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ESI-MS investigation of an equilibrium between a bimolecular quadruplex
DNA and a duplex DNA/RNA hybrid

Abstract
Electrospray ionization mass spectrometry (ESI-MS) conditions were optimized for simultaneous
observation of a bimolecular qDNA and a Watson-Crick base-paired duplex DNA/RNA hybrid. The DNA
sequence used was telomeric DNA, and the RNA contained the template for telomerase-mediated telomeric
DNA synthesis. Addition of RNA to the quadruplex DNA (qDNA) resulted in formation of the duplex DNA/
RNA hybrid. Melting profiles obtained using circular dichroism spectroscopy confirmed that the DNA/RNA
hybrid exhibited greater thermal stability than the bimolecular qDNA in solution. Binding of a 13-substituted
berberine (1) derivative to the bimolecular qDNA stabilized its structure as evidenced by an increase in its
stability in the mass spectrometer, and an increase in its circular dichroism (CD) melting temperature of 10°C.
The DNA/RNA hybrid did not bind the ligand extensively and its thermal stability was unchanged in the
presence of (1). The qDNA-ligand complex resisted unfolding in the presence of excess RNA, limiting the
formation of the DNA/RNA hybrid. Previously, it has been proposed that DNA secondary structures, such as
qDNA, may be involved in the telomerase mechanism. DNA/RNA hybrid structures occur at the active site of
telomerase. The results presented in the current work show that if telomeric DNA was folded into a qDNA
structure, it is possible for a DNA/RNA hybrid to form as is required during template alignment. The
discrimination of ligand (1) for binding to the bimolecular qDNA over the DNA/RNA hybrid positions it as
a useful compound for probing the role(s), if any, of antiparallel qDNA in the telomerase mechanism.
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Abstract 

Electrospray ionization mass spectrometry (ESI-MS) conditions were optimized for 

simultaneous observation of a bimolecular qDNA and a Watson-Crick base-paired duplex 

DNA/RNA hybrid. The DNA sequence used was telomeric DNA, and the RNA contained the 

template for telomerase-mediated telomeric DNA synthesis. Addition of RNA to the qDNA 

resulted in formation of the duplex DNA/RNA hybrid. Melting profiles obtained using 

circular dichroism spectroscopy confirmed that the DNA/RNA hybrid exhibited greater 

thermal stability than the bimolecular qDNA in solution. Binding of a 13-substituted 

berberine (1) derivative to the bimolecular qDNA stabilized its structure as evidenced by an 

increase in its stability in the mass spectrometer, and an increase in its (CD) melting 

temperature of 10 C. The DNA/RNA hybrid did not bind the ligand extensively and its 

thermal stability was unchanged in the presence of (1). The qDNA-ligand complex resisted 

unfolding in the presence of excess RNA, limiting the formation of the DNA/RNA hybrid. 

Previously, it has been proposed that DNA secondary structures, such as qDNA, may be 

involved in the telomerase mechanism. DNA/RNA hybrid structures occur at the active site 

of telomerase. The results presented in the current work show that if telomeric DNA was 

folded into a qDNA structure, it is possible for a DNA/RNA hybrid to form as is required 

during template alignment. The discrimination of ligand (1) for binding to the bimolecular 

qDNA over the DNA/RNA hybrid, positions it as a useful compound for probing the role(s), 

if any, of antiparallel qDNA in the telomerase mechanism.  
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Introduction 

Over the last fifteen years, the application of electrospray ionization mass spectrometry (ESI-

MS) to analyse non-covalent secondary structures of DNA and its complexes with ligands 

has grown considerably. ESI-MS can be used to screen for interactions with drug molecules, 

to determine binding stoichiometries, and to compare relative stabilities of DNA-ligand 

complexes [1]. The first complexes analysed were double-stranded Watson-Crick base-paired 

DNA bound with anticancer agents such as the anthracyclines [2]. More recently, DNA 

quadruplexes (qDNA) have been analysed [3-5]. 

Quadruplex DNA (or RNA) structures are formed from the association of four guanosine 

residues in a stretch of contiguous guanosine residues to form a square planar arrangement 

via Hoogsteen base-pairing [6]. They may form from a single strand (intramolecular, 

monomer), or from two or four strands (intermolecular dimer or tetramer). The strands or 

sections of strands forming the qDNA structure may be aligned in a parallel or antiparallel 

orientation. The range of structures that may be formed in vitro or in vivo depends on the 

length of the stretch of guanosines, the nature and length of the intervening sequences and 

loops, and the overall length of the G-rich nucleic acid sequence with a potential to be single-

stranded. Images of various types of qDNA are shown in Adrian et al. [6]. G-Quadruplexes 

may be stabilised by cations such as sodium and potassium that sit between the stacked 

guanosine tetrads. Importantly, for analysis by ESI-MS, ammonium ions can also function in 

this way. 

Guanosine-rich sequences are found at telomeres and in the promoter regions of 

protooncogenes. Telomeres are non-coding regions of DNA at the ends of chromosomes, 

terminating in a single-stranded (ss) DNA overhang. With each round of DNA replication 

associated with cell division, the telomeres shorten because the DNA polymerase is unable to 
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copy DNA close to the end of the chromosome. When chromosomes reach a critical short 

length, this is a signal for the cell to enter senescence. In cancer cells, telomere length is 

maintained, either by the enzyme telomerase (~85-90% of cancers), or by another mechanism 

called Alternative Lengthening of Telomeres (ALT, ~10-15% of cancers) [7]. The 

maintenance of telomere length is necessary for immortalisation of cancer cells. For this 

reason, research to uncover small molecules that bind to, and either destabilize or stabilize 

these structures, has increased remarkably over the last 10 years [8-10] with a view to 

developing chemotherapeutic agents. 

The first ESI-MS analyses of qDNA included relatively stable tetrameric quadruplexes 

formed from single strands with more than three contiguous guanosine residues [3-5]. When 

negatively charged Watson-Crick base-paired duplex DNA is analysed by ESI-MS, no 

ammonium ions remain bound to the DNA; in contrast, ESI mass spectra of more stable 

qDNA structures reveal the presence of bound ammonium. This is consistent with 

sequestration of cations in the structure and supports that some qDNA structures are 

sufficently stable to survive the ionization and mass analysis processes [11]. ESI-MS has 

been used to show that various small-molecule ligands bind to qDNA [3,12,13] and NMR 

spectroscopy [14] and X-ray crystallographic structures [15] support this. 

RNA secondary and tertiary structures [16,17] including hybrid DNA/RNA and quadruplex 

RNA (qRNA), have been less extensively studied by ESI-MS. This is perhaps surprising 

given the important roles of RNA at all stages of expression of the genome (DNA) from 

DNA replication through transcription to gene silencing.  

There are two RNA molecules that have particular focus in telomere biology: the intrinsic 

telomerase RNA (TR, hTR in humans; containing the cccuaa repeat), and telomeric repeat-

containing RNA (TERRA; containing UUAGGG repeats). There have been a few studies of 
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TERRA by ESI-MS. Gabelica and coworkers used TERRA of different lengths (12 mer, 22 

mer and 45 mer) to show that parallel RNA quadruplexes formed bimolecular assemblies 

(two quadruplexes) mediated by cation formation. These higher-order structures were 

observed at substantially higher abundance than for the analogous DNA sequences [18]. ESI 

mass spectra obtained by Cui et al. [19] of 12- and 24 mer TERRA supported the formation 

of inter- and intramolecular parallel quadruplexes, respectively. 

 There have been fewer ESI-MS studies of DNA/RNA hybrids. DNA/RNA hybrids form 

during the catalytic process of telomerase. The ribonucleic acid component of telomerase, 

TR, containing the template, associates with the complementary 3  single-stranded overhang 

of telomeric DNA. This is followed by processive repeat addition synthesis of DNA in which 

a telomeric repeat DNA sequence is synthesised, followed by dissociation of the single-

stranded product from the template, and translocation of the template (RNA) to enable 

synthesis of the next telomeric repeat [20-24]. The mechanism by which translocation occurs 

has not been fully elucidated, and the role(s), if any, of secondary DNA structures (e.g. 

qDNA)  formed by telomeric DNA in the telomerase mechanism is not thoroughly 

understood [25].  

The possible interaction of qDNA and RNA, relevant to telomerase activity, was investigated 

by Hurley and coworkers [26]. Using NMR and UV thermal denaturation analyses they 

showed that a thermally-induced transition of the DNA/RNA hybrid formed from telomeric 

DNA and hTR, d(GGTTAGGGTTAG).r(cuaacccuaacc), to a G-quadruplex DNA 

bimolecular structure (d(GGTTAGGGTTAG)2), could occur under some conditions, 

supporting that qDNA formation may promote dissociation of the hybrid. This was followed 

up in later work where they suggested that formation of secondary structures promotes 

dissociation of the primer from TERT [27]. These sequences are amenable to modern ESI-



6 
 

MS analysis. We have used the same hybrid and qDNA sequences and applied ESI-MS to 

examine the DNA/RNA hybrid ↔ qDNA equilibrium proposed previously [26]. Using the 

same sequences is important because it enables a direct comparison of ESI-MS with previous 

methods and experimental conditions, and allows an assessment of the merits of ESI-MS for 

studying RNA secondary structures and qDNA ↔ hybrid DNA/RNA equilibria.  Under our 

conditions, addition of increasing amounts of complementary RNA to the bimolecular qDNA 

resulted in formation of hybrid DNA/RNA. In addition, we investigated the effect of binding 

of a novel, 13-substituted berberine derivative (1, shown in Supplementary Figure S1), on the 

relative stabilities of the hybrid and bimolecular qDNA. This compound stabilised the qDNA 

relative to the corresponding DNA/RNA hybrid. ESI-TWIMS was used to distinguish among 

ions from single-stranded d(GGTTAGGGTTAG) and ions from the bimolecular qDNA 

(d(GGTTAGGGTTAG)2), carrying twice the number of charges, assisting in assessment of 

the stability of the qDNA under various conditions. 

 These results demonstrate the utility of ESI-MS for the investigation of equilibria among 

nucleic acid secondary structures including hybrid DNA/RNA and show that it is possible for 

RNA to compete with secondary stuctures in telomeric DNA to form an DNA/RNA hybrid as 

would be required for addition of the successive telomeric repeat. At the telomere, such 

transitions would likely be mediated through protein-nucleic acid interactions. 

Experimental 

Materials 

MilliQ
TM

 water (Millipore, Bedford, USA) was used in all experiments. Ammonium acetate 

and methanol were purchased from Ajax Finechem (Seven Hills, Australia). The compound 1 
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(Supplementary Figure S1) was prepared as previously described (Siritron Samosorn, Thai 

Petty Patent Application Number 1103000985, 16 September, 2011). 

Oligonucleotides 

The qDNA strand (d(GGTTAGGGTTAG), 12TAG, 3756.5 Da) was purchased from 

GeneWorks (South Australia) at sequencing/PCR grade. Complementary RNA 

(r(uaacccuaacc), 12rCU, 3698.3 Da) was purchased from Exiqon (Vedbaek, Denmark) with 

standard desalting. Oligonucleotides were redissolved in MilliQ
TM

 water giving a 

concentration of 0.5 – 1 mM prior to storage at –20 °C. The concentrations were determined 

by measuring the UV absorbance at 260 nm using molar absorption coefficients for 12TAG 

and 12rCU of 123 600 and 110 800 M
-1

 cm
-1

, respectively. 

Preparation of hybrid duplex and qDNA 

The hybrid duplex was prepared by annealing equimolar amounts of the complementary 

RNA and DNA single strands (12rCU and 12TAG) in 0.15 M ammonium acetate (NH4OAc), 

pH 6.8, to a final stock concentration of 500 µM. The solution was heated to 90 °C for 15 

min and allowed to cool to room temperature. The bimolecular qDNA formed from two 

molecules of 12TAG, d(GGTTAGGGTTAG)2, was prepared under the same conditions as 

the hybrid duplex using an appropriate quantity of 12TAG to form 500 µM of the 

bimolecular qDNA. 

Preparation of ligand/nucleic acid complexes 

Stock solutions of 1 (500 µM) were prepared in 60% methanol. Appropriate volumes of 0.15 

M NH4OAc, bimolecular qDNA or hybrid (DNA/RNA) duplex, and 1 were mixed to give 

reaction mixtures containing 10 µM or 20 µM (for ESI-MS and CD, respectively) of the 

qDNA or hybrid with the ligand 1 in the ratios of 1:1, 1:3, 1:6 and 1:9 (nucleic acid: ligand) 
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in 0.15 M NH4OAc. The final concentration of methanol in the 1:9 mixture was 11% 

(vol/vol). The mixtures were equilibrated at room temperature for 10 min in a final volume of 

50 μL for ESI-MS and 200 µL for CD.  

Addition of RNA to Bimolecular qDNA  

Single-stranded RNA (0 – 40 M; final concentration) was mixed with 10 µM (final 

concentration) of qDNA in 0.15 M NH4OAc. The reaction mixtures were equilibrated at 

room temperature for 10 min. When equilibrated for less than 10 min (mixing and analysis 

time 1 – 10 min) the results of experiments described herein were the same. To test whether 

RNA was able to capture ssDNA from bimolecular qDNA when it was stabilised by 1, 

ligand-bound bimolecular qDNA was prepared at a ratio of 1:9 (qDNA: 1), and equilibrated 

for 10 min. When equilibrated for less than 10 min (mixing and analysis time 1 – 10 min) the 

results of experiments described herein were the same. RNA was then added as described 

above. 

Electrospray ionization mass spectrometry (ESI-MS) and ESI-TWIMS 

Negative ion ESI mass spectra of DNA/RNA and the nucleic acid-ligand complexes were 

acquired using a Waters extended mass range Q-ToF Ultima
TM

 (32,000 m/z, Manchester, 

UK) mass spectrometer, fitted with a Z-spray ESI source [28]. The capillary, RF lens 1 and 

cone voltage were set to 2.1 kV, 65.0 V and 35.0 V, respectively. Source and desolvation 

temperatures of 30 and 80 °C, respectively, were used for all experiments, with a desolvation 

gas (N2) flow of 300 L/hr. The pressure in the ion optics region was 3 × 10
-6 

mbar. Thirty-five 

acquisitions were combined and the resulting spectra were baseline subtracted and smoothed 

using the Savitzky-Golay method in the MassLynx software suite (Waters, Manchester, UK). 

The instrument was calibrated with 1 mg/mL cesium iodide. 
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Ion mobility mass spectra (TWIMS) were acquired using a Synapt G1 HDMS (Waters, 

Manchester, UK). The conditions were chosen to produce relative abundances of nucleic acid 

structures in ESI mass spectra comparable to those observed using the Q-ToF Ultima™ 

(above). For all experiments, the capillary, sampling cone and extraction cone voltages were 

set to 2.1 kV, 45.0 V and 4.0 V, respectively. The desolvation gas flow rate (N2) was 150 

mL/min with an IMS gas flow rate (Ar) of 32 mL/min. Collision energies for the trap and 

transfer were both set to 4.0 V and the trap bias was varied between 10 and 22 V.  The wave 

velocity and wave height in the IMS cell were 300 m/s and 8 V, respectively.  DriftScope 2.7 

was used to visualise a 2D map of drift time (ms) vs m/z for the resulting spectra. 

Circular dichroism analysis and melting experiments 

Circular dichroism spectra were acquired using a Jasco J-810 spectropolarimeter fitted with a 

Peltier heating/cooling device. CD spectra (200 – 340 nm) were obtained using a 0.1 cm 

pathlength quartz cell and 20 µM of qDNA dimer or DNA/RNA hybrid in 0.15 M NH4OAc 

at 25 °C. The average of 6 accumulations was recorded with a scanning speed of 100 nm/min 

and a data pitch of 0.1 nm. The sensitivity was set to 100 mdeg with a response time of 2 sec 

and a bandwidth of 1 nm. QDNA-ligand samples were prepared as described above. For 

acquisition of melting profiles the temperature (range of 25 °C – 85 °C) was increased at a 

rate of 1 °C/min. Melting was followed at 290 nm for qDNA and 260 nm for the DNA/RNA 

hybrid. Each cuvette was sealed with a lid and parafilm to minimize sample evaporation. 
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Results and Discussion 

ESI-MS of Bimolecular qDNA and DNA/RNA Hybrid 

One goal of this work was to determine solution and ESI-MS conditions to follow the 

conversion of bimolecular qDNA formed from 12TAG, d(GGTTAGGGTTAG)2, to hybrid 

duplex DNA/RNA on addition of the complementary RNA strand. This reaction was 

previously studied by Salazar et al. using different methods and conditions [26]. ESI-MS 

conditions were tested separately for each nucleic acid structure; parameters that were varied 

included the cone voltage, desolvation gas flow rate, desolvation temperature and RF lens 1 

voltage. The best conditions for observation of hybrid duplex DNA/RNA simultaneously 

with the qDNA are described in the Experimental section. ESI mass spectra of bimolecular 

qDNA formed from 12TAG, d(GGTTAGGGTTAG)2, under these conditions showed peaks 

corresponding to [qDNA – 5H]
5-

 (m/z 1501.5), [qDNA + 2NH4
+
 -7H]

5-
 (m/z 1508.4), where 

‘qDNA’ is the bimolecular qDNA, and single-stranded (ss) DNA, [ssDNA – 3H]
3-

 (m/z 

1251.2) (Supplementary Figure S2a). The ion [qDNA – 5 H]
5-

 was the most abundant with 

the latter two ions present at lower, similar abundance.  Circular dichroism (CD) spectra can 

be used to demonstrate the presence of qDNA and other nucleic acid structures in solution 

[29-31]. CD spectra of annealed solutions of qDNA used to obtain ESI mass spectra showed 

a maximum positive ellipticity at 290 nm, consistent with predominantly antiparallel qDNA 

[30] (Supplementary Figure S3a), confirming that qDNA was present in solution. Since 

ammonium ions can serve as the cation contributing to the stability of qDNA and sequestered 

in the G-tetrad, these ions are often preserved in the structures detected in ESI mass spectra. 
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The absence of ammonium ions from the bimolecular [qDNA – 5 H]
5-

 (m/z 1501.5) suggests 

that they may have been lost during the ionization and/or mass analysis processes while the 

assembly of the two strands remained intact [11,29]. The presence of single-stranded (ss) 

DNA, [ssDNA – 3H]
3-

 (m/z 1251.2) suggests that some qDNA completely dissociated. There 

were more gentle conditions under which [qDNA + 2NH4
+
 -7H]

5-
 (m/z 1508.4) was more 

abundant than [qDNA – 5 H]
5-

 (m/z 1501.5). For example, when the voltage of RF lens 1 was 

decreased from 65 to 50 V, the peak corresponding to the ammonium ion-free qDNA was 

very low in abundance (compare Supplementary Figure S4a and b). Accordingly, the peak at 

m/z 1251.2 decreased in abundance, consistent with diminished gas phase dissociation of the 

qDNA. In order to show that bimolecular qDNA could be subject to dissociation in the gas 

phase, a collision-induced dissociation experiment (CID) was conducted. The [qDNA – 5 

H]
5-

 (m/z 1501.5) ion was selected and subjected to increasing collision energy from 0 – 38 V 

(Supplementary Figure S5). At 0 V, the ion [ssDNA – 3H]
3-

(m/z 1251.2) was negligible in 

abundance. When the collision energy was increased to 20 V, the abundance of [qDNA + 

2NH4
+
 -7H]

5-
 decreased as ammonium ions were lost from the structure.  At 26 and 38 V, 

respectively, the ratios of the abundances of [qDNA – 5 H]
5-/[ssDNA – 3H]

3-
 were 

approximately 2.8 and 0.3, respectively, reflecting that bimolecular qDNA dissociated to 

ssDNA without the dissociation of covalent bonds as the collision energy was increased. It 

should be noted that this ion (m/z 1251.2) can also be assigned as [qDNA - 6H]
6-

. In all cases, 

the abundance of the 6- ion of bimolecular qDNA with bound ammonium ions (e.g. [qDNA + 

2NH4
+
 - 8H]

6-
 ; calculated m/z 1256.8) was negligible, suggesting that this ion does not 

readily form/is relatively unstable, and supporting that, under the ESI-MS conditions applied 

in these experiments, the ion at m/z 1251.2 arises predominantly from [ssDNA – 3H]
3-

 rather 

than [qDNA - 6H]
6-

. Ion mobility mass spectra (ESI-TWIMS) of the qDNA were acquired 

using a Synapt (G1) HDMS under a range of conditions. When the bias was set to 10 V, 
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peaks at m/z 1251.1 corresponded to ssDNA and bimolecular qDNA (Supplementary Figure 

S6a), showing that under some gas phase conditions using this instrument it was possible to 

observe [qDNA - 6H]
6-

.  When the bias was increased to 22 V, the peak at m/z 1251.1 

corresponded only to ssDNA. 

In all conditions tested, only one peak of significant abundance was observed in ESI mass 

spectra (Supplementary Figure S2b) of the DNA/RNA hybrid: [DNA/RNA – 5H]
5-

 (m/z 

1489.9). As expected, ammonium ions were not detected in the structure as this hybrid is a 

Watson-Crick base-paired duplex stabilised by H-bonding among complementary 

nucleobases (u.A and C.G). The CD spectrum (Supplementary Figure S3a) was in agreement 

with that previously obtained using a similar hybrid sequence [32]. Since the qDNA structure 

with two bound ammonium ions was more abundant in the ESI mass spectra acquired when 

the RF lens 1 voltage was lower (50 V), these conditions were applied to determine if they 

were also suitable for analysis of the hybrid DNA/RNA duplex. Under this condition (other 

parameters remaining the same), the ion at m/z 1489.9 was present at very low abundance 

(compare Supplementary Figure S4c and d), making it unsuitable for observation of qDNA 

and the hybrid in the same mass spectrum. Therefore, the conditions described in the 

Experimental Section represent a compromise (RF lens 1, 65 V) that enabled analysis of 

qDNA (with and without bound ammonium ions) and hybrid DNA/RNA in the same ESI 

mass spectrum. 

Addition of RNA to Bimolecular qDNA  

To compare the relative stabilities of the DNA/RNA hybrid and bimolecular qDNA, RNA 

(12rCU) was added in increasing amounts to pre-formed qDNA. Figure 1 shows the ESI 

mass spectrum of the bimolecular DNA alone (a), and with increasing amounts of added 

RNA (b and c). In the 1:1 mixture (qDNA: DNA/RNA hybrid, Figure 1c), the peak 
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corresponding to the hybrid is approximately three times that of the bimolecular qDNA. As 

RNA was added to the qDNA, the relative abundance of the ions from bimolecular qDNA, 

[qDNA – 5 H]
5-

 (m/z 1501.5), and [qDNA + 2NH4
+
 -7H]

5-
 (m/z 1508.4) decreased, supporting 

the loss of the qDNA structure in solution. When RNA was added in molar excess over the 

bimolecular qDNA, ions corresponding to qDNA were negligible in abundance and a peak 

from free ssRNA was observed (m/z 1231.1, not shown). The results were expressed 

graphically by summing the abundances of the qDNA ions (with and without bound 

ammonium ions) and expressing them as a percentage of the abundance of all 5- ions in the 

spectrum (qDNA + DNA/RNA) and comparing these with the relative abundance of the ion 

from the DNA/RNA hybrid (Figure 1d). It should be noted that while this Figure shows the 

decrease in the qDNA corresponding with an increase in the DNA/RNA hybrid with the 

addition of RNA as observed in the ESI mass spectra, the response factors (ionization 

efficiency coupled with efficiency of transfer of ions through stages of mass analysis and 

detection) of the DNA/RNA hybrid and qDNA may differ. If this is the case, then these data 

are not amenable to quantitative analyses. Nevertheless, these results show that RNA was 

able to base pair with DNA of the bimolecular qDNA and form a DNA/RNA hybrid. When 

the hybrid was preformed and treated with increasing amounts of bimolecular qDNA, the 

analogous results were obtained with the ESI mass spectrum of the 1:1 mixture 

indistinguishable from that shown in Figure 1c. Furthermore, when these mixtures were left 

to equilibrate for one day or four days at room temperature, the ESI mass spectra were 

unchanged (not shown; these time periods were chosen for comparison with the results of 

Salazar et al., [26] described below).  
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Relative stabilities of Bimolecular qDNA and DNA/RNA hybrid 

Melting profiles obtained by CD spectroscopy supported that the thermal stability of the 

DNA/RNA hybrid in 0.15 M NH4OAc was greater than that for the bimolecular qDNA under 

the conditions of our experiments (Supplementary Figure S3b). The temperatures at which 

half of the qDNA or hybrid DNA/RNA duplex was denatured, the melting temperatures, 

were ~37 C and 57 C, respectively. 

Previously, Salazar et al. [26] examined the same oligonucleotide sequences as in the present 

work as a model for the hybrid that forms to enable extension of the telomere primer on the 

telomerase RNA template. At high oligonucleotide concentrations (5 mM), NMR spectra 

acquired in the presence of 100 mM K
+
 showed that the hybrid denatured as it was heated to 

50 C, where a new set of peaks were observed that were proposed to correspond to parallel 

G-quadruplex DNA. In Na
+
, the hybrid was present in greater abundance, but denatured as 

the sample was heated to 75 C with no evidence for the formation of a G-quadruplex at any 

temperature. These researchers proposed that under their conditions in K
+
-containing buffer, 

and after the thermally-induced transition from hybrid to G-quadruplex, an equilibrium was 

established between the two secondary structures; after 4 days, the amount of G-quadruplex 

diminished with a concomitant increase in the amount of the hybrid. The melting 

temperatures and relative stabilities of the hybrid and G-quadruplex DNA were shown to be 

affected by oligonucleotide and cation concentrations. The strand orientations (parallel or 

antiparallel) of the qDNA formed under these different conditions were not assessed by 

NMR.  

The current work also supports that an equilibrium can be established between the hybrid and 

qDNA, but in contrast with the results of Salazar et al. [26], the hybrid was substantially 

more thermally stable than the qDNA, and the qDNA strands were predominantly 
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antiparallel. Salazar et al. proposed a four-stranded parallel qDNA, although that work [26] 

was carried out before it was possible to use ESI-MS to determine strand stoichiometry. Their 

proposal is reasonable given the high DNA concentration (5 mM) and different cations used 

in their work. Such differences in annealing conditions are known to result in qDNA with 

different strand stoichiometry and orientation (parallel cf. antiparallel). In a proposed 

mechanism for the activity of telomerase [33], an RNA hybrid must be formed at two steps: 

(1) hTR aligns with the 3  end of the telomeric primer DNA forming a duplex hybrid; the 5  

end of the telomeric DNA is proposed to interact with a domain of the TERT (telomerase) 

protein, and (2) after nucleotide addition, the DNA/RNA hybrid undergoes strand separation 

(outside the active site), and the telomeric DNA must re-anneal to the alignment region of the 

RNA to allow repeat addition of nucleotides; the realigned DNA/RNA hybrid is then 

recaptured by the active site. The results presented in the current work show that if telomeric 

DNA was folded into a qDNA structure, that it is possible for a DNA/RNA hybrid to form 

(e.g. at step (1)). Based on their results, Hurley and co-workers [26] suggested  that formation 

of qDNA might promote dissociation of the hybrid (e.g. at (2)). Together these studies and 

the current work provide a basis for understanding that whether telomerase action is 

promoted or inhibited will depend on the relative stabilities of the DNA/RNA hybrid 

compared with any qDNA that forms under the prevailing conditions.  Since the forward and 

reverse processes of the equilibrium between the hybrid and the qDNA have been 

demonstrated under different conditions in vitro, the results of the two studies (current and 

Salazar et al. [26]) taken together suggest, as expected, that the identity of the predominating 

nucleic acid secondary structure will depend on the microenvironment; for example, the 

presence and nature of protein-nucleic acid interactions at the active site of telomerase or 

outside it, as proposed during translocation.  
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Effect of ligand (1) on stabilities of Bimolecular qDNA and DNA/RNA hybrid 

Previously, 13-substituted berberine derivatives were shown to stabilise various qDNA 

structures [4,13]. Some qDNA-binding ligands inhibit telomerase activity/processivity, and 

have been proposed as leads for potential anticancer chemotherapeutics [34]. A new 

compound (1), (Supplementary Figure S1) was tested for its ability to bind to the bimolecular 

qDNA and the hybrid. Figures 2a and c show the ESI mass spectra (m/z 1450 – 1750) of 

qDNA and the hybrid alone, respectively, for comparison with the spectra below (b and d) 

where a 3-fold molar excess of ligand 1 was added to the solutions. In the 1:3 qDNA: ligand 

mixture (Figure 2b), the most abundant ion (m/z 1600.0) is from the complex where there are 

two ammonium ions present and one molecule of ligand bound: [qDNA + 2NH4
+
 + (1) - 

7H]
5-

. There is also an ion of low to moderate abundance from [qDNA + 2NH4
+
 + 2(1) - 

7H]
5-

 (m/z 1692.4). The increase in abundance in the ESI mass spectra of qDNA with bound 

ammonium ions when ligand was present compared with when it was absent (cf. Figures 2b 

and a, respectively), suggests that the ligand (1) stabilised the ammonium ion-bound form of 

the bimolecular qDNA, preventing the ammonium ions from dissociating in the mass 

spectrometer. This is supported by closer inspection of the relative abundances of qDNA + 

n(1), qDNA + NH4
+
 + n(1) and qDNA + 2NH4

+
 + n(1), where n = 0 – 2, as a function of 

increasing ligand concentration (Supplementary Figure S7). As ligand concentration 

increased, the amount of qDNA with two bound ammonium ions detected in the mass spectra 

increased while the qDNA with no bound ammonium ions decreased, consistent with the 

proposal that ligand (1) stabilizes qDNA + 2NH4
+
. 

Figures 2c and d show the ESI mass spectra of the DNA/RNA hybrid alone and with a 3-fold 

molar excess of ligand 1, respectively. In contrast with the bimolecular qDNA, the most 

abundant ion was from free nucleic acid (hybrid). There was also an ion of low to moderate 
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abundance corresponding to the DNA/RNA hybrid with one ligand molecule bound (m/z 

1581.7, [DNA/RNA + (1) – 5H]
5-

). The relative abundances of all complexes detected for 

qDNA and the hybrid, respectively, as judged by the ESI mass spectra are shown in 

Supplementary Figure S8. The ligand bound more extensively to the qDNA than the hybrid, 

with the complex with two ligands bound (qDNA + 2(1)), the most abundant in the 1:9 

mixture. The DNA/RNA hybrid bound the ligand relatively weakly with substantial amounts 

of free hybrid duplex (~50% of all complexes) present in the 1:9 mixture; the complex where 

one ligand molecule was bound was the most abundant. These observations are consistent 

with binding of the ligand stabilizing the qDNA against dissociation, and preferential binding 

of the ligand to the bimolecular qDNA over the duplex DNA/RNA hybrid.  

The difference in melting temperatures of the qDNA (37 C) and DNA/RNA hybrid (57 C) 

was substantial. The effects of ligand (1)-binding on the thermal stability of the qDNA and its 

resistance to unfolding and hybridization with RNA were tested. Ligand (1) was added to 

qDNA to give qDNA: ligand (1) mixtures (1:1, 1:3, 1:6 and 1:9). As the concentration of the 

ligand was raised, the melting temperature (thermal stability) of the qDNA, as judged by CD 

spectroscopy, increased. The melting temperature increased from 37 C (no ligand) to 47 C 

in the 1:9 mixture (Figure 3). The experiment presented in Figure 1 was repeated, but using 

bimolecular qDNA that was treated with a 9-fold molar excess of the ligand (1). Under these 

conditions the most abundant complex is expected to contain at least two ligands bound to 

qDNA (qDNA + 2NH4
+
 + 2(1); see Supplementary Figure S8). Figure 4a-c shows ESI mass 

spectra of qDNA-ligand (1) mixtures with increasing amounts of RNA added (up to 

equimolar amounts of RNA and qDNA). Figure 4d shows a graph comparable to that shown 

in Figure 1d (when no ligand was present). When ligand (1) was bound to the qDNA, qDNA 

was more abundant than the DNA/RNA hybrid at all RNA concentrations (Figure 4d). 

Comparison of these two graphs (Figures 1d and 4d) shows that the binding of the ligand 
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stabilized the qDNA against unfolding and therefore inhibited hybridization of dissociated 

DNA with RNA. The stabilization of qDNA against unfolding and hybridization with 

complementary DNA in the presence of qDNA-binding ligands has been observed in a range 

of studies; for example by de Pauw and co-workers [35]. 

Closer inspection of the abundances of individual ions (free RNA [RNA – 3H]
3-

, m/z 1231.7; 

qDNA ([qDNA – 5 H]
5-

, m/z 1501.5, and [qDNA + 2NH4
+
 -7H]

5-
, m/z 1508.4; ssDNA 

[ssDNA – 3H]
3-

, m/z 1251.2; DNA/RNA hybrid duplex ([DNA/RNA – 5H]
5-

, m/z 1489.9) as 

increasing amounts of RNA were added to either qDNA, or qDNA in the presence of the 

ligand, revealed more detailed information about the stability of the qDNA under the 

different conditions (not shown). When the ligand was present, the abundance of ssDNA was 

low supporting that the ligand stabilized the qDNA against dissociation in the mass 

spectrometer. In the presence and absence of the ligand, the abundance of ssDNA (m/z 

1251.2) decreased as RNA was increased, supporting that DNA that is H-bonded in the 

hybrid is more stable to the mass spectrometry conditions than the qDNA. In agreement with 

this, the abundance of free RNA (m/z 1231.7) was greater when the ligand was present. 

These results, together with the observation that the ligand does not bind extensively to the 

hybrid, suggests that 1 (Supplementary Figure S1) will be a useful compound for probing the 

role(s), if any, of antiparallel qDNA in the telomerase mechanism.  

Conclusions 

A DNA/RNA hybrid duplex representing the template RNA of telomerase in alignment with 

telomeric DNA, was readily detected and analysed by ESI-MS. The optimised ESI-MS 

conditions for analysis of the bimolecular qDNA (d(GGTTAGGGTTAG)2), used in this 

work, were not suitable for ESI-MS observation of the duplex DNA/RNA hybrid. In order to 

observe conversion of the qDNA to the hybrid in the same mass spectrum, a compromise was 
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made in ESI-MS conditions. ESI-MS was used to show that bimolecular qDNA can unfold to 

form the hybrid, demonstrating that if qDNA forms during catalysis by telomerase that it is 

possible for realignment with the RNA template to occur. The binding of a 13-substituted 

berberine derivative (1) to the bimolecular qDNA stabilized the structure against thermal 

melting and unfolding in the presence of RNA to form the hybrid. Ligand (1) did not bind to 

the DNA/RNA hybrid. The ability of ligand (1) to discriminate among qDNA and hybrid 

means this compound might be used to probe mechanism of telomerase. In an experimental 

program that is currently under way, this and other compounds that selectively bind different 

DNA secondary structures (e.g. parallel or antiparallel qDNA) are being used to probe their 

effect if any, on telomerase activity and/or processivity. 
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Figure Legends 

 

 

 

Figure 1: ESI mass spectra showing addition of RNA (0 – 10 M) to bimolecular qDNA (10 

M) to form a DNA/RNA hybrid. (a) qDNA alone, (b) 6:1 mixture of qDNA: RNA (12rCU) 

(c) 1:1 mixture of qDNA: RNA (12rCU), and (d) relative abundances (5- ions) of bimolecular 

qDNA (green) and hybrid DNA/RNA (blue) as judged by ESI mass spectra. Average of 3 

experiments; error bars represent  1 standard deviation. In the ESI mass spectra qDNA 

peaks are in green and hybrid DNA/RNA peaks are blue; x is the number of ammonium ions 

in the structure. 
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Figure 2: Addition of 13-substituted berberine derivative (1) to bimolecular qDNA (10 M) 

or DNA/RNA hybrid (10 M). (a) qDNA alone, (b) 1:3 mixture of qDNA: 1, (c) hybrid 

DNA/RNA alone, (d) 1:3 mixture of hybrid DNA/RNA: 1; x is the number of ammonium 

ions in the structure; n is the number of ligand (1) molecules bound. 
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Figure 3: CD melting curves of qDNA alone  and 1:1, 1:3, 1:6 and 1:9 mixtures with ligand 

(1). 
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Figure 4: ESI mass spectra showing addition of RNA to bimolecular qDNA to form an 

DNA/RNA hybrid in the presence of a 9-fold excess of ligand (1). (a) qDNA alone, (b) 6:1 

mixture of qDNA: RNA (12rCU) (c) 1:1 mixture of qDNA: RNA (12rCU), and (d) relative 

abundances (5- ions) of bimolecular qDNA (green) and hybrid DNA/RNA (blue) as judged 

by ESI mass spectra. Average of 3 experiments; error bars represent  1 standard deviation. 

In the ESI mass spectra qDNA peaks are in green and hybrid DNA/RNA peaks are blue; x is 

the number of ammonium ions in the structure; n is the number of ligand (1) molecules 

bound. 
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Supplementary Figures 

 

 

Supplementary Figure S1: Structure of 1, a 13-substituted berberine derivative used in this 

work. 

 

 

 

 

 

Supplementary Figure S2: ESI mass spectra of: (a) bimolecular qDNA 

d(GGTTAGGGTTAG)2 (green)  and (b) DNA/RNA hybrid, 

d(GGTTAGGGTTAG).r(cuaacccuaacc) (blue). Ions observed were [qDNA – 5 H]
5-

 (m/z 

1501.5), [qDNA + 2NH4
+
 -7H]

5-
 (m/z 1508.4), [ssDNA – 3H]

3-
 (m/z 1251.2), [DNA/RNA – 

5H]
5-

 (m/z 1489.9); x refers to the number of ammonium ions. 
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Supplementary Figure S3: (a) Circular dichroism (CD) spectra of the DNA/RNA hybrid, 

d(GGTTAGGGTTAG).r(cuaacccuaacc), (blue) and dimeric qDNA d(GGTTAGGGTTAG)2 

(green) at 10 and 20 M (molecular concentration), respectively, in 0.15 M NH4OAc. (b) CD 

melting profiles for the DNA/RNA hybrid, d(GGTTAGGGTTAG).r(cuaacccuaacc), (blue, 

260 nm) and qDNA d(GGTTAGGGTTAG)2 (green, 290 nm). 
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Supplementary Figure S4: ESI mass spectra showing the effect of changing RF Lens 

voltage on qDNA and DNA/RNA hybrid. (a) qDNA (green) with RF Lens 65 V and (b) RF 

lens 50 V. (c) qDNA (green) with addition of excess (15 µM) ssRNA (blue) added to form 

hybrid and analysed using at RF lens 65 V and (d) RF Lens 50 V; x refers to the number of 

ammonium ions. 
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Supplementary Figure S5: ESI-MS/MS (Q-ToF Ultima) showing the dissociation of 

bimolecular qDNA (5- ions; green) to ssDNA (3- ions; blue) with increasing collision energy 

voltage. (a) 0 V (b) 20 V (c) 26 V (d) 38 V. Since the instrument had an extended mass range 

(m/z 32,000), it was not possible to select only m/z 1501.5 as the precursor ion (loss of 

resolution in quadrupole with decrease in frequency); all 5- ions were transmitted: [qDNA – 5 

H]
5-

 , [qDNA + 1NH4
+
 -6H]

5-
 and [qDNA + 2NH4

+
 -7H]

5-
. As the collision energy was 

increased, ammonium ions were lost from [qDNA + 1NH4
+
 -6H]

5-
 and [qDNA + 2NH4

+
 -

7H]
5-

; at the highest collision energies, [qDNA – 5 H]
5-

 dissociated to [ssDNA – 3H]
3-

 (m/z 

1251.2). 
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Supplementary Figure S6: Negative ESI-TWIMS Driftscope images of bimolecular qDNA 

d(GGTTAGGGTTAG)2 using the conditions described in the Experimental section. (a) Bias 

= 10 V; (b) Bias = 22 V. Dotted white lines show charge states corresponding to each nucleic 

acid structure: bimolecular qDNA (qDNA + xNH4
+
), and ssDNA; x refers to the number of 

ammonium ions. 
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Supplementary Figure S7:  Change in relative abundances of qDNA + n(1) (green circles), 

qDNA + NH4
+
 + n(1) (blue triangles) and qDNA + 2NH4

+
 + n(1) (orange diamonds) as a 

function of increasing ligand (1) concentration (n = 0, 1). The change in relative abundance is 

calculated by subtracting the abundance of ions from qDNA with no ligand bound from the 

abundances of  all ions from qDNA (with and without ligand bound). At all concentrations of 

ligand, ions from qDNA with no ammonium ions decrease in abundance and ions from 

qDNA with two bound ammonium ions increase in abundance consistent with the proposal 

that ligand (1) stabilizes qDNA + 2NH4
+
.  
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Supplementary Figure S8: Normalised relative abundances of qDNA-ligand (1) and 

DNA/RNA-ligand (1) complexes in 1:1, 1:3, 1:6 and 1:9 mixtures. (a) qDNA-ligand (1) 

complexes, and (b) hybrid DNA/RNA-ligand (1) complexes. The abundances of all ions from 

qDNA-ligand complexes (a) or DNA/RNA hybrid-ligand complexes (b) were summed and 

expressed as a percentage of the sum of the abundances of all the ions in the spectrum 

excluding the ion at 1251.2 from ssDNA if present, in mixtures containing qDNA; 

normalised to abundance of base peak in each spectrum. 
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