may form from a single strand (intramolecular,
monomer), or from two or four strands (intermolecular dimer or tetramer). The strands or
sections of strands forming the qDNA structure may be aligned in a parallel or antiparallel
orientation. The range of structures that may be formed in vitro or in vivo depends on the
length of the stretch of guanosines, the nature and length of the intervening sequences and
loops, and the overall length of the G-rich nucleic acid sequence with a potential to be single-
stranded. Images of various types of qDNA are shown in Adrian et al. [6]. G-Quadruplexes
may be stabilised by cations such as sodium and potassium that sit between the stacked
guanosine tetrads. Importantly, for analysis by ESI-MS, ammonium ions can also function in

this way.

Guanosine-rich sequences are found at telomeres and in the promoter regions of
protooncogenes. Telomeres are non-coding regions of DNA at the ends of chromosomes,
terminating in a single-stranded (ss) DNA overhang. With each round of DNA replication

associated with cell division, the telomeres shorten because the DNA polymerase is unable to



copy DNA close to the end of the chromosome. When chromosomes reach a critical short
length, this is a signal for the cell to enter senescence. In cancer cells, telomere length is
maintained, either by the enzyme telomerase (~85-90% of cancers), or by another mechanism
called Alternative Lengthening of Telomeres (ALT, ~10-15% of cancers) [7]. The
maintenance of telomere length is necessary for immortalisation of cancer cells. For this
reason, research to uncover small molecules that bind to, and either destabilize or stabilize
these structures, has increased remarkably over the last 10 years [8-10] with a view to

developing chemotherapeutic agents.

The first ESI-MS analyses of qDNA included relatively stable tetrameric quadruplexes
formed from single strands with more than three contiguous guanosine residues [3-5]. When
negatively charged Watson-Crick base-paired duplex DNA is analysed by ESI-MS, no
ammonium ions remain bound to the DNA; in contrast, ESI mass spectra of more stable
qDNA structures reveal the presence of bound ammonium. This is consistent with
sequestration of cations in the structure and supports that some qDNA structures are
sufficently stable to survive the ionization and mass analysis processes [11]. ESI-MS has
been used to show that various small-molecule ligands bind to qDNA [3,12,13] and NMR

spectroscopy [14] and X-ray crystallographic structures [15] support this.

RNA secondary and tertiary structures [16,17] including hybrid DNA/RNA and quadruplex
RNA (qRNA), have been less extensively studied by ESI-MS. This is perhaps surprising
given the important roles of RNA at all stages of expression of the genome (DNA) from

DNA replication through transcription to gene silencing.

There are two RNA molecules that have particular focus in telomere biology: the intrinsic
telomerase RNA (TR, hTR in humans; containing the cccuaa repeat), and telomeric repeat-

containing RNA (TERRA; containing UUAGGG repeats). There have been a few studies of



TERRA by ESI-MS. Gabelica and coworkers used TERRA of different lengths (12 mer, 22
mer and 45 mer) to show that parallel RNA quadruplexes formed bimolecular assemblies
(two quadruplexes) mediated by cation formation. These higher-order structures were
observed at substantially higher abundance than for the analogous DNA sequences [18]. ESI
mass spectra obtained by Cui ef al. [19] of 12- and 24 mer TERRA supported the formation

of inter- and intramolecular parallel quadruplexes, respectively.

There have been fewer ESI-MS studies of DNA/RNA hybrids. DNA/RNA hybrids form
during the catalytic process of telomerase. The ribonucleic acid component of telomerase,
TR, containing the template, associates with the complementary 3’ single-stranded overhang
of telomeric DNA. This is followed by processive repeat addition synthesis of DNA in which
a telomeric repeat DNA sequence is synthesised, followed by dissociation of the single-
stranded product from the template, and translocation of the template (RNA) to enable
synthesis of the next telomeric repeat [20-24]. The mechanism by which translocation occurs
has not been fully elucidated, and the role(s), if any, of secondary DNA structures (e.g.
gqDNA) formed by telomeric DNA in the telomerase mechanism is not thoroughly

understood [25].

The possible interaction of gDNA and RNA, relevant to telomerase activity, was investigated
by Hurley and coworkers [26]. Using NMR and UV thermal denaturation analyses they

showed that a thermally-induced transition of the DNA/RNA hybrid formed from telomeric
DNA and hTR, d(GGTTAGGGTTAG).r(cuaacccuaacc), to a G-quadruplex DNA
bimolecular structure (d(GGTTAGGGTTAG),), could occur under some conditions,
supporting that gDNA formation may promote dissociation of the hybrid. This was followed

up in later work where they suggested that formation of secondary structures promotes

dissociation of the primer from TERT [27]. These sequences are amenable to modern ESI-



MS analysis. We have used the same hybrid and gDNA sequences and applied ESI-MS to
examine the DNA/RNA hybrid < qDNA equilibrium proposed previously [26]. Using the
same sequences is important because it enables a direct comparison of ESI-MS with previous
methods and experimental conditions, and allows an assessment of the merits of ESI-MS for
studying RNA secondary structures and qDNA « hybrid DNA/RNA equilibria. Under our
conditions, addition of increasing amounts of complementary RNA to the bimolecular gDNA
resulted in formation of hybrid DNA/RNA. In addition, we investigated the effect of binding
of a novel, 13-substituted berberine derivative (1, shown in Supplementary Figure S1), on the
relative stabilities of the hybrid and bimolecular gDNA. This compound stabilised the gDNA
relative to the corresponding DNA/RNA hybrid. ESI-TWIMS was used to distinguish among
ions from single-stranded d(GGTTAGGGTTAG) and ions from the bimolecular gDNA
(d(GGTTAGGGTTAG),), carrying twice the number of charges, assisting in assessment of

the stability of the gDNA under various conditions.

These results demonstrate the utility of ESI-MS for the investigation of equilibria among
nucleic acid secondary structures including hybrid DNA/RNA and show that it is possible for
RNA to compete with secondary stuctures in telomeric DNA to form an DNA/RNA hybrid as
would be required for addition of the successive telomeric repeat. At the telomere, such

transitions would likely be mediated through protein-nucleic acid interactions.

Experimental

Materials

MilliQ™ water (Millipore, Bedford, USA) was used in all experiments. Ammonium acetate

and methanol were purchased from Ajax Finechem (Seven Hills, Australia). The compound 1



(Supplementary Figure S1) was prepared as previously described (Siritron Samosorn, Thai

Petty Patent Application Number 1103000985, 16 September, 2011).
Oligonucleotides

The qDNA strand (d(GGTTAGGGTTAG), 12TAG, 3756.5 Da) was purchased from
GeneWorks (South Australia) at sequencing/PCR grade. Complementary RNA
(r(uaacccuaacc), 12rCU, 3698.3 Da) was purchased from Exiqon (Vedbaek, Denmark) with
standard desalting. Oligonucleotides were redissolved in MilliQ™ water giving a
concentration of 0.5 — 1 mM prior to storage at —20 °C. The concentrations were determined

by measuring the UV absorbance at 260 nm using molar absorption coefficients for 12TAG

and 12rCU of 123 600 and 110 800 M™' em', respectively.
Preparation of hybrid duplex and gDNA

The hybrid duplex was prepared by annealing equimolar amounts of the complementary
RNA and DNA single strands (12rCU and 12TAG) in 0.15 M ammonium acetate (NH4OAc),
pH 6.8, to a final stock concentration of 500 uM. The solution was heated to 90 °C for 15
min and allowed to cool to room temperature. The bimolecular gDNA formed from two
molecules of 12TAG, d(GGTTAGGGTTAG),, was prepared under the same conditions as
the hybrid duplex using an appropriate quantity of 12TAG to form 500 uM of the

bimolecular gDNA.
Preparation of ligand/nucleic acid complexes

Stock solutions of 1 (500 uM) were prepared in 60% methanol. Appropriate volumes of 0.15
M NH4OAc, bimolecular gDNA or hybrid (DNA/RNA) duplex, and 1 were mixed to give
reaction mixtures containing 10 puM or 20 uM (for ESI-MS and CD, respectively) of the

qDNA or hybrid with the ligand 1 in the ratios of 1:1, 1:3, 1:6 and 1:9 (nucleic acid: ligand)
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in 0.15 M NH4OAc. The final concentration of methanol in the 1:9 mixture was 11%
(vol/vol). The mixtures were equilibrated at room temperature for 10 min in a final volume of

50 uL for ESI-MS and 200 uL for CD.

Addition of RNA to Bimolecular gDNA

Single-stranded RNA (0 — 40 uM; final concentration) was mixed with 10 pM (final
concentration) of qDNA in 0.15 M NH4OAc. The reaction mixtures were equilibrated at
room temperature for 10 min. When equilibrated for less than 10 min (mixing and analysis
time 1 — 10 min) the results of experiments described herein were the same. To test whether
RNA was able to capture ssDNA from bimolecular gDNA when it was stabilised by 1,
ligand-bound bimolecular gDNA was prepared at a ratio of 1:9 (QDNA: 1), and equilibrated
for 10 min. When equilibrated for less than 10 min (mixing and analysis time 1 — 10 min) the
results of experiments described herein were the same. RNA was then added as described

above.
Electrospray ionization mass spectrometry (ESI-MS) and ESI-TWIMS

Negative ion ESI mass spectra of DNA/RNA and the nucleic acid-ligand complexes were
acquired using a Waters extended mass range Q-ToF Ultima™ (32,000 m/z, Manchester,
UK) mass spectrometer, fitted with a Z-spray ESI source [28]. The capillary, RF lens 1 and
cone voltage were set to 2.1 kV, 65.0 V and 35.0 V, respectively. Source and desolvation
temperatures of 30 and 80 °C, respectively, were used for all experiments, with a desolvation
gas (N,) flow of 300 L/hr. The pressure in the ion optics region was 3 x 10" mbar. Thirty-five
acquisitions were combined and the resulting spectra were baseline subtracted and smoothed
using the Savitzky-Golay method in the MassLynx software suite (Waters, Manchester, UK).

The instrument was calibrated with 1 mg/mL cesium iodide.



Ion mobility mass spectra (TWIMS) were acquired using a Synapt G1 HDMS (Waters,
Manchester, UK). The conditions were chosen to produce relative abundances of nucleic acid
structures in ESI mass spectra comparable to those observed using the Q-ToF Ultima™
(above). For all experiments, the capillary, sampling cone and extraction cone voltages were
set to 2.1 kV, 45.0 V and 4.0 V, respectively. The desolvation gas flow rate (N;) was 150
mL/min with an IMS gas flow rate (Ar) of 32 mL/min. Collision energies for the trap and
transfer were both set to 4.0 V and the trap bias was varied between 10 and 22 V. The wave
velocity and wave height in the IMS cell were 300 m/s and 8 V, respectively. DriftScope 2.7

was used to visualise a 2D map of drift time (ms) vs m/z for the resulting spectra.

Circular dichroism analysis and melting experiments

Circular dichroism spectra were acquired using a Jasco J-810 spectropolarimeter fitted with a
Peltier heating/cooling device. CD spectra (200 — 340 nm) were obtained using a 0.1 cm
pathlength quartz cell and 20 uM of gDNA dimer or DNA/RNA hybrid in 0.15 M NH40Ac
at 25 °C. The average of 6 accumulations was recorded with a scanning speed of 100 nm/min
and a data pitch of 0.1 nm. The sensitivity was set to 100 mdeg with a response time of 2 sec
and a bandwidth of 1 nm. QDNA-ligand samples were prepared as described above. For
acquisition of melting profiles the temperature (range of 25 °C — 85 °C) was increased at a
rate of 1 °C/min. Melting was followed at 290 nm for gDNA and 260 nm for the DNA/RNA

hybrid. Each cuvette was sealed with a lid and parafilm to minimize sample evaporation.



Results and Discussion

ESI-MS of Bimolecular gDNA and DNA/RNA Hybrid

One goal of this work was to determine solution and ESI-MS conditions to follow the
conversion of bimolecular gDNA formed from 12TAG, d(GGTTAGGGTTAG),, to hybrid
duplex DNA/RNA on addition of the complementary RNA strand. This reaction was
previously studied by Salazar et al. using different methods and conditions [26]. ESI-MS
conditions were tested separately for each nucleic acid structure; parameters that were varied
included the cone voltage, desolvation gas flow rate, desolvation temperature and RF lens 1
voltage. The best conditions for observation of hybrid duplex DNA/RNA simultaneously
with the qDNA are described in the Experimental section. ESI mass spectra of bimolecular
qDNA formed from 12TAG, d(GGTTAGGGTTAG),, under these conditions showed peaks
corresponding to [(DNA — 5H]” (m/z 1501.5), [qDNA + 2NH," -7H]” (m/z 1508.4), where
‘gDNA’ is the bimolecular qDNA, and single-stranded (ss) DNA, [ssDNA — 3H]3' (m/z
1251.2) (Supplementary Figure S2a). The ion [DNA — 5 H]” was the most abundant with
the latter two ions present at lower, similar abundance. Circular dichroism (CD) spectra can
be used to demonstrate the presence of qDNA and other nucleic acid structures in solution
[29-31]. CD spectra of annealed solutions of qDNA used to obtain ESI mass spectra showed
a maximum positive ellipticity at 290 nm, consistent with predominantly antiparallel gDNA
[30] (Supplementary Figure S3a), confirming that qDNA was present in solution. Since
ammonium ions can serve as the cation contributing to the stability of gDNA and sequestered

in the G-tetrad, these ions are often preserved in the structures detected in ESI mass spectra.
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The absence of ammonium ions from the bimolecular [qDNA — 5 H]*" (m/z 1501.5) suggests
that they may have been lost during the ionization and/or mass analysis processes while the
assembly of the two strands remained intact [11,29]. The presence of single-stranded (ss)
DNA, [ssDNA — 3H] (m/z 1251.2) suggests that some qDNA completely dissociated. There
were more gentle conditions under which [qDNA + 2NH," -7H]” (m/z 1508.4) was more
abundant than [qDNA — 5 H]* (m/z 1501.5). For example, when the voltage of RF lens 1 was
decreased from 65 to 50 V, the peak corresponding to the ammonium ion-free gDNA was
very low in abundance (compare Supplementary Figure S4a and b). Accordingly, the peak at
m/z 1251.2 decreased in abundance, consistent with diminished gas phase dissociation of the
qDNA. In order to show that bimolecular gDNA could be subject to dissociation in the gas
phase, a collision-induced dissociation experiment (CID) was conducted. The [qDNA — 5
H]>" (m/z 1501.5) ion was selected and subjected to increasing collision energy from 0 — 38 V
(Supplementary Figure S5). At 0 V, the ion [ssDNA — 3H] (m/z 1251.2) was negligible in
abundance. When the collision energy was increased to 20 V, the abundance of [qDNA +

2NH," -7H]5 " decreased as ammonium ions were lost from the structure. At 26 and 38 V,
respectively, the ratios of the abundances of [qDNA — 5 H]’/[ssDNA — 3H]>* were

approximately 2.8 and 0.3, respectively, reflecting that bimolecular gDNA dissociated to
ssDNA without the dissociation of covalent bonds as the collision energy was increased. It
should be noted that this ion (m/z 1251.2) can also be assigned as [qDNA - 6H]®". In all cases,
the abundance of the 6- ion of bimolecular gDNA with bound ammonium ions (e.g. [qDNA +
2NH," - 8H]* ; calculated m/z 1256.8) was negligible, suggesting that this ion does not
readily form/is relatively unstable, and supporting that, under the ESI-MS conditions applied
in these experiments, the ion at m/z 1251.2 arises predominantly from [ssDNA — 3H]" rather
than [qDNA - 6H]®. Ton mobility mass spectra (ESI-TWIMS) of the gDNA were acquired

using a Synapt (G1) HDMS under a range of conditions. When the bias was set to 10 V,

11



peaks at m/z 1251.1 corresponded to ssDNA and bimolecular gDNA (Supplementary Figure
S6a), showing that under some gas phase conditions using this instrument it was possible to
observe [qDNA - 6H]. When the bias was increased to 22 V, the peak at m/z 1251.1

corresponded only to ssDNA.

In all conditions tested, only one peak of significant abundance was observed in ESI mass
spectra (Supplementary Figure S2b) of the DNA/RNA hybrid: [DNA/RNA — 5H]” (m/z
1489.9). As expected, ammonium ions were not detected in the structure as this hybrid is a
Watson-Crick base-paired duplex stabilised by H-bonding among complementary
nucleobases (u.A and C.G). The CD spectrum (Supplementary Figure S3a) was in agreement
with that previously obtained using a similar hybrid sequence [32]. Since the gDNA structure
with two bound ammonium ions was more abundant in the ESI mass spectra acquired when
the RF lens 1 voltage was lower (50 V), these conditions were applied to determine if they
were also suitable for analysis of the hybrid DNA/RNA duplex. Under this condition (other
parameters remaining the same), the ion at m/z 1489.9 was present at very low abundance
(compare Supplementary Figure S4c and d), making it unsuitable for observation of gDNA
and the hybrid in the same mass spectrum. Therefore, the conditions described in the
Experimental Section represent a compromise (RF lens 1, 65 V) that enabled analysis of
qDNA (with and without bound ammonium ions) and hybrid DNA/RNA in the same ESI

mass spectrum.

Addition of RNA to Bimolecular gDNA

To compare the relative stabilities of the DNA/RNA hybrid and bimolecular gDNA, RNA
(12rCU) was added in increasing amounts to pre-formed qDNA. Figure 1 shows the ESI

mass spectrum of the bimolecular DNA alone (a), and with increasing amounts of added

RNA (b and c). In the 1:1 mixture (QDNA: DNA/RNA hybrid, Figure 1c), the peak

12



corresponding to the hybrid is approximately three times that of the bimolecular gDNA. As
RNA was added to the qDNA, the relative abundance of the ions from bimolecular qDNA,
[qDNA — 5 H]> (m/z 1501.5), and [qDNA + 2NH," -7H]>" (m/z 1508.4) decreased, supporting
the loss of the qDNA structure in solution. When RNA was added in molar excess over the
bimolecular gDNA, ions corresponding to gDNA were negligible in abundance and a peak
from free ssSRNA was observed (m/z 1231.1, not shown). The results were expressed
graphically by summing the abundances of the qDNA ions (with and without bound
ammonium ions) and expressing them as a percentage of the abundance of all 5- ions in the
spectrum (qQDNA + DNA/RNA) and comparing these with the relative abundance of the ion
from the DNA/RNA hybrid (Figure 1d). It should be noted that while this Figure shows the
decrease in the gDNA corresponding with an increase in the DNA/RNA hybrid with the
addition of RNA as observed in the ESI mass spectra, the response factors (ionization
efficiency coupled with efficiency of transfer of ions through stages of mass analysis and
detection) of the DNA/RNA hybrid and gDNA may differ. If this is the case, then these data
are not amenable to quantitative analyses. Nevertheless, these results show that RNA was
able to base pair with DNA of the bimolecular gDNA and form a DNA/RNA hybrid. When
the hybrid was preformed and treated with increasing amounts of bimolecular qDNA, the
analogous results were obtained with the ESI mass spectrum of the 1:1 mixture
indistinguishable from that shown in Figure 1c. Furthermore, when these mixtures were left
to equilibrate for one day or four days at room temperature, the ESI mass spectra were
unchanged (not shown; these time periods were chosen for comparison with the results of

Salazar et al., [26] described below).
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Relative stabilities of Bimolecular gDNA and DNA/RNA hybrid

Melting profiles obtained by CD spectroscopy supported that the thermal stability of the
DNA/RNA hybrid in 0.15 M NH4OAc was greater than that for the bimolecular gDNA under
the conditions of our experiments (Supplementary Figure S3b). The temperatures at which
half of the gDNA or hybrid DNA/RNA duplex was denatured, the melting temperatures,

were ~37 °C and 57 °C, respectively.

Previously, Salazar et al. [26] examined the same oligonucleotide sequences as in the present
work as a model for the hybrid that forms to enable extension of the telomere primer on the
telomerase RNA template. At high oligonucleotide concentrations (5 mM), NMR spectra
acquired in the presence of 100 mM K showed that the hybrid denatured as it was heated to
50 °C, where a new set of peaks were observed that were proposed to correspond to parallel
G-quadruplex DNA. In Na®, the hybrid was present in greater abundance, but denatured as
the sample was heated to 75 °C with no evidence for the formation of a G-quadruplex at any
temperature. These researchers proposed that under their conditions in K -containing buffer,
and after the thermally-induced transition from hybrid to G-quadruplex, an equilibrium was
established between the two secondary structures; after 4 days, the amount of G-quadruplex
diminished with a concomitant increase in the amount of the hybrid. The melting
temperatures and relative stabilities of the hybrid and G-quadruplex DNA were shown to be
affected by oligonucleotide and cation concentrations. The strand orientations (parallel or
antiparallel) of the gDNA formed under these different conditions were not assessed by

NMR.

The current work also supports that an equilibrium can be established between the hybrid and
qDNA, but in contrast with the results of Salazar et al. [26], the hybrid was substantially

more thermally stable than the qDNA, and the gqDNA strands were predominantly

14



antiparallel. Salazar et al. proposed a four-stranded parallel gDNA, although that work [26]
was carried out before it was possible to use ESI-MS to determine strand stoichiometry. Their
proposal is reasonable given the high DNA concentration (5 mM) and different cations used
in their work. Such differences in annealing conditions are known to result in qDNA with
different strand stoichiometry and orientation (parallel c¢f. antiparallel). In a proposed
mechanism for the activity of telomerase [33], an RNA hybrid must be formed at two steps:
(1) hTR aligns with the 3’ end of the telomeric primer DNA forming a duplex hybrid; the 5’
end of the telomeric DNA is proposed to interact with a domain of the TERT (telomerase)
protein, and (2) after nucleotide addition, the DNA/RNA hybrid undergoes strand separation
(outside the active site), and the telomeric DNA must re-anneal to the alignment region of the
RNA to allow repeat addition of nucleotides; the realigned DNA/RNA hybrid is then
recaptured by the active site. The results presented in the current work show that if telomeric
DNA was folded into a gDNA structure, that it is possible for a DNA/RNA hybrid to form
(e.g. at step (1)). Based on their results, Hurley and co-workers [26] suggested that formation
of gDNA might promote dissociation of the hybrid (e.g. at (2)). Together these studies and
the current work provide a basis for understanding that whether telomerase action is
promoted or inhibited will depend on the relative stabilities of the DNA/RNA hybrid
compared with any qDNA that forms under the prevailing conditions. Since the forward and
reverse processes of the equilibrium between the hybrid and the qDNA have been
demonstrated under different conditions in vitro, the results of the two studies (current and
Salazar et al. [26]) taken together suggest, as expected, that the identity of the predominating
nucleic acid secondary structure will depend on the microenvironment; for example, the
presence and nature of protein-nucleic acid interactions at the active site of telomerase or

outside it, as proposed during translocation.
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Effect of ligand (1) on stabilities of Bimolecular gDNA and DNA/RNA hybrid

Previously, 13-substituted berberine derivatives were shown to stabilise various qDNA
structures [4,13]. Some qDNA-binding ligands inhibit telomerase activity/processivity, and
have been proposed as leads for potential anticancer chemotherapeutics [34]. A new
compound (1), (Supplementary Figure S1) was tested for its ability to bind to the bimolecular
qDNA and the hybrid. Figures 2a and ¢ show the ESI mass spectra (m/z 1450 — 1750) of
qDNA and the hybrid alone, respectively, for comparison with the spectra below (b and d)
where a 3-fold molar excess of ligand 1 was added to the solutions. In the 1:3 qDNA: ligand
mixture (Figure 2b), the most abundant ion (m/z 1600.0) is from the complex where there are
two ammonium ions present and one molecule of ligand bound: [qDNA + 2NH4" + (1) -
7H]”. There is also an ion of low to moderate abundance from [qDNA + 2NH," + 2(1) -
TH]® (m/z 1692.4). The increase in abundance in the ESI mass spectra of gDNA with bound
ammonium ions when ligand was present compared with when it was absent (cf. Figures 2b
and a, respectively), suggests that the ligand (1) stabilised the ammonium ion-bound form of
the bimolecular gDNA, preventing the ammonium ions from dissociating in the mass
spectrometer. This is supported by closer inspection of the relative abundances of qDNA +
n(1), gDNA + NH," + n(1) and qDNA + 2NH;" + n(1), where n = 0 — 2, as a function of
increasing ligand concentration (Supplementary Figure S7). As ligand concentration
increased, the amount of gDNA with two bound ammonium ions detected in the mass spectra
increased while the qDNA with no bound ammonium ions decreased, consistent with the

proposal that ligand (1) stabilizes qDNA + 2NH,".

Figures 2c and d show the ESI mass spectra of the DNA/RNA hybrid alone and with a 3-fold
molar excess of ligand 1, respectively. In contrast with the bimolecular qDNA, the most

abundant ion was from free nucleic acid (hybrid). There was also an ion of low to moderate
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abundance corresponding to the DNA/RNA hybrid with one ligand molecule bound (m/z
1581.7, [DNA/RNA + (1) — 5H]”). The relative abundances of all complexes detected for
qDNA and the hybrid, respectively, as judged by the ESI mass spectra are shown in
Supplementary Figure S8. The ligand bound more extensively to the gDNA than the hybrid,
with the complex with two ligands bound (QDNA + 2(1)), the most abundant in the 1:9
mixture. The DNA/RNA hybrid bound the ligand relatively weakly with substantial amounts
of free hybrid duplex (~50% of all complexes) present in the 1:9 mixture; the complex where
one ligand molecule was bound was the most abundant. These observations are consistent
with binding of the ligand stabilizing the gDNA against dissociation, and preferential binding

of the ligand to the bimolecular gDNA over the duplex DNA/RNA hybrid.

The difference in melting temperatures of the gDNA (37 °C) and DNA/RNA hybrid (57 °C)
was substantial. The effects of ligand (1)-binding on the thermal stability of the gDNA and its
resistance to unfolding and hybridization with RNA were tested. Ligand (1) was added to
qDNA to give qDNA: ligand (1) mixtures (1:1, 1:3, 1:6 and 1:9). As the concentration of the
ligand was raised, the melting temperature (thermal stability) of the gDNA, as judged by CD
spectroscopy, increased. The melting temperature increased from 37 °C (no ligand) to 47 °C
in the 1:9 mixture (Figure 3). The experiment presented in Figure 1 was repeated, but using
bimolecular gDNA that was treated with a 9-fold molar excess of the ligand (1). Under these
conditions the most abundant complex is expected to contain at least two ligands bound to
qDNA (gDNA + 2NH," + 2(1); see Supplementary Figure S8). Figure 4a-c shows ESI mass
spectra of qDNA-ligand (1) mixtures with increasing amounts of RNA added (up to
equimolar amounts of RNA and qDNA). Figure 4d shows a graph comparable to that shown
in Figure 1d (when no ligand was present). When ligand (1) was bound to the gDNA, gDNA
was more abundant than the DNA/RNA hybrid at all RNA concentrations (Figure 4d).

Comparison of these two graphs (Figures 1d and 4d) shows that the binding of the ligand
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stabilized the qDNA against unfolding and therefore inhibited hybridization of dissociated
DNA with RNA. The stabilization of qDNA against unfolding and hybridization with
complementary DNA in the presence of gDNA-binding ligands has been observed in a range

of studies; for example by de Pauw and co-workers [35].

Closer inspection of the abundances of individual ions (free RNA [RNA — 3H]>, m/z 1231.7;
qDNA ([qDNA — 5 H]”, m/z 1501.5, and [qDNA + 2NH," -7H]”, m/z 1508.4; ssDNA
[ssDNA — 3H]*, m/z 1251.2; DNA/RNA hybrid duplex ((DNA/RNA — 5H]”, m/z 1489.9) as
increasing amounts of RNA were added to either gDNA, or gDNA in the presence of the
ligand, revealed more detailed information about the stability of the qDNA under the
different conditions (not shown). When the ligand was present, the abundance of ssDNA was
low supporting that the ligand stabilized the qDNA against dissociation in the mass
spectrometer. In the presence and absence of the ligand, the abundance of ssDNA (m/z
1251.2) decreased as RNA was increased, supporting that DNA that is H-bonded in the
hybrid is more stable to the mass spectrometry conditions than the gDNA. In agreement with

this, the abundance of free RNA (m/z 1231.7) was greater when the ligand was present.

These results, together with the observation that the ligand does not bind extensively to the
hybrid, suggests that 1 (Supplementary Figure S1) will be a useful compound for probing the

role(s), if any, of antiparallel gDNA in the telomerase mechanism.
Conclusions

A DNA/RNA hybrid duplex representing the template RNA of telomerase in alignment with
telomeric DNA, was readily detected and analysed by ESI-MS. The optimised ESI-MS
conditions for analysis of the bimolecular gDNA (d(GGTTAGGGTTAG);), used in this
work, were not suitable for ESI-MS observation of the duplex DNA/RNA hybrid. In order to
observe conversion of the JDNA to the hybrid in the same mass spectrum, a compromise was
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made in ESI-MS conditions. ESI-MS was used to show that bimolecular gDNA can unfold to
form the hybrid, demonstrating that if gDNA forms during catalysis by telomerase that it is
possible for realignment with the RNA template to occur. The binding of a 13-substituted
berberine derivative (1) to the bimolecular gDNA stabilized the structure against thermal
melting and unfolding in the presence of RNA to form the hybrid. Ligand (1) did not bind to
the DNA/RNA hybrid. The ability of ligand (1) to discriminate among qDNA and hybrid
means this compound might be used to probe mechanism of telomerase. In an experimental
program that is currently under way, this and other compounds that selectively bind different
DNA secondary structures (e.g. parallel or antiparallel gDNA) are being used to probe their

effect if any, on telomerase activity and/or processivity.
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Figure Legends
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Figure 1: ESI mass spectra showing addition of RNA (0 — 10 uM) to bimolecular gDNA (10
uM) to form a DNA/RNA hybrid. (a) gDNA alone, (b) 6:1 mixture of gDNA: RNA (12rCU)
(c) 1:1 mixture of gDNA: RNA (12rCU), and (d) relative abundances (5- ions) of bimolecular
qDNA (green) and hybrid DNA/RNA (blue) as judged by ESI mass spectra. Average of 3
experiments; error bars represent + 1 standard deviation. In the ESI mass spectra qDNA
peaks are in green and hybrid DNA/RNA peaks are blue; x is the number of ammonium ions
in the structure.
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Figure 2: Addition of 13-substituted berberine derivative (1) to bimolecular gDNA (10 uM)
or DNA/RNA hybrid (10 uM). (a) gDNA alone, (b) 1:3 mixture of gDNA: 1, (c) hybrid
DNA/RNA alone, (d) 1:3 mixture of hybrid DNA/RNA: 1; x is the number of ammonium
ions in the structure; » is the number of ligand (1) molecules bound.
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Figure 4: ESI mass spectra showing addition of RNA to bimolecular gDNA to form an
DNA/RNA hybrid in the presence of a 9-fold excess of ligand (1). (a) gDNA alone, (b) 6:1
mixture of gDNA: RNA (12rCU) (c) 1:1 mixture of gDNA: RNA (12rCU), and (d) relative
abundances (5- ions) of bimolecular gDNA (green) and hybrid DNA/RNA (blue) as judged
by ESI mass spectra. Average of 3 experiments; error bars represent + 1 standard deviation.
In the ESI mass spectra qDNA peaks are in green and hybrid DNA/RNA peaks are blue; x is
the number of ammonium ions in the structure; » is the number of ligand (1) molecules
bound.
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Supplementary Figures

Supplementary Figure S1: Structure of 1, a 13-substituted berberine derivative used in this
work.
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Supplementary Figure S2: ESI mass spectra of: (a) bimolecular gqDNA
d(GGTTAGGGTTAG); (green) and (b) DNA/RNA hybrid,
d(GGTTAGGGTTAG).r(cuaacccuaacc) (blue). Tons observed were [qDNA — 5 H]” (m/z
1501.5), [qDNA + 2NH," -7H]” (m/z 1508.4), [ssDNA — 3H]" (m/z 1251.2), [DNA/RNA —
SH]> (m/z 1489.9); x refers to the number of ammonium ions.
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Supplementary Figure S3: (a) Circular dichroism (CD) spectra of the DNA/RNA hybrid,
d(GGTTAGGGTTAG).r(cuaacccuaacc), (blue) and dimeric gDNA d(GGTTAGGGTTAG),
(green) at 10 and 20 uM (molecular concentration), respectively, in 0.15 M NH4OAc. (b) CD
melting profiles for the DNA/RNA hybrid, d(GGTTAGGGTTAG).r(cuaacccuaacc), (blue,
260 nm) and gDNA d(GGTTAGGGTTAG), (green, 290 nm).
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Supplementary Figure S4: ESI mass spectra showing the effect of changing RF Lens
voltage on gDNA and DNA/RNA hybrid. (a) gDNA (green) with RF Lens 65 V and (b) RF
lens 50 V. (c) gDNA (green) with addition of excess (15 uM) ssRNA (blue) added to form
hybrid and analysed using at RF lens 65 V and (d) RF Lens 50 V; x refers to the number of

ammonium ions.
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Supplementary Figure SS5: ESI-MS/MS (Q-ToF Ultima) showing the dissociation of
bimolecular gDNA (5- ions; green) to ssDNA (3- ions; blue) with increasing collision energy
voltage. (a) 0 V (b) 20 V (¢) 26 V (d) 38 V. Since the instrument had an extended mass range
(m/z 32,000), it was not possible to select only m/z 1501.5 as the precursor ion (loss of
resolution in quadrupole with decrease in frequency); all 5- ions were transmitted: [QDNA — 5
H]’ ., [qDNA + INH;" -6H]” and [qDNA + 2NH4" -7H]*". As the collision energy was
increased, ammonium ions were lost from [qDNA + INH," -6H]> and [qDNA + 2NH," -
7H]’; at the highest collision energies, [JDNA — 5 H]* dissociated to [ssDNA — 3H]*" (m/z

1251.2).
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Supplementary Figure S6: Negative ESI-TWIMS Diriftscope images of bimolecular gDNA
d(GGTTAGGGTTAG); using the conditions described in the Experimental section. (a) Bias
=10 V; (b) Bias =22 V. Dotted white lines show charge states corresponding to each nucleic
acid structure: bimolecular gDNA (qDNA + xNH,"), and ssDNA; x refers to the number of
ammonium ions.
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Supplementary Figure S7: Change in relative abundances of gDNA + n(1) (green circles),
qDNA + NH;" + n(1) (blue triangles) and gDNA + 2NH4" + n(1) (orange diamonds) as a
function of increasing ligand (1) concentration (n = 0, 1). The change in relative abundance is
calculated by subtracting the abundance of ions from qDNA with no ligand bound from the
abundances of all ions from qDNA (with and without ligand bound). At all concentrations of
ligand, ions from qDNA with no ammonium ions decrease in abundance and ions from
gDNA with two bound ammonium ions increase in abundance consistent with the proposal
that ligand (1) stabilizes qDNA + 2NH,".
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Supplementary Figure S8: Normalised relative abundances of gDNA-ligand (1) and
DNA/RNA-ligand (1) complexes in 1:1, 1:3, 1:6 and 1:9 mixtures. (a) gDNA-ligand (1)
complexes, and (b) hybrid DNA/RNA-ligand (1) complexes. The abundances of all ions from
qDNA-ligand complexes (a) or DNA/RNA hybrid-ligand complexes (b) were summed and
expressed as a percentage of the sum of the abundances of all the ions in the spectrum
excluding the ion at 1251.2 from ssDNA if present, in mixtures containing qDNA;
normalised to abundance of base peak in each spectrum.
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