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Abstract  

High-fat (HF) diet-induced obesity is a major risk factor for the development of insulin resistance and 

hepatic steatosis. We examined the hypothesis that bardoxolone methyl (BM) would prevent the 

development of insulin resistance and hepatic steatosis in mice fed a HF diet. C57BL/6J male mice 

were fed a lab chow (LC), HF (40% fat), or HF diet supplemented with 10 mg/kg/day BM orally for 21 

weeks. Glucose metabolism was assessed using a glucose tolerance test (GTT) and insulin sensitivity 

test (IST). Signalling molecules involved in insulin resistance, inflammation, and lipid metabolism were 

examined in liver tissue via western blotting and RT-PCR. BM prevented HF diet-induced insulin 

resistance and alterations in the protein levels of protein tyrosine phosphatase 1B (PTP1B), forkhead 

box protein O1 (FOXO1) and BDNF, and expression of the insulin receptor (IR), IRS-1 and glucose-6-

phosphatase (G6Pase) genes. Furthermore, BM prevented fat accumulation in the liver and decreases 

in the β-oxidation gene, peroxisomal acyl-coenzyme A oxidase 1 (ACOX) in mice fed a HF diet. In the 

livers of HF fed mice, BM administration prevented HF diet-induced macrophage infiltration, 

inflammation as indicated by reduced IL-6 and signal transducer and activator of transcription 3 

(STAT3) protein levels and TNFα mRNA expression, and increased nuclear factor-like 2 (Nrf2) mRNA 

expression and nuclear protein levels. These findings suggest that BM prevents HF diet induced insulin 

resistance and the development of hepatic steatosis in mice fed a chronic HF diet through modulation 

of molecules involved in insulin signalling, lipid metabolism and inflammation in the liver.  

  



1. Introduction 

Obesity is a major risk factor for the development of insulin resistance, type 2 diabetes and hepatic 

steatosis (Kahn, Hull and Utzschneider, 2006,Forouhi and Wareham, 2010). It is widely accepted that 

high-fat (HF) diet-induced obesity causes increased fat accumulation, macrophage infiltration and 

chronic inflammation in peripheral tissues (Xu, Barnes, Yang et al., 2003,Weisberg, McCann, Desai et 

al., 2003). Increased fat accumulation and inflammation promotes insulin resistance and tissue injury in 

peripheral tissues involved in glucose and fat metabolism, such as the liver (Xu et al., 2003,Weisberg et 

al., 2003). A number of studies provide direct evidence demonstrating a link between obesity-

associated inflammation and insulin resistance, and hepatic steatosis (Emanuela, Grazia, Marco de et 

al., 2012,Ginsberg, 2006,Qureshi and Abrams, 2007). However, there is a need to develop novel 

therapeutic approaches targeting hepatic inflammation and to improve obesity-induced insulin 

resistance and hepatic steatosis.  

The activation of inflammatory molecules can promote the expression of the negative regulators of 

insulin signalling, protein tyrosine phosphatase B (PTP1B) and SOCS3 (Zabolotny, Kim, Welsh et al., 

2008,Hong, Nguyen and Gao, 2001). PTP1B levels are increased in the liver of HF diet-induced obese 

mice, which contributes to the development of insulin resistance by reducing insulin signalling through 

inhibition of insulin receptor (IR) and insulin receptor substrate 1 (IRS-1) activation (Lam, Covey, Lewis 

et al., 2006,Goldstein, Bittner-Kowalczyk, White et al., 2000). SOCS3 is another important molecule 

which impairs insulin signal transduction in the liver through its inhibition of the binding of IR to IRS-1 

(Ueki, Kondo and Kahn, 2004). Furthermore, activation of hepatic insulin signalling results in the 

inactivation of forkhead box protein O1 (FOXO1), which is a transcription factor inhibiting genes such 

as glucose-6-phosphatase (G6Pase) for endogenous glucose production via gluconeogenesis (Nakae, 

Kitamura, Silver et al., 2001,German, Kim, Schwartz et al., 2009). When insulin signalling is impaired, 

through inhibition by PTP1B or SOCS3, and activation of FOXO1, this leads to the promotion of 

glucose production and a reduction in glucose reuptake, leading to glucose intolerance and insulin 



resistance in obesity (Nakae et al., 2001,German et al., 2009). Brain-derived neurotrophic factor 

(BDNF) also plays an import role in insulin action as it has been found to modulate hepatic glucose 

metabolism via its actions on glucokinse (GK) in obese insulin resistant rats (Kuroda, Yamasaki, 

Matsuhisa et al., 2003). In the liver, GK enhances glycolysis, resulting in reduced blood glucose levels 

(Hariharan, Farrelly, Hagan et al., 1997). 

A HF diet is known to cause fat accumulation in the liver, which can progressively worsen to hepatic 

steatosis (Marchesini, Brizi, Bianchi et al., 2001). Hepatic lipid homeostasis is regulated by a number of 

genes that promote lipogenesis, including ACC, FAS and SCD1, and β oxidation, such as ACOX 

(Musso, Gambino and Cassader, 2009). Hepatic fat accumulation leads to macrophage infiltration 

which promotes the production of proinflammatory cytokines, such as interleukin-6 (IL-6), tumour 

necrosis factor alpha (TNFα) and IL-1 β (McArdle, Finucane, Connaughton et al., 2013). Increased IL-6 

has been found to enhance inflammatory signalling by increasing signal transducer and activator of 

transcription 3 (STAT3) levels, which promotes cytokine dependent signalling by increasing the 

expression of inflammatory genes such as IL-6 (Yang, Liao, Agarwal et al., 2007). In addition, inhibitor 

of nuclear factor kappa-B kinase subunit beta (IKKβ), and inhibitor of nuclear factor kappa-B kinase 

subunit epsilon (IKKε) are important proinflammatory signalling molecules upstream of the transcription 

factor, nuclear factor kappa-B (NFκB), which promote PTP1B and SOCS3 activation (Zabolotny et al., 

2008,Hong et al., 2001,Napetschnig and Wu, 2013).  

The oleanolic acid synthetic derivative, bardoxolone methyl (BM) has attracted wide attention due to its 

anti-inflammatory effects (Liby and Sporn, 2012,Wang, Garvin, D'Ambrosio et al., 2011,Reisman, 

Chertow, Hebbar et al., 2012). Its ability to directly up-regulate the potent anti-inflammatory molecule, 

nuclear factor-like 2 (Nrf2), has demonstrated therapeutic benefits in human clinical trials for treating 

chronic kidney disease and advanced solid tumours (NIH, 2012,Pergola, Raskin, Toto et al., 2011,Liby, 

Yore and Sporn, 2007,Hong, Kurzrock, Supko et al., 2012). BM has also been found to directly 

influence the activity of proinflammatory signalling through IKKβ (Ahmad, Raina, Meyer et al., 2006). 



Furthermore, a recent study demonstrated that 2 week administration of BM decreased hepatic 

inflammation in diet-induced obese mice (Saha, Reddy, Konopleva et al., 2010). In addition, previous 

studies have demonstrated that oral administration of a derivative of BM, 1-[2-cyano-3,12-dioxooleana-

1,9(11)-dien-28-oyl]imidazole (CDDO-Im), prevents HF diet-induced obesity and attenuates diabetes in 

mice (Uruno, Furusawa, Yagishita et al., 2013,Shin, Wakabayashi, Yates et al., 2009). In this study, we 

investigated whether chronic oral BM administration in mice fed a HF diet for 21 weeks could prevent 

insulin resistance and liver injury in mice fed a HF diet. We also examined signalling molecules involved 

in insulin resistance, inflammation, and lipid metabolism in liver tissue.  

2. Materials and Methods 

2.1. Animals and HF diet-induced obesity model 

Male C57BL/6J mice (12 weeks old) were purchased from the Animal Resource Centre (Perth, Western 

Australia) and maintained in the animal facility at the University of Wollongong. The experiments were 

performed in accordance with the Australian Code of Practice for the Care and Use of Animals for 

Scientific Purposes. All procedures were approved by the Animal Ethics Committee, University of 

Wollongong, Wollongong, Australia (AE 12/15). Mice were housed in environmentally controlled 

conditions (temperature 22 °C, 12hr light/dark cycle) and 1 week after acclimatisation were randomly 

divided into 3 groups (n=7 per group). For the next 21 weeks one group of mice were fed a lab chow 

(LC) diet (5% of energy as fat; Vella Stock Feeds, Doonside, New South Wales, Australia), and the 

other two groups a HF diet (40% of energy as fat; SF11-095, Specialty Feeds, Glen Forrest, Western 

Australia), and mice in the treatment group were fed a HF diet for 21 weeks and an oral daily dose of 

BM (10 mg/kg) in their drinking water (Table 1). (Final average body weight after 21 weeks: LC, 27.15g; 

HF, 40.84g; BM, 28.13g). HOMA-IR was calculated using the formula, (Fasting Insulin x Fasting 

Glucose)/22.5. 

 

 



Table 1 Composition of the high-fat and lab chow diets 
 High-fat diet Lab chow diet 
Total energy (kcal/100g)   

Fat 

Carbohydrate 

Protein 

40 

45 

15 

5 

75 

20 

Typical Ingredients; 
High-fat diet: Casein (Acid), Sucrose, Lard, Sunflower Oil, Cellulose, Wheat Starch, Dextrinised Starch, Minerals, and 
Vitamins.  
Lab chow diet: Cereal Grains, Meat Offal Meal, Fish Offal Meal, Whey Powder, Vegetable Oils, Soybean Protein, Cereal 
Offal, Corn Offal, Minerals, and Vitamins. 
 
2.2. Glucose tolerance test 

Mice were fasted overnight (16 hrs) before a glucose tolerance test (GTT) was performed to assess 

glucose clearance, following an intraperitoneal (i.p) injection of glucose (0.5 g/kg; Sigma-Aldrich, St 

Louis, MO). Blood samples were taken from the tail vein before and 30, 60 and 120 minutes following 

the injection of glucose. Blood glucose was measured using an Accu-Chek glucometer (Roche 

Diagnostics GmbH Mannheim, Germany). 

2.3. Insulin sensitivity test  

Mice were fasted for 5 hours before an insulin sensitivity test (IST) was performed to assess glucose 

clearance, following an i.p. injection of insulin (0.75 U/kg; Sigma-Aldrich, St Louis, MO). Blood samples 

were taken from the tail vein before and at 30, 60 and 120 minutes following the injection of insulin. 

Blood glucose was measured using an Accu-Chek glucometer (Roche Diagnostics GmbH Mannheim, 

Germany). 

2.4. Tissue collection and sample preparations 

For tissue analysis, mice were euthanised at week 21 of the experiment. Tissue was dissected from the 

mice and immediately frozen in liquid nitrogen before being stored at -80 °C.  

2.5. Oil Red O staining 

Oil Red O staining was used to examine hepatic lipid accumulation as described previously (Kudo, 

Tamagawa, Kawashima et al., 2007). Briefly, frozen liver sections (10 μm) were stained with 0.5% Oil 

Red O (Sigma-Aldrich) for 15 minutes and then washed. Three fields from three sections of each 



mouse were viewed under a Leica microscope, and digital photographs were captured. Image J 

software (http://imagej.nih.gov/ij/download.html) was used to quantify the staining, which corresponds 

to the percentage of stained lipid droplets on an area of each slide (Mehlem, Hagberg, Muhl et al., 

2013).  

2.6. Haematoxylin and Eosin (H&E) staining 

To determine the degree of liver damage fresh frozen liver sections (10 μm) were stained with 

Haematoxylin and Eosin for 30 seconds each. Three fields from three sections of each mouse were 

viewed under a Leica microscope and digital photographs were captured. The histological parameters 

of steatosis and ballooning were scored according to the method described by Kleiner and colleagues 

(Kleiner, Brunt, Van Natta et al., 2005). The steatosis grades were as follows: 0, <5%; 1, 5%–33%; 2, 

>33%–66%; 3, >66%. The ballooning classifications were grouped as: 0, no ballooning cells; 1, few 

ballooning cells; 2, many cells/prominent ballooning. 

2.7. Immunohistochemistry 

Liver sections fixed in 10% Formalin were embedded in paraffin before being sectioned (5 μm) onto 

Polylysine™ slides. Slides were incubated overnight at 4 °C with anti-rabbit F4/80 (1:150 Santa Cruz 

Biotechnology, Dallas, TX) diluted in blocking buffer as described previously (Dinh, Szabo, Camer et 

al., 2015). Three fields from three sections of each mouse were viewed under a Leica microscope and 

digital photographs were captured. Image J software was used to quantify the area of F4/80 

immunoreactivity on each slide.  

2.8. Extraction of nuclear and cytosolic proteins 

Nuclear and cytosolic proteins were extracted from liver tissue as described by Mobasher et al 

(Mobasher, Gonzalez-Rodriguez, Santamaria et al., 2013). Briefly, liver tissue was homogenised in a 

solution containing 10Mm HEPES-KOH (pH 7.9), 10mM KCL, 1.5mM MgCl2, 0.5mM DTT, 0.2mM 

PMSF, and protease and phosphatase inhibitors (buffer A) before incubation on ice, vortexing and 

centrifugation. Following centrifugation, the supernatant containing the cytosolic fraction was collected 



and frozen at -80 °C until use. The remaining pellet was resuspended in a solution containing 20mM 

HEPES-KOH (pH 7.9), 400mM NaCl, 1.5 mM MgCl2 0.2mM EDTA, 15% glycerol, 0.5mM DTT, 0.2mM 

PMSF and protease and phosphatase inhibitors (buffer B) before further centrifugation. Following 

multiple washes with buffer b and centrifugation of the pellet, the supernatant containing the nuclear 

fraction was collected and stored at -80 °C until use.  

2.9. Western Blot analysis 

For total protein extraction, the frozen liver tissue was homogenised in Nonidet P-40 lysis buffer. The 

following antibodies were used for western blotting: Nrf2 (sc-722), IL-1β (sc-7884), IL-6 (sc-7920) and 

BDNF (sc-546) (Santa Cruz Biotechnology, Dallas, TX); pIKK (#2697), STAT3 (#4904), FOXO1 

(#2880), SOCS3 (#2932), and PTP1B (#5311) (Cell Signalling Technology, Beverly, MA). Both nuclear 

and cytosolic protein levels of Nrf2 were analysed. The bands corresponding to the proteins of interest 

were scanned and the band density analysed using the automatic imaging analysis system, Quantity 

One (Bio-Rad Laboratories, Hercules, California) as described in our previous study (Camer, Yu, Szabo 

et al., 2015). All quantitative analyses for total and cytosolic proteins were normalised to β-actin. 

Nuclear proteins were normalised to Lamin B. 

2.10. Luminex Assay 

Blood was collected in EDTA tubes from mice following euthanasia. Following centrifugation, plasma 

was extracted, collected and stored at -80 °C. Plasma insulin levels were measured using Luminex 

assay kits according to the manufacturer’s instructions (Bio-Rad Diabetes Kit, Sydney). 

2.11. RNA isolation and RT-PCR 

Total RNA was extracted from mouse liver using the Aurum total RNA mini kit (Bio-Rad Laboratories, 

Hercules, CA) before being reversed transcribed to complimentary first strand DNA with a high-capacity 

cDNA reverse transcription kit (AB Applied Biosystems, California, USA) according to the 

manufacturer’s directions. Quantitative real-time PCR (RT-PCR) was performed using a Lightcycler 480 

real time PCR system (F.Hoffmann-La Roche Ltd, Switzerland). A 20ul final reaction volume containing 



cDNA sample and SYBR green I master mix was used to perform the experiment. Briefly, amplification 

was carried out with 45 cycles of 95 °C for 10 seconds, 60 °C for 30 seconds and 72 °C for 30 

seconds. The expression of mRNA was normalised to an internal control, GADPH. The degree of 

mRNA expression was calculated using the comparative threshold cycle value (Ct) method, using the 

formula 2–ΔΔCt (where ΔΔCt =ΔCt sample - ΔCt reference) as described previously (Livak and 

Schmittgen, 2001). 

2.12. Statistics 

Data were analysed using the statistical package SPSS 20 (SPSS, Chicago, IL). Data was first tested 

for normality using a Kolmogorov-Smirnov normality test. Differences between mice fed a LC, HF, and 

HF plus BM diet were then determined by one-way analysis of variance (ANOVA). This was followed by 

the post hoc Tukey-Kramer honestly significant difference (HSD) test for multiple comparisons among 

the groups. A p value of <0.05 was considered statistically significant. Values are expressed as the 

mean ± SEM. 

3. Results  

3.1. Bardoxolone methyl treatment prevented HF diet-induced insulin resistance 

To explore the role of BM in glucose homeostasis and insulin sensitivity, glucose tolerance tests (GTTs) 

and insulin sensitivity tests (ISTs) were performed (Figures 1A and C). HF diet fed mice had 

significantly higher blood glucose levels during fasting (0 minute) and 120 minutes following an i.p. 

injection of glucose compared to LC fed mice. However, administration of BM normalised blood glucose 

levels at 120 minutes in the GTT test in HF diet fed mice (-18.07%, p = 0.015), with significance 

confirmed with area under the curve (AUC) analysis (Figure 1B). However, BM did not prevent HF diet-

induced increases in fasting blood glucose levels (p>0.05). Consistent with the effect of BM on 

improving glucose clearance, BM treatment also reduced blood glucose levels during the IST in mice 

fed a HF diet (Figure 1C). HF diet fed mice had significantly higher blood glucose levels at fasting and 

30, 60 and 120 minutes following insulin injection compared to LC fed mice. BM treatment significantly 



decreased blood glucose levels at 30 and 60 minutes post i.p. insulin injection (Figure 1C) in the mice 

fed a HF diet, with significance confirmed with area under the curve (AUC) analysis (Figure 1D) (Blood 

glucose levels 30 minutes following i.p. insulin injection: -34.23%, p = <0.001; Blood glucose levels 60 

minutes following i.p. insulin injection: -25.92%, p = 0.048).  

Fasting plasma insulin levels were examined to determine if BM could prevent HF diet-induced 

hyperinsulemia. As expected, mice fed a HF diet for 21 weeks had significantly elevated plasma insulin 

levels compared to LC fed mice, which was attenuated by BM administration (Figure 1E). To determine 

if BM treatment could prevent HF diet-induced insulin resistance, HOMA-IR was calculated. HF diet-fed 

mice were found to have a significantly elevated HOMA-IR compared to LC group (Figure 1F). 

However, BM administration in HF diet fed mice significantly prevented this increase in HOMA-IR. 

These results suggest that BM can prevent hyperinsulemia and insulin resistance induced by a chronic 

HF diet. 



 

Figure 1. Effect of chronic administration of bardoxolone methyl (BM) on glucose tolerance (A, B), insulin sensitivity (C, D), 
hyperinsulemia (E) and HOMA-IR (F) in mice fed a high-fat (HF) diet for 21 weeks (n=7 per group). *, p = <.0.05 vs. lab 
chow (LC) group, #, p= <0.05 vs. HF group values are means ±SEM. 
 

We evaluated the effect of BM on the expression of molecules involved in insulin resistance and 

glucose metabolism in the liver using western blotting and RT-PCR analysis. Western blot showed that 

a HF diet elevated hepatic PTP1B and FOXO1, and reduced BDNF protein expression, which was 

significantly reversed by BM treatment (Figure 2A). No significant differences in protein expression of 

SOCS3 were found between any groups (Figure 2A). RT-PCR analysis found that a HF diet 
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BM on hepatic lipid content, ballooning and steatosis (Figure 3C). Histological examination revealed 

that the hepatocytes of HF diet fed mice were enlarged and contained large cytoplasmic lipid droplets 

compared to LC fed mice (Lipid content area (%) difference: -61.94%, p = <0.001; ballooning 

difference: -72.78%, p = <0.001; steatosis difference: -58.65%, p = <0.001). This change in hepatic 

cellular morphology was prevented by BM treatment, where the percentage of hepatic lipid area, 

ballooning, and steatosis were significantly lower compared to the HF diet fed group (Lipid content area 

(%) difference: -61.94%, p = <0.001; ballooning difference: -72.78%, p = <0.001; steatosis difference: 

62.02%, p = <0.001) (Table 2). 

Fatty acid metabolism-related genes in the liver were measured using RT-PCR in order to assess if 

these markers were responsible for BM’s ability to prevent HF diet induced hepatic fat accumulation 

(Figure 3D). The results showed that BM prevented HF diet-induced decreases in the β oxidation gene, 

ACOX (HF vs. LC difference: -98.84%, p = <0.001; HF vs. BM difference: -94.02%, p = <0.001). 

However the expression of ACOX was still significantly higher in the LC group compared to HF diet fed 

mice treated with BM (LC vs. BM difference: -80.61%, p = <0.001). Furthermore, the levels of the 

lipogenic genes SCD1 and FAS were significantly lower in the BM group compared to the untreated HF 

diet group. However, FAS expression in the LC group was significantly higher than both the HF diet 

group and BM group, and there were no significant differences between the LC and HF diet group in 

SCD1 mRNA expression. In addition, there were no significant differences between ACC mRNA 

expression in the HF and BM groups. However, ACC mRNA expression was significantly lower in BM 

treated mice compared to LC fed mice. These results suggest that BM prevents HF diet-induced fat 

accumulation in the liver by increasing β oxidation and inhibiting genes involved in lipogenesis. 
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diet-induced increase in IL-6 and STAT3 was prevented by BM treatment (Figure 4C). There were no 

significant differences in the expression of hepatic pIKK or IL-1β between the groups. In addition, 

nuclear protein levels of Nrf2 were significantly reduced in the livers of HF diet fed mice. However, this 

reduction was significantly prevented by BM treatment (Figure 4D). There were no significant 

differences in hepatic cytosolic Nrf2 protein levels among any of the groups. Furthermore, RT-PCR 

analysis showed a significant increase in TNFα and IL-6 mRNA expression, and decrease in Nrf2 

mRNA expression in mice fed a HF diet (Figure 4E). The alterations in TNFα and Nrf2 mRNA levels 

were significantly prevented by BM administration. However, BM treatment was unable to prevent HF 

diet-induced elevations in IL-6 mRNA expression. No significant differences were found in the mRNA 

expression of IKKβ and IKKε between any of the groups. These results suggest that BM prevents the 

development of HF diet induced hepatic macrophage infiltration by regulating proinflammatory 

signalling molecules and activating Nrf2 in the liver. 
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current study, we found that BM not only prevents HF diet-induced hepatic insulin resistance and 

inflammation, but it also reduces liver injury by preventing the development of fat accumulation and 

progression to hepatic steatosis. 

A number of studies suggest that obesity-induced inflammation plays an important role in the 

development of insulin resistance (Emanuela et al., 2012,Boden and Shulman, 2002). A HF diet can 

promote insulin resistance by elevating proteins levels of the negative regulator, PTP1B, which impairs 

hepatic insulin signalling (Zabolotny et al., 2008). In the liver, insulin signal transduction suppresses 

hepatic glucose production through the inhibition of gluconeogenesis (Saltiel and Kahn, 2001). The 

hepatic insulin signalling cascade results in the inhibition of FOXO1, a transcription factor that promotes 

the expression of gluconeogenic genes such as G6Pase (Schmoll, Walker, Alessi et al., 2000,Yeagley, 

Guo, Unterman et al., 2001). Mice lacking the hepatic FOXO1 gene display reductions in 

gluconeogenic gene expression, resulting in reduced glucose production and improved glucose 

clearance (Matsumoto, Pocai, Rossetti et al., 2007). BDNF is also an important molecule for preventing 

insulin resistance that increases glucose metabolism, resulting in reduced blood glucose levels (Kuroda 

et al., 2003,Hariharan et al., 1997). Our study demonstrated that BM treatment in mice fed a HF diet for 

21 weeks reduced hepatic PTP1B and FOXO1, and increased BDNF protein levels, which was coupled 

with a reduction in plasma insulin levels. In addition, the HF diet-induced decreases in IR and IRS-1, 

and increase in G6Pase mRNA expression was significantly prevented by BM treatment. Overall, our 

results suggest that the action of BM in preventing HF diet-induced glucose intolerance and insulin 

resistance was through, at least partially, inhibiting FOXO1/G6Pase mediated hepatic glucose 

production. 

Obesity from a HF diet is known to result in the accumulation of fat into the liver (Marchesini et al., 

2001). A HF diet results in an increase in the expression of the hepatic lipogenic genes, ACC, FAS and 

SCD1 and fat accumulation in the livers of mice fed a HF diet (Choi, Um, Ahn et al., 2014). Moreover, 

hamsters fed a HF diet have an increase in hepatic lipidemia that is coupled with a decrease in mRNA 



expression of the β fatty oxidation gene, ACOX (Choi, Gwon, Ahn et al., 2013). We found that chronic 

HF diet feeding resulted in an accumulation of fat and hepatocyte injury in the liver and was associated 

with an increase in SCD1 and FAS, and a decrease in ACOX genes. These alterations were prevented 

by BM administration. These results suggest that HF diet-induce fat accumulation in the liver and 

associated decreases in a β oxidation gene can be prevented by BM administration. 

Obesity-induced fat accumulation is associated with the infiltration of macrophages into adipose tissue, 

where they promote the release of proinflammatory cytokines such as TNFα and IL-6 (Wellen and 

Hotamisligil, 2005). IL-6 has been found to increase STAT3 levels to promote inflammatory signalling in 

human mammary epithelial (hTERT-HME1) cells (Yang et al., 2007). We found that there was 

increased macrophage infiltration, coupled with an increase of the proteins IL-6, and STAT3, and the 

IL-6 and TNFα genes in the livers of mice chronically fed a HF diet. Furthermore, our results 

demonstrated that HF diet-induced macrophage infiltration, along with IL-6 and STAT3 protein levels 

and TNFα mRNA expression could be prevented by BM administration. However, although BM 

prevented HF diet induced increases in IL-6 protein expression, it failed to prevent HF diet induced 

increases in IL-6 mRNA expression, attributed to the post transcription of IL-6. One of the possible 

mechanisms for the anti-inflammatory effects of BM in the liver includes preventing the activation of IL-

6, resulting in reduced STAT3 and preventing TNFα mRNA expression which all contribute to 

attenuating the proinflammatory response.  

BM has been reported to be one of the most potent known activators of Nrf2 in several peripheral 

tissues including the eyes and kidneys (Camer, Yu, Szabo et al., 2014). In the livers of mice, Nrf2 

activation causes reduced expression of the inflammatory cytokines, TNFα and IL-6 (Liu, Wu, Lu et al., 

2013,Wang, Cui, Li et al., 2013). Nrf2 deletion is associated with increased liver weight gain, and 

hepatic steatosis in mice fed a HF diet (Wang et al., 2013). Furthermore, mice deficient in Nrf2 and fed 

a HF diet have been reported to show rapid development of hepatic steatosis and associated increases 

in the fatty acid lipogenic genes ACC, FAS and SCD1 (Okada, Warabi, Sugimoto et al., 2013) and 



reduction in the β oxidation gene, ACOX (Tanaka, Ikeda, Yamamoto et al., 2012). In addition, HF diet-

induced hepatic steatosis in mice can be improved through regulation of Nrf2 (Yang, Li, Liu et al., 

2014). In our study, BM administration prevented HF diet induced decreases in Nrf2 protein levels in 

the nucleus and Nrf2 gene expression. This suggests the ability of BM to prevent HF diet induced 

elevations in proinflammatory signalling molecules and fat accumulation in the liver may be due to its 

ability to regulate the expression of the Nrf2 gene and Nrf2 nuclear protein levels. 

In conclusion, our findings suggest that chronic supplementation with BM may play an important role in 

preventing the actions of a HF diet in the development of inflammation, insulin resistance and hepatic 

steatosis in mice. A proposed model of the potential molecular mechanisms targeted by BM in mice fed 

a HF diet is presented in Figure 5. Since obesity-induced inflammation and insulin resistance has been 

implicated in the progression of liver disease, BM may have beneficial effects in preventing the 

progression of HF diet induced liver steatosis. With further research and eventual human clinical trials, 

the possibility of using BM for the prevention of insulin resistance and associated development of 

hepatic steatosis appears promising. 
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