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Abstract 

  

Climate change, particularly sea-level rise, threatens low-lying coastal systems, such as small 

islands on coral atolls, and deltas where millions of people are living. The Mekong River Delta is 

considered especially at risk. Although most of the delta is only a few metres above sea level, 

there have been few assessments of vulnerability at local scale. The aim of this thesis is to 

provide quantitative and qualitative information to guide the process of adaptation and provide 

visualisations that will enhance local authority’s decision making to adapt to climate change, 

particularly sea-level rise. It focuses on the seven coastal districts within Kien Giang province in 

the western, micro-tidal section of the delta. A framework is adopted that integrates biophysical 

effects and socioeconomic stressors for the case study area and consists of three main 

components of vulnerability: exposure, sensitivity, and adaptive capacity.  

   

The analytical hierarchical process (AHP) method of multi-criteria decision making was 

integrated directly into a geographic information system (GIS) to derive a composite 

vulnerability index that indicated areas or hotspots most likely to be vulnerable to sea-level rise. 

The hierarchical structure comprised three components: exposure, sensitivity and adaptive 

capacity (level 1); and eight sub-components (level 2): seawater incursion, flood risk, shoreline 

change, population characteristics, landuse, as well as socioeconomic, infrastructure, and 

technological capability. The Digital Shoreline Analysis System (DSAS) tool was used to 

calculate rates of shoreline change along the Kien Giang coast over time in order to derive the 

shoreline change sub-component that contributed to the exposure component. Beyond this, a 

further 22 variables (level 3) and 24 sub-variables (level 4) related to vulnerability were also 

mapped. Based on the weights of variables derived from AHP pair-wise comparisons, a final 

map was generated to visualise areas reported into five categories of relative vulnerability; very 

low, low, moderate, high to very high vulnerability.   

 

Several regional patterns emerged. Relatively high exposure to seawater incursion, flood risk, 

and moderate loss of mangroves characterised the coastal fringe of each district. Those areas 
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found to be most sensitive tended to have moderate population density, generally with a large 

rural population and high proportions of ethnic households with limited availability of 

agricultural land. Many aspects of adaptive capacity could only be represented at district scale, 

with the least adaptable areas consisting of large proportions of poor households, low income, 

and moderate densities of transport, irrigation, and drainage systems. Finally, most coastal 

districts were determined to be of moderate to relatively high vulnerability, with scattered 

hotspots along the Kien Giang coast, which coincided with settlement areas. 

 

The results obtained, enable identification and prioritisation of the areas, or hotspots most likely 

to be vulnerable, for which site-specific assessments might further assist the local authorities and 

communities in better coastal management and conservation. However, the limitations of data 

accessible at an entire district can influence the outcome. Social vulnerability remains a 

challenge because it is changing over time and space.  
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Chapter One 

 

Introduction 

 

1.1 Impacts of climate change, particularly sea-level rise  

Coastal systems are increasingly threatened by potential impacts as a result of climate change, as 

indicated by successive assessments by the Intergovernmental Panel on Climate Change (IPCC). 

The most widespread risks foreshadowed for coasts are accelerated coastal saline incursion into 

coastal waterways and water tables, increased inundation of low-lying areas, and shoreline 

erosion (Abuodha and Woodroffe, 2006b; Nicholls, 2007; Nicholls and Tol, 2006; Nicholls et 

al., 2008; Nicholls et al., 2007). Vulnerability of coastal areas to sea-level rise is a function of 

global environmental changes and socioeconomic development (AR5-IPCC, 2014; David et al., 

2008). Additionally, a large proportion of the population lives along the coast, and there is 

widespread migration towards coasts (Nicholls et al., 2007). 

 

Low-lying areas, particularly coastal systems, small islands, coral atolls, and deltas, are most at 

risk to sea-level rise. The Mekong River Delta in the south of Vietnam is considered in global 

analyses to be one of three deltas, comprising Nile, Ganges Brahmaputra, and Mekong, which 

are extremely vulnerable (Nicholls et al., 2007; The-First-Scenarios-VN, 2009) (see Figure 1.1a). 

Shuttle Radar Transfer Mission (SRTM) data indicate that the Mekong River Delta (MRD) is 

especially low-lying, with more than 70% of the delta plain less than 4 m above mean sea level 

(MSL) (Woodroffe et al., 2006). It is vulnerable to flood risk, seawater incursion, and shoreline 

change, exacerbated as a consequence of sea-level rise. Having the second highest ecological 

diversity (with the highest occurring in the Amazon), the MRD is home to nearly 18 million 

people (GSO, 2012); it comprises 13 provinces, seven of which are coastal provinces. The staple 

food of the Vietnamese people is rice, from 51.3% (GSO, 2000) to 55.6% (GSO, 2012) of which 

is produced in the MRD. There is an urgent need to assess the vulnerability of the MRD to 

impacts of climate change, particularly sea-level rise, due to this socioeconomic and ecological 

importance.  
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Figure 1.1 Diagram of conceptualisation of the vulnerability: scale-based approaches for the Mekong River Delta a) at global scale; b) at 
regional scale (as an entire delta), and at local scale (as the study area) indicated by red colour; c) an adopted framework for assessing the 
vulnerability; and d) mapping of the vulnerability levels for the study area as developed in this thesis (after Figure 6.14d). 

a) b) 

Exposure Sensitivity 

Potential impacts Adaptive capacity 

Vulnerability 

c) d) 
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A review of recent literature reveals that, despite the threat of sea-level rise to low-lying areas, 

especially deltas, there have been few assessments of vulnerability at local scale (see a 

summary of Appendix 1 presented in chapter 2, sub-section 2.6); instead most are focused on 

global, national, and regional scales. This is believed to be the first study in Vietnam to 

attempt to combine aspects of the physical nature of the coast and human pressures into an 

index that captures the vulnerability of specific study sites at the local scale (see Figure 1.1b). 

 
To fully define vulnerability, it is good practice to specify: 1) the entity that is vulnerable; 2) 

the stimulus to which it is vulnerable; and 3) the preference criteria to evaluate the outcome of 

the interaction between the entity and the stimulus (Ionescu et al., 2009). There is ongoing 

debate in the literature on the value of quantitative versus qualitative approaches (e.g., from 

strictly quantitative to quantitative and qualitative analyses, or a relative measure rather than 

something that can be expressed in absolute terms) to vulnerability assessment at different 

scales. Several authors have argued that vulnerability is a relative measure rather than 

something that can be expressed in absolute terms (Rothman and Robinson, 1997; Downing et 

al., 2001; Fussell and Klein, 2006). The purpose of  vulnerability assessment is increasingly 

recognised as not only about producing reliable quantitative information and visualisation but 

also capturing qualitative information and contributing to deliberative decision making 

(Lorenzoni et al., 2000; Kasperson and Kasperson, 2001; Liverman, 2001; Luers et al., 2003; 

Eakin and Luers, 2006). However, a number of terms used in this thesis, such as “exposure”, 

“sensitivity”, “potential impacts”, “adaptive capacity” and “vulnerability” have been used in 

differing ways in relevant literature. This necessitates clear definition of terminology used 

here. Figure 1.1c illustrates a framework that will be adopted in this thesis for vulnerability 

assessment, comprising three key components.  

•  “Exposure” refers to the nature and amount to which the system is exposed to climate 

change phenomena. 

•  Whereas “sensitivity” reflects the system’s potential to be affected (adversely or 

beneficially) by such changes. 

•  And “adaptive capacity” describes the system's ability to change (autonomously or 

according to planned measures) in such a way as to maintain (totally or at least partially) its 

main functions in the face of external changes. 
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1.2. The coastal district scale 

In Vietnam, more attention has generally been placed on responses to natural disasters and 

climate change mitigation rather than climate change adaptation (APN, 2007). There have 

been few assessments related to climate change in the MRD, with less effort directed to the 

western part than the eastern part of the delta. This is thought to be the first study to construct 

a coastal vulnerability index, comprising the three components: exposure, sensitivity, and 

adaptive capacity, and to quantify and visualise areas vulnerable to potential impacts of sea-

level rise. Seven coastal districts along the Kien Giang coast have been considered in this case 

study to demonstrate their vulnerability. The study area has a coastline that is over 200 km in 

length, comprising thin mangrove fringes, located far from the mouths of the main rivers that 

experience only small influences from the Bassac River. It contains a high population density, 

and is undergoing conversion from intensive traditional agriculture to fishery activities, 

tourism and other service industries.    

 

1.3 Research statement 

An assessment of vulnerability to climate change is the process of identifying, quantifying, 

and prioritising the vulnerabilities in a system. Importantly, vulnerability assessments also 

seek to highlight capacities. Vulnerability assessments are designed as decision support tools 

for a wide range of stakeholders. It is important to identify objectives early in this process as 

they help determine the level of detail required in the analysis and the data and products that 

might be needed. Also, objectives deeply influence the scope and methodology of 

assessments. Unfortunately, data availability can be a limiting factor in the study scope. In 

some cases, necessary data may be in multiple databases or in different formats and may 

require significant effort to merge the information into a usable format. The framework 

around which this thesis is designed is outlined in Figure 1.2, and comprises the research 

objectives, scope, methods, processing of results, discussion, and recommendations for further 

vulnerability assessments. 
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Figure 1.2 Framework indicating the design of this thesis. 
 

 

1.3.1 Aims and objectives  

The overall aim of this thesis is to identify and prioritise the areas in Kien Giang most likely 

to be vulnerable to adverse effects of climate change, particularly sea-level rise. After 

reviewing the literature, it was determined that a multi-criteria decision making (MCDM) 

approach, visualised using geographical information systems (GIS), was most appropriate for 

site-specific assessments to assist the local authorities and communities with coastal 

management and conservation. The specific stages of this thesis are as follows:   

• Set up a framework that integrates the effects of biophysical and socioeconomic 

stressors with regards to three main components of vulnerability: exposure, sensitivity, and 

adaptive capacity at a local scale; and determine variables within the hierarchical structure.  

•  Examine pair-wise comparisons of variables by applying the analytical hierarchy 

process tool (AHP), and one MCDM technique for the assessment, and coupled with GIS in 

order to obtain the outcome. 

•  Evaluate the outcomes obtained from scale-based approaches. 

•  Make recommendations based on the lessons learnt from the case study assessment. 
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1.3.2 Thesis structure 

The thesis consists of seven chapters (see Figure 1.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 A diagram of the thesis structure. 
 

 

Chapter 1 outlines the research objectives for the study.  

Chapter 2 comprises a literature review of coastal vulnerability studies and describes 

approaches that have been used to assess vulnerability of coasts to the impacts of climate 

change. This chapter provides a brief summary of the concept of vulnerability, and reviews 

the development of vulnerability indices to assess coastal vulnerability, and approaches to 

holistic scale-based vulnerability mapping, using case studies of selected areas at local scales.  

Chapter 3 describes the methods used for the site-specific vulnerability assessments.  

This chapter outlines the conceptual framework for assessments. Multi-criteria and holistic 

mapping approaches are described that can be used to develop a final composite vulnerability 

index, comprising three key components: exposure, sensitivity, and adaptive capacity. The 

results obtained enable identification and prioritisation of the areas most likely to be 

vulnerable.   

Chapter 4 provides background to the seven coastal districts along the Kien Giang coast, 

a western part of the Mekong River Delta in Vietnam, which are used as case studies in this 

assessment. 

Chapter 1 

Chapter 2 

Chapter 3 

Chapter 4 

Chapter 5 

Chapter 6 

Chapter 7 

Introductory 
• Impacts of CC, and SLR 
• Definitions of terms 
• Brief rationale 
• Research statement 
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Methods and datasets 
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• GIS 
 

Background to study area 
• The Mekong River Delta scale 
• The profile of coastal areas 

Potential impacts 
• Exposure component 
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Vulnerability  
• Involved adaptive capacity 
• Vulnerability levels 
 

Conclusions and future directions 

Output 
• The vulnerability by IPCC 
• Scale-based approaches (local scale) 
• Framework for the vulnerability assessments 

• GIS-DSAS 
• GIS-AHP 
• A set of sub-variables, variables is determined 
 

• Mapping of sub-variables, variables for seven 
coastal districts along the Kien Giang coast 

• The maps showing exposure, sensitivity, potential 
impacts levels indicated by shaded colour 
• Evaluating the outcomes by using AHP 
• Examining scale-based approaches 

• The maps showing adaptive capacity, vulnerability 
levels indicated by shaded colour 
• Testing the weighted overlay tool in ArcGIS MB 
• Exploring the vulnerability at settlement scale 
  
• Applying at finer scale (settlements) 
• Using GIS-AHP in other relevant areas 
• Using weightings in MB in other relevant areas 
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Chapter 5 describes the exposure and sensitivity, and their combination into potential 

impacts for the study area using ArcGIS Spatial Analyst tools and the AHP tool. Six variables 

were used in three sub-components to derive the exposure component, while eleven sub-

variables were combined into seven variables to derive two sub-components to indicate the 

sensitivity component. The exposure and sensitivity components were aggregated to indicate 

potential impacts. AHP is based on subjective judgments, therefore, the priorities of variables 

requires consideration. In addition, scale-based approaches are also demonstrated. 

Chapter 6 describes the adaptive capacity and the overall vulnerability of the study area. 

Thirteen sub-variables were combined into nine variables to derive three sub-components that 

represent adaptive capacity. Finally, exposure, sensitivity and adaptive capacity were 

aggregated to derive a visual representation of the vulnerability of areas. The influence of the 

relative weightings assigned was examined using the weighted overlay tool in ArcGIS 

ModelBuider (MB) to test the vulnerability outcomes. A preliminary examination of 

vulnerability assessment at the settlement scale was also undertaken. 

Finally, chapter 7 outlines the key contributions of this study, and identifies future 

directions for further coastal vulnerability studies. 
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Chapter Two 

 

Literature review 

 

2.1 Aims of this Chapter 

This chapter reviews the literature related to coastal vulnerability and describes approaches 

that have been used to assess vulnerability of coasts to the impacts of climate change. The 

following specific topics are discussed in this chapter: 

1. The conceptualisation of vulnerability. 

2. Approaches and methodologies used to assess vulnerability of coasts to the impacts of 

climate change.  

3. The development of vulnerability indices to assess coastal vulnerability to impacts of 

climate change, particularly sea-level rise, and approaches to holistic vulnerability 

mapping with case studies of several areas at local scale.     

 

2.2 Introduction 

Sea-level rise associated with climate change is globally considered to be a serious threat, 

particularly for low-lying and densely populated areas (Bigano et al., 2008; Bindoff et al., 

2007). The coast appears to be one of the most vulnerable areas to potential impacts of 

climate change, particularly because of anticipated future sea-level rise. 

 

In fact, the coastal zone is an important natural resource system, which provides space, as 

well as living and non-living resources for human activities. Being easily accessible, the 

coastal zone has been inhabited by people from the early days of civilisation. Past fluctuations 

of sea levels have been significant factors in the evolution of cultures on a historical time 

scale (Emery and Aubrey, 1991). Civilisations have founded or expanded as relative sea 

levels have shifted. The coastal zone is currently a focal point in many national economies 

with a large number of social and economic activities concentrated in this area.  

 

The importance of the coastal zone will further increase in future, due to the ever-increasing 

number of people who live there. Adger et al. (2005) indicate that 1.2 billion people, which 

accounts for 23% of the world’s population, now live within 100 km of the coast, and about 
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50% of the world’s population are likely to do so by 2030. While living near the coast is 

advantageous, it also exposes the inhabitants to an increasing number of detrimental impacts 

of climate change, with elevated water levels becoming more frequent and severe due to 

intensively aggregated human activities. There is a need, therefore, to assess coastal 

vulnerability to impacts of climate change. Methodologies for assessing vulnerability, as 

widely suggested by the IPCC since the CM-IPCC (1991), needs to consider both biophysical 

and social aspects, and their mutual interaction to adequately set up relevant adaptation 

policies for sustainable development.  

 

2.3 The conceptualisation of vulnerability 

The initial scientific use of “vulnerability” has its roots in geography and natural hazards 

research, but now this term is a central concept in a variety of research contexts related to 

natural impacts, such as salinity incursion, drought, bushfire, flooding and inundation, erosion 

and sedimentation, as well as social effects, such as poverty, famine, and landuse change 

(Füssel, 2007). Adger (1999) and O’Brien and Leichenko (2001) indicate that vulnerability is 

not an outcome, but rather a state or condition of being, and a very dynamic one at that, 

moderated by existing inequities in resource distribution and access, the control individuals 

can exert over choices and opportunities, and historical patterns of social domination and 

marginalisation. A brief review of general definitions of vulnerability is given below. 

 

White (1974), about 40 years ago, indicated that “vulnerability is the degree to which a 

system, sub-system, or component is likely to experience harm due to exposure to a hazard, 

either a perturbation or stress”. Later, Timmermann (1981) hypothesised that “vulnerability 

is a term of such broad use as to be almost useless for careful description at the present, 

except as a rhetorical indicator of areas of greatest concern”. Liverman (1990) noted that 

vulnerability “has been related or equated to concepts such as resilience, marginality, 

susceptibility, adaptability, fragility, and risk”. Other concepts such as exposure, sensitivity, 

coping capacity, criticality, and robustness could have easily been added to this list (Füssel, 

2007). It is apparent that there is no single optimal definition of vulnerability that would fit all 

assessment contexts. It is important to note that the diversity of definitions can be considered 

as a primary consequence of the term “vulnerability” being used in different policy contexts, 

referring to different systems exposed to different impacts. 
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Accordingly several authors have emphasised that the term “vulnerability” can only be 

considered meaningfully with reference to a specific vulnerable situation (Brooks, 2003; 

Downing and Patwardhan, 2004; Füssel, 2007; Hinkel and Klein, 2007; Luers et al., 2003; 

Metzger et al., 2005). The following four fundamental dimensions can be used to describe a 

vulnerable situation:  

•  The system that is subject to analysis, such as an integrated human-environment 

system, a population group, an economic sector, a geographical region, or a natural system.  

•  The valued attributes of concern, which might include for example human lives and 

health, the existence, income and cultural identity of a community, and the biodiversity, 

carbon sequestration potential and timber productivity of a forest ecosystem.  

•  The hazard, which refers to a potentially damaging influence on the system.  

•  A temporal reference, which refers to the point in time or time period of interest, 

(e.g., current vs. future vs. dynamic) (Füssel, 2007).  

 

A clear description of the vulnerable situation is an important first step to avoid confusion 

concerning vulnerability. On the other hand, different classifications of vulnerability by 

scientists from different disciplines or with varying perceptions produce different 

interpretations of the term “vulnerability”. 

 

Several researchers distinguish bio-geophysical or natural vulnerability from social or 

socioeconomic vulnerability, (e.g., biophysical vs. social), even though there is little 

agreement on the meaning of these terms (Adger, 1999; Brooks, 2003; Cutter, 1996; Cutter et 

al., 2003; Klein and Nicholls, 1999; McLaughlin and Cooper, 2010; McLaughlin et al., 2002; 

Soares et al., 2012). Other classifications have been suggested; for example, the United 

Nations (2004) suggest including physical, economic, social, and environmental factors; Moss 

et al. (2001) suggest including physical-environmental, socioeconomic, and external 

assistance dimensions; and Fekete et al. (2009) suggest including ecological, social, 

economic, political and technological aspects. 

 
In general, vulnerability approaches to biophysical conditions are largely based on the natural 

hazards approach and focus on the distribution of hazardous conditions, human occupancy 

within hazardous areas, and the degree of loss related to a specific hazardous event (Cutter, 

1996; Dow, 1992). The focus is therefore upon the degree of risk and exposure to hazard, 

which determines the level of vulnerability, and issues such as magnitude, duration, and 
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impact of the climatic event. These approaches are also known as risk-hazard approaches 

(Eakin and Luers, 2006; Turner et al., 2003) or impact-driven studies (Ford et al., 2010). 

Based on these approaches, vulnerability is regarded as an “end-point”, (i.e., the outcome of 

climate change impacts minus adaptation) as its main purpose is generally to provide an 

understanding of climate change impacts and inform decision-making regarding the costs of 

adaptation or the costs of mitigation (O'Brien et al., 2007). However, although capable of 

providing an overall understanding of the physical processes generating exposure, this 

perspective is limited as it excludes the social, economic, political and cultural factors that 

need to be addressed in the estimation of vulnerability (Cardona, 2004). From a social 

perspective, vulnerability is conceived as a socially constructed phenomenon resulting from 

particular social, political, historical and economic processes and structures that influence 

social systems, (i.e., individuals, communities, groups) which can lead them to vulnerable 

conditions (Adger, 1999; Brooks, 2003; Cutter, 1996; Liverman, 1990).  

 
Integrated approaches to vulnerability, also known as synthetic or hybrid approaches, aim to 

address both the biophysical and social dimensions of vulnerability (Eakin and Luers, 2006; 

Fussel and Klein, 2006). The process of conceptual integration is pursued by merging 

concepts from different views on vulnerability (Newell et al., 2005). However, the integration 

of different conceptual backgrounds (e.g., biophysical and social perspectives) can be 

problematic, as it requires working with and combining different ways of framing and 

performing the analysis of vulnerability. The current paradigm in the analysis of climate 

change vulnerability combines the two conventional perspectives on vulnerability, (i.e., 

biophysical and social systems), and is perceived to provide a more comprehensive 

understanding of the multiplicity of processes and dynamics affecting vulnerability of the 

coupled system (i.e., biophysical and social systems) to climate change (Soares et al., 2012). 

This is particularly important in the context of policy-driven assessments aiming to provide 

measures to inform adaptation policy towards reducing vulnerability to climate change 

(Fussel and Klein, 2006). It provides an extensive conceptual and analytical platform by 

allowing the integration and application of different conceptual backgrounds as well as a 

range of methods and tools which have the potential to complement each other and improve 

the information provided (Mastrandrea et al., 2010).  

 

Numerous researchers distinguish an internal and an external aspect to vulnerability to 

environmental hazards (Blaikie et al., 1994; Bohle, 2001; Chamber, 1983; Chambers, 1989; 
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Ellis, 2000; Kasperson et al., 2000; Pielke Sr and Bravo de Guenni, 2003; Sanchez-

Rodriguez, 2002; Turner et al., 2003; Watson et al., 1996). In terms of the social vulnerability, 

studies are concentrated on the social dimensions following the tradition of analysis of 

vulnerability to hazards, such as population, poverty, food insecurity, and as a dimension of 

entitlements. This is in contrast to the predominant views on vulnerability to the impacts of 

climate change which emphasise the physical dimensions of the issue (Adger, 1999; Cutter, 

1996). Thus, the focus is drawn to social systems and vulnerability is conceived as having two 

sides: an external side encompassing the perturbations and shocks the system is subjected to, 

and an internal side that includes the system’s own capacity to cope and respond to hazardous 

events (Chambers, 1989; Chambers, 2006). As a result, issues such as resilience, sensitivity, 

resistance, and coping capacity are common elements in these types of studies (Dow, 1992). 

In this perspective, vulnerability is perceived as the “starting-point” of the analysis where it is 

considered as a dynamic state resulting from social, environmental, political, and economic 

processes (O'Brien et al., 2007). This perspective is also known as contextual vulnerability 

(Ford et al., 2010). Cardona (2004) considered that some of the studies using this perspective 

have only provided a limited understanding of vulnerability by overemphasising the social 

and political structures and processes generating vulnerability and by neglecting the hazard 

impact and physical damage from the analysis. 

 
To summarise, in the biophysical view, the analytical focus of vulnerability is on the exposure 

to climate change and the sensitivity of the subject of analysis to that exposure. Vulnerability 

is perceived as the “end-point” of the analysis, therefore, is conceptualised and analysed based 

on these two components; generally, adaptive capacity is not accounted for in this type of 

analysis. In the social perspective, vulnerability is conceptualised as a pre-existing condition 

of the unit regarded as a “starting-point” of analysis and, as a result, exposure (to climate 

change) is considered as an external element in the analysis of vulnerability (Gallopin, 2006). 

Thus, social vulnerability largely refers to the “sensitivity” and “adaptive capacity” 

components of the vulnerability framework. In contrast, when vulnerability is examined in 

integrated approaches, exposure to climate change is addressed as an internal component of 

the vulnerability of the coupled system (Gallopin, 2006).  

 

There are common issues with natural hazard assessments and climate change vulnerability 

assessments. Recently, Romieu et al. (2010) attempted to differentiate vulnerability in the 
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contexts of climate change from use of the same term in respect of natural hazards, exploring 

beyond formal divergences in terminology. They indicated that this is related to five factors: 

•  Process, for example climate change is commonly considered a “stress”, whereas 

natural hazards might be considered a “shock”. Individual or societal behaviour while facing 

these different processes is associated with different institutional, social, and psychological 

mechanisms (Turner et al., 2003). 

•  Scale-dependence, including both temporal, (e.g., static vs. dynamic) and spatial 

scales, (e.g., local vs. global) (Birkmann and Von Teichman, 2009). 

•  Function (e.g., different institutions).  

•  Assessment approach (e.g., statistical).  

•  Levels of uncertainty, and efforts to synthesise gaps and common issues between 

vulnerability in the contexts of climate change and natural hazards (see Table 2.1).  

 

Table 2.1 Synthesis of gaps and common issues between vulnerability in the contexts of climate 
change and natural hazard (derived from Romieu et al., 2010). 

Issues Natural hazard Climate change 
Gaps/ differences   
Objective Identify risk reduction measures: reduce 

probability of damage 
Develop strategies to manage: 
adaptation relevance & strategies 

   
Process Natural hazards as “shock” Progressive & irreversible-“stress” 
   
Time scale Event-scale (before/during/after), discrete 

events, static processes 
 

Long-term and progressive viewpoint 
(e.g., 2100) discrete and continuous, 
dynamic processes 

   
Spatial scale From a local consideration to a global one From a global awareness to a local 

need 
   
Functional scale Often lies within  responsibility of 

Interior, Defence or Development 
Ministries 

Mainly Environment Ministries and 
Meteorological Services 
 

   
Simplified formulation Risk = Hazard x Vulnerability Vulnerability = (Exposure + 

Sensitivity) - Adaptation = Impacts – 
Adaptation 

   
Vulnerability 
assessment 

Step within risk assessment End in itself 
Risk is associated with a notion of 
probability of occurrence at any time 

Prospective scenarios until a given 
time 

   
Level of uncertainty Low to medium Medium to very high 
  
Common issues Define a focus, wider than physical environment itself 
 Find a convergence between ‘‘impact-based’’ & ‘‘human-based’’ approaches 
 Take into account dynamics & interactions of the socio-environmental system 
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According to Soares et al. (2012), vulnerability assessments are considered “second 

generation” as compared to climate impact assessments, further addressing relevant non-

climatic drivers (e.g., economic, demographic), and the adaptive capacity of the system under 

analysis (Fussel and Klein, 2006). This resulted in the appearance of new vulnerability-driven 

methodologies characterised by “bottom-up” approaches (e.g., study-site to globe scale) more 

aligned with social and integrated perspectives on vulnerability. In analytical terms, a focus 

on current climate variability alongside adaptation and non-climatic factors or drivers marks 

the shift from climate impact assessment to vulnerability assessments (Fussel and Klein, 

2006). This shift is also associated with new approaches to stakeholder involvement, more 

sophisticated socioeconomic scenarios, and the consideration of adaptation measures, 

decision-support tools and enhancement of adaptive capacity as ways of reducing 

vulnerability to climate change (UNFCCC, 2005; Eakin and Luers, 2006; Mahapatra et al., 

2015). 

 

The conventional concept of vulnerability, since IPCC SAR (1995), identifies three key 

components: exposure, sensitivity, and adaptive capacity IPCC TAR (2001). In this thesis, the 

definition of vulnerability proposed by ICCC AR5 (2014) was used. The glossaries of the 

IPCC TAR, AR4, and especially AR5 define “contextual vulnerability (starting-point 

vulnerability)” as “a present inability to cope with external pressures or changes, such as 

changing climate conditions; it is a characteristic of social and ecological systems generated 

by multiple factors and processes", whereas “outcome vulnerability (end-point vulnerability)” 

defines vulnerability as “the end point of a sequence of analyses beginning with projections of 

future emission trends, moving on to the development of climate scenarios, and concluding 

with biophysical impact studies and the identification of adaptive options. Any residual 

consequences that remain after adaptation has taken place define the levels of vulnerability”. 

According to these reports, “vulnerability” is considered as a function of the character, 

magnitude, and rate of climate change and variation to which a system is exposed, its 

sensitivity, and its adaptive capacity (AR4-IPCC, 2007). Moreover, vulnerability index refers 

to “a metric characterising the vulnerability of a system, which is typically derived by 

combining, with or without weighting, several indicators assumed to represent vulnerability” 

(AR5-IPCC, 2014).  

 

Climate change refers to any change in climate for extended periods, typically decades or 

longer, whether due to natural variability or as a result of human activity (AR4-IPCC, 2007). 
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A useful shorthand definition is that the vulnerability to climate change is a “measure of 

possible future harm” (Hinkel, 2011b). 

•  “Exposure” refers to the presence of people, livelihoods, species or ecosystems, 

environmental functions, services, and resources, infrastructure, or economic, social, or 

cultural assets in places and settings that could be adversely affected. 

•  Whereas, “sensitivity” refers to the degree to which a system or species is affected, 

either adversely or beneficially, by climate variability or change. The effect may be direct 

(e.g., a change in crop yield in response to a change in the mean, range, or variability of 

temperature) or indirect (e.g., damages caused by an increase in the frequency of coastal 

flooding due to sea-level rise).  

•  The combination of exposure and sensitivity defines the degree of the potential 

impacts of climate change to a system.  

•  Furthermore, “adaptive capacity” refers to the ability of systems, institutions, 

humans, and other organisms to adjust to potential damage, to take advantage of 

opportunities, or to respond to consequences. Measuring the adaptive capacity of a system 

enables policy makers to adopt suitable strategies in order to enhance the adaptive capacity or 

resilience of this system to the impacts of climate change.  

•  A combination of the potential impact and the adaptive capacities involved defines the 

vulnerability of a system. A system is anticipated to be vulnerable if it is exposed to climate 

change impacts, if it is sensitive to those impacts, and if it has a low capacity to cope with 

those impacts.  

 
Limitations of these definitions have been described by many researchers, who have indicated 

that they are not accurately defined, that there is considerable overlap between the concepts of 

sensitivity and adaptive capacity; the concepts are not easily separated, since future sensitivity 

depends on current adaptive capacities and measures (Brooks et al., 2005; Vincent, 2004), and 

lack of transparency as to how the defining concepts are combined or that they are not 

operational concepts (Patt et al., 2008). These definitions have been widely adopted as an 

appropriate starting point to explore possibilities for vulnerability assessment. Making a 

theoretical concept operational consists of providing a method (an operation) for mapping it to 

observable concepts; and that method is then called the operational definition (Bernard, 2000; 

Copi and Cohen, 2005). Measurement, therefore, is based on notions of comparative or 

quantitative concepts, that is concepts that can take on different values. These concepts will 

be called variables (Bernard, 2000). It is worth noting that comparability is key to the notion 
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of vulnerability (Ionescu et al., 2009). On the other hand, Hinkel (2011a) argued that it is 

more accurate to speak about making the concept operational or practical instead of 

measuring it, since vulnerability is a theoretical concept provided by the IPCC (Brooks et al., 

2005; Vincent, 2004).  

 
To deal with those limitations, an extended definition of vulnerability and related 

components, which is developed by European Environment Agency, is adopted in this study. 

Figure 2.1 shows a flow chart covering three key components for climate change vulnerability 

assessment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2.1 Flow chart for combining three key components of assessing climate change 
vulnerability, (modified from Schauser et al., 2010). 
 

In Figure 2.1, the differentiation between spatial, (e.g., topography), biophysical, (e.g., 

landuse in general) and social, (e.g., population density) sensitivity components allows a 

stepwise grouping of:  

•  Exposure with spatial sensitivity to indicate primarily WHERE the potential impacts 

will be (e.g., the area most likely to be affected by climate change). 
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•  The primary information (WHERE) with the social information to indicate WHO is 

sensitive and could be affected (e.g., how population density is affected or groups of the 

population, such as the elderly or another group could be the most sensitive), whereas, the 

primary information (WHERE) with the biophysical information to indicate WHAT is 

sensitive and could be affected (e.g., which landuse is most likely to be affected by climate 

change).  

•  The WHO and WHAT information with appropriate adaptive capacity information.  

 
Not all combinations are similarly important for all threats. For some threats (e.g., heat) the 

“What (is sensitive)” information is of little interest, except it influences the “Who (is 

sensitive)” information. The relations between the who and the what are not yet integrated in 

any variable, therefore, the vulnerability of people and landuse should be dealt with as two 

separate strands, two different metrics according to the different damage types. It can be seen 

that the framework developed by European Environment Agency (EEA, 2010; ETC/ACC, 

2010) can not simultaneously deal with all limitations; however, it allows identification of 

cross-space dimensions where the potential impacts will be, and who and what is sensitive and 

could be affected regarding social, and biophysical factors, and then who and what 

information with appropriate adaptive capacity information.  

 
In summary, a vulnerability assessment in the context of climate change needs to define 

dimensions as clearly as possible. These include:  

•  Location (or space) of analysis, (e.g., geographical region). 

•  The system of analysis, (e.g., natural system, and human system). 

•  The valued attributes of concern, (e.g., income, poverty, education, and health). 

•  The hazard/ the potential impact, (e.g., flood risk, erosion, and saltwater incursion). 

•  A temporal reference, (e.g., current, future, and dynamic) with regard to the three 

components: exposure, sensitivity, and adaptive capacity.  

 
2.4 Approaches used to assess coastal vulnerability 

A common methodology for vulnerability assessment was developed by the IPCC in 1991 

(CM-IPCC, 1991). Many approaches for assessing coastal vulnerability to climate change 

have evolved since, based on that common methodology (Abuodha and Woodroffe, 2006a, 

2010; Harvey and Woodroffe, 2008; McFadden, 2007; Mcleod et al., 2010). Table 2.2 

presents numerous methods for assessing coastal vulnerability to climate change. 
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Table 2.2 Methods used for assessing coastal vulnerability to climate change. 
No. Methods Application  

1 Common methodology (CM-IPCC, 
1991) 

Applied to coastal countries and includes 7 steps:  delineate the case study 
area; inventory study area characteristics; classify the relevant socioeconomic 
development factors; assess the physical changes; frame response strategies; 
assess the vulnerability profile; classify future requirements.  

2 Synthesis and Upscaling of sea-level 
rise Vulnerability Assessment Studies 
(SURVAS, 2004) 

Deploys activities: reviewing potential impacts of human induced sea-level rise 
at the national, sub-national scales; holding several workshops under the 
guidance of leading coastal vulnerability experts to focus on the tools available 
for assessing the physical susceptibility and socioeconomic vulnerability; 
directly contributed to the DINAS-COAST project which developed the DIVA 
tool. 

3 Dynamic and interactive Assessment of 
National, Regional and Global 
Vulnerability of Coastal Zones to sea-
level rise project (DIVA-COAST) and 
Dynamic & Interactive Vulnerability 
Assessment (DIVA) Tool  

The first European methodology since 2004, integrating information on 
physical, ecological & socioeconomic characteristics that enables analysis of a 
range of mitigation and adaptation scenarios; it is based on decomposition of 
the world’s shoreline into a series of 1-dimensional coastal segments and does 
not therefore capture the multidimensional complexity of extensive low-lying 
areas such as deltas (David et al., 2008; Hinkel and Klein, 2007; Vafeidis et al., 
2004; Woodroffe, 2010). 

4 Simulator of CLIMate Change Risks 
and Adaptation Initiatives (SimCLIM) 

An open framework software system, originally developed by IGCI (2005), 
now maintained and distributed by (Warrick, 2009a). The system can be 
applied from global to local scales: assessing coastal flood risk from tropical 
cyclones and river flooding, effects of rainfall change, the risks of climate 
variability and change in domestic water supply tank systems (ADB, 2005; 
Warrick, 2007, 2009b; Warrick et al., 2005), links directly to other models 
such as hydrological models and DSSAT crop models (Warrick and Cox, 
2007). 

5 Community Vulnerability Assessment 
Tool (CVAT; Flax et al., 2002) 

Developed by the Coastal Services Centre of National Oceanographic and 
Atmospheric Administration, CVAT supports the linking of environmental, 
social & economic data to build an effective strategy in response to hazards, 
both at macro & micro levels based on systematic evaluation of vulnerability. 
CVAT consists of 7 steps: Hazard identification and prioritisation; hazard 
analysis; critical facilities analysis; social analysis; economic analysis; 
environmental analysis; and mitigation opportunities analysis. It was 
conducted in some counties and islands of US to identify and understand its 
hazard risks and vulnerabilities. The Risk and Vulnerability Assessment Tool 
(RVAT) is an extension of the methodology in CVAT, and supports of 
communities to identify their risks and vulnerabilities to coastal storms to 
create effective hazard mitigation strategies and reduce storm impacts (Russell, 
2003).  

6.1 Coastal Vulnerability Indices such as 
coastal vulnerability index (CVI) 

Developed by Gornitz et al. (1994), CVI includes 8 physical parameters to 
assess the vulnerability of a coastal area to anticipated sea-level rise: relief, 
rock type, landform, vertical (tectonic movement, shoreline displacement, tidal 
range, and wave height.  

6.2 Coastal social vulnerability index 
(CSoVi) 

Boruff et al. (2005) have suggested a hybrid approach that integrates a socio 
vulnerability index (SoVI) with socioeconomic variables developed by Cutter 
et al. (2003) into a CVI to produce the overall coastal social vulnerability index 
in their assessments of the coastal vulnerability of US counties. CSoVI 
additionally includes parameters, namely poverty, population, development, 
ethnicity, age, and urbanisation.  

6.3 Place vulnerability index (PVI) Particularly, Boruff and his colleagues (2005) applied the hazard of place 
model of vulnerability (Cutter, 1996) to derive the place vulnerability index 
(PVI) for each of the US counties by adding CVI and CSoVI scores and then 
classifying PVI scores into low, medium and high classes. Analysis of 
Variance (ANOVA) identified significant differences (at 95% confidence 
level) for each of these indices in different coasts. These differences were 
brought out by the socioeconomic data considered inclusively.  
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The majority of coastal hazard studies have focused on physical factors associated with 

coastal vulnerability, such as geo-physical dynamics (e.g., geo-morphological processes), or 

physical impacts (e.g., sea-level rise, flooding and inundation) rather than socioeconomic 

factors of coastal vulnerability, such as poverty (Abuodha and Woodroffe, 2006a; Eakin and 

Luers, 2006; Nicholls et al., 2008). Harvey and Woodroffe (2008) also indicate that the 

concept of coastal vulnerability developed from IPCC needs to be expanded from biophysical 

impact reduction to vulnerability reduction or resilience enhancement. Several approaches to 

evaluate coastal vulnerabilities in Australia were summarised by Harvey and Woodroffe 

(2008) who remarked that there has been little consistency or uniformity in the way in which 

Australian researchers have assessed the vulnerability of the Australian coast to the impacts of 

climate change.  Kay et al. (1993; 1996), as a result of criticisms of the IPCC CM (1991), 

proposed four key stages in alternative approaches to assess coastal vulnerabilities. The first 

stage focused on the biophysical condition of the study area and delineated those areas of 

potential future coastal hazard. The second stage considered the notion of the susceptibility to 

stress, shock and damage caused by climate change while recognising the importance of 

resilience of the natural coastal system. The third stage focused on the inter-relationship 

between the condition of the study area and connected systems; and the final stage considered 

the possible policy options and plans determined by governments to reduce coastal 

vulnerabilities.  

 

A number of factors, accordingly, need to be determined in the context of climate change and 

coastal vulnerability assessment, such as objectives of the research or policy questions 

addressed, the urgency of the threat, the geographical and temporal scope of the analysis, the 

reliability of future climate impact projections, the level of previous knowledge, and the 

availability of data, expertise, and other relevant resources. This is necessary in order to select 

a proper assessment approach to be used in a specific vulnerable situation, such as location 

(e.g., regional or local area), or sector (e.g., agricultural sector) (Eakin and Luers, 2006). In 

this thesis, scale dependence, the level of previous knowledge, and the availability of data, 

expertise and their links will be shown to be obstacles that should be considered in assessing 

coastal vulnerability.  

 

Vulnerability is scale-dependent, across both space and time. First, vulnerability is spatially 

scale-dependent, depending on whether it is national, regional or local. Yoo et al. (2011) 

claimed that the spatial scale of climate change vulnerability assessments is often either too 
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broad when focused on the national or regional scale (Bryan et al., 2001; Dawson et al., 2009; 

Dominguez et al., 2005; Mokrech et al., 2008; Thieler and Hammer-Klose, 1999, 2000a, b) or 

too narrow when focused on coastal segments (Pendleton et al., 2005; Mahapatra et al., 2015). 

Abuodha and Woodroffe (2006a) summarise numerous approaches based on segmentation 

techniques that rank sections of the coastline according to a semi-quantitative assessment of 

variables. These are useful to determine high priority areas for vulnerability reduction; 

however, most lack incorporation of socioeconomic aspects of vulnerability. Harvey and 

Woodroffe (2008) also indicate that awareness in terms of impacts of climate change, 

particularly sea-level rise, has come from a global or national scale, but there is need for 

specific impact assessments and adaptation strategies that are local. Torresan et al. (2008) 

note that a more detailed approach at the local and regional scale requires that coastal systems 

and dynamics are described in detail and that more complex and data intensive models require 

site-specific metrics and variables to understand and manage the difficulties of a specific 

study area and allow identification of more specific vulnerable areas and sectors that could 

support policy and decision-making in design of comprehensive adaptation strategies. Romieu 

et al. (2010) also emphasise that local assessments provide more bottom-up and locally 

contextualised views of vulnerability formation, but are difficult to connect to climate change 

projections which are not yet available with sufficient resolution for local assessment.  

 

Second, the temporal scale involved in coastal zone processes and dynamics can last from 

hours to days for storm surges, from days to years for El Niño weather events, and from 

decades to millennia in the case of regional vertical land movements. As such, the need for 

adaptation to climate change is evident and this need is greatest in coastal areas and will 

continue for centuries considering long-term coastal challenges (e.g., sea-level rise). Nicholls 

et al. (2007) show that when efforts to reduce climate-related risks to coastal systems are 

reactive and standalone, they are less effective than when they are part of integrated coastal 

zone management. Integrated coastal zone management is recognised as the most appropriate 

process to cope with current and long-term coastal challenges such as climate change, 

particularly sea-level rise (Nicholls and Klein, 2005; Nicholls et al., 2007). Proactive 

adaptation to climate change aims to reduce a system’s vulnerability by minimising risk 

and/or enhancing the system’s resilience. Nicholls and Klein (2005) identify five objectives of 

proactive adaptation for coastal zones, including:  

•  Increasing robustness of infrastructural designs and long-term investments. 

•  Increasing flexibility of vulnerable managed systems. 
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•  Enhancing adaptability of vulnerable natural systems. 

•  Reversing maladaptive trends. 

•  Improving societal awareness and preparedness.  

 
Three basic adaptation strategies are often recognised: 1) protect: to reduce the risk of the 

event by decreasing the probability of its occurrence; 2) accommodate: to increase society’s 

ability to cope with the effects of the event; and 3) retreat: to reduce the risk of the event by 

limiting its potential effects (Nicholls and Klein, 2005; Smit et al., 2001). For example, 

protect, accommodate and retreat (planned) responses in terms of sea-level rise for vulnerable 

coastal areas are presented in Table 2.3. 

 

Table 2.3 Protect, accommodate, and retreat (planned) responses for some landscape 
components vulnerable sea-level rise. 

Component Protect Accommodate Retreat 
Built environment Protect coastal 

development, (e.g., 
seawalls, dykes, beach 
nourishment, sand dunes, 
surge barriers, and land 
claim) 

Regulate building 
development and 
increase awareness of 
hazards, (e.g., flood 
hazard maps, and flood 
warnings) 

Establish building setback 
codes, (e.g., managed 
realignment, and coastal 
setbacks) 

Crops Protect agricultural land, 
(e.g., seawalls, dykes, 
beach  nourishment, sand 
dunes, surge barriers, and 
land claim) 

Switch to aquaculture or 
floating agriculture 

Relocate agricultural 
production, (e.g., managed 
realignment, and coastal 
setbacks) 

Wetlands Create wetland habitats by 
land-filling and planting 

Strike balance between 
preservation and 
development 

Allow wetland migration, 
(e.g., managed realignment, 
and coastal setbacks) 

 

It is rather difficult to differentiate current and future vulnerability because, as Schauser et al. 

(2010) point out, there is a lack of data for projections of sensitivity and adaptive capacity. On 

the one hand, for many socioeconomic sectors, only past data from the last census, that might 

be 10 or 20 years old, are available. On the other hand, future vulnerability depends on past 

actions, adaptation and societal adjustments. Most existing variables are somehow measuring 

current or past vulnerability. Therefore, until these are available, it will be necessary to focus 

on current (+/- 10 years) vulnerability. In most cases, particularly at the local scale, the future 

aspects relate primarily to climate projections and may only include population dynamics if 

projection data is available. 

 

Scenarios prepared by Nakicenovic et al. (2000) in the Special Report on Emissions Scenarios 

(SRES) provided by IPCC, have been used to predict future societal developments due to the 



Coastal Vulnerability assessment of Kien Giang 
 

22 | P a g e  
 

limitations in future datasets, current methods and understanding.  A range of SRES scenarios 

was developed to represent the range of driving forces, such as demographic development, 

socioeconomic development, and technological change; emissions in the scenario literature; 

and alternative modelling approaches. These SRES aim to reflect current understanding and 

knowledge about future (a period of 1990 up to 2100) emission outcomes and underlying or 

associated uncertainties. An overview of SRES scenario quantifications adapted from 

Nakicenovic et al. (2000) is presented in Table 2.4.  

 

Table 2.4 Overview of SRES scenario quantifications, adapted from Nakicenovic et al. (2000). 
Set (Scenario) SRES Total 
Family/ Storyline A11 A22 B13 B24 4 

Group A1C A1G A1T A1B A2 B1 B2 7 

A1FI A1T A1B A2 B1 B2 6 
Fossil Intensive Non fossil 

energy 
sources 

A balance 
across all 
sources 

    

Globally harmonised 2 3 6 2 2 7 4 26 
Other Scenarios 1 0 2 1 4 2 4 14 
Different Models Used 3 3 6 3 5 6 6 6 

Note: The scenario is also oriented toward environmental protection and social equity; it focuses on local and 
regional levels. Six modelling groups develop 40 SRES scenarios, comprising globally harmonised and other 
scenarios. Each scenario family, two main types of scenarios were developed those with harmonised 
assumptions about global population, economic growth, and final energy use and those with alternative 
quantification of the storyline. Together, 26 scenarios were harmonised by adopting common assumptions on 
global population and gross domestic product (GDP) development. Thus, the harmonised scenarios in each 
family are not independent of each other. The remaining 14 scenarios adopted alternative interpretations of the 
four scenario storylines to explore additional scenario uncertainties beyond differences in methodological 
approaches. They are also related to each other within each family, even though they do not share common 
assumptions about some of the driving forces. 
 

                                                 
1 A1 describes a future world of very rapid economic growth, global population that peaks in mid-century and 
declines thereafter, and the rapid introduction of new and more efficient technologies. Major underlying themes 
are convergence among regions, capacity building, and increased cultural and social interactions, with a 
substantial reduction in regional differences in per capita income. A1 includes four groups, designated as A1T, 
A1C, A1G and A1B that explore alternative structures of future energy systems. In the summary for 
policymakers, the A1C and A1G groups have been combined into one "Fossil intensive" A1FI scenario group 
whereas the other three scenario families consist of one group each to finally create six scenario groups. 
2 A2 describes a very heterogeneous world. The underlying theme is self-reliance and preservation of local 
identities. Fertility patterns across regions converge very slowly, which results in high population growth. 
Economic development is primarily regionally oriented and per capita economic growth and technological 
change are more fragmented and slower than in other storylines. 
3 B1 describes a convergent world with the same low population growth as in A1, but with rapid changes in 
economic structures toward a service and information economy, with reductions in material intensity, and the 
introduction of clean and resource-efficient technologies. The emphasis is on global solutions to economic, 
social, and environmental sustainability, including improved equity, but without additional climate initiatives. 
4 B2 describes a world in which the emphasis is on local solutions to economic, social, and environmental 
sustainability. It is a world with moderate population growth, intermediate levels of economic development, and 
less rapid and more diverse technological change than in B1 and A1. 
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In summary, since the CM-IPCC in 1991, several approaches for coastal vulnerability 

assessment to climate change have been implemented. Selection of appropriate spatial, 

emphasising locally contextualised views, and temporal scales to dealing with current and 

long-term impacts to climate change that have been discussed. It seems to lack incorporation 

of socioeconomic issues into assessment, particularly at local scale. 

 

2.5 The development of vulnerability indices 

Several researchers indicate that the analysis of vulnerability often relies on the use and 

aggregation of indicators (Cutter et al., 2000; Moss et al., 2001; Vincent, 2007; Yohe and Tol, 

2002). Indeed, it is necessary to develop vulnerability indices that can help identify vulnerable 

regions, sectors or population groups, raise awareness, and can be part of a monitoring 

strategy. 

 

Generally, vulnerability index development involves sequential stages including the selection 

of indicators, normalisation of indicators to a common scale, and aggregation to a final value. 

•  First, the goal of indicator selection is to choose proxy variables for the underlying 

theoretical dimensions of vulnerability comprising physical and social factors related to the 

components of vulnerability assessments: exposure, sensitivity, and adaptive capacity. 

•  Second, it is important to note that normalisation of data to a common (comparable) 

unitless scale and subsequent summation of the normalised data is generally used to overcome 

issues of incommensurability when combining multiple indicators.  

•  Finally, the aggregation stage refers to the way it is used to combine transformed, 

normalised, and weighted indicators into the final index used; common options include multi-

criteria analysis (Tate, 2013).  

 

Hinkel (2011a), however, notes two challenges in the development of vulnerability indices. 

The first challenge lies in the difficulty of exactly defining the vulnerable system. On the one 

hand, this is due to many assessments being concerned with systems with large system 

boundaries; for instance, the vulnerability of a whole country (e.g., its regions, economic 

sectors and social groups) to all climate-related hazards (e.g., both primary and secondary 

ones) and possibly other hazards. On the other hand, even local assessments targeting 

individuals or communities need to take into account the wide political, institutional, 

economic and social context that determines vulnerability, as expressed by the concept of 

“contextual vulnerability” (O'Brien et al., 2007). For instance, “population density” is 
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considered as an indicator for the social vulnerability assessment. Population density in 

agrarian communities may either increase or decrease vulnerability (Meyer et al., 1998). High 

population density may result in a dependence on degraded or marginal land for food 

production. These lands can rapidly become unproductive and therefore increase vulnerability 

to food insecurity (Reycraft and Bawden, 2000). Conversely, high population density in 

locations with high quality agricultural land may allow intensified production and investment 

in infrastructure to increase food supplies (Boserup, 1965). If population density alone is 

considered as the key vulnerability indicator, the interaction with the environmental system 

and its capacity for agricultural production could lead to the development of inappropriate 

policy. Therefore, to gain a more holistic insight requires an understanding of how multiple, 

often inter-dependent; indicators of vulnerability vary in relation to each other. Vulnerability 

assessments are therefore highly context specific (Füssel, 2009; Yohe and Tol, 2002).  

 

The second challenge is the forward-looking aspect of vulnerability. As discussed above, 

vulnerability indices must indicate a possibility, (i.e. some state that might or might not come 

about in the future (Ionescu et al., 2009; Patt et al., 2008)). The “usual” indices, however, 

indicate a state and not the potentiality of a future state. The UNDP’s Human Development 

Index 2006, for example, indicates the current state of development rather than the possibility 

of future development. Due to this forward-looking aspect of vulnerability, developing a 

vulnerability index includes building a predictive model, a task similar to the case of 

developing a simulation model. In both cases, a function is built that, based on the observed 

present state, returns information on possible future states. The difference between the two 

approaches is one of complexity and the treatment of time. In the index-based approach the 

function (e.g., the index) is, by definition, simple (see above) and time independent (in the 

sense that it does not contain time as an argument). A vulnerability index does not give us 

information on when in the future harm will occur. In the simulation-model-based approach, 

the function (e.g., the simulation model) is complex and time-dependent, in the sense that it is 

a computer program representing the dynamical system that is iterated over time including 

feedbacks and non-linearity. It is, thus, important to distinguish between:  

•  Harm indices, which are indices that evaluate a state of a system based on normative 

judgments of what constitutes a good or bad state. These indices do not include the forward-

looking aspect. 
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•  Vulnerability indices, which are indices of possible future harm. These indices 

include both the forward-looking aspect as well as the normative aspect of defining harm 

(Hinkel, 2011a). 

 

Despite those challenges in the development of vulnerability indices, Füssel and Klein (2006) 

and Eakin and Luers (2006) indicate that vulnerability indices have been applied for many 

scientific purposes (e.g., for identifying causal processes and explaining attributes of 

vulnerable systems, for linking system attributes to vulnerability outcomes, and for mapping, 

ranking and comparing vulnerability across regions), at many scales (from local to global), 

and with different policy objectives (e.g., more realistic assessment of climate change risks, 

aiding the allocation of resources across regions, monitoring the progress in reducing 

vulnerability over time, and identifying suitable entry points for interventions).  

 

Different decision contexts and scales generally require different kinds of information. For 

example, an index developed to describe household vulnerability to natural hazards in 

Mozambique may be largely irrelevant in Germany, or outright inapplicable if used in 

German studies (Vincent, 2007); additionally institutions such as the United Nations 

Environmental Programme (UNEP, 2006) and the UK’s Department of International 

Development (Thornton et al., 2008) have recently undertaken broad scale (multi-national to 

continental scale) vulnerability mapping exercises in Africa. Nevertheless, quantifying and 

communicating the multiple drivers of socio-natural vulnerability is problematic, particularly 

when seeking to explicitly map vulnerability across broad spatial scales (Eakin and Luers, 

2006; Füssel, 2009; Van Velthuizen et al., 2007). It can be clearly seen that there have been 

implicit uncertainties in these broad scale vulnerability assessments. 

 

There are three broad approaches for developing vulnerability indices, according to Harvey et 

al. (2009) and Hinkel (2011a); Most vulnerability methodologies make use of a combination 

of two; All three of the following approaches that were used in this thesis. 

•  First, theory-driven, also known as deductive approaches, based on existing scientific 

knowledge in the form of conceptual frameworks, theories or models about the system 

considered to identify relevant variables, and determine their relationships, and generate a list 

of components (Adger and Vincent, 2005; Moss et al., 2001; Schröter, 2004; Schröter et al., 

2005; Yohe et al., 2006).  
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•  Second, data-driven, also known as inductive approaches, these select vulnerability 

variables based on their statistical relationship with observed vulnerability outcomes (e.g., 

mortality due to natural hazards) (Briguglio, 1995; Brooks et al., 2005; Dilley et al., 2005; 

Eriksen and Kelly, 2007; Peduzzi et al., 2002; Tol and Yohe, 2007).  

•  Third, the normative approach, based on subjective individual or collective expert 

opinion; this has been widely applied for the development of variables for various purposes 

(Kienberger et al., 2009). The most prominent example is the selection of variable 

components for the Human Development Indicator (HDI) (Schauser et al., 2010).  

In order to make theoretical concepts operational in the context of climate change and 

vulnerability assessment, there also have been three approaches used for a great diversity of 

different systems, as well as spatial and temporal scales; these are: 1) participatory; 2) 

simulation-model-based; and 3) indicator-based approaches. In relation to this study, 

indicator-based approaches are reviewed in terms of their usage and limitations in the context 

of climate change and vulnerability assessment. Moreover, they have been used to develop a 

final composite/summary coastal vulnerability index, comprising the three variables of 

exposure, sensitivity, and adaptive capacity, respectively. A vulnerability index generally 

aims to simplify a number of complex and interacting parameters, represented by diverse data 

types, to a form that is more easily understood and has much greater utility as a management 

tool.  

 

In fact, the indicator-based approach is divided into two different types. These are index- and 

variable-based approaches, although a sharp distinction is not always evident. A 

comprehensible explanation of the adopted approaches is essential to support the proper uses. 

Ramieri et al. (2011) have attempted to distinguish the two types. On the one hand, index-

based approaches express coastal vulnerability by a one dimensional, and generally unitless, 

risk or vulnerability index. These approaches are not immediately transparent since the final 

index does not enable the understanding of assumptions and aggregations that led to its 

calculation. On the other hand, variable-based approaches express the vulnerability of the 

coast by a set of fairly independent variables. In many cases, variables are combined into a 

final composite index that characterises key coastal issues, such as coastal drivers, risk, 

hazard, exposure, sensitivity, impacts, adaptive capacity, and damage. Moreover, these 

approaches allow the evaluation of different aspects related to coastal vulnerability to produce 

evaluated variables corresponding at those steps within a completely consistent assessment 

context. 



Coastal Vulnerability assessment of Kien Giang 
 

27 | P a g e  
 

According to Fisher (1922), the use of indices as policy tools started in 1920. Gallopin (1997) 

considered that an indicator is an utility from observable variables, called indicating variables 

or theoretical variables. Indices or variables are a kind of measure - they are generally sets of 

information used to determine the status quo or changes of a characteristic of a system 

(Sullivan, 2002). Variables should be measurable, accessible, transferable, easy to be applied 

in practice, and not redundant  (Birkmann, 2006; Lane et al., 1999). Depending on the context 

and the purpose of the envisaged vulnerability assessment, these variables may be of 

quantitative character. But they may also embrace qualitative criteria or broader assessment 

approaches to allow for the integration of aspects, such as the institutional or cultural 

vulnerability (Birkmann, 2006).  

 

Several researchers (Birkmann, 2006; Hinkel, 2011a; Kienberger et al., 2009) adopt three 

steps in the development of vulnerability indices. Several researchers indicate that the 

variable- and index-based approaches could be considered as appropriate methodologies only 

at local scales. They also argue that vulnerability is a context-specific rather than a generic 

condition. They conclude that indexes of vulnerability assessments cannot be meaningful 

when applied to large-scale systems (e.g., comparing countries), and so should focus on 

smaller scales of analysis because of several reasons. 

•  The first step is the definition of what is to be indicated. In the case of climate change 

vulnerability indices, this would be the vulnerability of a system to climate change. A wide 

range of different systems (e.g., individuals, households, communities, ecosystems, regions, 

economic sectors and countries) are considered. Often these systems can be conceptualised as 

natural systems (Judge et al., 2003) and integrated with social systems (Birkmann and 

Fernando, 2008; Boruff et al., 2005), because vulnerability is determined by the interaction of 

bio-geophysical (or natural environment) and social/ or socioeconomic (or human) sub-

systems. Defining the system needs to include defining the system’s boundaries. Therefore, 

systems of analysis at local scales can be narrowly defined (Barnett et al., 2008; Hinkel, 

2011a). 

•  The second step is the selection of the indicating variables, and it consists of defining 

the domain of the index function, and typically require large investments in data harvesting or 

collection and analysis (Villa and McLeod, 2002).  

•  The third step is aggregation of the indicating variables. This consists of defining the 

indicator function itself, involving some aggregation of multiple sub-indicators to produce a 
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single index. Aggregation can hide deficiencies in data, and so the mathematics of index 

development is very important (Bossel 1999).  

 

Additionally, a common approach to holistic vulnerability mapping is to aggregate (i.e., 

where the same units are used), or to composite (i.e., where different units are used) (Abson et 

al., 2012; Schauser et al., 2010), capturing the multiple aspects of biophysical and social 

vulnerability and adaptive capacity into a single index, or small number of spatially explicit 

vulnerability indices, termed a vulnerability “score”, reducing the amount and complexity of 

information that must be communicated, and acting as powerful visual tools to identify those 

areas most vulnerable to climate change effects. The study by Preston et al. (2008) on 

vulnerability variables for the Sydney Coastal Councils Group region can be identified as an 

example of good practice (see Appendix 1); indicating that it is often necessary to integrate 

datasets from many different sources that vary in format, scale and by their methods of 

acquisition due to the strong socio‐economic component of vulnerability. Indeed, an 

integrated quantitative model that represents all the linkages and relationships between such 

data, combining them in a meaningful way, is strongly recommended.  

 

The complex structure of vulnerability assessment frameworks is often described by 

hierarchical aggregation (Hiete and Merz, 2009; Schröter et al., 2005), and aggregated 

vulnerability indices are computed using the mathematics of index construction (Moss et al., 

2001; Schmidtlein et al., 2008). However, the combination of multiple variables of aspects of 

vulnerability into aggregated vulnerability indices must overcome the incommensurability of 

the units in which the individual indicators are measured (Sullivan and Meigh, 2005). Before 

aggregating, indicating variables must be normalised to create a common measurement unit. 

Common normalisation methods include min- max, standardisation, and ranking methods 

(Schauser et al., 2010). Further discussion of those methods will be presented in chapter 3.  

 

Weighting methods, also known as ranking methods, express the contribution and relative 

importance of the individual variables in the system. Using weighting methods can be 

considered as a supporting tool for a more objective (Wang et al., 2011) and consistent 

decision process (Saaty, 1980; Saaty, 1994). This helps avoid over-estimation of the 

contribution or importance of variables in terms of vulnerability (Yoo and Kim, 2008), and 

can identify more accurately the most vulnerable areas on the map (Kubal et al., 2009; Wang 

et al., 2011). However, there have not been many studies that used weighting methods in their 
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studies. This is because of lack of comprehensive understanding of the theoretical 

vulnerability framework (Hiete and Merz, 2009) and a lack of knowledge about weighting 

methods which are often considered to be complicated. In fact, weighting methods used in 

most studies are based on expert opinions, or stakeholder involvements (qualitative data), 

rather than scientific results (quantitative and qualitative data) (Schauser et al., 2010). The 

analytical hierarchy process (AHP) is one multi-criteria analysis method that has been used 

successfully in recent studies (Schauser et al., 2010). The AHP was originally developed by 

Saaty (1980) and has been refined since then, based on mathematics and psychology (a semi- 

quantitative approach). It is a structured technique for organising and analysing complex 

decisions. As such, AHP is considered a useful tool for multi-criteria assessment when 

coupled with computing weights of individual variables in the analyses. AHP and weightings 

will be further described in chapter 3.  

 

Geographical information systems (GIS) have been used as a visualisation tool for integration 

of data and the creation of indices that express their combined effect (Bryan et al., 2001; 

Harvey et al., 1999; Schleupner, 2009; Sharples, 2006; Tate et al., 2011; Thumerer et al., 

2000; Wilkinson, 1996; Woodroffe, 2010; Woodroffe et al., 2007; Zeng et al., 2006). GIS tool 

and its application will be further described in chapter 3. 

 

2.6 Case studies on the development of vulnerability indices  

Some case studies involved development of vulnerability variables/ indices in the contexts of 

climate change and coastal vulnerability assessment, and these are reviewed to find 

appropriate studies that can form the basis for the research to be conducted in following 

chapters. There is a focus on studies relevant to coastal areas at local scales, and studies of 

regions similar to the Mekong River Delta in Vietnam (the MRD). Details of case studies, 

vulnerability indices, particularly social vulnerability indices including variables used to 

assess climate change vulnerability, are summarised in Appendix 1. The review specifically 

focuses on studies that use a set of variables as determinants categorised into three main 

components of vulnerability: exposure, sensitivity, and adaptive capacity. To date, however, 

there seems to have been no convincing framework or methodology on how to quantify and 

compare vulnerability to climate change at spatial-dependent scales (e.g., regions, coastal 

areas, urban areas) using selected variables/ indicators regarding the three main components 

of vulnerability aggregated or combined into a composite vulnerability index. A few good 

examples of a consistent methodological approach have been found (Kleinosky et al., 2006; 
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Preston et al., 2008; Reid, 2008; Reid et al., 2009; Schröter, 2004; Schröter et al., 2005; Yoo 

et al., 2011; Yusuf and Francisco, 2009).    

 

In Vietnam, recently, more attention has been placed on response to natural disasters and 

climate change mitigation rather than climate change adaptation activities (APN, 2007). 

Moreover, there have been several assessments related to climate change, mainly undertaken 

in the eastern part of the MRD. On the other hand, these studies have focused on assessing the 

biophysical processes at different spatial scales (focusing on the whole delta rather than 

regions within it), examining variables closely related to climate change, particularly sea-level 

rise, and their impact on features of landscape and the response of Asian mega-deltas, 

including the MRD (Woodroffe et al., 2006). These studies have included hydrological and 

morphological processes at the mouth of the Mekong River (Mikhailov and Arakelyants, 

2010), transport of sediments, soils and materials (Brinkman et al., 1993; Ta et al., 2002a), 

projecting scenarios of climate change and sea-level rise (The-First-Scenarios-VN, 2009; The-

Second-Scenarios-VN, 2011), simulating inundation maps (Reid, 2008; Wassmann et al., 

2004), or assessing flood risk (Dinh et al., 2012; Huong and Pathirana, 2013), water quality 

analysis (Nguyen, A. D. et al., 2008), landuse planning (Nguyen, 2006), change to forest 

wetlands (Le and Wyseure, 2007), mangrove forests (Phan and Hoang, 1993; Phan and 

Populus, 2007; UNEP, 2004a), coral reefs (UNEP, 2004b), seagrasses (UNEP, 2004c), and 

agriculture - aquaculture systems (Le, 2010; Nguyen and Nguyen, 1998; Wassmann et al., 

2004). These have been biophysical rather than assessing social vulnerability, or integrated 

vulnerability, such as reducing the vulnerability of water resources, food security and the 

environment to climate change impacts (Mainuddin et al., 2010); assessing the impacts of 

climate change on sectorial effects (Mackey and Russell, 2011), and indicating local 

perception, impacts and adaptation of agrarian communities in the coastal provinces of the 

Mekong (Nguyen et al., 2012). To the author’s knowledge, to date there are no studies 

constructing a coastal vulnerability index, comprising three components: exposure, 

sensitivity, and adaptive capacity, to quantify and visualise areas vulnerable to impacts of 

climate change across the MRD at regional and especially local scales.  

 

It can be seen from a summary in Appendix 1 that there is little consistency between 

approaches that have incorporated social variables into coastal vulnerability indices. 

Moreover, there have been only four out of a total of 53 case studies (accounts for 7.55%) 

summarised, which can form the basis for case studies in the MRD. These include:  
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1) A case study by Mackey and Russell (2011), which assessed the impacts of climate 

change, based on climate hazards, including sea-level rise, saline incursion, flood, and storm 

surge, and crossed four sectorial effects, comprising socioeconomic, agriculture and 

livelihoods, urban settlements and transport, energy and industry for the western part of the 

MRD, including two provinces: Kien Giang and Ca Mau. They adopted a standard 

comparative vulnerability and risk assessment methodology and framework to identify the 

comparative vulnerability and adaptive capacity of natural and human systems, among 

particularly vulnerable geographic hotspots (a district boundary). 

2) Yusuf and Francisco (2009) conducted assessments for sub-national areas, regions, 

provinces, and districts for South East Asia, in which climatic hazard maps for five climate-

related risks, tropical cyclones, floods, landslides, droughts, and sea-level rise, were 

generated. Population density was used as the proxy for human sensitivity to climate hazard 

exposure. The extent of protected areas was the proxy indicator for ecological sensitivity of 

the respective areas. An index of adaptive capacity is also created, as a function of 

socioeconomic factors, technology, and infrastructure. The socioeconomic variables comprise 

the Human Development Index (income, literacy, and life expectancy), poverty, and 

inequality. 

3) Preston et al. (2008) conducted an assessment, and mapping of climate change 

vulnerability throughout the Sydney Coastal Councils Group region, which incorporated five 

areas of potential climate change impacts, such as extreme heat and human health effects, sea-

level rise and coastal hazards, extreme rainfall and urban storm water management, bushfire, 

and natural eco-systems and assets. 

4) Yoo et al. (2011) developed a method for local vulnerability assessment with 

application to coastal cities. They suggest a framework that corresponds to the second stage of 

an alternative method proposed by Kay et al. (1993; 1996) for the assessment of climate 

change on a local scale by incorporating statistical data, and expert opinions into GIS.  

 

Additionally, a summary from Appendix 1 indicates a set of variables as determinants 

categorised into three components of vulnerability: exposure, sensitivity, and adaptive 

capacity that could be used for the study-sites assessment. These include:  

•  Exposure which refers to how the system is exposed to climate change, that is 

determined by a set of conditions and resources termed the determinants of exposure which 

consist of biophysical hazards/ or threats due to climate change, (e.g., sea-level rise and 
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coastal hazards, extreme rainfall and urban storm water management, extreme heat and 

human health effects).  

•  Sensitivity reflects the system’s potential to be affected by changes, that is 

represented by a diversity of indicators generally categorised into two main sub-components: 

human/ or population sensitivity, accounted for 75.5% cases, (e.g., population density, gender, 

race and ethnicity) and landuse sensitivity factors, accounted for 47.2%, (e.g., agriculture 

landuse, protected land area).  

•  Adaptive capacity describes the system's ability to adjust to climate change (including 

climate variability and extremes) to moderate potential damages, to take advantage of 

opportunities, or to cope with the consequences that is represented by a range of information 

and datasets. These include: 1) socioeconomic indicators, accounted for 34%, (e.g., poverty, 

income, education, health care services); 2) technology indicators, accounted for 13.2%, (e.g., 

availability of irrigation, electricity coverage); 3) infrastructure, accounted for 22.6%, (e.g., 

road density, access to information (radio, internet), and intervention tools (early warning 

system)); and 4) institutional capacity, accounted for 18.9%, (e.g., awareness, governance, 

policy foundation). About a third of studies examined were conducted at local scale (e.g., at 

city, county, and district level), and only one of these was undertaken in a delta. 

 

Generally determining sensitivity and adaptive capacity components are not easily 

differentiated and separated in many cases; this may be because future sensitivity depends on 

current adaptive capacities and measures. To sum up, Tables 2.5 and 2.6 summarise the 

physical and social vulnerability ranges used by several researchers, respectively. Of which, 

dark shading vulnerability ranges by different researchers were used to assess in this thesis 

that will be discussed in chapters 5, and 6. 

 
Table 2.5 Physical vulnerability ranges used by different researchers. 

Variable Rank References 
Very low Low Moderate High Very high 

Relief, m  ≥ 30.1 20.1- 30.0 10.1- 20.0 5.1- 10.0 0-5.0 Gornitz (1991) 
       

Sea-level rise, 
mm/year 

≤  -1.1    -1.0- 0.99 1.0- 2.0 2.1- 4.0 ≥ 4.1 Gornitz (1991) 
< 1 1 - 2 2 - 5 5 - 7 7 – ≥ 9  Özyurt and Ergin (2010) 

       
Tidal range 
(mean), m 

≤ 0.99 1.0- 1.9 2.0- 4.0 4.1- 6.0 ≥ 6.1 Gornitz (1991) 
< 0.5 0.5- 2 2- 4 4- 6 > 6 Özyurt and Ergin (2010) 

       
Wave height 
(max), m 

0- 2.9 3.0 - 4.9 5.0- 5.9 6.0- 6.9 ≥ 7.0 Gornitz (1991) 

       
Flood depth, m < 0.5 0.5 – 1.0 1.0 – 1.5 1.5 – 2.0 2.0 – ≥ 2.5 Kafle et al. (2007) 
  0 - 1 1 - 3 3 - 6 > 6 Bormudoi et al. (2008) 
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 < 0.8 0.8 – 1.2 1.2 – 2 2 – 4 > 4 Le et al. (2009) 
 ≤ 1 2 3 4 - 5 > 5 Özyurt and Ergin (2010) 
 < 0.5 0.5 – 1.2 1.2 – 2.0 2.0 – 3.0 > 3.0 Dang et al. (2011) 
 < 0.25 0.25 – 0.5 0.5 - 1 1 – 1.5 > 1.5 Mackey and Russell (2011) 
 0 – 0.2 0.2 – 0.5 0.5 – 1.0 1.0 – 2.0 > 2.0 Dinh et al. (2012); 

Tingsanchali and Karim 
(2005) 

 ≤ 0.5 >0.5- ≤1.0 >1.0- ≤1.5 > 1.5- ≤ 2 > 2 Balica et al. (2013) 
       

Salinity, ppt < 1 1 - < 2.5 2.5 – 3 3 - 4 > 4 Grattan et al. (2002) 
 < 1 1 - < 4 4 > 4  Mackey and Russell (2011) 

  < 4  4    > 4   Hoang et al. (2012) 
  < 4 4 - 8 > 8  Le  (2003) 
       

Shoreline 
displacement, 
m/year 

≥ 2.1 1.0 – 2.0 -1.0 – 1.0 -1.1 - -2.0 ≤ -2.0 Gornitz and Kanciruk (1989) 
≥ 2.1 1.0 – 2.0 -1.0 – 1.0 -1.1 - -2.0 < -2.0 Gornitz (1991) 
> 2.0 1.0 – 2.0 -1.0 – 1.0 -1.1 - -2.0 < -2.0 Gornitz et al. (1994) 

 > - 5.0 -15.0 - -5.0 - 30.0 - -15.0 < -30.0 Pham et al. (2005) 
> 15.0 5.0 – 15.0 -5.0 – 5.0 -15.0 - -5.0 < -15.0 Dwarakish et al. (2009) 
> 2.0 1.0 – 2.0 -1.0 – 1.0 -1.0 - -2.0 < -2.0 Pendleton et al. (2010) 
> 2.0 1.0 – 1.9 -0.9 – 0.9 -1.0 - -1.9 < -2.0 Abuodha and Woodroffe 

(2010) 
0.3- 0.5 0 – 0.3 -1- 0 -1.0 - -2.0 -2.0 - -4.0 Nguyen (2012) 

 

Table 2.6 Social vulnerability ranges used by different researchers. 
Variable Rank References 

Very low Low Moderate High Very high  

Population density, 
inhabitants/ km2 

 1-750 750 - 1 500 1 500 - 2 250  Kafle et al. (2007) 
 < 500 500 - 1 000 > 1 000  Dang et al. (2011) 
 66 - 168 196 - 333 339- 2 190  Mackey and 

Russell (2011), 
whereas those in 
Kien Giang [268]  

< 250 250 - 500 500 - 1 000 1 000 - 2 500 > 2 500 Average in other 
regions in 
Vietnam [260]  

       
Landuse patterns Water Minimal use, 

nature 
conservation, 
potential 
agricultural 
land 

Livestock 
grazing, irrigated 
horticulture, 
woodland 

Residential Transport & 
Communication 

Preston et al. 
(2008) 

 Protected 
area 

Unclaimed Settlement Industrial Agricultural Özyurt and Ergin 
(2010) 

 Rocky 
cliffs 

Scrub Beach, sand 
dunes, forest, 
rough 

Agricultural 
land, Tee 
boxes, 
fairways, 
amenity grass 

Urban, residential, 
car parks, greens 

McLaughlin and 
Cooper (2010) 

 Forest, sea 
(Limited 
used) 

Agricultural 
land (Low-
impact used) 

Living and 
tourism (Middle-
impact used) 

Industry and 
transport (High-
impact used) 

 Liu (1996) and 
Huang et al. 
(2012) 

  The bare land Water/wetland, 
grassland 

Forest, 
farmland 

Built-up Yin et al. (2012) 

       
Local income level, 
mil.VND/capita/yr 

 > 6.0 million 
VND (US$ 

375)/capita/yr 

2.4 – 6.0 million 
VND (US$ 150 - 

375)/capita/yr 

< 2.4 million 
VND (US$ 

150)/capita/yr 

 Dang et al. (2011) 
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2.7 Chapter Summary  

The coast supports millions of people and has recently been considered as one of the most 

vulnerable areas to the impacts of climate change, particularly sea-level rise. Accordingly, 

there is an urgent need to undertake actions to respond to those threats that are becoming 

more severe.  

 

Despite a diversity of different conceptualisations of vulnerability, the definitions and 

concepts of vulnerability and other related concepts provided by IPCC are considered as a 

starting point to explore possibilities for vulnerability assessment. Concepts of vulnerability 

are distinguished into two types, comprising space (i.e., internal vs. external), and factors, 

(i.e., biophysical vs. social). With regard to the biophysical view, vulnerability is the “end-

point” of the analysis, and is conceptualised and analysed based on two components: exposure 

and sensitivity, and generally adaptive capacity is not accounted for in analyses. In contrast, 

vulnerability in the social perspective is conceptualised as a pre-existing condition of the unit 

regarded as a “starting-point” of analysis. Integrated approaches to vulnerability aim to 

address both the biophysical and social dimensions of vulnerability. 

 

In addition, several researchers indicate that vulnerability assessments have been considered 

as “second generation” assessments that address relevant non-climatic drivers (i.e., economic, 

demographic), and the adaptive capacity of the system under analysis. This resulted in the 

appearance of new vulnerability driven methodologies characterised by “bottom-up” 

approaches, and more aligned with social and integrated perspectives on vulnerability. 

Currently, coastal vulnerability assessments are mainly focused on biophysical factors rather 

than socioeconomic effects. On the other hand, those attempts at coastal vulnerability 

assessment to the impacts of climate change are either too broad, (i.e., national or regional) or 

too narrow, (i.e., segment), and lack of consistency. 

  

Generally there have been three methodological approaches, termed participatory, simulation-

model-based and indicator-based approaches, used to make theoretical concepts operational in 

the context of climate change and vulnerability assessment for a great diversity of different 

systems, as well as spatial and temporal scales. Until now, there seems to have been no 

convincing framework or methodology focused on how to quantify and compare vulnerability 

to climate change at spatially-dependent scales using selected indicator variables, with respect 

to the three main components of vulnerability, and aggregated or combined into a composite 
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vulnerability index. Specifically, indicator-based or multi-criteria approaches, and holistic 

vulnerability mapping appear the best techniques to apply to the case study-site. There are 

four suitable case studies that can form the basis for research to be conducted in following 

chapters. Furthermore, a diversity of variables categorised into three components of 

vulnerability, exposure, sensitivity, and adaptive capacity in those vulnerability assessments, 

was indicated that could be considered for case study-sites (see Appendix 1). Approaches and 

methods used in the study area will be further discussed in chapter 3, while the background to 

the study area will be presented in chapter 4. 
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Chapter Three 

 

Methods and datasets 

 

3.1 Aims of this chapter 

The aim of this chapter is to present methods and tools used in this study for assessing 

vulnerability in a way that integrates physical and social factors with respect to impacts of 

climate change, particularly sea-level rise. Multi-criteria and holistic mapping approaches 

were used to develop a final composite vulnerability index comprising three key components: 

exposure, sensitivity, and adaptive capacity. This was used to identify and visualise the areas 

most likely to be vulnerable in the seven coastal districts along the Kien Giang coast, in the 

western part of the Mekong River Delta in Vietnam (the MRD).  

 

The chapter is structured as follows. Section 3.2 introduces the approach and the vulnerability 

indices. Section 3.3 outlines the conceptual framework for assessments. Geographic 

information systems (GIS) used for the assessment are described in section 3.4. Sub-section 

3.4.2.1 presents tools, the Spatial Analyst Tools in particular, run in ArcGIS 10, that were 

used to generate and aggregate the various thematic layers based on attributes, in order to 

identify, and visualise the most likely hotspots vulnerable to the impacts of sea-level rise. 

Sub-section 3.4.2.2 presents the Digital Shoreline Analysis System (DSAS) extension tool, 

used to analyse shoreline change, respectively. Sub-section 3.4.2.3 outlines the analytical 

hierarchy process (AHP) extension tool, the multi-criteria decision making (MCDM) tool, 

used to obtain an overall aggregated ranking of the performance of the alternatives as to how 

it contributes to vulnerability. Variables, research information and datasets for the study area 

are described in section 3.5. A summary of this chapter is presented in section 3.6. 

 

3.2 Introduction 

The use of indices in vulnerability assessments, as outlined in the previous chapter, can help 

prioritise vulnerable regions, sectors or population groups, raise awareness, and be part of a 

monitoring strategy. Until now, there has been no consistent framework or methodology for 

developing vulnerability indices to quantify and compare vulnerability to climate change at 

spatially-dependent scales, and that addresses the three main components of vulnerability. A 
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consistent methodology is needed for study-site vulnerability assessment, in particular for 

coastal areas. 

 

Numerous researchers indicate that the analysis of vulnerability often relies on the 

aggregation of variables (Cutter et al., 2000; Moss et al., 2001; Vincent, 2007; Yohe and Tol, 

2002), and may be governed by local circumstances (Soares et al., 2012). Vulnerability 

assessment that couples biophysical and social factors seems to be more complex because the 

composite vulnerability index combines sets of different variables as determinants of the three 

main components: exposure, sensitivity, and adaptive capacity, but the data is rarely available 

in appropriate formats or at suitable scales. In such a situation, confusion can arise if a logical, 

well-structured decision-making process is not followed. Multi-criteria approaches can be 

useful techniques to provide “a framework, which can handle different views on the 

identification of the elements of a complex decision problem, organise the elements into a 

hierarchical structure, and study the relationships among components of the problem” 

(Boroushaki and Malczewski, 2010).  

 

The two focus approaches to vulnerability assessment in this study, MCDM and GIS, can 

benefit from each other (Feizizadeh and Blaschke, 2013; Gorsevski et al., 2012; Greene et al., 

2011; Phua and Minowa, 2005; Thill, 1999). MCDM provides a rich collection of techniques 

and procedures for structuring decision problems, and designing, evaluating and prioritising 

alternative decisions, whereas GIS provides a powerful platform for organisation of layers 

(thematic maps) in a variety of formats (e.g., raster or vector data) and plays a role in 

performing logical and mathematical analyses during vulnerability assessment. Indeed, GIS is 

often recognised “as a decision support system involving the integration of spatially 

referenced data in a problem solving environment” (Cowen, 1988). 

 

Spatial decision problems generally involve a set of feasible alternatives and multiple, 

conflicting and incommensurate evaluation criteria. The alternatives are evaluated by a 

number of individuals (e.g., participants, decision-makers, managers, stakeholders, interest 

groups). The individuals are characterised by unique perceptions with respect to the relative 

importance of criteria on the basis of which the alternatives are evaluated. As such, AHP is 

one of the MCDM methods that has recently been incorporated into GIS to address decision 

problems with a spatial component. 
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3.3 Conceptual framework 

A conceptual framework for the assessment was set up, following that used by the 

Intergovernmental Panel on Climate Change (IPCC), and adopted by the European 

Environment Agency (EEA, 2010; ETC/ACC, 2010). This comprises three interacting 

components: exposure, sensitivity, and adaptive capacity. It has been adapted for sub-national 

scale assessments in terms of climate-change vulnerability by Yusuf and Francisco (2009), as 

part of the Economy and Environment Program for Southeast Asia, which included Kien 

Giang province, Vietnam. This framework can be structured hierarchically, assigning 

correlations of variables representing physical and social factors into the three components of 

vulnerability. The hierarchical structure will be further discussed in section 3.4.1. The 

conceptual diagram for the assessment is presented in Figure 3.1.    

 
Figure 3.1 Conceptual framework for coastal vulnerability assessment of the study area 
(modified from EEA, 2010; ETC/ACC, 2010; Saaty, 1980; Yusuf and Francisco, 2009).  
 

Note: An overall aggregated ranking of the alternatives intended to identify hotpots in the study region, and 
visualise those areas appearing most vulnerable. 
 

Several case studies of coastal assessments have defined sub-components, and variables. The 

exposure component is generally assessed by using information and datasets from historical 

records of climate-related hazards that consider past exposure to climate risks as the best 

available proxy for future climate risks (Yusuf and Francisco, 2009). As seen in Figure 3.1, 

the exposure component for this study was represented by three sub-components: flood risk, 

seawater incursion, and shoreline change; these were assigned as measures of the system’s 

exposure to sea-level rise effects. Other exposure factors such as storm-surges, drought, 

bushfire, and landslide were considered lesser threats and were not included for the study 

area.  
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In terms of the sensitivity component, spatial information was used to indicate “What” is 

sensitive with regard to biophysical information and could be affected (i.e., which landuse is 

most likely to be affected by sea-level rise), whereas the spatial information relating to social 

factors was also used to indicate “Who” is sensitive and could be affected (i.e., characteristics, 

such as density, of the population that is affected) (EEA, 2010; ETC/ACC, 2010). Therefore, 

sensitivity was represented by two key factors: societal sensitivity and landuse sensitivity 

factors. 

 

In addition, sub-components of the adaptive capacity component were represented by 

socioeconomic, technological, and infrastructure sub-components (Yusuf and Francisco, 

2009). Institutional capability (e.g., public awareness, policy foundation, and governance) was 

not considered as part of the adaptive capacity component, because of data limitations (see 

Appendix 1). Moreover, several variables such as debt, literacy, gini coefficient (proposed by 

Gini as a measure of inequality of income or wealth), number of civil society organisations 

(farmer groups, cooperatives), number of government employees, government budget for 

investment in social services and infrastructure measuring the adaptive capacity have not 

taken into account into this study because of several reasons. First, these variables are 

available only at large scale (obtained from the statistics data at entire provincial or district 

levels that are not suitable for the study). Therefore, the mappable results have been 

influenced markedly to scale-based input data (see Figure 5.12 and Appendix 17 for 

evaluation of scale-based input data (e.g., population density at different scales) in order to 

represent sensitivity for the study area). Second, several authors have claimed that a more 

detailed approach at the local and regional scale requires that coastal systems and dynamics 

are described in detail and using more complex and data intensive models (Torresan et al., 

2008; Romieu et al., 2010). Last but not least, social vulnerability is changeable, unpredicted 

over time that closely refers to the two components sensitivity and adaptive capacity, in terms 

of measuring the vulnerability. The recent study by Mahapatra et al. (2015) also indicates that 

the social factors should be incorporated for coastal vulnerability index assessment. 

 

Combining the exposure, sensitivity, and adaptive capacity components, hotspots most likely 

vulnerable in the assessment with regard to the importance of evaluation variables have been 

indicated. Moreover, Appendix 1 summarises a range of variables representing vulnerability 

that have been considered for the assessment.  

 

http://en.wikipedia.org/wiki/Social_inequality
http://en.wikipedia.org/wiki/Income_inequality_metrics
http://en.wikipedia.org/wiki/Wealth_concentration
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3.4 Tools for evaluation of coastal vulnerability 

Multi-criteria decision making methods have been used to analyse spatially explicit problems 

using GIS for at least 20 years. However, MCDM techniques have rarely been integrated 

directly into GIS in previous analyses because of the variety and complexity of the MCDM 

methods (Greene et al., 2011). Recently it has become easier to combine the two with AHP 

available as an extension to ArcGIS, as has been undertaken in this vulnerability assessment.  

 

Once variables for the assessment had been selected, GIS and its geo-processing tools (e.g., 

Spatial Analyst tools, and extension tools) were used to capture attributes related to these 

selected variables from a diversity of sources (e.g., from satellite images, statistical data from 

reports or surveys, GPS), and in different formats (e.g., raster, or vector). These were analysed 

with regard to their relative weights or priorities assigned in terms of their contribution or 

importance to the impacts of climate change. Variables were related to the three key 

components: exposure, sensitivity, and adaptive capacity in a hierarchical structure. This 

comprised pair-wise comparisons of variables within MCDM. The final stage involved 

construction of an overall aggregated ranking of the alternatives intended to identify hotpots 

in the study region, and visualise those areas appearing most vulnerable. 

 

3.4.1 Application of Multiple Criteria Decision Making methods 

In this study, AHP, originally developed by Thomas Saaty (1980), was the Multiple Criteria 

Decision Making (MCDM) method used to estimate, compute, then derive relative weights of 

the contributing variables used as indicators of potential impacts of sea-level rise. It involved 

components (or criteria) and attributes to visualise the areas (alternatives) most likely to be 

vulnerable through pair-wise comparisons using a hierarchical structure. 

 

Since it is known from psychological studies (Miller, 1956; Saaty, 1977) that an individual 

cannot simultaneously compare many elements at a time (usually no more than 7 ± 2 

elements), an approach is needed that reflects, and communicates complex comparisons in 

terms of simple numbers, or descriptive or normative statements, that can condense the 

enormous complexity of real problems into a manageable amount of meaningful information. 

AHP provides the opportunity to do this. It is an intuitive and relatively easy method for 

formulating, and analysing decisions (Harker, 1989); a tool to permit explicit exhibition of 

appraisement criteria and also a multi-attribute decision method, which refers to a quantitative 

technique (DeSteiguer et al., 2003); and it can be integrated with qualitative data (Lee et al., 
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2001; Stephen and Downing, 2001). The application of AHP can handle complicated 

geographical situations, where different weights are assigned (Mahapatra et al., 2015). 

 

The value of AHP has been increasingly recognised in developed and developing countries 

around the world, particularly since 2005 (Sipahi and Timor, 2010). For example, in China 

nearly a hundred universities around offer courses in AHP, and numerous doctoral students 

choose AHP as the subject of their research and dissertations. Over 900 papers have been 

published on AHP applications in China, and there is at least one Chinese scholarly journal 

devoted exclusively to AHP (Sun, 2005). AHP has been used in the analysis of a wide range 

of topics (such as: establishing payment standards for surgical specialists, strategic technology 

road-mapping, infrastructure reconstruction in devastated countries, economic stabilisation in 

Latvia, portfolio selection in the banking sector, wildfire management to help mitigate global 

warming, and rural micro-projects in Nepal in the 2005, 2007, 2009). Several researchers 

have used the AHP tool in a range of fields, such as impacts of climate change on 

transportation sectors (Berrittella et al., 2007), eco-environmental quality assessment (Zhang 

and Cai, 2012), site allocation (Chen, 2006; Şener et al., 2011), mining (Huang, S. B. et al., 

2012), vulnerability of catchments (Chang and Chao, 2012; Kienberger et al., 2009), flood 

risk assessment in the context of climate change (Chen et al., 2011; Nguyen, D. M. et al., 

2011; Qiang et al., 2013; Wu et al., 2011), landslides (Hasekioğulları and Ercanoglu, 2012; 

Yoshimatsu and Abe, 2006), forests and bushfire (Laxmi-Kant et al., 2012; Sharma et al., 

2012), land-use suitability in coastal areas (Bagheri et al., 2013) or for resource planning 

(Nyeko, 2012), risk assessment of coastal erosion in deltas (Li et al., 2010), the physical 

vulnerability of coastal areas at regional scales (Le Cozannet et al., 2013), and coastal beach 

exploitation (Tian et al., 2013), or for coastal vulnerability assessment (Duriyapong and 

Nakhapakorn, 2011; Lin and Lee, 2012; Mahapatra et al., 2015).  

 

Further details about procedure, involving the following three key steps of AHP, can be found 

in Saaty’s papers (1977, 1980, 1987, 1990, 2003), Harker and Vargas (1987), and Malczewski 

(1999).  

• Decomposition into a hierarchical structure comprising components, sub-

components, variables, and sub-variables. Decomposition into a hierarchy has often been 

based on previous studies and empirical experiences.  

 

http://en.wikipedia.org/wiki/Doctoral
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In its most typical form, a hierarchy is often structured from the top (i.e., objectives from the 

managerial standpoint) through the immediate levels (i.e., components, sub-components, 

variables, and sub-variables chosen as reference to evaluate one product, process or condition 

to that subsequent levels depend on), and on to the lowest level (i.e., which is a list of 

alternatives referring to the objects, cases (study areas) that will be compared and ranked to 

achieve the objective) (see Figure 3.3). 

 

The objective of this study has already been defined, and the problem has been hierarchically 

structured with components, sub-components, variables, sub-variables broken down into each 

level of the problem, with layer-by-layer dominant relationships from top (i.e., assigning as 

the objective) to bottom (i.e., assigning as the alternatives). 

 

• Comparative judgments, defining, and executing data collection to obtain pair-

wise comparisons within the hierarchical structure. The comparison uses pair-wise 

matrices in which the decision-makers fill each upper diagonal element with a value obtained 

from the fundamental rule scale for pair-wise judgments following Saaty (1980). In the 

construction of pair-wise comparison matrix, each factor is rated against every other by 

assigning a relative dominant value between 1 and 9 (see Table 3.1). The lower triangular 

portion of the square matrix is completed with reciprocal values to those in the upper 

triangular portion; The variables are compared pair-wise with respect to their impacts on an 

element above them in the hierarchy to determine their relative importance, while the 

alternatives are compared pair-wise with respect to each evaluation variable to determine the 

relative ranking of the alternatives. 

 

• Finally, synthesis of priorities (determination of mean weights of each 

component); constructing an overall ranking of the alternatives and simultaneously 

testing consistency. Assessment of matrix consistency employing consistency measures 

proposed by Saaty (1977). Computation of the weighted scoring index to compare the overall 

performance of the alternatives in order to answer the initial goal of the procedure (see 

Equations 3.2 to 3.10; Tables 3.2, and 3.3). 
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Table 3.1 The fundamental AHP scale for pair-wise comparisons by Saaty (1980). 
Intensity of 
importance 

Definition Explanation 

1 Equal importance Two elements contribute equally to the objective 
3 Moderate importance Experience and judgment moderately favours one element over 

another 
5 Strong importance Experience and judgment strongly favours one element over 

another 
7 Very strong importance One element is favoured very strongly over another; its 

dominance is demonstrated in practice 
9 Extreme importance The evidence favouring one element over another is of the highest 

possible order of affirmation 

Note: Values of 2, 4, 6, and 8 can be used to express intermediate values. Values of 1.1, 1.2, 1.3, etc can be used 
for elements that are very close in importance. 
 

Example of AHP applied to coastal vulnerability assessment index  

In the study by Preston et al. (2008), a climate change induced sea-level rise index is 

constructed comprising three key components: exposure [E], sensitivity [S], and adaptive 

capacity [A]. [E] was judged to have a particularly high influence on vulnerability [V] 

because of the fact that the existence of coastal impacts presupposes proximity to the 

coastline, and was assigned a weight of 2. [S] was assigned a common weight of 1, while [A] 

was judged to have a low influence on [V], and was assigned a weight of 0.5, due to the fact 

that:  

•  The [A] does not necessarily contribute to effective adaptation. 

•  The [A] can never eliminate all vulnerability. 

•  Responsibility for management of some risks may be beyond the household, local 

authorities or community levels.  

•  The [A] of some systems (e.g., natural ecosystems) is quite limited.  

 

The way that AHP works is demonstrated below using an example from the Preston et al. 

(2008). Once the hierarchy has been structured, starting with level 1 (assinging three 

components), and proceeding to level 0 (see Figure 3.1) and pair-wise comparison matrix, 

determining which of each pair-wise variable was more important with respect to impacts of 

sea-level rise, is presented in Eq 3.1.  

• The value of “1.6” implies that [E] is roughly equal importance to [S] (see Table 3.1), 

comparing [E] to [S].  

• Similarly, the value of “8” implies that [E] is extremely important compared to [A], 

comparing [E] to [A].  
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• In addition, the value of “2.55” indicates that [S] is moderately important compared to 

[A], comparing [S] to [A].  

• A reciprocal matrix was obtained when the lower triangular portion of the matrix was 

completed with the reciprocal values of those used in the upper triangular portion.  

 
For computing the priorities of the elements, a judgmental matrix (A) is assumed as follows: 

 

𝐴 =  

⎣
⎢
⎢
⎢
⎢
⎡
a11 a12 … … a1k
a21 a22 … … a2k
… … … … …
… … … aij …

ak1 ak2 … … akk⎦
⎥
⎥
⎥
⎥
⎤

        𝑜𝑟        �

𝟏 1.6 8
1

1.6� 𝟏 2.55
1

8�
1

2.55� 𝟏
�          𝐄𝐪 𝟑.𝟏 

 

Where, A = positive pair-wise comparison matrix of order k (k by k matrices); aij represents 

the pair-wise comparison rating between the element i and element j. The entries aij are 

governed by the following rules: aij > 0; the matrix has reciprocal properties, which are aij=1/ aji 

with every i, j (∀i, j Є k), and aii=1 with ∀i,Є k.  

 

Each column of the pair-wise comparison matrix is normalised by Eq 3.2, and relative 

weights (wi) of each component are normalised and computed by averaging across the rows 

by Eq 3.3 as follows: 

aij∗ =  aij
∑ aijk
i=1

         ∀i, j Є k                                                                                     𝐄𝐪 𝟑.𝟐     

and 

wi =  
∑ aij∗k
j=1

k
       ∀i, j Є k      or   wi =   �

0.5996
0.3038
0.0962

�                                     𝐄𝐪 𝟑.𝟑 

  

Judgment Matrix Consistency Measurement 

The normalised eigen vector is also called priority vector. Since it is normalised, the sum of 

all elements in priority vector is 1. Apart from the relative weight, it is importance of 

consistency assessment of the judgment matrix due to dealing with human judgement. There 

is a relationship between the pair-wise comparison matrix (A), and the vector weights/ or 

priorities (w) according to Saaty (1980), as shown in Eq 3.4. 

Aw = λmax · wi                                                                           Eq 3.4 



Coastal Vulnerability assessment of Kien Giang 
 

45 | P a g e  
 

 

𝑜𝑟 𝐴w =  �

1 1.6 8

1/1.6 1 2.55

1/8 1/2.55 1

�  �

0.5996

0.3038

0.0962

� =  �

1.8555

0.9239

0.2903

� 

 

The eigen value is obtained from the summation of products between each element of eigen 

vector and the sum of columns of the reciprocal matrix. λmax is the largest eigen value of the 

matrix A. For the example of Preston et al. (2008), according to Eq 3.4, with n = 3 (the 

number of comparisons), λmax is obtained from Eq 3.5: 

 λmax =  1
n

 ∑ (Aw)i
wi

k
i=1                                                                                𝐄𝐪 𝟑.𝟓   

 

or λmax =  
1
3

 �
1.8555
0.5996

+
0.9239
0.3038

+
0.2903
0.0962

� = 3.051 

  

Saaty proposed a measure of consistency, called the consistency index (CI) as deviation or 

degree of consistency that can be obtained from Eq 3.6, and the consistency ratio (CR) can be 

calculated using Eq 3.7. 

CI =  
λmax − n

n − 1
   or   CI =

3.051 − 3
3 − 1

= 0.0255                                𝐄𝐪 𝟑.𝟔 

                                               
and,  
 

CR =  
CI
RI

  or  CR =  
0.0255

0.52
= 0.049                                                   𝐄𝐪 𝟑.𝟕 

 

Where, the random consistency index (RI) is obtained from a randomly generated pair-wise 

comparison matrix. The values of the RI from matrices of order 1 to 15 as proposed by Saaty 

(1980), are presented in Table 3.2.   

     

Table 3.2 The Random Consistency Index (RI) by Saaty (1980). 
 n  1  2  3 4 5 6 7 8 9 10 11 12 13 14 15 
RI 0  0  0.52  0.89  1.12  1.26  1.36  1.41  1.46  1.49  1.52 1.54 1.56 1.58 1.59 

Note: n: numbers of variables; RI: the random consistency index by Saaty (1980) 
 
In general, a CR of 0.1 or less is considered acceptable. If the value is higher, the judgments 

may not be reliable and should be elicited again. More recently, Saaty (1994) suggested CR 

thresholds of 0.05 and 0.08 for 3 by 3 and 4 by 4 matrices, respectively. Considering that the 
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CR value obtained in this example (0.049; Eq 3.7) is inferior to proposed limits, the 

consistency of the matrix is accepted and the normalised weights are confirmed as 0.5996 

(Exposure), 0.3038 (Sensitivity), and 0.0962 (Adaptive Capacity), as demonstrated by Eq 3.3.  

 
A pair-wise comparisons matrix and derived relative weights of the three components: 

exposure, sensitivity, and adaptive capacity, measuring the impacts of sea-level rise by using 

AHP for the example of Preston et al. (2008), is sumarised in Table 3.3. 

 
Table 3.3 Pair-wise comparisons matrix, comprising three components: exposure, sensitivity, 
and adaptive capacity, and relative weights by AHP, derived for the study of Preston et al. 
(2008). 
CVI E  S  A  w 

E  1 1.6 8 0.5996 
S  1/1.6 1 2.55 0.3038 
A  1/8 1/2.55 1 0.0962 

Note: CI = 0.0255; RI = 0.52; CR = 0.049 (< 0.05: acceptable). 
 

Computing the overall composite weight of each alternative 

Once the priorities of components of different levels are accepted, in order to obtain a final 

ranking of the alternatives ai, the priorities are aggregated as follows: 

S (ai) =  �wkSk(ai)                                                                   𝐄𝐪 𝟑.𝟖
k

 

 
Where, wk is the local priority of the component k (level 1) and Sk(ai) is the priority of  

attribute (level 2) with respect to component k of the upper level. 

 
Subsequently, the normalized weights of each one of the three components (results from Eq. 

3.3) are aggregated to Eq 3.8, in order to obtain the final composite vulnerability index to 

each alternative, as indicated in Eq 3.9: 

V = 0.5996 E + 0.3038 S + 0.0962 A                                     Eq 3.9 

 

Similarly, in the example of constructing a climate change vulnerability index (CCVI) of 

Yusuf and Francisco (2009), for the sub-national areas (regions/districts/provinces) in 

Southeast Asia, including the Kien Giang province, as mentioned in chapter 2, the three key 

components: E, S , and A were assigned as of equal importance. Weights of E, S, and A in 

AHP, therefore, are computed as 0.3333, 0.3333, and 0.3333, respectively, with CR = 0.0000.  

Table 3.4 summarises the relative weights of components with regard to climate change and 
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sea-level rise impacts derived from AHP from the assessments conducted by Preston et al. 

(2008) and Yusuf and Francisco (2009). 

 

Table 3.4 A summary of relative weights used in AHP calculation for the three components: 
exposure, sensitivity, and adaptive capacity with regards to vulnerability to climate change 
induced sea-level rise.  

References/ 
Component 

Climate related hazards study of  
Yusuf and Francisco (2009) 

Impacts of sea-level rise study of 
Preston et al. (2008)  

Original weights Relative weights, w  Original weights Relative weights, w  
Exposure 1/3 0.3333 2 0.5996 
Sensitivity 1/3 0.3333 1 0.3038 
Adaptive capacity 1/3 0.3333 0.5 0.0962 
The consistency ratio  0.0000  0.0490 

 

Table 3.4 shows that the results derived from AHP may be different in studies using similar 

approaches depending on the subjective and objective judgments in the assessment. For 

instance, Preston et al. (2008) judged the adaptive capacity component to have a low influence 

on coastal vulnerability in terms of impacts of sea-level rise, assigning it a weight of 0.5, 

while they judged the exposure component to have a particularly high influence on 

vulnerability assigning it a weight of 2. On the other hand, Yusuf and Francisco (2009) 

assessed that the three components exposure, sensitivity, and adaptive capacity were of equal 

importance with respect to the objective of measuring CCVI, focusing on climate related 

hazards, and assigned a weight of 1/3 for each component respectively.  

 

In summary, AHP plays an important role because it captures both subjective and objective 

evaluation measures. The AHP process provides a logical framework to determine the ranking 

of each alternative towards achieving the objective. Furthermore, the AHP tool provides a 

useful mechanism for checking the consistency of the judgments measures and alternatives 

suggested by decision-makers, therefore, reducing the subjective judgments in decision 

making. The AHP tool will be used to assess the vulnerability of the seven coastal districts 

along the Kien Giang province to sea-level rise, and results, and discussion will be presented 

in the following chapters 5, and 6. 

 

3.4.2 Application of Geographic Information Systems 

GIS has been considered a powerful platform in terms of assessment, planning, and 

management of landuse, natural resources, environment and climate change for some time 

(Hopley et al., 2006; McIntyre, 2007; Preston et al., 2008; Schleupner, 2009; Vafeidis et al., 
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2004; Woodroffe et al., 2007). The ArcGIS 10 software application developed by ESRI, was 

used for this assessment of Kien Giang. Once information and datasets had been obtained 

from a diversity of sources, various tools, in particular, the Spatial Analyst Tools, were used 

to generate a series of thematic layers determined from selected variables or sub-variables 

(see Figure 3.2). These tools will be further explained in sub-section 3.4.2.1. 
 

 
Figure 3.2 Schematic outline of information and datasets input into GIS to generate thematic 
layers in the coastal vulnerability assessment, comprising of the three components: exposure, 
sensitivity, and adaptive capacity. 
 

Additionally, two important extension tools:  

•  The DSAS 4.3 tool (Thieler et al., 2009), an extension to ArcMap 10 developed by 

the United States Geological Survey (USGS), was used to assess temporal shoreline change 

(see details in sub-section 3.4.2.2).  

•  The AHP extension tool developed by the Satecs was used to derive the relative 

weights of variables by judging their importance, and obtaining an overall aggregated ranking 

of the alternatives with regard to vulnerability (see details in sub-section 3.4.2.3). 
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Finally, the areas (or hotpots) most likely to be vulnerable were identified and visualised in 

the study area, using a series of maps (e.g., thematic sub-components and components). 

Variables, research information, and datasets for the study area will be further described in 

section 3.5. Figure 3.3 summarises variables, and sub-variables used in the sub-components, 

and their hierarchical incorporation into components using the AHP method (of MCDM) in 

GIS, to obtain a vulnerability levels map for the study area. The hierarchical structure used to 

map coastal vulnerability in the study area is shown in Figure 3.3. The coastal vulnerability 

assessment was divided into six levels (see Figure 3.1), whereas background for the study 

area will be presented in the next chapter, chapter 4. 

•  Overall vulnerability was assigned as level 0.  

•  Level 1 consists of the three components: exposure, sensitivity, and adaptive capacity. 

•  Level 2 comprises eight sub-components: three geo-physical sub-components: 

seawater incursion, flood depth, and shoreline change; two social sensitivity sub-components: 

societal factors, and landuse factors; and, three adaptive capacity sub-components: 

socioeconomic, technological, and infrastructure conditions.  

•  Beyond this, a further twenty-two variables and twenty-four sub-variables, related to 

vulnerability were also assigned to levels 3, and 4 respectively.  

•  The mapping was undertaken for the seven coastal districts of the Kien Giang coast: 

Ha Tien, Kien Luong, Hon Dat, Rach Gia, Chau Thanh, An Bien, and An Minh, related to 

alternatives was assigned to the lowest level.  
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Figure 3.3 Variables and sub-variables used in the sub-components and their hierarchical 
incorporation into components using the AHP method (of MCDM) in GIS, to obtain a 
vulnerability levels map of the study area. 
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3.4.2.1 The Spatial Analyst Tools  

The diversity of data sources, formats, and spatial scales from which information was derived 

for the study area necessitated conversion to a common spatial reference before they could be 

integrated. A spatially homogenous scale of the 30 m resolution (cell-size of 30 m) raster data 

was used over the seven coastal districts along the Kien Giang coast. This represented the 

highest resolution at which the majority of datasets were available for the region, 

corresponding with 30x30 m, and 60x60 m in area of each cell-size of Landsat images 

downloaded freely from databases of the United States Geological Survey (USGS) and the 

Global Land Cover Facility, Maryland (GLCF). A digital elevation model (DEM), with the 15 

m resolution (15x15 m in area of each cell-size), was obtained from the database of the 

National research program of science and technology (KHCN-BDKH/11-15; code 

BDKH.08), undertaken by Tran et al. (2013). Other datasets were processed to match this 

spatial reference using one of the following methods: 

•  For vector/polygon data: vector polygon data were converted to the 30 m resolution 

raster by using The Conversion Tools in the ArcToolbox. 

•  For vector/polyline and point data: the Kernel density tool in the Spatial Analyst 

Tools was used in the environment settings with the 30 m resolution of raster analysis.  

•  For grid raster data: data were converted to integer raster data by using the Math 

tool in the Spatial Analyst Tools in the environment settings with the 30 m resolution of raster 

analysis. 

 
Data conversion introduced uncertainty into the variables. However, the implications of data 

heterogeneities for vulnerability estimates were judged to be negligible for several reasons.  

•  All variables were converted to a qualitative ranking and maps represent relative 

vulnerability, as opposed to absolute measures of consequence or impact. Once data layers 

were converted to a common spatial reference, data were assigned a qualitative ranking from 

1 to 9, with 1 representing low exposure, low sensitivity or high adaptive capacity, and 9 

representing high exposure, and sensitivity or low adaptive capacity. In most instances, 

scoring was accomplished by using the Manual classification method to reclassify data to a 

classification range, based on its specific contribution to sea-level rise effects. In some 

instances, the Jenks’s Natural Breaks algorithm (Jenks) was used to reclassify data to assign 

the scores from 1 to 9 (see Table 3.14). One the one hand, a method of Manual data 

classification refers to seek to partition data into classes according to natural groups in the 

data distribution. One the other hand, Natural Breaks occur in the histogram at the low points 
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of valleys. Breaks are assigned in the order of the size of the valleys, with the largest valley 

being assigned the first natural break.  

•  It is import to identify the functional relationship between the variables and 

vulnerability (the correlation structure). Two types of functional relationship are possible: 

vulnerability increases as the value of the variables increases (or decreases in the case of 

adaptive capacity). For instance, presumably a system is likely to be significantly vulnerable 

if it is highly exposed to climate change impacts, if it is highly sensitive to those impacts, and 

if it has a low capacity to cope with those impacts. Therefore, the exposure, and sensitivity 

have proportional relationships regarding their contributions to vulnerability, whereas 

adaptive capacity has inversely proportional relationships to vulnerability. These functional 

relationships should be taken into account in aggregation of the variables to avoid misleading 

inferences. Accordingly, variables were converted to a quantitative scale and the functional 

relationship normalised between the variables and vulnerability to a standard spatial reference 

prior to their integration. Normalisation of individual variables, therefore, provides a linear 

transformation that preserves the ranking, and the correlation structure of the original data, 

and allows for variables with different scales to be integrated (Tran et al., 2010).  

•  Vulnerability for the study area was assessed through the aggregation of three maps 

representing separately the different components of vulnerability: exposure, sensitivity, and 

adaptive capacity. Integration of variables for each component of vulnerability was achieved 

by using AHP to calculate the relative weights of all variables. Different sub-components, and 

the three components were weighted in the calculation of vulnerability, in regard to their 

relative importance. For example, in some instances, the climate conditions to which an area 

is exposed may be a secondary consideration, with respect to vulnerability in comparison to 

the sensitivity of the people or infrastructure. Similarly, capacity to adapt does not necessarily 

mean that vulnerability does not exist, particularly for those areas routinely exposed to 

unavoidable hazards. Finally, the aggregation of the three component layers was 

accomplished by summing the relative weights from the three vulnerability layers, with the 

result again being re-scored to a scale/ranking from 1 to 5, with 1 representing very low 

exposure, very low sensitivity or very high adaptive capacity and 5 representing very high 

exposure, very high sensitivity or very low adaptive capacity. The application of AHP to 

study area will be further discussed in sub-section 3.4.2.3.  
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3.4.2.2 The Digital Shoreline Analysis System extension tool  

The DSAS 4.3 tool (Thieler et al., 2009), an extension to ArcGIS 10 developed by the United 

States Geological Survey (USGS), was used to determine past rates of shoreline change (e.g., 

erosion) over a period of time in the seven coastal districts along the Kien Giang coast. Figure 

3.4 shows the DSAS icon run in the ArcMap environment.  

 

 
Figure 3.4 The DSAS icon run in the ArcMap environment. 
 

Landsat images downloaded from the database of the USGS, and the GLCF, over the 40-year 

period along the Kien Giang coast, were geo-referenced and rectified, and then digitised to 

create a single shoreline position (e.g., format shapefiles as polylines) in each specific year. 

Details of these images will be presented in sub-section 3.5.2.3.  

 

The initial preparation step is taken to reference all shorelines to the same features (e.g., 

water/vegetation indicators selected). Each shoreline represents a specific position at a 

particular time period, and must be assigned to that date in the shoreline feature-class attribute 

table (Thieler et al., 2009). The baseline is constructed by the user and serves as the starting 

point for all transects cast by the DSAS application. A baseline is defined and transects are 

cast, with change determined in position at which transects intersect shorelines. Transects were 

placed perpendicular to the shorelines and a baseline along the Kien Giang coast to calculate 

EPR and NSM. These results were derived to evaluate the areas of shoreline change and their 

trends (e.g., erosion, stability, and accretion) for the study area. DSAS uses a measurement 

baseline method to calculate rate of change statistics for a time series of shorelines. The 

process of historical shoreline interpretation is presented in Figure 3.5. 
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Figure 3.5 Diagram illustrating the steps to establish transects locations and compute change 
rate statistics by using DSAS, (derived from Thieler et al., 2009). 
 

Three statistical methods were used to calculate the rate of shoreline change based on 

distances between positions from 1973 to 2013; these include the end point rate (EPR), the net 

shoreline movement (NSM) and the linear regression rate (LRR): 

•  The end point rate was calculated by dividing the distance of shoreline movement by 

the time elapsed between the oldest and the most recent shoreline. The major advantages of the 

EPR are the ease of computation and minimal requirement of only two shoreline dates.   

EPR (m/ year) = distance/ (time between the oldest and youngest shorelines).  

•  The net shoreline movement was used to calculate a distance, not a rate. The 

NSM is associated with the dates of only two shorelines. It reports the distance between the 

oldest and youngest shorelines for each transect. This represents the total distance between the 

oldest and youngest shorelines. 

NSM (m) = distance between the oldest and the youngest shorelines.  
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•  A linear regression rate of change statistic was determined by fitting a least 

squared regression line to all shoreline points for each individual transect. The linear regression 

rate is the slope of the line. 

 
There are a number of uncertainty sources that may affect historical shoreline mapping and 

change rates (Cenci et al., 2013; Fletcher et al., 2003; Morton et al., 2004; Thieler et al., 

2009). In this study, seasonal error, digitising error, pixel error, and geometric or rectification 

error were considered as sources of uncertainty. These errors were assumed to be uncorrelated 

and random, and quantified by calculating the square root of the sum of the squares of all 

uncertainty factors (Fletcher et al., 2003). The positional errors for each period can be 

incorporated into an error for each transect. The value can be annualised to provide an 

estimation for the shoreline change rate at any given transect (Morton et al., 2004).  

 

Results, and discussion using the DSAS tool for coastal vulnerability assessment along the 

Kien Giang coast are presented in chapter 5 (sub-section 5.3.3). 

 
3.4.2.3 The Analytical Hierarchy Process extension tool  

The AHP extension tool, developed freely for non-commercial use only by the Satecs, is run 

in the ArcMap environment as shown in Figure 3.6. AHP enables all variables, which are 

considered relevant for making a decision related to the objective to be compared against each 

other in a pair-wise comparison matrix, expressing the relative preference among the 

variables. Input requirements are the classified raster datasets. ArcMap performs a raster 

operation and calculates the weighted sum of the previously defined variable rasters. The 

number of variables, which can be used for the analysis, is limited to 20 and a minimum of 

two rasters is required.  
 

 
Figure 3.6 The AHP icon run in the ArcMap environment. 
 

All variables were converted to classified integer raster datasets, prior to using AHP, to 

estimate the overall priorities or relative weights for the study area. The range of classified 
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variables used is summarised in Table 3.5. Results and discussion using the AHP tool for 

coastal vulnerability assessment along the coastal districts in Kien Giang are presented in 

chapters 5, and 6. 

 

3.5 Variables, research information and datasets for the study area 

Since vulnerability is multi-dimensional, dynamic in time, scale-dependent and site-specific, 

different variables were selected according to the scale of the analysis, and the available data 

from a range of sources, such as field observations, or statistical results. The first important 

step in indicator-based approaches for vulnerability assessment, as outlined in the literature 

review in the previous chapter, is to select the variables. Therefore, it is essential to identify 

the criteria for the selection of key variables involving components, sub-components, 

variables or sub-variables, which can be used for a specific study area. The aim is to compile 

a list of proxies using the following criteria. First, the sub-variables, variables, sub-

components, and components must describe the local physical and social factors as 

determinants contributing to or influencing vulnerability of a specific system. Second, the 

data must be available, accessible, reliable, and reducible for each component. Finally, 

variables need to be independent, measurable, and relevant to collection. 

 

3.5.1 Variables for coastal study-site vulnerability assessment 

As summarised in sub-section 3.4.2.1, in order to construct a composite index of vulnerability 

for the study area (assigning the objective of measuring vulnerability as level 0), data were 

needed at several levels. This included 3 components: exposure, sensitivity, and adaptive 

capacity (level 1); 8 sub-components: 3 geo-physical sub-components: seawater incursion, 

flood depth, and shoreline change, and 5 social sub-components: societal sensitivity, landuse 

sensitivity, and three adaptive capacity sub-components: socioeconomic, infrastructure, and 

technological (level 2); beyond which a further 22 variables (level 3) and 24 sub-variables 

(level 4) were assigned according to specific relationships between the variables and 

vulnerability (see Figure 3.3). In fact, variables were, obtained from a diverse array of 

sources, including data on current and future scenarios, and in different formats. Table 3.5 

presents the selected variables for the assessment of the study area. In addition, the spatial 

extent or resolution of the original dataset appears in parentheses following the variable. 
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Table 3.5 Datasets acquired used in this assessment. 
Exposure Component Sensitivity Component Adaptive Capacity Component 
1. Elevation (raster 15m) 
2. Flood depth for 3 scenarios: 
baseline (in 2000), in 2030, 
and in 2050 (raster 15m and 30m) 
3. Shoreline displacement 
(buffer 1km/ raster 30m and 60m) 
4. Adjacent coastal landuse 
(convert/ raster 30m) 
5. Seawater incursion for 3 
maps/scenarios: in 2010, in 
2030, and in 2050 (raster 15m and 
30m) 
6. Soil types (convert/ raster 30m) 
 
 

Societal factors (statistical data district) 
1. Population density (statistical data 
district/ convert / raster 30m) 
2. Rural people (statistical data district/ 
convert / raster 30m) 
3. Female people (statistical data 
district/ convert / raster 30m) 
4. Ethnicity (district survey/ convert/ 
raster 30m) 
 
Landuse factors (convert / raster 30m) 
5. Agricultural land (convert / raster 
30m) 
5.1 Rice cropland (convert / raster 
30m) 
5.2 Annual planted land (convert / 
raster 30m) 
5.3 Perennial cropland (convert / 
raster 30m) 
5.4 Forest land (convert / raster 30m) 

5.5 Fishery land (convert / raster 30m) 

6. Non-agricultural land (convert / 
raster 30m) 
6.1 Special landuse (convert / raster 
30m) 
6.2 Urban residential area (convert / 
raster 30m) 
6.3 Rural residential area (convert / 
raster 30m) 
7. Unused land (convert / raster 30m) 
 

Socioeconomic capability 
1. Income (district survey/ convert/ raster 30m) 
2. Poverty ratio (statistical data district/ convert / 
raster 30m) 
3. Education (statistical data district/ convert/ raster 
30m) 
3.1 Kids per kindergarten school (statistical 
data district/ convert/ raster 30m) 
3.2 Kids per kindergarten teacher 
(statistical data district/ convert/ raster 30m) 
3.3 Pupils per primary and secondary 
school (statistical data district/ convert/ raster 30m) 
3.4 Pupils per primary and secondary 
teacher (statistical data district/ convert/ raster 30m) 

4. Health services (statistical data district/ 
convert/ raster 30m) 
4.1 Inhabitants per health establishment 
(statistical data district/ convert/ raster 30m) 
4.2 Inhabitants per health staff (statistical 
data district/ convert/ raster 30m) 
 
Infrastructure capability 
5. Houses (Households having solid 
houses) (statistical data district/ convert/ raster 30m) 
6. Communication access (Fixed-line 
telephone subscribers) (statistical data district/ 
convert/ raster 30m) 
7. Road capability (a Kernel function radius 5km/ 
raster 30m) 
 
Technological capability 
8. Irrigation and drainage capability 
(raster 30m) 
8.1 Sluice gate capability (raster 30m) 
8.2 Canal capability (raster 30m) 
8.3 River density (raster 30m) 
8.4 River embankment capability (raster 
30m) 
8.5 Sea dyke capability (raster 30m) 
9. Electricity capability (raster 30m) 
9.1 Transformer capability (raster 30m) 

9.2 Voltage power line capability (raster 
30m) 

 

As seen in Table 3.5, the coarsest resolution of rasters used for the study area is 60 m, derived 

from the Landsat images of 60x60 m in area of each cell-size. The sources of datasets for each 

component, and explanations of variables will be given in the following sub-sections. 

However, in the case of sub-components related to societal sensitivity, socioeconomic and 

infrastructure adaptive capacity, statistical data are only accessible at the spatial extent of the 

district, which imposes some further limitations. 
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3.5.2 Research information and datasets for the study area 

Research information and primary and secondary datasets will be outlined in the following 

sub-sections to clarify selected variables and accessible data sources respectively for the study 

area. An explanation of the proxies selected for variables for the study area is presented in 

Tables 3.6, 3.8, and 3.9, with respect to the three key components: exposure, sensitivity, and 

adaptive capacity, respectively.  

  

3.5.2.1 Explanations of variables and main sources  

For the study area, flooding and inundation can result from three main types of floods. These 

are river floods, coastal floods, and urban floods. Three proxies, as seen in Table 3.6, would 

be appropriate to describe exposure to the flood risk sub-component: depth, duration, and 

flow velocity (Nguyen, D. M. et al., 2011). In fact, there is insufficient data for each of these 

for the study area. However, Dinh et al. (2012) indicate that the depth of flood proxy is 

considered the most important of these. Therefore, flood depth was chosen as a proxy of flood 

impacts for the study area.  

 

Table 3.6 Variables and proxies for the exposure component of the assessment. 
Sub-component Variable Proxy Sources 
Flood  Depth A range of flood depth, m 

Area of inundation 
IMHEN (2010a); 
Mackey and Russell 
(2011); Mainuddin et al. 
(2010); Tran et al. 
(2013) 

 Duration  Not available - NA 
 Velocity  NA 
 DEM Elevation, m (a MSL) Tran et al. (2013) 
    
Seawater 
incursion 

Salinity A range of salinity incursion, ppt 
Area of incursion 

Mackey and Russell 
(2011); Le and Le (2013) 

 Soil types ASS classified by FAO MONRE, undated and 
modified by the author, 
2013  

    
Shoreline change End point rate A rate of shoreline displacement, 

m/year; Buffer 1km 
Landsat images &DSAS 

 Adjacent coastal 
landuse 

LULC, however focused on forests 
tolerant to brackish conditions 

MARD, 2010 and 
modified by the author, 
2013 

 

Three scenarios of flood depth for the study area were obtained (with the necessary 

permissions) from models built as part of relevant projects (IMHEN, 2010a; Mackey and 

Russell, 2011; Mainuddin et al., 2010; Tran, H. T. et al., 2013). These include:  
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•  A baseline scenario represented by extreme historical flood depth that was observed 

in the year 2000. 

•  Scenario Flood 1 (F1) projected future events for 15 cm sea-level rise under an A2 

emissions scenario through upstream discharge through Kratie station in Cambodia from June 

to November (in high-flow season) by the year 2030. 

•  Scenario Flood 2 (F2) projected future events for 30 cm sea-level rise by the year 

2050 (see a summary of these scenarios in Table 3.7).  

 

In addition, an elevation proxy, derived from the DEM was considered as another proxy for 

the flood risk sub-component (Kuenzer et al., 2013). The DEM was obtained from the project, 

undertaken by Tran et al. (2013), and will be described in sub-section 3.5.2.2. 

 

Additionally, three simulated scenarios of salinity incursion were obtained for the seawater 

incursion sub-component from a collaborative project between Sinclair Knight Merz (SKM), 

the Vietnam Institute of Meteorology, Hydrology, and Environment (IMHEN), and the Kien 

Giang Peoples Committee, undertaken by Mackey and Russell (2011). Together, three maps 

of maximum seawater incursion in specific years were used for the analysis obtained from a 

national research program of science and technology (KHCN-BDKH/11-15, code BDKH.05) 

on the causes of seawater incursion and solutions for the MRD, undertaken in the context of 

climate change by Le and Le (2013). As part of that project, salinity was recorded from 32 

permanent stations distributed along the MRD coast and some mobile stations to generate 

maximum seawater incursion maps for many years. These include:  

•  A baseline scenario represented by extreme historical drought and seawater incursion 

that was observed in the year 1998. 

•  A projected future scenario Drought 1 (D1), representing seawater incursion together 

with upstream discharge through Kratie station in May (the lowest flow month during low-

flow season), in association with 15 cm sea-level rise by the year 2030. 

•  A similar projected future scenario Drought 2 (D2), with 30 cm sea-level rise by the 

year 2050.  

•  Maps of maximum seawater incursion in 1998, 2010, and 2011 obtained from salinity 

data records (see a summary of these scenarios in Table 3.7).  
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Soil types provide an indication of susceptibility to salinisation, and maps soil types, as a 

suitable proxy, were obtained from the Ministry of Natural Resources and Environment of 

Vietnam (MONRE). These were undated, and have been modified by the author in 2013 (see 

chapter 4, Appendix 3c). There are three naturally dominant soil types in the MRD 

comprising alluvial soils found along the Mekong and Bassac Rivers; saline soils distributed 

along coastal areas; and acid sulphate soils (ASS) where soils or sediments containing iron 

sulphides, the most common being pyrite (FeS2), are distributed on both sides of the Mekong 

and Bassac Rivers. These main soil types were classified by FAO (see Table 3.14) and it will 

be discussed in the following section of next chapter (see sub-section 4.4.2.4). 

 

Table 3.7 A summary of maps/ scenarios of flood depth, and seawater incursion used in 
assessments for study area. 

No Sub-component Abbreviation Explanation Source 
1 Flood risk    IMHEN 

(2010a); 
Mackey and 
Russell (2011); 
Mainuddin et 
al. (2010); Tran 
et al. (2013) 

1.1  Baseline (in 2000) Simulated extreme historical flood depth 
that occurred in September 2000, m 

 

1.2  F1 (by 2030) Projected simulation of flood depth of 15 
cm sea-level rise in an A2 emissions 
scenario by 2030, m 

 

1.3  F2 (by 2050) Projected simulation of flood depth of 30 
cm sea-level rise in an A2 emissions 
scenario by 2050, m 

 

     
2 Seawater 

incursion 
   

2.1  Baseline (in 1998) Simulated extreme historical drought and 
salinity incursion that occurred in 1998, ppt 

Mackey and 
Russell (2011)  

2.2  D1 (by 2030) Projected simulation of salinity incursion 
of 15cm sea-level rise by May 2030, ppt 

2.3  D2 (by 2050) Projected simulation of salinity incursion 
of 30cm sea-level rise by May 2050, ppt 

2.4  Max 1998 Collect salinity data from stations to  map a 
maximum seawater incursion in 1998, ppt 

Le and Le 
(2013) 

2.5  Max 2010 Collect salinity data from stations to  map a 
maximum seawater incursion in 2010, ppt 

2.6  Max 2011 Collect salinity data from stations to  map a 
maximum seawater incursion in 2011, ppt 

 

The end point rates (EPRs) from the DSAS analysis, were assigned as one of proxies of the 

shoreline change, in terms of proxies for the shoreline change sub-component (see sub-section 

3.4.2.2). Ten Landsat images were used to compute and interpret the shoreline change for the 

duration of 40 years for the study area, the details of which will be presented in sub-section 
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3.5.2.2. Additionally, the adjacent coastal landuse, focusing on area of mangrove forests along 

the Kien Giang coast was chosen as the other proxy that was obtained from the GIS database 

of Ministry of Agriculture and Rural Development of Vietnam (MARD, dated 2010), and then 

modified by the author in 2013 (see chapter 4, Appendix 9a.2c). The effectiveness of 

mangrove forest coverage to protect the coastline naturally will be further discussed in the 

next chapter, sub-section 4.5.3.3. 

 

Table 3.8 Variables and proxies for the sensitivity component of the assessment. 
Sub-component Variable Proxy Source/ Tool 
Societal factors Population density Persons/ km2 KGI statistics 2012 
 Rural population Percentages of rural persons living in rural 

areas  
(i.e., Rural population vs. Urban population 
vs. Total population) 

KGI statistics 

 Gender Percentages of females living in an area  
(i.e., Female vs. Male vs. Total population) 

KGI statistics 

 Ethnicity Percentages of ethnic minorities population 
(i.e., non-Kinh (minority people) vs. Kinh 
(majority people) vs. Total population) 

KGI surveys 2011 

    
Landuse factors Agriculture land Agricultural, aquacultural and forest land, 

land for salt production pond, etc 
MONRE dated 
2008, modified by 
the author in 2013 

 Non-agriculture 
land 

Urban and rural settlement, and public 
infrastructure: roads, bridges, airport, 
hospitals, offices, cemetery, water bodies, 
etc 

 

 Unused land Bare-land, conservative land  
 

Information on population characteristics is important in terms of sensitivity, as seen in Table 

3.8, and proxies of societal sensitivity factors have been chosen in the sub-component of 

sensitivity (Samson et al., 2011). The assumption here is that regions that are relatively less 

inhabited will be less vulnerable compared to regions with high population densities, given 

the same degree of exposure to climate hazards. The proxies of societal sensitivity factors 

such as rural population, (i.e., rural vs. urban vs. total population), gender of population (i.e., 

female vs. male vs. total population), and ethnicity, (i.e., non-Kinh vs. Kinh vs. total 

population) will be described in the following sections. Variables related to population 

density, rural population, gender, ethnics were obtained from the statistical yearbook of the 

Kien Giang statistical office (2012) and surveys of the Kien Giang district in 2011 (see 

chapter 4, Appendix 9c). In terms of the landuse sensitivity sub-component, landuse 

categories (i.e., agriculture land vs. non- agriculture land vs. unused land) (Nguyen et al., 

2012; Samson et al., 2011) were classified by MONRE to be used as proxies of this sub-
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component. The landuse map was derived from the GIS database of MONRE dated 2008, and 

was then modified by the author in 2013 (see chapter 4, Appendix 9a.2).  

 
Table 3.9 Variables and proxies for the adaptive capacity component of the assessment. 

Sub-component Variable Proxy Source/ Tool 
Socioeconomic Income Annual average income per capita KGI surveys 
 Poverty ratio Percentage of poverty per household KGI statistics 
 Education system Contribution of education with regard to: 

- Numbers of kids per kindergarten school 
- Numbers of kids per teacher at 
kindergarten school 
- Numbers of pupils per primary and 
secondary school 
- Numbers of pupils per teacher at primary 
and secondary school 

KGI statistics 

 Health service Contribution of health services with regard 
to: 
- Numbers of inhabitants per medical and 
pharmacy staff  
- Numbers of inhabitants per health 
establishment 

KGI statistics 

    
Infrastructure Communication 

access 
Numbers of inhabitants having per fixed-
line telephones subscriber registered under 
users addresses 

KGI statistics 

 Road capability Road capability (a Kernel function, radius 5 
km) with regard to: 
- National or highway road level 
- Provincial road level 
- District road level and others 

Tran et al. (2013) 

 Houses Percentage of households having (fully and 
partly) solid houses  

KGI statistics 

    
Technological Irrigation and 

drainage capability 
Irrigation and drainage capability with 
regard to: 
- Sluice capability 
- Canal capability 
- River density  
- River embankment capability 
- Sea dyke capability 

SIWRP GIS 
database, dated 
2010 

 Electricity 
capability 

Electricity capability with regard to: 
- Transformer capability 
- Voltage power line capability 

Tran et al. (2013) 

 

As seen in Table 3.9, there were several proxies for the three sub-components of variables for 

the adaptive capacity component. First, the socioeconomic sub-component, as used here, 

comprised variables of income, poverty ratio, education, and health services. Second, 

infrastructure sub-component variables consisted of types of houses (e.g., solid houses), 

communication access (e.g., fixed-line telephone subscribers), and road capability. Third, 

technological sub-component variables refer to irrigation and drainage and electricity 

capabilities. Accordingly, variables related to income, poverty ratio, education, health 
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services, communication access, solid houses were obtained from the statistical yearbook of 

the Kien Giang statistical office (2012) and the Kien Giang’s district surveys in 2011 (see 

chapter 4, Appendices 9d.1, and 9d.2). Road, and electricity network data were obtained from 

the database of the project undertaken by Tran et al. (2013) (see Appendices 9d.2, and 9d.3, 

respectively), while the irrigation and drainage network data were obtained from the Southern 

Institute for water resources planning of Vietnam (SIWRP) GIS database dated 2010 (see 

Appendix 9d.3). Explanations are given in Table 3.10. All these variables or proxies are 

further described in the next chapter, chapter 4. 

 
Table 3.10 Explanations of proxies of variables for the assessment. 

No. Name Explanation References/ Notes 

 Exposure   
 Flood    
1 Flood depth The depth (m) of flood events Tingsanchali and Karim 

(2005), Van et al. 
(2013), and Appendices 
8c 

2 DEM Elevation Figure 4.4 
 Seawater incursion   
3 Salinity Salinity (ppt) that affects the productivity/ yield of paddy crops 

and the fishery sector. 
Le (2003), and 
Appendices 8d 

4 Soils types Different soil types as classified by FAO Appendix 3c 
 Shoreline change   
5 End point rates m/ year Thieler et al. (2009) 
6 The adjacent coastal 

landuse 
Landuse, focused on land for mangroves fringes tolerant to 
brackish water (i.e., along the coast or seawater intruded areas) 

 

    
 Sensitivity   
 Societal factors   
7 Population density Higher population density seems to be more vulnerable to 

impacts of sea-level rise. Local population density is slightly 
higher than the national density.  

Appendix 9c 

8 Rural people Based on statistical data, there are about 70% of people living in 
rural areas in Vietnam where they can get fewer opportunities to 
increase their standard of living or infrastructure. Their 
livelihoods depend on natural resources, activities such as 
agriculture, fisheries, etc. As such, they are likely to be 
vulnerable groups to impacts of sea-level rise. 

Appendix 9c 

9 Female people Men and women will be faced with different vulnerabilities to 
climate change impacts due to existing inequalities such as, their 
role and position in society, access to resources and power 
relations that may affect the ability to respond to the effects of 
climate change. In fact, there exits inequalities in Vietnam that 
females, particularly rural females have lesser roles and 
positions, and fewer opportunities in society and their family. 
Females are likely to be a group vulnerable to potential impacts 
of sea-level rise. 

Appendix 9c 

10 Ethnic minorities 
groups 

The major ethnic group is “Kinh/Vietnamese” whilst remaining 
groups are the minority groups. They are “Hoa/Chinese”, 
“Cham”, and “Khmer/Cambodian”. There exists a strong 
correlation between ethnicity and poverty in the study area which 

Appendix 9c 
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is related to the percentage of non-Kinh groups in the local 
population. 

 Landuse factor   
11 Landuse Landuse is classified by MONRE. These include 3 main landuse 

categories: agriculture land, non agriculture land, and unused 
land. 

Appendix 4 

    
 Adaptive capacity   
 Socioeconomic   
12 Income Income is calculated as the total amount of money received, 

including salaries, revenues from agriculture, forestry, 
aquaculture, industry, construction, trade, services, etc. High 
income is presumed to indicate a higher capacity to invest in 
facilities to respond to sea-level rise. 

Appendix 9d.1 

13 Poverty ratio The new poverty thresholds, used to decide eligibility for social 
welfare benefits, have now been set at VND 400 000 (US$ 20.5) 
per person per month for rural households; and VND 500 000 
($25.6) per person per month for urban households. Regions with 
households below this standard are considered poor. 
(The government has changed poverty standards that will apply 
for the coming five years, from 2011 to 2015). The poorest 
people are least able to survive the impacts of climate change 
induced sea-level rise. 

Appendix 9d.1 

14 Education system The education system of the study area includes kindergartens, 
and primary and secondary level. Children aged 5 and under 
attend kindergartens, while children aged 6 and older attend 
primary and secondary schools.    

Appendix 9d.1 

15 Health services Health services include medical and pharmacy staff, and 
establishments. 

Appendix 9d.1 

 Infrastructure   
16 Communication access Communication access is indicated by the number of inhabitant 

sharing a fixed-line telephone subscriber registered under users 
address.  

Appendix 9d.2 

17 Road Roads include three main levels: national or highway roads, 
provincial roads, and district roads 

Appendix 9d.2 

18 Solid houses Indicated by the number of dwellings with the pier, the outer 
wall and the roof made of solid materials such as concrete, bricks 
or tiles. Those can be permanent/ fully solid house with a 
longevity greater than or equal to fifty years; or partly solid 
house with reduced longevity. Percentage of households having 
solid houses. 

Appendix 9d.2 

 Technological   
19 Irrigation and drainage 

capability 
Irrigation and drainage capability comprises availability of 
sluices, canals, rivers, river embankments, and sea dykes. 

Appendix 9d.3 

20 Electricity capability Electricity capability comprises availability of transformer, and 
voltage power line. 

Appendix 9d.3 

 

Most of these datasets were collected while undertaking three periods of fieldwork: from 30 

of November 2011 to 10 February of 2012, from 12 October of 2012 to 3 March of 2013, and 

from 18 to 26 of January 2015 in the seven coastal districts along the Kien Giang coast.  

    

3.5.2.2 Administrative boundaries and the Digital Elevation Model for the study area 

Maps used in this study include the Kien Giang administrative boundaries map in 2011 at a 

scale of 1: 75 0000, UTM/WGS 84 datum, zone 48N, national meridian 1050, and coordinate 
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and elevation system VN2000, and includes a sub-map C-48-70. The DEM used was obtained 

from the research (KHCN-BDKH/11-15; code BĐKH.08), undertaken by Tran et al. (2013), 

and has the 15 m resolution (cell-size of 15 m) raster for the seven coastal districts in Kien 

Giang with average ranges of elevation from 0.3 - 0.5 m (the south-western part) and 0.8 - 1.2 

m (the north-eastern part). Elevations are given above mean sea level (MSL) - compared with 

the average water level in the national standard of Vietnam in Hon Dau, Hai Phong.  

 

3.5.2.3 Landsat Satellite images 

Landsat satellite images are useful for mapping natural resources and have been widely used 

to detect erosion and accretion along the coast (Alhin and Niemeyer, 2009; Ekercin, 2007; 

Hereher, 2011; Nguyen, L. D. et al., 2011). The third generation of Landsat satellites has 

recently been launched. Landsat images used for the study area, with scene size of 185x185 

km, have been downloaded from the database of the USGS (http://earthexplorer.usgs.gov; 

http://glovis.usgs.gov/) and from the GLCF (http://landcover.org/data/). Table 3.11 presents 

resolutions of a set of Landsat images. These datasets have the following characteristics:  

•  Corner lower right latitude: 9°11'52"N. 

•  Corner upper left longitude: 105°12'28"E. 

•  Zone number: 48N. 

•  Map projection: UTM.  

•  Datum: WGS84.  

 

Table 3.11 Resolution of Landsat MSS, TM, ETM+, and OLI_TIRS images. 
Landsat images Sensor Band#s Spectral range µm Pixel resolution m 

L 1-4  MSS multi-spectral 1,2,3,4 0.5 - 1.1 60x60 
L 4-5 TM multi-spectral 1,2,3,4,5,7 0.45 - 2.35 30x30 
L 4-5 TM thermal 6 10.40 - 12.50 120x120 
L 7 ETM+ multi-spectral 1,2,3,4,5,7 0.450 - 2.35 30x30 
L 7 ETM+ thermal 6.1, 6.2 10.40 - 12.50 60x60 
Panchromatic ETM+ thermal 8 0.52 - 0.90 15x15 
L8 OLI_TIRS 8   30x30 

Note: The Multispectral Scanner (MSS), the Thematic Mapper (Postma), the Enhanced Thematic Mapper Plus 
(ETM+), and the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS) Landsat images. 
 

Each shoreline vector required specific attributes that are presented in Table 3.12, whereas the 

baseline attribute field requirements that are presented in Table 3.13.   

 

http://earthexplorer.usgs.gov/
http://glovis.usgs.gov/
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Table 3.12 Shoreline attribute table requirements for DSAS analysis, (derived from Thieler et al., 
2009). 

Field name Data type Origin Requirement 
OBJECTIVE Objective ID Auto-generated Required 
SHAPE Geometry Auto-generated Required 
SHAPE_Length Double Auto-generated Required 
Date Text (Length = 10 or 22) User-created Required 
Uncertainty Any numeric field User-created Optional 

 
Table 3.13 Baseline attribute field requirements for DSAS analysis, (derived from Thieler et al., 
2009). 

Field name Data type Origin Requirement 
OBJECTIVE Objective ID Auto-generated Required 
SHAPE Geometry Auto-generated Required 
SHAPE_Length Double Auto-generated Required 
ID Long integer User-created Required 
Group Long integer User-created Optional 
OFFshore Short integer User-created Optional 
CastDir Short integer User-created Optional 

 
A summary of the classification of variables in terms of vulnerability and potential impacts of 

sea-level rise for this study is presented in Table 3.14. Variables were classified into 5 

categories: very low, low, moderate, high, very high, with regard to vulnerability and 

potential impacts of sea-level rise for the study area. The Manual and Jenks classification 

methods (Jenks) were used to classify the ranges of several of these variables. Particularly, 

Jenks, based on natural break classification, recently have been used for several researchers 

(Ahmed, 2014; Berry and BenDor, 2015; Chen et al., 2013; Luan et al., 2011; Sambah and 

Miura, 2013; Szlafsztein and Sterr, 2007). Jenks, in this analysis, were used in classification 

in order to represent sub-components, three key components, and the final vulnerability 

outcome. 

 
Table 3.14 The range of variables and their classification in terms of vulnerability selected for 
use in this assessment. 

No Component/  
sub-component/ 
Variable 

Ranking 
References Very low Low Moderate High Very high 

E Exposure       
E1 Flood risk Jenks was used to classify the range  
 
 

Flood depth, m 0 – 0.2 0.2 – 0.5 0.5 – 1.0 1.0 – 2.0 > 2.0 Dinh et al. (2012); 
Tingsanchali and 
Karim (2005) and 
Van et al. (2013) 

 DEM, m above MSL > 2 1.2 - 2 1.2 - 1 1 – 0.8 & 
0.8 – 0.5 

< 0.3 & 
0.5 – 0.3 

Study area 

E2 Seawater incursion Jenks was used to classify the range  
 Salinity, ppt  < 4 4 - 8 > 8  Le (2003) 
 Soil types Water bodies, 

Alluvial soils 
Acrisols/ 
Gray soils 

PASS AASS Saline 
soils  

Study area 

E3 Shoreline change Jenks was used to classify the range  
 Shoreline displacement, 

m/yr 
> 15.0 5.0 – 15.0 -5.0 – 5.0 -15.0 - -5.0 < -15.0 Dwarakish et al. 

(2009) 
 Adjacent coastal 

landuse  
Mangrove 

fringes 
Man-made 
infrastructure 

Fishery 
farming 

Agriculture Built-up Study area 
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S Sensitivity       
S1 Societal factors Jenks was used to classify the range  
 Pop. density  Study area/ statistics 
 Rural pop, %  Study area/ statistics 
 Female pop, %  Study area/ statistics 
 Ethnic groups, %  Study area/ statistics 
S2 Landuse patterns  The bare land Water/ 

wetland, 
grassland 

Forest, 
farmland 

Built-up Yin et al. (2012) 

        
A Adaptive capacity       
A1 Socioeconomic Jenks was used to classify the range  

 Income  Study area/ statistics 
 Poverty ratio  Study area/ statistics 
 Health (include: health 

establishment, health 
staff) 

Jenks was used to classify the range Study area/ statistics 

 Education (include: kids 
per school, per teacher; 
pupils per school, per 
teacher) 

Jenks was used to classify the range Study area/ statistics 

A2 Infrastructure Jenks was used to classify the range  
 Road capability Jenks was used to classify the range Study area/ buffer 
 Houses (% households 

having solid houses) 
 Study area/ statistics 

 Communication access 
(Numbers of inhabitants 
sharing a fixed-line 
telephone subscriber) 

 Study area/ statistics 

A3 Technological Jenks was used to classify the range  
 Irrigation and drainage 

capability (include: 
capabilities of river, 
canal, sluice gate, sea-
dyke, river 
embankment) 

Jenks was used to classify the range Study area/ buffer 

 Electricity capability  
(include: transformer, 
voltage power line) 

Jenks was used to classify the range Study area/ buffer 

 
3.6 Chapter summary 

In this chapter, the conceptual framework is described which was developed to undertake this 

coastal vulnerability assessment. It consists of a hierarchical structure, comprising a set of 24 

sub-variables and 22 variables categorised into 8 sub-components of the 3 key components of 

vulnerability: exposure, sensitivity and adaptive capacity. 

 
GIS was utilised to allocate relative weights to the selected variables, analysed using the AHP 

tool (a type of MCDM), as determinants of biophysical and social factors in terms of climate 

change vulnerability. These were aggregated for the three key components: exposure, 

sensitivity, and adaptive capacity, to compute a final vulnerability index for the study area. As 

a result, hotpots, comprising areas most likely to be vulnerable to the impacts of climate 

change, were identified and visualised. AHP and GIS are two distinctive approaches, enabling 

integration of MCDM assessments into GIS improving the spatial capabilities and the 

analytical power and its use in decision making. The next chapter describes background to the 

study area, followed by chapters 5 and 6, which present the results and discussion of the 

analysis. 
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Chapter Four 

 

Background to study area 

 

4.1 Aims of this chapter 

The aim of this chapter is to provide an overview of the Kien Giang (KGI) coast, along the 

western part of the Mekong River Delta in Vietnam (MRD) as background to site-specific 

vulnerability assessments. Seven coastal districts along the KGI coast comprise the case study 

area.   

 

The chapter is structured as follows. Section 4.2 presents a brief introduction to the MRD as 

vulnerability-driven methodologies characterised by “top-down” approaches (i.e., from 

global, national to regional spatial approaches), whereas an emphasis on site-specific 

assessments in KGI, characterised by “bottom-up” approaches (i.e., local to regional scale). 

An overview of the MRD is described in section 4.3. The natural and social conditions of the 

MRD in the context of climate change, particularly sea-level rise, are presented in sub-

sections 4.3.1, and 4.3.2. Section 4.4 provides a profile of the case study area. Section 4.5 

presents a summary of this chapter. 

 

4.2 Introduction 

Damage including loss of life, crop failures, and other critical ecosystem vulnerabilities 

worldwide will be exacerbated by climate change and sea-level rise, especially in Asia and 

Pacific areas (Burke et al., 2002; Harvey, 2006; Harvey and Mimura, 2006; Mimura, 2006; 

Nunn and Kumar, 2006). With many low-lying areas, a long and narrow coastline, high 

population density, and rapid economic growth, Vietnam is considered to be one of the 

countries likely to be most affected by global climate change and particularly sea-level rise 

(Carew-Reid, 2008). The MRD has been suggested to be the most vulnerable region within 

the country to the impacts of sea-level rise (The-First-Scenarios-VN, 2009) because it has 

about 730 km of coastline, comprising seven coastal provinces (www.mekongdelta.com.vn) 

with densely populated deltaic lowlands. Of these, coastal provinces, Kien Giang and Ca Mau 

along the margin of the western part of the delta (from Ca Mau cape to Ha Tien) are predicted 

to be the places at particular risk from sea-level rise by the end of this century within seven 
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coastal areas along the Vietnam coast (The-Second-Scenarios-VN, 2011). This thesis aims to 

reassess the view that the coastal areas along the Kien Giang coast are most vulnerability to 

the effects of sea-level rise. 

 

4.3 The Mekong River Delta in Vietnam  

The MRD is in the most downstream part of the Mekong River Basin, largely south of the 

Vietnam - Cambodia border. It lies between the South China Sea to the east, the so-called east 

sea; the Gulf of Thailand in the west, the so-called west sea; and Vam Co Dong River and Ho 

Chi Minh City in the northeast (see Figure 4.1). The MRD is also called, as “Cuu Long River 

Delta” which means “Nine Dragon River Delta” in the Vietnamese language, and comprises 

Can Tho city and 12 administrative provinces. It is the home for about 17.4 million people 

(GSO, 2012), making up 23% of Vietnam’s population.  

 
Figure 4.1 Location of the MRD, showing the study area shaped red.  
 

The MRD is defined by the confluence of the Mekong River and the Tonle Sap in Cambodia 

(Nguyen et al., 2000). The delta starts in Cambodia but over 80% of area is in southwest 

Vietnam (accounting for 12% of area of Vietnam) (MRC, 2010b; Nguyen et al., 2000). The 

MRD plays crucial roles in developing the socioeconomic profile of Vietnam as well as 



Coastal Vulnerability assessment of Kien Giang 
 

70 | P a g e  
 

providing food security, employing over 80% of local rural labour-force, according to 

numerous reports by MRC. However, local people are still considered some of the poorest in 

the world (Stewart, 2008). 

 

4.3.1 Natural conditions of the MRD 

Generally, the MRD is tide-dominated (Reineck and Singh, 1980) as denoted by the triangular 

classification of deltaic depositional systems in terms of being defined by the end-members of 

fluvial supply, tidal and wave dominance (Galloway, 1975; Hori and Saito, 2007). However, 

the Mekong Delta initially evolved as a strictly tide-dominated delta, but changed into a 

mixed wave- and tide-dominated delta since 3ka BP (Nguyen et al., 2000; Tanabe et al., 

2003a). Annually, mean water discharge of the river is 470 km3/year (Lu and Siew, 2005; 

MRC, 2010a), and floodwaters deposit fertile sediments from the upper basin on fields and 

wetlands in Cambodia and Vietnam that account for approximate 160 million tonnes/year 

(Milliman and Ren, 1995; Milliman and Syvitski, 1992; Ta et al., 2002a). The massive 

sediment supply to the coast has resulted in an extensive delta plain with an area of 50 000 

km2 (Hori, 2000). This productive area has been called a massive “rice bowl” for Vietnam.  

 

4.3.1.1 Topography  

The MRD is a very low-lying plain. The majority of its elevation is under 5 m above MSL, 

according to the SRTM digital elevation data available as 3 arc second (~90 m resolution) 

DEMs, originally produced by NASA, and currently distributed free of charge by the USGS. 

The only high ground comprises some 200 - 270 m high hills and mountains in the northern 

delta, bordering Cambodia. Along the Cambodian border, the terrain varies from 2.0 - 4.0 m, 

and gradually lowers into the central plains, and then into tidal flats and coastal areas 

respectively. Consequently, the MRD is particularly vulnerable to flooding by river waters 

from upstream and high tidal waters from seaward. 

 
4.3.1.2 Geology, landform, soil, and surface morphology 

An early account of the geology of the Mekong Delta was provided by Gagliano and McIntire 

(1968). Recently, a series of boreholes sunk into the deltaic sediments have expanded our 

understanding of the deltaic geology (Nguyen et al., 2000; Ta et al., 2001b; Ta et al., 2005; Ta 

et al., 2002a, b). The oldest sediments, which are linked to the modern delta body, 

accumulated in the early to mid-Holocene, at 8ka BP (Tamura et al., 2009), and preceding the 

mid Holocene sea level high stand in the region. The modern Mekong Delta started to form 6 

http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-database-v4-1
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- 7 ka BP (Nguyen et al., 2000; Ta et al., 2001b; Ta et al., 2002a, b). In this phase the 

coastline was located in modern southern Cambodia (Nguyen et al., 2000; Tamura et al., 

2009) and is generally referred to as marking the most landward margin of the delta body 

(Woodroffe et al., 2006). Peat horizons and pollen records in the mid-Holocene indicated that 

the coastal zone was occupied by a broad mangrove swamp (Penny, 2006, 2008; Tamura et 

al., 2009). The increasing influence of waves and the formation of beach ridges after 3 ka BP 

(Nguyen et al., 2000; Tanabe et al., 2003a) are associated with the extensive seaward 

progradation of the delta together with a large sediment discharge (Ta et al., 2002a). Ta et al. 

(2005) also indicate that morphological differences in the delta are related both to past 

variations in the coastal environment and the rate of delta progradation, as it has transitioned 

from a tidally-dominated estuary to one characterised by shore-parallel beach ridges reflecting 

wave conditions in the east sea.  

 
Several landform units of the delta were formed based on processes of accretion and erosion 

under different environmental conditions. Each landform unit has different hydrographic and 

pedological conditions and, therefore, each forms a distinct agro-ecological environment. 

According to Nguyen (1993), the MRD is mainly divided into five landform units, and 

various sub-units respectively, comprising:  

•  Old alluvial terrace unit occupies small areas in the northeast of the delta, along the 

Cambodia-Vietnam border. 

•  Floodplain unit consists of two sub-units: high floodplain comprises natural levee, 

sand bar, back swamp, closed and opened floodplain, located in the northwest of the delta 

with the greatest inundation depth in the flood season, and tide affected floodplain comprises 

natural levee, back swamp, broad depression floodplain, which occupies the center of the 

delta. It is strongly influenced by the daily tides of the Mekong and Bassac Rivers. 

•  Coastal complex unit runs along the coasts of the east sea and the west sea, consisting 

of four sub-units: sandy beach ridge, coastal flat, inter ridge, and mangrove swamp.  

•  Broad depression unit occupies a large area in the south of the delta, consisting of two 

sub-units: broad depression and peat depression.  

•  Hills and mountains consist of large and small separate ranges in the west of the delta 

(see Appendix 2). 

 

The distribution of soil types is generally related to land formation. Holocene sediments 

beneath the delta are predominantly composed of silt, clay, and sand (Nguyen et al., 2000). 
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Hashimoto (2001) also indicates that sediment consists of typically organic rich mud and peat 

formed from local vegetation in the areas quite far from the main river which are not drained 

by channels. In fact, there are many different classifications of soil types, depending on 

specific purposes. The soil classification by FAO/UNESCO was used in this thesis. The 

FAO/UNESCO soil classification is an international classification system in accordance with 

Soil Taxanomy standards, which is based on soil property quantification and soil 

classification diagnostic signals derived soil groupings that have been commonly used in 

Vietnam since 1975 (see Appendix 3a). According to the soil classification by 

FAO/UNESCO, there are three major soil types that are significantly affected by agricultural, 

and aquacultural activities in the MRD (see Appendix 3b). These include the: 

•  Alluvial soil group (shown in the purple colour in Appendix 3b). This group can be 

found along the banks of the Mekong and Bassac Rivers, in floodplain units, and account for 

28.9% of the delta which is agriculturally productive. The group is slightly acidic, with pH 

values of 4.5 - 6.5, and is the most suitable for the cultivation of rice. However, the area of 

this soil group is annually affected by flood and land erosion.  

•  Saline soil group (shown in the yellow and blue colour). This group can be found 

along the MRD coast, in coastal complex units that stretch from Go Cong (Tien Giang) to Ha 

Tien (Kien Giang). The soil has a salinity of about 3 ppt and pH value of 4.0, and account for 

about 21.4% of the delta. A large area of mangrove forests occupies this group.  

•  Acid sulphate soils (ASS) group (shown in the red and green colour). This group is 

distributed on both sides of the Mekong and Bassac Rivers and accounts for 28% of the delta. 

This group has high contents of the ions Fe3+, and SO4
2-; and FeS2 is formed under oxidising 

conditions. The group has very high concentrations of sulphide and very low pH values of 

2.26 - 3.54, and is generally only suitable for Melaleuca planting. 

 
On the basis of morphology, the subaerial MRD plain can be classified into two parts: 

•  An upper (inner) delta plain dominated by fluvial processes (Gupta, 2009), which is 

mainly occupied by floodplain and swamp.  

•  A lower (outer) delta plain mainly influenced by marine processes, which is tide- and 

wave-dominated (Gupta, 2009); and characterised by a well-developed beach-ridge system 

that is mainly composed of mangroves, beach ridges (including foreshore), and tidal flats 

(Gagliano and McIntire, 1968; Nguyen et al., 2000). 
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Additionally, based on the influence of interaction between river discharge, diverse tidal 

patterns, and landform, the MRD can be divided into three hydrological regions. These are:  

•  The river-flood areas in the northern plains, including an upper (inner) delta plain, 

where the impact of the river floods is dominant; this region accounts for 7.5% of area of the 

MRD.  

•  An area with combined river flood-tidal impacts, bound by the Cai Lon River - Xeo 

Chit Channel, Lai Hieu Canal - Mang Thit River, and Ben Tre - Cho Gao Canals; this region 

accounts for about 40% of area of the delta.  

•  The coastal regions, comprising a lower (outer) delta plain with direct influence of the 

primary tides, and includes the entire coastal region along the east sea and the west sea; this 

region accounts for about 50% of area of the delta. 

 

4.3.1.3 Network of rivers and canals 

The MRD has a tortuous and interlacing network of rivers and canals. The modern MRD 

system has two major distributary channels, an eastern channel called the Mekong River and a 

western channel called the Bassac River, which flows into the east sea through seven 

distributaries (see Figure 4.1). The positions of these distributary channels are estimated to 

have been relatively stable over 2 - 3 ka BP based on the distribution of the beach ridges, 

which indicate inter-distributary plains (Ta et al., 2002a). The Mekong River, also known as 

the Tien River, or in Vietnamese it is called “Sông Tiền”, runs through Tan Chau (An Giang), 

and enters the east sea with five distributaries. Additionally, the shape of the river is becoming 

complex because of several islands and sandbars in the channel. The Bassac River, also 

known as the Hau River, and in Vietnamese is called “Sông Hậu”, runs through Chau Doc 

(An Giang). The Bassac River is connected with the Mekong River through Vam Nao 

passage, and continuously runs parallel with the Mekong River, and enters the east sea with 

two distributaries. The discharge ratio between the Mekong and the Bassac Rivers during a 

high water event is approximately 80% and 20%, respectively. The study by IMHEN (2010a) 

indicates that the discharge through Tan Chau station, where the Mekong River runs through, 

varies annually with a maximum river flow discharge of about 20 000 m3/s in September and 

a minimum flow discharge of 2 000 m3/s in April. In contrast, the discharge through Chau 

Doc station, where the Bassac River runs varies annually from a maximum river flow 

discharge of about 6 000 m3/s in September to a minimum flow discharge of about 300 m3/s 

in April. At the Vam Nao passage, connecting the rivers 20 km downstream of Tan Chau and 

Chau Doc, the discharge ratio between the two river branches becomes almost equal. 
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Additionally there is an extensive network of canals that occupies about 9% of the total delta 

area (Nguyen, 2002); these canals are connected to the east and west seas. The canal network 

was constructed in the past 300 years, with most parts of the network developed in a little 

more than a century across the delta  (Brocheux, 1995; Miller, 2006; Biggs 2012). The main 

purpose of the canal network was stimulating typical rice-water agricultural production and 

water transportation; and was sometimes strategic as in the case of Vinh Te canals, which has 

influenced their efficacy. The intricate, recently-built canal system, with a density of 8 - 10 m/ 

ha, comprises 7 000 km of main canals, 4 000 km of secondary on-farm canal systems, and 

more than 20 000 km of protection dykes to prevent early floods (MARD, 2003). Apart from 

aiding rice production and water transportation, there are increasingly negative consequences 

affecting people and environment conditions in the region, such as growing numbers of 

mosquitoes as a result of high humidity, limitation of land-road routes, flood and seawater 

incursion (i.e., the fresh-to salt- water gradient apparent in deltas and estuaries). 

 

4.3.1.4 Coastal oceanography 

The MRD coast is influenced by tidal dominance along the west sea and mixed wave- and 

tide- dominance along the east sea. The tide regime in the west sea is diurnal with an 

amplitude of only 0.5 - 0.8 m (Phan and Hoang, 1993), whereas in the east sea it is more 

irregular, being semi-diurnal with a mean tidal range of 2.5 - 3.8 m, and mean wave height of 

0.9 m (Nguyen et al., 2000; Ta et al., 2001a; Ta et al., 2001b). In the open sea, the wave and 

wind direction is related to the monsoon season; for the northeast monsoon season wind and 

wave direction is dominantly within an arc northeast-east-southeast, while for southwest 

monsoon season they are dominantly within an arc west-southwest (see Appendix 8a). In 

terms of wind regime, the annual average wind speed is 2.7 m/s in the west sea according to 

the observational data at the station located in Phu Quoc Island. During the northeast 

monsoon season the average wind speed is 2 - 3 m/s, with a maximum wind speed of 48 m/s; 

while the average wind speed is 2 - 5 m/s and the maximum wind speed is 57 m/s during the 

southwest monsoon season. Based on observational data at the station located in Petro Mining 

platform Bach Ho, the annual average wind speed is stronger in the east sea, being 6 m/s 

higher than the west sea. The average wind speed is 6 - 8 m/s, with the maximum of 48 m/s 

during the northeast monsoon season while the average wind speed is 5 - 6 m/s with a 

maximum speed of 39 m/s during the southwest monsoon season (IMHEN 2010a,b; ICOE; Le 

et al., 2011).  
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Wave regimes are induced by the monsoons and show a seasonal reversal of direction along 

the front of the delta (Ta et al., 2001a; Wolanski et al., 1996). Incident wave energy is 

generally highest at the end of the wet season and during the dry season, particularly in the 

months of November and December. The wave direction, particularly along the east sea, 

coincides with the southwest monsoon during the wet season, but conditions are far less 

energetic than the waves associated with the northeast monsoon during the dry season. Strong 

northeast to east monsoons in the dry season bring large waves exceeding 3 m offshore and 2 

m onto the shore in the east coast. For the west coast, strong southwest monsoons can create 

waves exceeding 3 m offshore that impact are reduced to around 1 m onto the shore. 

 

During the southwest monsoon a great volume of sediment is discharged by high river flows 

and is transported to the river mouths, which has resulted in the formation of the southeastern 

coastal plain. That plain includes sandy beach ridges of 3 - 10 m elevation above MSL and 

separated by inter-ridge swamps of 1.5 - 2.5 m above MSL along the east coast (Ta et al., 

2005). During the northeast monsoon, which coincides with a period of low river discharge 

and sediment supply, the sediment along the coast is reworked by stronger northeasterly 

waves and currents, and then transported and eventually deposited on shore, particularly in the 

southern Ca Mau peninsula. This has resulted in the rapid expansion of Ca Mau cape 

westward. The Ca Mau cape is now dominated by tidal channels, marshes, and extensive 

mangrove forests. On the western edge of the peninsula, including coastal districts along the 

southern Kien Giang coast, is a section of coast that is remarkably straight, most likely due to 

structural control, although this characteristic has been influenced by waves and currents (Ta 

et al., 2002a).  
 

4.3.1.5 The confounding effects of climate change, particularly sea-level rise 

The MRD, being located in a tropical region, is hot and sunny year-round with an average 

temperature of 28.5oC, humidity of 80%, and mean annual rainfall which is higher in the 

western coastal areas (2 000 - 2 300 mm) and lower in the central inland areas (1 200 - 1 500 

mm). From May to October, the climate is humid with high rainfall, which causes periods of 

flooding and inundation, while the climate from November to April is drier, with little 

rainfall, which causes periods of drought or shoreline erosion.   
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a. Sea-level rise and weather variability 

According to observed data by Southern Vietnam meteo-hydrological stations, the annual 

average temperature has increased by an average of 0.6oC and rainfall has increased by about 

9% over the last 50 years in Southern Vietnam. Additionally, data from the tidal gauges along 

the Vietnam coast showed an increasing rate of the average sea-level rise of 3 mm/ year 

during the period of 1993 - 2008, while observed data from satellite altimetry indicated an 

increase in sea level at a rate of 2.9 mm/ year from 1993 to 2010 (IMHEN, 2010b).  

 
In attempts to overcome these threats, the Vietnamese Government (2007) approved the 

national strategy for natural disaster prevention, response and mitigation by the year 2020 that 

outlines the strategy for disaster mitigation and management, and focuses on severe 

phenomena such as floods, storms and droughts. Following this, a national target program to 

respond to climate change and sea-level rise (2008) has been approved that aims to assess 

climate change impacts on sectors and regions in specific periods and to develop feasible 

action plans to effectively respond to climate change in the short-term and long-term to ensure 

sustainable development of Vietnam, to take opportunities to develop towards a low-carbon 

economy, and to join the international community’s efforts in mitigating climate change and 

protecting the climatic system. Under the national target program, the first climate change and 

sea-level rise scenarios for Vietnam (2009) were developed and an update (The-Second-

Scenarios-VN) was completed in late 2011. These scenarios of climate change and sea-level 

rise developed and published in Vietnam were based on the IPCC SRES: low (B1), medium 

(B2, A1B) and high (A2, A1FI scenarios) (see details in Table 2.4). Of these, B2 was 

recommended for all ministries, sectors and local authorities to initially assess the impacts of 

climate change and sea-level rise and then to build action plans on climate change responses. 

In the same year, the Vietnamese Government also has approved the national strategy for 

climate change (2011) that outlines the plan to respond to climate change up to 2020 and 

2050. 

 

The-Second-Scenarios-VN (2011) indicates the predicted increasing trends in temperature 

(oC), rainfall (%), and sea-level rise (cm) per year, relative to 1980 - 1999 by 2100, based on 

the IPCC SRES B2 in 13 provinces in the MRD. The temperature is predicted to increase by 

0.6 - 0.7°C in 2030, with a steady increase of 1.0 - 1.4°C by 2050 (see Appendix 7a). The 

rainfall trend particularly in the MRD by 2100 is projected to increase at a slower rate than 

has been observed. In particular, observation data indicates a 9% increase in rainfall during 
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the past 50 years, while projections indicate an increase in rainfall of only 1.2 - 2.3% by 2030, 

and 2.1 - 4.2% by 2050 (see Appendix 7c). In addition, there is projected to be a significant 

increase in sea levels, with an average increase of 12 - 14 to 13 - 15 cm by 2030, and 23 - 27 

to 25 - 30 cm in 2050 (see Appendix 7e), compared to observation data at Vung Tau station 

over the past 30 years along the MRD coast (The-First-Scenarios-VN, 2009). 

 

b. The impacts of climate change, particularly sea-level rise  

Tropical depressions such as typhoons, which generally develop over the east sea, seldom 

reach the MRD, but the delta is episodically affected by heavy rain, wind and high ocean 

waves, which are associated with such storms situated offshore or in central Vietnam during 

the rainy season. For this reason, storms related to tropical depressions have been excluded 

from this study and three main physical impacts have been taken into account for the MRD; 

flooding and inundation in the wet season, seawater incursion in the dry season, and shoreline 

erosion.   

•  Appearance of high flooding and inundation in the MRD during the wet season 

comprises high flow rate from upstream, and overflow from the border of Vietnam - Cambodia, 

in combination with high rainfall and high tides from the sea, and the coincidence of these 

effects during the southwest monsoon, is outlined in Table 4.1. Consequently, flooding and 

inundation may cover about 32.5 - 45% area of the delta, with a depth from 0.5 - 4.0 m and the 

period of inundation being 3 - 6 months, particularly in the floodplain unit of the MRD (see 

section 4.3.1.2).  

 
Table 4.1 The classification of flood in the MRD, (modified after Cantho.cool.ne.jp). 

Classification Generation area Cause Main damages 
Riverine Upper main rivers A rise in river water level Lives, Houses, Crops, Infrastructure 
Inland Whole area A rise in river water level Houses, Hygiene 
Urban  City Asphalting, Downpour Houses, Hygiene 
Tidal Lower rivers and coast Flood tide  Crops, Salinisation 
Wave Lower coast Flood wave  Protective, and specially used forests, 

Crops, Infrastructure 
 

As seen in Table 4.1, the most dangerous form of the flood for the entire MRD in relation to 

threats to human life and damage is the riverine flood because of high flow discharge originating 

from upstream. The river-flood in the MRD annually occurs normally from May to December, 

but their peaks are usually in September and October. It is noted that river-flood in the MRD can 

be divided into three periods:  
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•  Early flood season, from mid-July to mid-August, when the main rivers flood quickly 

and rise strongly (2 - 3 cm up to 10 - 15 cm per day), and then the floodwaters are distributed 

through the canal systems to crop fields. As a result, large volumes of silt are transported down 

the rivers that subsequently supply important nutrients for the Summer-Autumn rice crop. 

However, the peak of water level during this stage can rise quickly, leading to overtopping of 

embankments that threatens crop success.  

•  A second flooding period, during September and October, when floodwaters reach high 

levels (over 4.0 m at Tan Chau, and over 3.5 m at Chau Doc observatory).  

•  The third period is the flood recession, usually starting by the end of October, when the 

flow spilling from Cambodia has decreased, and floodwater recedes gradually until December. 

The Autumn-Winter rice crop (also called as the third crop), is cultivated during these stages, 

from August to December. These floodwaters enter the delta from two directions: a) 

perpendicular direction from the main river courses; and b) from the Vietnam - Cambodia border 

area directly. The border flows spill over after flooding and silt deposition in the most flooded 

areas of Cambodia, and subsequently overflows into the floodplain unit (see section 4.3.1.2). 

Moreover, the National Center for Meteo-Hydrological Forecasting of Vietnam distinguishes 

four river flood-warning levels, according to the peak of water level at Tan Chau, and Chau Doc 

stations of An Giang, and modified from (Le et al., 2007), as outlined in Table 4.2.  

 

Table 4.2 River flood-warning levels (m) in the MRD classified by the National Center for 
Meteo-Hydrological Forecasting of Vietnam. 

Level 
Station 

Description Tan Chau 
(in the Mekong River) 

Chau Doc 
(in the Bassac River) 

I ≤ 3.0 m ≤2.5 m Possible flood conditions: river water level is high, 
threaten low embankments; flooding in very low-lying 
areas; infrastructure safe. 

    

II ≤ 3.6 m ≤ 3.0 m Dangerous flood condition: floodplain inundation 
expected, towns & cities still generally protected by 
flood defenses; high velocity river flows pose danger 
of bank and dyke erosion; bridge foundations at risk 
from scour; infrastructure generally safe.  

    

III ≤ 4.2 m ≤ 3.5 m Very dangerous flood condition: all low-lying areas 
submerged including low-lying areas of towns & cities; 
safety of river protection in jeopardy, damage to 
infrastructure begins. 

    

Over III > 4.2 m > 3.5 m Emergency flood condition: general and widespread 
uncontrollable flooding; dyke failure a certainty and 
probably uncontrollable; damage to infrastructure 
severe. 
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As also seen in Table 4.1, coastal districts along the MRD coast can be affected by flooding and 

inundation in different ways. These can be high upstream flow discharge, high rainfall during 

the wet season in combination with high tidal levels from the east sea and the west sea, or waves 

influenced by the southwest monsoon overtopping coastal defenses. Human activities, such as 

illegal cutting down of trees that protect riverbanks, can also exacerbate flooding. While not 

quite so obvious, human activities tend to alter the ecological system in a river basin that will 

have an impact on the hydrology of the catchment, it is also the fact that wider catchment 

processes influence floods. In particular, activities such as the denudation of forest and 

watershed areas can lead to an increase in flood frequency. 

 
•  Numerous researchers indicate that rising sea levels are likely to contribute to seawater 

incursion in coastal areas (Lawrie, 2007; Oude Essink et al., 2010). In the case of the MRD, 

the coastal districts are most vulnerable. Saline incursion is influenced by factors such as high 

tide, low upstream water flow and low rainfall during the dry season (Hoang et al., 2012). 

Additionally, during the prevalent northeasterly monsoon coinciding with strong waves 

associated with the dry season, saltwater can intrude further towards interior fields, thereby 

impacting freshwater supplies for crop production and domestic drinking water. However, 

saltwater can also be a resource to assist with diversified farming systems (e.g., rice-shrimp) - 

an example of adaptation (see Figure 4.2). 
 

 
 
 

 

Figure 4.2 These photos were taken during the dry season in 2012: a) The canal, and b) the west 
bank of the Mekong River in Phu My Tan - An Giang were heavily affected by drought. The 
water table levels were remarkably reduced to 1.5 m in height in the canal exposing 6 m in 
length of the bank of the river. 
 

Before 1980, Nguyen and Savenije (2006) indicated that in the MRD, about 63% of the 

agricultural land (amounting to 1.7 - 2.1 million ha out of 3 million ha) were annually affected 
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by seawater incursion during the dry season. In the 1980’s and 1990’s, a number of salinity 

control projects were implemented, leading to closure of dams and sluice gates in the 

navigable canals connecting the branches of the delta. Nguyen and Nguyen (1999) indicated 

that the water intakes along the estuary branches needed to be closed for considerable periods 

of time (from weeks to one or two months each year) to prevent seawater incursion. As a 

result, salinity is currently influencing only 28% area of the delta every year. The Long Xuyen 

Quadrant area, including a part of Kien Giang province is directly affected by saltwater from the 

west sea during the dry season. The tide in the west sea is diurnal with a small tidal amplitude 

and most of the west coast channels have salinity control gates. However, two main Channels, 

Vam Rang and Ha Giang, are still open, enabling saltwater incursion that can threaten this area. 

In the Ca Mau peninsula, because it is surrounded by both the east sea and the west sea, 

saltwater incursion is likely to be serious and particularly complex. Two different tide regimes 

affect the flow in the canal system and restrict the transfer of freshwater from the Bassac River 

towards the interior fields. However, the saltwater cannot intrude further inland because of the 

existence of a relatively large area of mangrove fringe considered to be an effective natural 

barrier. Mazda (2007) also indicates that mangrove forests play important roles in supplying 

significant livelihoods for people living there, and a home for a variety of fauna and flora 

wetland species. Apart from the detrimental consequences, seawater incursion intakes during 

the dry season can effectively reduce acidity from the acid sulphate soil (ASS) group that 

occupies some areas of the delta, including Kien Giang (Tran, 1999). As a result, these areas 

can be used to cultivate a Winter-Spring rice crop. 

 
•  Since 3 ka BP there has been extensive progradation of the delta seaward along the 

sea coast, particularly in southern Ca Mau peninsula (Nguyen et al., 2000; Tanabe et al., 

2003a); however, there are varying patterns of shoreline change, including shoreline erosion 

at a regional scale, particularly in some coastal districts along the MRD coast. Shoreline 

erosion is causing considerable concern, and several possible causes have been identified to 

explain such erosion. These include:  

1) Increased impacts of tides, waves, and currents due to sea-level rise, coinciding with 

the stronger dominant northeasterly monsoon that accelerates the speed of coastal erosion.  

2) Coupled human activities, together with the impacts of sea-level rise, causing 
shoreline erosion due to a reduction in the sediment budget, following the construction of 
several dams in the upstream of the Mekong River since 1993 according the several reports by 
the MRC. 
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3) Specifically, mangrove degradation has occurred for several reasons from human 

activities, such as: a) deliberate destruction of mangrove forests in the Vietnam war during the 

period of 1962 - 1971; b) clearing by local people who did not appreciate the role of 

mangroves in protecting coastal areas and exploited these forests for timber, aquaculture and 

shrimp farming; c) water pollution due to shrimp farming and aquaculture causing further 

mangrove degradation; and d) the impact of closed sea dykes which did not receive sufficient 

attention from the government (Nguyen et al., 2008; Duke et al., 2010; 

Kiengiangbiospherereserve.com.vn).  

 

Apart from the human activities that induced shoreline change, the east coastal zone consists 

of the mouths of the main river distributaries, stretching from the Tien Giang coast to Ca Mau 

cape (southeastern Ca Mau peninsula), whose flow may increase erosion, particularly during 

the dry season. The coast from Tien Giang coast to Ganh Hao estuary (Bac Lieu province) is 

characterised by sedimentation in the river mouths, and the sandy beach ridges formed 

parallel to the coast, which can be adversely affected by erosion. The coast from Ganh Hao 

estuary to Ca Mau cape (southeastern Ca Mau peninsula) is characterised by a mixed tidal 

flat, and shoreline change is more complex there. Particularly in Ca Mau cape, because it is 

quite far from the influences of the main river, the sediment budget is not abundant. However, 

sediment is being reworked due to stronger northeasterly waves and currents, and is 

subsequently being deposited and resulting in the expansion of Ca Mau cape westward. 

Additionally, when high tide in the east sea coincides with high tide in the west sea, it creates 

“interferential tidal waves” rarely found elsewhere in the world. Under these conditions, the 

water literally stops flowing and alluvium is accumulated at a much higher rate than in any 

other places (Phan and Hoang, 1993). The tropical climate with high annual rainfall, and calm 

water conditions combine with the semi-diurnal tide, creating significant areas of environment 

suitable for mangroves. In contrast, the west coastal zone, from Ca Mau cape (southwestern 

Ca Mau peninsula) to Ha Tien (Kien Giang), seems more stable. The coast does not have any 

sandy beach ridges, and sediments consist of light gray silty clays, with little organic matter. 

Sediment supply is limited and deposits are not subject to vigorous waves with high tidal 

amplitudes; this contrasts with the mouths of the active distributaries associated with the 

Mekong and Bassac Rivers (Nguyen et al., 2000). This area also has high rainfall, which is 

favourable for mangrove growth. However, mangroves cannot develop far and often form a 

narrow marginal community along the coastline due to the deficiency of sediment supply.  
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Figure 4.3 shows the widening of the mangrove fringe as it gradually extended seaward 

between 2008 (left), and 2013 (right) on a typical pattern of districts An Minh, and An Bien 

along the Kien Giang coast, derived from Google Earth. It is interesting to note that, these 

results differ from the published study by Shearman et al. (2013) which indicated that the area 

of mangrove forest in the entire MRD appears to have remained relatively stable, during the 

last 20 years with a modest reduction of only 0.14%. Shearman et al. (2013) mapped only the 

mangroves that occurred in the active river mouths, and did not consider the rapidly changing 

wetlands of Kien Giang or Ca Mau, indicating the need for a local approach to achieve the 

appropriate assessment.  

Figure 4.3 Accretion of mangrove fringes along the coast of Thuan Hoa commune - An Minh 
district and Nam Thai A commune - An Bien district, (derived from Google Earth).  
 

4.3.2 Social conditions in the MRD 

The MRD has been shaped by a dynamic system of socio-economic development called “the 

River-Water Civilisation”, with most people have settled along the river and canal levees. 

Agriculture is more productive in the MRD than in many other parts of Vietnam. Although 

the economy of the delta has recently shifted with gradually decreasing proportions of 

agriculture, rice production will continue to play a central role in the economy, food security, 

and poverty reduction.  

 

4.3.2.1 Population and landuse 

According to statistical data from GSO (2012), the MRD has a comparatively high population 

density, being the second most densely populated area in Vietnam, with an average of 429 

inhabitants/ km2; the Red River Delta is the most densely populated area with an average of 

961 inhabitants/ km2. Within the delta, coastal provinces, including Kien Giang have been 

experiencing the highest population growth (see Appendix 9a), with a population growth rate 
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of 0.5% per year (between 2008 and 2009). Other social factors such as the proportion of 

inhabitants living in rural areas as opposed to urban areas (e.g., rural population vs. urban 

population), the proportion of the female population (e.g., female vs. male), and proportion of 

ethnic minorities (e.g., ethnic minority composition) should be taken into account.  

 

Overall, the urban areas have benefited more strongly from economic growth than their rural 

counterparts, resulting in spatial disparities in living conditions. Rural residents have poorer 

access to education and health care as well as other basic services such as clean water, 

sanitation and transportation than urban ones. To date, the entire MRD has a high proportion 

of rural population, accounting for over 75% (GSO, 2012). However, in the cases of emerging 

cities, such as Can Tho, and Rach Gia, the dramatic rates of urban population growth are of 

concern because they strain capacity to handle of the full range of economic, social, and 

environmental issues. In addition, the proportion of female population in the MRD accounted 

for over 50%. Females are likely to be more vulnerable compared to males due to facing 

difficulties such as lower income, and a higher percentage of illiteracy. Vulnerability of 

women may also be influenced by difficulties gaining access to formal forms of credit and 

regarding recognition of land tenure. There are people of many different ethnicities living in 

the MRD, consisting of three main ethnic minorities, namely Hoa (Chinese), Cham, and 

Khmer (Cambodian). While the Kinh (Vietnamese) group accounts for the majority, living in 

most places throughout the region, ethnic minorities Hoa, Cham, and Khmer live scattered in 

some areas of provinces such as Kien Giang and Ca Mau. In fact, there exists a strong 

correlation between ethnicity and poverty in the delta. Generally, Kinh peoples are richer, and 

live in urban regions, whereas other ethnic groups such as Cham, and Khmer are usually poor, 

live in rural regions with less sanitation, and lower literacy, etc. Poorer people are likely to be 

the most vulnerable group in the delta as most of their activities and infrastructure are highly 

dependent on the river water regime, and in the context of climate change, particularly sea-

level rise. 

 

Landuse change, together with agricultural development in the MRD generally can be divided 

into three major periods since 1975. These include the:  

•  Rice expansion during the period 1975 - 1990. 

•  Rice intensification during the period 1991 - 1999. 

•  Agricultural diversification from 2000 to present. Since 15 June 2000, when the 

Vietnamese government released resolution 09/NQ-CP, many farmers, particularly in Kien 
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Giang and Ca Mau transformed their coastal, saline rice fields (the Winter-Spring crop 

seasonally) into shrimp ponds. During that year, rice-shrimp farming area increased by 0.08 

million ha in Kien Giang, and 0.12 million ha in Ca Mau (Nguyen et al., 2008). Consequently, 

thousands of hectares of mangrove forests were rapidly destroyed for conversion to shrimp 

farming (Le et al., 2003). Generally, the 09/NQ-CP resolution at governmental scale seems to 

be basically a beneficial decision because it can bring economic returns, gradually changing 

the economic structure in the coastal provinces and contributing to food supply, employment, 

increased income and reduction of poverty in the delta by extension of aquaculture in saltwater. 

In fact, cash income from shrimp farming earns a farmer ten times more than the national 

average income from rice production. 

 

The key problem has been that a centralised top down approach was strongly applied thus not 

considering the experiences and all expectations of local people. It addressed the fact that 

some ecologically sensitive habitats, such as mangrove forests have been cut down to build 

ponds for shrimp production. A steady stream of organic waste, chemicals, and antibiotics 

from shrimp farms can pollute groundwater or coastal areas. Consequently, massive shrimp 

farms have been shut down due to disease. In addition, salt from these ponds can also seep 

into the groundwater and onto agricultural land. Eventually, adjacent farmers cannot produce 

a second rice crop either (the Winter-Spring crop during the rainy season). Russell et al. 

(2012) indicate that seawater comes through breached dykes following removal of protective 

mangroves, and will inundate crops and aquaculture ponds, and wash away stock (e.g., 

shrimp), leading to pond abandonment. Farmers in some coastal districts have shifted to 

sugarcane production as a perennial crop to minimise loss due to future breaches. One of the 

issues that emerges from these experiences is the need for a local approach that is the best 

way to assist policy makers in the promulgation of appropriate and feasible decisions. 

 

The different landuse patterns in Vietnam are classified by MONRE (see Appendix 4). As of 

1 January 2011, the total area for which landuse has been mapped in the MRD has been 

around 4 million ha. Of which, a majority of the total area (64.5%) has been used for 

agricultural production, including landuse for annual and perennial crops, producing a 

massive amount of rice, which accounted for 46% of the total national food production, and 

90% of rice yield for export (GSO, 2011). However, the MRD also has the smallest 

proportion of forest area in Vietnam. Only 7.7% of the total area of the delta is forested; this 

figure includes productive, protective, and special-use forestlands. These forests are mainly in 
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two provinces Ca Mau, and Kien Giang, which accounted for ~67% of the entire delta’s forest 

area. Additionally, a minority of the total area (~9.3%) was classified as non-agricultural land, 

while the remainder (~1%) was unused land (see Appendix 9a.1).  

 

4.3.2.2 Economy 

In recent years, the economy of the delta has shifted with gradually decreasing proportions 

under Agriculture-Forestry-Fishery production, and increasing proportions of Industry-

Construction, and supporting Service sectors in the region. However, the agricultural sector’s 

importance for the MRD is also mirrored in the regional GDP profile, which contributes 38% 

of GDP (GSO, 2011). There is an increasing trend in all main sectors in the MRD that are 

about 121% for Agriculture-Forestry-Fishery sector, 118% for Industry-Construction sector, 

and 120% for Service sector respectively during the period of 2005 - 2011 (see Appendix 

9b.1).  

 

One of the central contradictions of the economy’s development in the MRD is that, even 

though the delta has achieved a relatively high income, it is lagging behind Vietnam’s other 

regions in socioeconomic aspects, particularly the poverty ratio, education, health care 

service, and living conditions (e.g., a number of households living in solid houses) (Matthias 

et al., 2012). Despite a considerable decline in poverty since 1998, there are around 4 million 

poor people (accounting for about 23%) living in the delta. Within eight key national 

socioeconomic zones, namely Red River Delta, North East, North West, North Central Coast, 

South Central Coast, Central Highlands, South East, and the MRD classified by the Ministry 

of Construction in Vietnam (MOC), there is the highest number of poor people in the MRD. 

Additionally, this delta has the highest percentage of “near poor” people who are vulnerable 

to falling back into poverty through adverse impacts on household livelihoods and income 

reductions due to climate change and sea-level rise. Poverty, therefore, still remains a 

challenge for this region. 

 

The educational performance in the delta is strikingly poor. There were 6.6% of children aged 

5, and inhabitants older in the MRD that had never attended school, while only 2.1% of 

inhabitants in the Red River Delta fall in this category, according to a national survey in 2009. 

In fact, inequalities exist in terms of gender. About 62% of the above-mentioned people, aged 

5 and older that had never attended school, were female. In addition, the MRD features a 

relatively high illiteracy rate among the population aged 15 and older, amounting to 8.4%, in 
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which 64% were female. Similar disparities can also be observed, when comparing rural to 

urban areas. While 7.1% of the delta’s rural population aged 5 and older never attended 

school (GSO, 2010), the figure for the urban areas amounts to only 4.9%. The rate of 

illiteracy among the population aged 15, and older of the MRD was 9% in rural areas 

compared to only 6% in urban areas (GSO, 2010). It is also argued that these figures hide the 

disparity between different social groups. In 1999, the primary school enrolment rate among 

the Kinh majority was relatively high at 93.4%, compared to only 76.3% among the Khmer 

minority. The secondary school enrolment of the Kinh was about 67.5%, while the enrolment 

rate among the Khmer was relatively low at 22.5% (Baulch et al., 2007). Moreover, the delta 

is in an even more unfavourable situation when considering higher education, and university 

attendance. There were only 8.1% of its inhabitants born between 1987 and 1990 that have 

ever attended university in the MRD, compared to the Red River Delta and the South East 

where the figure was 25%. Furthermore, there was only 2.9% of the same cohort who 

graduated from university in the MRD (with only 2.7% among women, compared to 3.0% 

among men). These values were the lowest in Vietnam with the national average being 5.2%, 

in terms of university graduations. Only 9.7% of the delta’s economically active population 

aged 15 and older have ever completed vocational or professional training within the formal 

educational system (7.9% among women, and 11.3% among the men). These values were also 

the lowest in Vietnam with the national average being 17.6%, in terms of professional training 

(GSO, 2010). 

 

Additionally, the figures indicate significant health-care deficiencies in the delta. The values 

of 20.5 patient beds in medical facilities per 10 000 inhabitants in the MRD were the lowest in 

Vietnam. Similarly, the number of doctors, nurses and midwives were also relatively low (4.8, 

5.0, and 2.6, respectively, per 10 000 inhabitants). The MRD lags far behind the national 

average in all these categories, and has the lowest regional values with respect to doctors and 

nurses (GSO, 2011). Private providers of health care, therefore, play an important role in the 

MRD. There were 47% of out-patient treatments exercised in private health facilities, which 

was the highest value for the whole of Vietnam, the national average being at 38% (GSO, 

2009). 

 

Only 8% of the delta’s households were living in fully solid houses, 22% of the households 

lived in houses with none of these elements made of solid materials, and the remainder 70% 

having houses being partly solid materials. These figures indicate that, housing conditions in 
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the MRD lag behind the national average, according to which 47% of the Vietnamese 

households lived in fully solid houses (GSO, 2010). These figures can to a certain extent be 

explained by the different climatic conditions in Vietnam’s north and south as well as by the 

relatively low typhoon occurrence in the MRD in the past, making fully solid houses less 

necessary than in the more typhoon-exposed areas in central and northern Vietnam. However, 

housing upgrades are foremost in terms of the manifestation of socioeconomic progress.  

 

The MRD’s transport infrastructure is not as well developed as in other regions in Vietnam 

(MOT). This is because the region has not had extensive railway systems, and instead 

waterway transportation plays an important role in the two main river branches, coupled with 

hundreds of smaller lateral or parallel irrigation and drainage canals. Waterway transportation 

accounts for 70 - 80% of means of transportation, satisfying 70 - 80% of the passenger 

transportation demand, and 30 - 35% of inner goods transportation (Traffic-in-the-Mekong-

Delta, 1999). The major part of national highways in the MRD are inter- and intra- province 

roads that were constructed before August 1945 by the French, with an average width of 5 - 6 

m. About 60% of national highways are paved; however, 40% of these have been degraded, 

and damaged over time. In the rainy season, especially during floods, many roads such as 

parts of national highways 1A and 61 are under water, and some areas of the delta may be 

isolated from others, posing particular difficulties in evacuation and rescue activities. 

 

4.4 Profile of the case study area 

Several researchers indicate that awareness in terms of impacts of climate change, particularly 

sea-level rise, has come from a global or national scale, but there is need for specific impact 

assessments and adaptation strategies that are local (Harvey and Woodroffe, 2008), and more 

aligned with social, and integrated perspectives on vulnerability (Fussel and Klein, 2006). 

There is also a need for new approaches that involve stakeholders, more sophisticated 

socioeconomic scenarios, and consideration of adaptation measures, decision-support tools 

and enhancement of adaptive capacity as ways of reducing vulnerability to climate change 

(UNFCCC, 2005). This study focuses on seven coastal districts within the Kien Giang 

province (KGI) as a case study to assess coastal vulnerability for several specific reasons. 

These are:  

•  There have been fewer studies on the impacts of sea-level rise conducted in the 

western part of the delta than the eastern part.  
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•  The Kien Giang coast is predicted to be one of the most vulnerable coastal areas to 

impacts of climate change, particularly to sea-level rise along the coast of the MRD. In terms 

of biophysical factors, there are possible explanations for this, because: 1) the coast is a very 

low-lying area together with 2) the highest projected sea-level rise derived from The-Second-

Scenarios-VN (2011) (see Appendix 7e), and 3) it has the least sediment supply due to its 

location farthest from the active river mouths. 

•  The Kien Giang coast is likely to be moderately affected by impacts in terms of social 

factors due to several reasons. The Kien Giang coast is a relatively densely populated area, 

with relatively high proportions of rural people, and ethnic households, with limited 

availability of agricultural land within coastal provinces in the MRD.  

•  Generally, ability to manage the impacts of sea-level rise in coastal provinces in the 

MRD currently seems to be relatively low. Kien Giang is one of four provinces in the 

dynamic economic zone in the MRD (see Appendix 9b.1), and emerging as an economic 

spotlight in 2013. It may be possible that, improving economic conditions for the province 

can strengthen the ability to reduce adverse impacts.  

•  Last but not least, most information and datasets for the case study vulnerability 

assessment are available, accessible, and useable.  

 

4.4.1 Overview of the Kien Giang coast 

Kien Giang is a coastal province in the MRD, that adjoins Cambodia with a 56.8-km long 

border. Ca Mau and Bac Lieu provinces are located on the southern, and eastern borders; and 

the southeastern border provinces are An Giang, Can Tho City and Hau Giang. To the west is 

the west sea (also known as the Gulf of Thailand) with a coastline that is 208 km long. Kien 

Giang has two parts, a mainland section (9o23'50''- 10o32'30'' N, 104o26'40''- 105o32'40'' E), 

and offshore islands (about 105 islands). This thesis concentrates on the mainland with a total 

area of approximately 5 640 km2.  

 

Kien Giang has 15 district level and town administrative units, consisting of Rach Gia City, 

Ha Tien Town which is an important deep sea port connecting the city with a wide array of 

destinations in the region, and 13 other districts, including 118 communes and towns within 

those districts. The study area, consists of the seven coastal districts (on the mainland), 

namely: Ha Tien (HTI), Kien Luong (KL), Hon Dat (HD), Rach Gia (RGI), Chau Thanh 

(CT), An Bien (ABI), and An Minh (AMI), that is presented in Figure 4.4.  
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4.4.2 Natural systems in the seven coastal districts 

Located in a very low-lying area, directly influenced by the tidal regime from the west sea, 

the coastal districts cover about 300 000 ha, accounting for 47% of the total area of Kien 

Giang. Generally, these have a favourable climate, rarely affected directly by natural 

disasters, such as tropical typhoons or storms. It is warm and sunny year-round; and this 

climate supports abundant living and production. 

 

4.4.2.1 Digital Elevation Model 

A Digital Elevation Model (DEM) with the 15 m resolution was derived for the seven coastal 

districts from the project (Code BDKH.08) conducted by Tran et al. (2013), and is presented 

in Figure 4.4. 

 
Figure 4.4 The Digital Elevation Model for the seven coastal districts, (derived from the project 
conducted by Tran et al., 2013).  
 

As can be seen in Figure 4.4, the seven coastal districts along the Kien Giang coast are very 

flat, except for several isolated mountainous outcrops in the districts of Ha Tien, Kien Luong, 
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and Hon Dat. Approximately 83% of the total area is below 1 m above mean sea level (MSL), 

and the area is at risk from high tide levels (see Appendix 8b). Further results derived from 

this DEM will be determined and discussed in chapter 5 (sub-section 5.3.2). Integrated with 

the geological data of Tran (1986), the topography and geology in the study area can be 

divided into three major forms:  

•  The region is located in the Long Xuyen quadrangle, including parts of districts Ha 

Tien, Kien Luong, Hon Dat, and Rach Gia, having average elevations of 0.8 - 1.2 m, known 

as the flood openings in Kien Giang, which were formed by young sediment from the main 

river channels. The coastal sediments contained abundant sulphate, which has been reduced in 

the anaerobic conditions to form potential ASS rich in pyrite minerals in the low-lying plains. 

These areas are flooded during the wet season, but when drained can become very acidic. 

These areas are able to support Melaleuca forests.  

•  Plains are largely distributed in the districts of Chau Thanh, An Bien, and An Minh, 

and located in the Ca Mau peninsula. These areas were established by the alluvial 

sedimentation from the Bassac River with an average height of 0.3 to 0.5 m above MSL, 

together with many canals, and rivers. These areas are characterised by mangrove fringes, 

distributed mainly in An Minh and An Bien. It is important to note that, these could be 

underwater at high tide if they are not well protected by mangrove fringes or man-made 

coastal defences.  

•  Low hills are scattered in some parts of districts Ha Tien, Kien Luong, and Hon Dat, 

with the average height of up to 200 m. These hills consist of granite and mountain limestone 

(e.g., Chua Hang and Hon Me). Kien Giang has abundant mineral resources (e.g., peat, 

limestone, building stone, clay, etc), metal minerals (e.g., iron), and semi-precious stones 

(e.g., black quartz-opal), compared to other provinces in the MRD. 

 

4.4.2.2 Climate change and sea-level rise scenarios for Kien Giang 

a. Overview 

The Kien Giang coast is influenced by a diurnal tide, with an amplitude of 0.5 - 0.8 m (Phan 

and Hoang, 1993). The river-flood season in Kien Giang usually occurs from July to 

November, with the peak of water level in October, coinciding with the stronger 

southwesterly monsoon. Average rainfall is 1 600 - 2 000 mm/ year. The rainy season starts 

from May to November. August has the highest rainfall of 300 - 500 mm. In contrast, the dry 

season is characterised by low flow, coinciding with the northeasterly monsoon. It usually 
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lasts from December to June with May having the lowest flow. In addition, from December to 

April, is the dry season with low rainfall, and March has the lowest rainfall.  
 

b. Climate change and sea-level rise scenarios 

Recently IMHEN completed statistical downscaling for the whole MRD, with 

MAGICC/SCENGEN (Wigley, 2008) for the primary climate variables such as temperature 

and rainfall, together with the regionally downscaled scenarios for sea-level rise (IMHEN, 

2010b) and the latest hydrological river flow scenarios developed in the Mekong mainstream 

above Kratie by the Mekong River Commission (IMHEN, 2010a). The scenarios developed 

by the MRC were based on PRECIS (Jones et al., 2004), and have been used in a number of 

reports prepared by IMHEN relating to impacts of climate change in the Mekong River 

upstream of Vietnam.  

 

Simulations predicted an increase in monthly average temperature, monthly average rainfall, 

and sea-level rise scenarios for Kien Giang for the two time periods 2030 and 2050, relative to 

1980 - 1999 based on SRES B2 and A2. The annual temperature in Kien Giang is projected to 

increase similarly for the B2 and A2 scenarios by 0.3 - 0.7°C to 2030 and by 0.5 - 1.2oC to 

2050, respectively (see Appendix 7b). Moreover, rainfall is projected to increase slightly in 

the rainy months, with the biggest increase projected for October, increasing from 7.4% by 

2030 to 13.5% by 2050 for medium scenario B2, while under the A2 scenario it is projected to 

increase from 7.6% by 2030 to only 12.9% by 2050. On the contrary, rainfall will tend to 

decrease slightly in dry months, with the biggest decrease projected to occur in March from -

10.8% by 2030, and -10.9% by 2050 for a B2, while from -19.5% by 2030, and only -18.7% 

by 2050 for A2 respectively (see Appendix 7d). The modelling of rainfall indicates that 

flooding and inundation in Kien Giang during the rainy season, together with drought and 

other adverse effects during the dry season could become exacerbated in the period 2030- 

2050. Furthermore, the sea level from Ca Mau cape (Ca Mau) to Ha Tien (Kien Giang) (along 

the west sea) is predicted to increase by 15 cm by 2030, and 30 cm 2050 under scenario B2; 

while under the higher scenario of A1FI sea level ir projected to increase by 16 cm by 2030, 

and 32 cm by 2050 (IMHEN, 2010a, b). Coastal modeling has also been completed using 

scenario B2 only, because of the very minor differences between the two scenarios medium 

and high in 2030, and 2050 (Mackey and Russell, 2011). It is important to note that modelling 

scenarios of flood depth, and seawater incursion in 2030, and 2050 for Kien Giang under 

scenario A2 were used with the predicted rising sea levels of 15 cm by 2030, and 30 cm 2050. 
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The level, therefore, will high tides reach to 1.2 m above present MSL, if rises 30 cm by 2050, 

leading to easy overtopping of embankments with threats to inland.   

 

4.4.2.3 Flood depth and flood setting 

Flooding is an integral to the function of the MRD. Indeed, surface water is needed for rice 

crops, which are the main livelihood of most local people. In fact, people are adapted to living 

with floods to a certain level. When thresholds are exceeded, flooding can become a nuisance 

(e.g., if inundation levels are deep, then dykes along canals and around paddy fields can be 

overtopped, leading to flooding of houses and crop and other damage).  

 

There have been several studies of flood hazard mapping focusing on the depth of the flood as 

the key hazard indicator (Bormudoi et al., 2008; Merz et al., 2007; Penning-Rowsell and 

Chatterton, 1977; Townsend and Walsh, 1998). In a study on climate change impact from 

flood hazard, vulnerability and risk of the Long Xuyen Quadrangle was studied by Dinh et al. 

(2012) who indicate that the depth of flood is considered the most important of these flood 

proxies. Thereby, flood depth is used as a flood proxy in this study to assess the potential 

impacts in this thesis.  

 

Simulated, and projected simulation maps of flood depth for the study area have been reported 

by several researchers to assess the areas most exposed to flood impacts (IMHEN, 2010a; 

Mackey and Russell, 2011; Tran et al., 2013) (see chapter 3, Table 3.7). A map of the extreme 

historical flood depth (m) that occurred in 2000 for the study area was used to estimate the 

current influences (see Appendix 8c.1). The 2000 flood was an extreme event, considered to 

be a 1 in 100 year flood. This flood event has been combined with projected sea-level rise, 

and the Mekong Basin rainfall and river flow under the A2 scenario to produce the maps of 

flood depth for 2030, and 2050 (see Appendices 8c.2 and 8c.3). As these are based on an 

extreme flood event, the inundation-depicted does not represent permanent inundation, but 

shows expected inundation during periods of extreme flood. The frequency of the “1 in 100 

year” flood may or may not vary, and would be dependent on rainfall across the whole 

Mekong Basin, covering several countries (i.e., it will change markedly if climate changes, it 

is non stationary). 
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4.4.2.4 Salinity and seawater incursion setting 

a. Seawater incursion  

During the dry season, seawater incursion in the study area is mainly influenced by the tidal 

regime of the west sea. It seems to become exacerbated at high tide, integrated with projected 

sea-level rise, and decreased rainfall during the dry months. The maximum extent of saline 

incursion inland occurs in combination with the lowest rainfall and flow through river and 

canal networks, and coincides with a stronger influence by the northeasterly monsoon. 

Fortunately, seawater incursion cannot enter far inland even in the dry season because of the 

small tidal range. Salinity was used as a key proxy to assess the potential impacts of seawater 

incursion in this thesis. The major ramification of salinity in the study area is related to 

agricultural production (see chapter 3, Table 3.10). 

 

Maps of drought and salinity incursion (historical and in the future) scenarios for the study 

area, were derived from several studies (Le and Le, 2013; Mackey and Russell, 2011) (see 

chapter 3, Table 3.7). A map of the maximum seawater incursion (ppt) observed in 2010 

using salinity data collected from stations in the study area, was used to identify the areas 

most exposed to saline incursions (see Appendix 8d.5). In addition, an event simulating 

extreme historical drought and salinity incursion observed in May 1998 (see Appendix 8d.1) 

combined with projected sea-level rise, and water flow through the river and canal network, 

has been used by Mackey and Russell (2011) to produce maps of potential seawater incursion 

in 2030, and 2050 (see Appendices 8d.2 and 8d.3). It is important to note that, the projected 

extent of seawater incursion is determined, based on maximum isohalines that are lines of 

equal salinity concentration. 
 

b. Soil types 

Because Kien Giang comprises low plains; alluvial sedimentation formed by river silt and 

deposition of marine sediments is the basis for most soils. Soils have a high proportion of clay 

(45 - 58%); they are over 70 cm thick, with high organic contents, and can be divided into 

three main categories: 

•  Alluvisols/deltaic soils occupy 5.4% of the natural area of the province, and are 

mainly distributed in Chau Thanh, and scattered in Rach Gia, and Hon Dat. These soils are the 

best for agricultural activities.  

•  Saline soils include: regular saline soils (accounting for 3.6%), which are distributed 

mainly on the coasts of An Bien, and An Minh, and scattered in Hon Dat, and Rach Gia. 
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These soils are often good for one rice crop a year, integrated with aquaculture. Seasonal 

saline soils (accounting for 40.4%) occur along the coastal districts during the dry season. 

These soils are strongly affected by the tide and useful for growing coconut, pineapple, 

sugarcane, and other produce during the dry season, combined with one rice crop a year 

during the rainy season.  

•  Acid sulphate soils (ASS), (accounting for 40%), are distributed mainly in Ha Tien, 

Kien Luong, Hon Dat, and An Minh. These soils are good for, such as Acacia, Melaleuca, 

pineapple. Soils must be improved to support other crops. It is a widely held view that 

distribution of soil types, particularly saline soils along the Kien Giang coast, can influence 

the observed and projected extent of seawater incursion (see a map of soil type distribution for 

the study obtained from undated MONRE in Appendix 3c). Soil types have been taken into 

account in this study when estimating the potential impacts of seawater incursion. 

 

4.4.2.5 Shoreline change  

Overall, the west coast of the MRD is undergoing less shoreline change than other sections of 

the delta. This shoreline generally remains stable with protection by a 300 - 400 m wide fringe 

of mangrove forest, combined with the small tidal range, and wave height. However, waves 

erode the coast gradually, and when integrated with projected sea-level rise shoreline change 

could worsen. 

 

The coastline of Kien Giang is characterised by three main landform types, comprising 

limestone or granite headlands interspersed by small embayments in the north (e.g., Ha Tien), 

a large embayment leading into a large estuary in the centre (e.g., Rach Gia bay), and a 

straight segment of coastline in the south (e.g., An Bien and An Minh). The shoreline of Kien 

Giang is charaterised by mangrove fringes, covering about 65% of the coast’s length. 

According to recent surveys by scientists from GIZ Kien Giang, the area of mangroves in 

Kien Giang has been estimated to be nearly 5 500 ha in 2006, an increase of 1 500 ha 

compared to 1999 because of mangrove restoration programs. Other coastal districts Ha Tien, 

Rach Gia, and Chau Thanh have small areas of mangrove forest. However, the condition of 

mangrove forests along the Kien Giang coast is relatively poor, with a strip of mangrove 

varying in width from 10 - 500 m (Duke et al., 2010). During a period from 2005 - 2011, there 

was a steady decrease of area of protective mangrove forests based on statistical data obtained 

from the Kien Giang Statistical Office 2012 (see Appendix 9a.4). An estimate of about 50% 
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area of the Kien Giang coastline has been found to be eroded or eroding due to cutting of 

these mangroves (Kiengiangbiospherereserve.com.vn). 

 

Several researchers have recently attempted to assess the shoreline condition based on the 

change in mangrove fringes in specific sites along the coast of the MRD, such as studies 

conducted by Duke et al. (2010) in the Kien Giang coast, and Shearman et al. (2013) in the 

mouths of the Mekong and Bassac Rivers. The relationship between the change in mangroves 

and shoreline condition in the Kien Giang coast will be determined in sub-section 4.5.3.3b. It 

is believed that the adjacent of landuse along the Kien Giang coast, particularly the area of 

mangrove fringe can be related to shoreline protection (see a map of the adjacent of landuse 

along the Kien Giang coast obtained from the GIS database of MARD in 2010 in Appendix 

9a.2c). Therefore, the adjacent landuse along the Kien Giang coast should be taken into 

account when estimating susceptibility to shoreline change. 

 

In this thesis, satellite images were used to assess observed shoreline change along the Kien 

Giang coast. Landsat images are particularly useful in mapping natural resources and have 

been used widely to detect erosion and accretion along a coast (Alhin and Niemeyer, 2009; 

Ekercin, 2007; Hereher, 2011; Kuenzer et al., 2011). A set of ten Landsat satellite images 

over a period of 40 years, from 1973 to 2013, was used to undertake shoreline change 

comparison for this study. The resulting interpretations of shoreline position for the Kien 

Giang coast were used to assign and determine the shoreline displacement variable of the 

shoreline change sub-component that will be presented in chapter 5 (sub-section 5.3.3.1).  

 

4.5.3 Social factors in the study area 

Generally, the main human pressures acting as drivers in the coastal districts of Kien Giang 

are demographic trends, including population and economic growth, and pressures on land for 

developing. These social factors make the study area likely to become one of the most 

vulnerable areas, particularly when coupled with the detrimental effects of flooding and 

inundation, seawater incursion, and shoreline change.   

 

4.5.3.1 Overview 

With a total population of more than 1.7 million in 2011, the economy of Kien Giang grew 

robustly in the period 2001 - 2010, with an annual GDP growth rate of 12% as compared with 

a growth rate of only 8% in the previous period of 1996 - 2000. In 2010, the total GDP of the 
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province reached US$ 1 783 million. Although Kien Giang has a more mixed economy with 

cement production and tourism, being key main emerging differences, agriculture continues to 

contribute a relatively high proportion to the province’s economy. The economic growth of 

the province is expected to be 9% for the period 2010 - 2030, and 8% for the period 2030 - 

2050. However, Mackey and Russell (2011) indicate that adaptive capacities of local 

authorities in Kien Giang in relation to climate change issues are relatively low, and despite a 

long history of disaster management response planning, regional sector and socioeconomic 

development planning includes inadequate reference to climate change adaptation measures.  

 

4.5.3.2 Societal factors 

a. Population density 

Statistical data derived from the Kien Giang Statistical Office’s Book in 2012 indicate that an 

average provincial population density in 2011 was 271 inhabitant/ km2, which was slightly 

higher than the average national population density (260 inhabitant/ km2). Average population 

density of coastal districts in 2011 was 308 inhabitant/ km2, which was slightly higher than 

the provincial population density. Rach Gia was the most densely populated district (of 2 246 

inhabitant/ km2), and was much higher than other coastal districts. Hon Dat had the lowest 

population density (only 164 inhabitant/ km2) (see Appendix 9c.1). It is likely that Rach Gia is 

the most sensitive area in terms of population density, while Hon Dat is the least sensitive 

area. If the provincial population growth is expected to be 1.3% per year, it can be assumed 

that the population may reach 2.17 million in 2030, and 2.81 million in 2050. This highlights 

the fact that detailed data is needed at district level from plans, master plans, and strategies on 

provincial developments in socioeconomic, education and health in Vietnam for the year 

2020, plus a vision for 2030, or 2050.  

 

b. Rural and urban people 

Statistical data derived from the Kien Giang Statistical Office’s Book in 2012 indicate that 

about 73% of rural people were in the entire province in 2011, whereas coastal districts had 

only 62% of rural people. The highest proportion of rural people (94%) was in An Minh, and 

An Bien (91%). These areas are the most sensitive areas, due to the high proportion of rural 

people (see Appendix 9c.2). 
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c. Female people and ethnicity group 

Statistical data derived from the Kien Giang Statistical Office’s Book in 2012 indicate that 

there were a few differences between percentages of females and males in 2011, in which 

49% of people in the entire province were female, with a slightly higher proportion of females 

in coastal districts (50%) (see Appendix 9c.3). It is believed that females in coastal districts 

are likely to be less sensitive than females living in other parts of Kien Giang (see sub-section 

4.3.2.1).   

  

Kien Giang has about 10 ethnic minority groups, accounting for nearly 17% of the total 

provincial population. Khmer is the dominant group (13%), followed by Hoa (3%) and others 

(Tay, Nung, Muong, Cham, Ngai, H’mong, Ede) contributing less than 1%. Data derived 

from the District Survey in Kien Giang conducted in 2011 indicate that there were 15% of the 

ethnic minority groups in coastal districts, which was a little less than the proportion of 

provincial ethnic minority groups. Specifically, Chau Thanh had 38% of the ethnic minority 

groups, which was the highest, compared to other coastal districts. An Minh had the lowest 

proportion of ethnic minority groups (only 2%). It appears that Chau Thanh is the most 

sensitive area, while An Minh is the least sensitive area, in terms of ethnic groups (see 

Appendix 9c.4).  

 

4.5.3.3 Landuse 

a. Landuse 

During the period 2005 - 2011, in Kien Giang, there was generally a decrease in the 

proportion of area of perennial cropland, forestry land, and fishery land. There was also an 

increase in the proportion of area of rice land. There were increases in the proportion of areas 

of homesteads, special-use land, and others in terms of non-agricultural land category, and 

there was a decrease in the area of unused land (see Appendix 9a.3). Specifically, statistical 

data derived from the Kien Giang Statistic Office 2012 indicates that 71.9% of the total area 

of Kien Giang was agricultural production land, which was remarkably higher than the 

proportion for the entire delta (64.5%). In addition, Kien Giang has a greater proportion of 

forestland (14.4%) compared to the entire delta (only 7.7%) (see Appendix 9a.2). However, 

Kien Giang has less non-agricultural land (7.6%) than the entire delta (9.3%), having only 

0.8% of unused land, compared with 1% for the delta.  
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These data suggest that using weighting methods helps avoid over-estimation of the 

contribution or importance of each landuse category in measuring the most sensitive, in terms 

of landuse, as advocated by Yoo and Kim (2008). The results obtained using weighted 

methods are also more objective, as advocated by Wang et al. (2011); and visualise the most 

feasible decisions more accurately using mapping techniques, as advocated by numerous 

authors (Kubal et al., 2009; Wang et al., 2011), provided by (Saaty, 1980; Saaty, 1994). A 

map of landuse for the study area obtained from MONRE (2008), is presented in Appendix 

9a.2 that was used to estimate the potential impacts on the basis of landuse (see chapter 5, 

sub-section 5.4.2.2).  

 

b. Mangrove and Melaleuca forests 

Mangrove provides a natural protection for the MRD coast. Data obtained from surveys 

conducted by scientists in the GIZ Kien Giang project from 2008 - 2011 indicate that there is 

a diversity of mangrove species in Kien Giang (about 30 out of 50 species found in Vietnam). 

Of which, Avicennia alba (one of white mangrove species) is the dominant species on the 

margin of the Kien Giang coast (see Appendix 6). In 2009, there was a large area of 

mangroves mainly in four districts, comprising 2 300 ha in An Bien, 900 ha in An Minh, 800 

ha in Hon Dat, and 680 ha in Kien Luong (Kiengiangbiospherereserve.com.vn) (see a map of 

forest distribution in the study obtained from Sub-FIPI (2008) in Appendix 9a.4). Together 

with mangrove forests, Melaleuca forests also play an important role in local economies and 

confer considerable environmental benefits to the region. Melaleuca forestry occurs mainly in 

districts, such as Kien Luong, Hon Dat, and An Minh. Currently, the main alternative wood 

products from Melaleuca forests are of low value and sell for well below the cost of 

production. Melaleuca sold for chip manufacture sells for 380VND per kg (ca. 500 000VND/ 

m3, equivalent to US$ 25.6 per m3) at road/canal side.  

 

The first line of defense from the effects of wave action on the coast is mangroves. Behind the 

mangroves, protection of crops and urban structures is achieved through the construction of 

earth sea dykes, although it is expensive to build and maintain dykes. If mangroves are 

removed or eroded, strong waves that overtop a dyke, or flow through breached dykes, can 

destroy houses and farm infrastructure. Earth dykes can be breached within only a single wet 

season. In some parts along the coast, such as Hon Dat where agriculture occurs behind the 

sea dykes, seawater that comes through breached dykes will inundate crops and aquaculture 

ponds, leading to their abandonment. The fragmented mangrove system allows waves to 
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penetrate to the back of the abandoned pond advancing erosion in steps of 50 - 100 m (Russell 

et al., 2012).  

 

As mentioned in chapter 3, sub-components of the adaptive capacity component of the study 

were represented by assigning functions of socioeconomic, technological, and infrastructure 

sub-components (Yusuf and Francisco, 2009). These three sub-components will be described 

in the following sub-sections 4.5.3.4 to 4.5.3.6. 

 

4.5.3.4 Socioeconomic conditions  

a. Overview 

The Kien Giang economy is based on agriculture (46.66%), industry (22.93%), and the 

service sector (30.41%), according to the statistics derived from the Kien Giang Statistical 

Office in 2012 (see Appendix 4.8.3.2). Agriculture continues to contribute a relatively high 

proportion to the province’s economy (46%, compared to 38% for the MRD as a whole), and 

the proportion of forestry and fishery sectors the agriculture sector is high in Kien Giang. 

Agricultural activities employ a high percentage of people in the province, providing 

livelihoods for more than 75% of the people there. In 2005, there were only 240 registered 

small and medium companies in Kien Giang, but there has been significant increases of more 

than 3 600 companies in 2011, of which most are in the agro-processing sectors. Those 

companies have invested in modern technology such as cold storages, packing and sorting 

equipment to be capable of supplying high quality products to highly demanding overseas 

markets.  

 

The Kien Giang coast can be divided into 2 main concentrated zones for agricultural 

activities. These are:  

•  The Kien Luong/Hon Dat Square that has a large area for intensive rice crops, 

comprising a more saline area in the southwest of Hon Dat’s main canal/road, and a 

freshwater area in the northeast of the district.  

•  An Bien, and An Minh that have a large area for mostly rice/shrimp, located on the 

west side of the Cai Lon River, which experiences considerable saline incursion (see Figure 

4.5). 
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Figure 4.5 Fishery farming in high salinity incursion in KGI: These photos were taken during 
the dry season; a) Shrimp nursery, rice tolerant of high salinity, and drainages of rice-shrimp 
pond module in U Minh Thuong in 2012; b) Rice-shrimp pond in An Minh in 2013; and c) 
Fishery farming associated with mangroves in An Bien in 2015. 
 

Furthermore, salt is extracted from productive saltpans scattered along the Kien Giang coast, 

such as in Kien Luong. Figure 4.6 shows a large conversion of cultivated land to salt ponds in 

Kien Luong during the period of 2000 - 2010, derived from Google Earth. This area was very 

productive during the dry season (March 2006) (middle), and inundated during the wet season 

(October 2010) (right). 

Figure 4.6 Landuse change from 2000 - 2010 (derived from the Google Earth): Salt ponds are 
dominant in Ap Cau Thang village, Duong Hoa commune, Kien Luong district. 
 

b. Income and poverty ratio 

Data derived from the Kien Giang district Survey 2011 indicate that, there was an average 

provincial GDP per capita of US$ 972, being a little less at US$ 949 for the coastal districts. 

Oct 2010 Mar 2006 Nov 2000 
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Two districts Rach Gia, and Ha Tien experienced much higher income, while other districts 

experienced smaller. An Minh, and An Bien experienced the lowest income (see Appendix 

9d.1). Additionally, statistical data derived from the Kien Giang Statistical Office in 2012 

indicate that, there was an average poverty ratio (proportion of poverty per household) of 

7.2% for the entire province, which was slightly higher than for the coastal districts (only 

6.6%). Two districts An Bien, and An Minh experienced the highest poverty ratios (see 

Appendix 9d.1). If people have a higher income, they are likely to be better prepared to 

decrease the potential impacts, while if people are struggling with poverty, they do not have 

enough financial resources to respond to adverse impacts.  

 

There is a strong correlation between the poverty ratio and ethnicity in the study area (see 

sub-section 4.5.3.2c). The poverty ratio of ethnic groups is still high (e.g., the poverty ratio of 

Khmer group is 18%), which is much higher than those proportions of the entire province, and 

in coastal areas.  

 

c. Health services 

Health services, as used here, refers to the capacity of a health establishment serving a number 

of inhabitants, together with the abundance of medical and pharmacy staff at district level. 

Statistical data derived from the Kien Giang Statistical Office, 2012 indicate that there was 

slightly higher than average capacity of people per health establishment estimated to be 11 

056 inhabitants per establishment in coastal districts, and 10 435 inhabitants per establishment 

for the entire province. Statistic also demonstrate the in the limited number of health staff, 

particularly in coastal districts, with each health staff responsible for the care of 477 

inhabitants, but health staff were responsible for only 331 inhabitants in the province. Ha Tien 

experienced the lowest capacity per health establishment (5 734 inhabitants), whereas, Chau 

Thanh experienced the highest capacity per health staff, with individual staff caring for 781 

inhabitants (see Appendix 9d.1).  

 

d. Education  

Education, as used here, refers to the capacities of a kindergarten in terms of number of kids, 

and a primary and secondary school in terms of number of pupils, together with the 

abundance of teachers respectively at district level. Statistical data derived from the Kien 

Giang Statistical Office 2012 show that for coastal provinces there were 616 kids/ 

kindergarten and 23.2 kids under a teacher’s supervision, while for all provinces there was 



Coastal Vulnerability assessment of Kien Giang 
 

102 | P a g e  
 

significantly less proportion of kids/ kindergarten (468), and a similar figure at 23 kids under 

a teacher’s supervision. In addition, there were 582 pupils/ primary and secondary school, and 

18.3 pupils under a teacher’s supervision for coastal provinces, which is significantly less than 

the 535 pupils/ primary and secondary school, and a slightly less figure at 17 pupils under a 

teacher’s supervision for the province. The lowest capacity of a kindergarten was in Hon Dat 

at 256 kids, and the highest figure of kids under a teacher’s supervision, in terms of 

kindergarten was in Kien Luong at 28 kids. Additionally, the lowest capacity of a primary and 

secondary school was in An Minh (415 pupils), and the highest figure of pupils under a 

teacher’s supervision, in terms of primary and secondary school was in Rach Gia (21 pupils) 

(see Appendix 9d.1).  

 

4.5.3.5 Infrastructure conditions 

Infrastructure conditions, as used here, include road transport, solid house structures, and 

telephone subscribers. Investments in infrastructure in Kien Giang have grown robustly at 

more than 10% per year. In 2010, it had an estimated infrastructure value of US$ 224 million.   

 

a. Transport network 

Road (inland) networks in Kien Giang can be classified into four types, comprising 

international or national highways, provincial, district, and small roads connecting to 

communes and lower administrations. Actual designs of new/improved roads are based on 

flood records and local conditions. National roads are designed for “the 1 in 100 year floods”, 

and provincial roads for “the 1 in 50 year floods”. There are three national roads, numbered 

80, 63, and 61, within the province. Statistical data from the Kien Giang Statistical Office 

2012 indicate that, the province experienced high road density of 91% at communal level, 

while slightly less road density of 86% at the communal level of coastal districts (see a map of 

the road network for study derived from Tran et al. (2013) in Appendix 9d.2). An Minh and 

Rach Gia have the lowest road densities at communal level (see Appendix 9d.2).    
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Figure 4.7 These photos were taken during the dry season in 2013: a) Ferries; and b) Boats are 
the main water vehicles using unofficial travel waterways between smaller urban centers. 
 

In addition, water transport is also a key means of travel through channels into communes, 

where roads are not yet built. Ferries and boats are convenient vehicles, which are used to 

connect settlements within, and outside the province (see Figure 4.7). There is one main 

inland fishing port at Tac Cau located at the south of Rach Gia. Despite its key location on the 

border with Cambodia, the lack of a mainland deep-water port has been noted as a key factor 

restricting the province’s growth. There are two airports, one at Rach Gia, and the other on the 

Island of Phu Quoc, which play an important role in supporting the province’s development. 

It is beyond the scope of this thesis to examine the capacities of water transport, port, and 

airports in terms of the transport network. 

   

b. Solid houses 

Statistical data of the Kien Giang Statistical Office 2012 indicate that there 93% of provincial 

households have solid houses, and also in coastal districts (93.3%), which is much greater 

than in the delta as a whole (only 78%). An Bien and An Minh have the most lowest 

proportions of solid houses, which may make them more vulnerable to flood and other 

impacts (see Appendix 9d.2).  
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Figure 4.8 Built up areas: These photos were taken during the dry season in 2013 and 2015; a) 
The polder areas under-construction, and b) Houses built up along the river’s bank in Ha Tien; 
c) The first polder areas of urban expansion of Vietnam, and d) Houses in Rach Gia; Houses 
built up along the river’s bank: e) in Hon Dat, f) in An Bien, and g) in An Minh. 
 

Figure 4.8 presents built-up areas in Kien Giang. Most solid houses, comprising fully and 

partly solid houses are built up to run parallel to the embankments of rivers and creeks. There 

are also three polder areas of urban expansion in Kien Giang, first built in Rach Gia, and two 

under-construction sites in Ha Tien and Kien Luong. 

 

c. Communication network and telephone subscribers 

Telephone subscribers, as used here, refers to the proportion fixed-line telephone subscribers 

at the district level. Statistical data from the Kien Giang Statistical Office 2012 showed a 

deficiency of fixed-line telephone subscribers, particularly in seven coastal districts; 17.1 
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inhabitants had to share a fixed-line telephone subscriber, which is a little less than the 14.2 

inhabitants per fixed-line telephone subscriber for the entire province. Specifically, the lowest 

number of a fixed-line telephones subscriber was in Hon Dat (37.6 inhabitants), whereas the 

highest capacity was in Rach Gia (7.5 inhabitants) (see Appendix 9d.2). It is beyond the scope 

of this thesis to examine the capacities of mobile telephone subscribers, and internet 

subscribers (ADSL) in terms of communication networks. 

 

4.5.3.6 Technological conditions  

Technological conditions, as used here, consist of irrigation and drainage systems, and the 

electricity coverage network.  

 

a. Irrigation and drainage system  

Irrigation and drainage system, as used here, includes the system of rivers, and river 

embankments, sea dykes, canals, and sluice gates (see a map of this system for the study 

obtained from SIWRP (2010) in Appendix 9d.3). There are three major rivers in Kien Giang, 

comprising the Cai Lon, Cai Be, and Giang Thanh. The Cai Lon and Cai Be Rivers originate 

from the Bassac River, and flow to the Gulf of Thailand (the west sea), while the Giang 

Thanh River originates from Cambodia, and flows to the west sea. There is a complicated 

canal system, comprising an old Vinh Te Canal, and a set of 20 year-old canals, such as Ha 

Tien - Rach Gia, Cai San, Rach Gia - Long Xuyen, T3, T4, and T5, which provide irrigation 

and drainage, including washing acid from the soil, agriculture and transportation. Together 

with mangrove barriers, sea dykes (comprising earthen sea dykes and concrete sea dykes) are 

built to protect the Kien Giang coast (see Figure 4.9). 
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Figure 4.9 Mangroves and sea dykes built to protect the Kien Giang coast: These photos were 
taken during the dry season in 2013, and 2015: a) concrete sea dykes in Ha Tien, soft protection: 
fence and mangroves b), and c) in Hon Dat, and f) in An Bien, and g) earthen sea dykes in An 
Minh; d) sluice gate in Hon Dat, and e) canal in Rach Gia. 
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b. Electricity coverage 

Electricity network, as used here, refers to electricity transformer stations, and high voltage 

power lines (see a map of this network for study obtained from Tran et al. (2013) in Appendix 

9d.3). Kien Giang has a relatively modern and extensive power distribution system. Statistical 

data obtained from the Kien Giang Statistical Office 2012 indicate that there is 100% access 

to electricity at the district level. The province is connected by the 110 kV inter-province, and 

the 220kV, and 500kV national backbone power grid. Coastal districts in the north and central 

parts are expected to have better capacities of electricity than coastal districts in the southern 

part. However, there are annually about 20 power outages, each of half to full day duration, 

that primarily occur in the dry season. Many industries therefore have back-up diesel 

generators.  

   

4.5 Chapter summary 

Vietnam is projected to be one of the most vulnerable countries to climate change, particularly 

in the MRD, where rising sea levels, seawater incursion and flood risk are already affecting 

vulnerable coastal communities. The delta plays a crucial role for the region in terms of food 

security and socioeconomic development; however, it is one of the most low-lying and 

densely populated areas, with many poor households. This chapter has provided an overview 

of the MRD, including a regional approach and downscaling to obtain local scale data for 

seven coastal districts along the Kien Giang coast to provide background to their vulnerability 

in terms of physical and social factors, and consideration of adaptation measures, decision-

support tools and enhancement of adaptive capacity as ways of reducing vulnerability to 

climate change. A variety of sources was used, such as fieldwork, statistics, Landsat images, 

and relevant previous projects for the study area (see Appendix 5a).  

 

Scenarios for Kien Giang for the two time periods 2030, and 2050, relative to 1980 - 1999 

based on SRES B2, and A2 indicate that the annual temperature in Kien Giang is projected to 

increase, together with slight increase in the rainy months, and slight decrease in the dry 

months of rainfall. Additionally, seas levels are projected to rise by 15 cm by 2030, and 30 cm 

2050 under A2. Preliminary outcomes for the study area are summarised in Appendix 10.  

 

An Bien, and An Minh, and a large area along much of the Kien Giang coast experience high 

seawater incursion (> 8ppt) during the dry season, in terms of measuring exposure. On the 

other hand, several areas of the districts Hon Dat, Kien Luong, and Ha Tien experienced from 
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moderate (0.5 - 1m) to high (> 1m) flood depth. The extent of flooding was less in areas of 

Rach Gia, and Chau Thanh during the rainy season. Overall, the Kien Giang coast of the 

western MRD is characterised by mangrove fringes and is undergoing less shoreline change 

than other sections of the delta; however, about 50% of this coastline was observed to have 

eroded or be currently eroding due to cutting of the mangrove fringes. Moreover, in 2030 and 

2050 there is predicted to be an increase in the extent of seawater incursion and flood depth 

for the study area, particularly for the land along the Kien Giang coast. That is largely due to 

projected rising sea levels, changing rainfall, and removal of mangroves.  

 

Comparing delta, provincial and coastal district scales, in terms of measuring sensitivity, 

indicates that generally coastal districts would seem to be more sensitive than the whole 

province due to having a higher proportion of population density, although they appear less 

sensitive than those due to less rural people, and ethnic minority groups. In addition, coastal 

districts may be more sensitive than the province due to having the greater proportion of non-

agricultural land.  

 

Kien Giang province as a whole, and coastal districts, in terms of measuring adaptive 

capacity, would seem to have better capabilities to reduce the potential impacts of climate 

change than the delta because of having higher incomes. Education in coastal districts was 

high in the province, thus coastal districts would seem to have better capabilities to manage 

the potential impacts. In addition, coastal districts would seem to have better capabilities to 

manage the potential impacts than the province as a whole because of having the lowest 

proportion of poverty, the highest proportion of households having solid houses, and the 

proportion of inhabitants per fixed-line telephone subscriber. It also highlights the fact that, it 

hard to access data in details within district level from plans, master plans, and strategies on 

provincial developments in socioeconomic, education and health in Vietnam for the year 

2020, vision toward 2030, or 2050.  

 

Accordingly, following this background, the vulnerability assessment for the study will adopt 

methods to aggregate using multi-criteria analysis, and visualise assessment outcomes to 

assist local authority decision makers in identifying particularly vulnerable areas and selecting 

the best alternative from several feasible alternatives under diverse priorities, based on 

determination of “where” is likely to be the most exposed to the impacts, and “who and 

what” are likely to be the most sensitive, and “who and what” are likely to be the appropriate 
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actions to reduce the potential impacts. The next chapter applies integrated GIS, and multi-

criteria decision making, using AHP, to assess the vulnerability for the study area (see chapter 

3, sub-sections 3.4.1, and 3.4.2). Results and discussions for the study area will be presented 

in the following chapters. 
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Chapter Five 

 

Potential impacts of climate change, particularly sea-level rise 

 

5.1 Aims of this chapter 

The overall objective of this chapter is to assess the potential impacts of climate change, 

particularly sea-level rise, for seven coastal districts along the Kien Giang coast, using the 

Spatial Analyst, and extension tool, the analytical hierarchy process tool (AHP), and the 

Digital Shoreline Analysis System tool (DSAS). The chapter is structured as follows. Section 

5.2 briefly introduces steps involved in order to represent potential impacts. Section 5.3 

presents and discusses mapping of the exposure component by aggregating three sub-

components: seawater incursion, flood risk, and shoreline change. The output was scaled to a 

range of five levels, namely: very high, high, moderate, low, and very low, based on the 

degree to which the study area is exposed to these impacts. Section 5.4 presents and discusses 

mapping of the sensitivity component by aggregating the two sub-components: societal, and 

landuse factors. Results are reported in a range of five levels related to their stability, in which, 

an area of very high sensitivity is likely to display a very low stability. Section 5.5 presents 

and discusses mapping of potential impacts by aggregating the two components: exposure, and 

sensitivity. This enables identification and visualisation of “where”, (i.e., hotspots), together 

with “who, and what” is most likely to be exposed and sensitive to the impacts. A summary of 

this chapter is presented in section 5.6. 

 

Objectives of this chapter are two-fold. The first objective is to generate data for exposure and 

sensitivity to be used in evaluation of potential impacts. The second objective is to aggregate 

those two components for use in the final vulnerability study (chapter 6, section 6.4). 

 

5.2 Introduction 

The combination of exposure and sensitivity, as used here, defines the degree of potential 

impacts of climate change on a system (Schauser et al., 2010). As mentioned in chapter 3, the 

following steps were considered in order to represent potential impacts. These include:  

•  Organise the hierarchical structure from six variables used in three sub-components 

into the exposure component, together with eleven sub-variables into seven variables used in 
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two sub-components into the sensitivity component, to obtain potential impacts of the study 

area (see detail on how these were derived in Figure 3.3).  

•  Classify these sub-variables and variables prior to their aggregation (see Table 3.14).  

•  Reclassify these sub-components, and components to be used in the aggregate mapping 

of potential impacts. This involved pair-wise comparisons of sub-variables, variables, sub-

components, and components following the fundamental AHP rule scale and procedure 

originally developed by Saaty (1980). Simultaneously, relative weights of these variables, sub-

components, and components were obtained. 

 

Table 5.1 Key variables and their functional relationships in representing exposure and 
sensitivity.  

No Component/  
sub-component/ 
Variable 

Ranking The functional 
relationships Very low 

 
Low 

 
Moderate 

 
High 

 
Very high 

 

E Exposure Jenks (Natural Breaks) was used to reclassify the range  
E1 Seawater incursion Jenks was used to reclassify the range  
 Salinity, ppt  < 4 4 - 8 > 8  ↑ 
 Soil types Water bodies, 

Alluvial soils 
Acrisols  

& Gray soils 
PASS AASS Seasonal 

& regular 
saline soils 

 

E2 Flood  Jenks was used to reclassify the range  
 Flood depth, m 0 – 0.2 0.2 – 0.5 0.5 – 1.0 1.0 – 2.0 > 2.0 ↑ 
 Elevation, m > 2 1.2 – 2 1.2 - 1 1.0 -  0.8 

& 0.8 – 0.5 
0.5 – 0.3  
& < 0.3  

↓ 

E3 Shoreline change       
 Shoreline 

displacement, m/year 
> 15.0 

Accretion 
5.0 – 15.0 -5.0 – 5.0 -15.0 - -5.0 < -15.0 

Erosion 
↓ 

 Adjacent landuse  Mangroves Man-made 
infrastructure 

Fishery 
farming 

Agriculture Built-up ↑ 

        

S Sensitivity Jenks was used to reclassify the range  
S1 Societal factors Jenks was used to reclassify the range  
 Pop. density, pers/km2 164 - 170 197 309 461 - 531 2,246 ↑ 
 Rural pop, % 7 32 58 82 86 – 94 ↑ 
 Ethnic groups, % 2 11 14 15 38 ↑ 
 Female pop, % 49 49.2 49.3 49.5 – 50.2 50.9 ↑ 
S2 Landuse factors  Unused land          Agricultural land              Non-agri.land 
 Landuse areas  The bare 

land 
Water bodies, 
wetland, 
grassland 

Forest, 
farmland 

Built-up ↑ 

Note: An arrow (↑) indicates a positive influence on the exposure or sensitivity, and an arrow (↓) indicates a 
negative influence; Potential acid sulphate soils (PASS), and active acid sulphate soils (AASS). 
 

A summary of the classification of variables and their functional relationships in representing 

two components: exposure and sensitivity respectively, is presented in Table 5.1. Exposure and 

sensitivity were combined to provide an indication of the hotspots, patterns or areas in the 

study area most likely to be affected by the potential impacts. Specifically, “the indication of 
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where”, associated with “the societal factors” indicates “who” is most likely to be sensitive, 

and affected (i.e., which population groups could be the most sensitive, how population 

density is affected). In addition to this, “the indication of where”, associated with “the 

biophysical information” indicates “what” is most likely to be the sensitive, and affected (i.e., 

which sorts of landuse are likely to be the most affected).  

 

5.3 Exposure component  

Exposure, as used here, refers to the degree to which the study area is exposed to impacts, 

related to seawater incursion, flood risk, and shoreline change. The reasons why these threats 

have been taken into account have been indicated and discussed in the previous chapter (sub-

section 4.4.2). The seawater incursion sub-component was considered extremely important, 

and was assigned the priority [9] when aggregating the exposure component. This was 

followed by the flood risk sub-component which was assigned a priority of [7]. The shoreline 

change sub-component, which is moderately important, was assigned the least priority of [3]. 

The prioritisation of these sub-components was undertaken for several reasons:  

•  Seawater incursion during the dry season has recently become an issue of concern across 

the MRD, due to the extent of damage to crops, local livelihoods, and infrastructure and the 

feasibility and cost of mitigation measures. From an agricultural viewpoint, the extent of salinity 

incursion is considered a major problem, resulting in a decrease in rice productivity, which has 

negative effects on the principal source of income for a majority of local people. Furthermore, it 

can indirectly threaten food security at regional and national scales. Seawater incursion is likely to 

be most markedly affected by sea-level rise (Smajgl et al., 2015). It is also impacted by 

anthropological factors, such as landuse change (Bastakoti et al., 2014). Since 2000, there have 

been dramatic changes in landuse, especially in the coastal and saline-affected areas of the 

delta, and including significant reduction of mangrove forests as farmers remove mangroves 

to make way for shrimp ponds. Several researchers have studied the trend by which local 

farmers have begun raising shrimp, enabling them to generate a short-term source of income 

by meeting demand for shrimp from the growing global market (Preston and Clayton, 2003; 

Tran et al., 2012; Tran et al., 2014a) (see chapter 4, sub-section 4.4.2). Salinity incursion is not 

only influenced by landuse changes in the coastal zone but also rising water demands in the 

upstream parts of the delta and the basin, contributing to a decline in inflows of freshwater 

during the dry season. 

•  It appears that about 83% of the study area is below 1 m elevation above MSL, based 

on the 15-m DEM, which attests to potential exposure to inundation from high tides (i.e., 
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much is apparently below highest tide levels and could be potentially inundated) (see sub-

section 5.3.2.2). The extent of seawater incursion will be exacerbated with inundation into 

adjacent coastal and low-lying surrounding areas with projected rising sea levels. Rainfall 

reduction, a decrease in mangrove area, and future dyke breaches can also have adverse 

effects on agricultural activities.  

•  The threat of flooding and inundation during the rainy season is considered a regular 

seasonal feature, and most of the local people have adapted to flooding to undertake on 

agricultural activities. The Government of Vietnam adopted a “Living with floods” strategy for 

the MRD in 1999, meaning more attention to floodwaters, flood protection and the conservation 

of natural systems and ecosystem services. The flood may occur, but is a minor problem if good 

drainage conditions offset the possible impacts (Bastakoti et al., 2014).  

•   The most dangerous form of flood in the entire MRD in terms of loss of human life and 

damage is the riverine flood. In this case high flow discharge originates from upstream during 

the wet season. Fortunately, the study is located relatively far from the Bassac River and riverine 

flooding is limited. Floods in the study area occur following overflow from the Vietnam-

Cambodia border, in combination with high rainfall, and high tidal levels from the west sea; 

these effects coincide during the southwest monsoon.  

•  The shoreline along the study area seems to be relatively stable with little change, 

observed in historical imagery in Google Earth. However, the dramatic reduction in sediment 

loads in the Mekong mainstream (and the Bassac River, in particular), affects sedimentation 

and deposition on the Kien Giang coastline, with a decrease in the area of mangroves, and 

other impacts from human activities, causing the shoreline to erode faster than previously 

thought.  

   

5.3.1 Mapping of the seawater incursion sub-component 

The seawater incursion sub-component, as described in the previous chapter (sub-section 

4.4.2.4), refers to a complex interaction between two variables: seawater incursion, and soil 

type. Objectives of this sub-section are two-fold. The first objective is to evaluate seawater 

incursion exposure for the study area up to 2050. The second objective is to use the 

aggregated sub-component in the broader study of exposure. The seawater incursion variable 

is considered to be more important than the soil type variable in order to represent the sub-

component. A map showing the seawater incursion sub-component exposure levels for the 

study area, is presented in Figure 5.1. This map was reclassified into 9 categories by using the 
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Jenks classification method (Jenks), and mapping using 5 levels from very low to very high. 

Areas shaded red, indicate very high exposure, and while those shaded dark green indicate 

areas with very low exposure (see details in Appendix 11a.2). Relative weights of the 

variables used in aggregation were obtained simultaneously using AHP (see details in 

Appendix 11a.1). A summary of overall aggregated rankings for each district, according to 

proportions of the study area classed as very high to high exposure is shown in Appendix 14. 

 

5.3.1.1 Seawater incursion variable 

The seawater incursion variable for the study area was based on the map of seawater incursion 

observed in 2010 according to the maximum isohaline (lines of equal salinity concentration). 

It was classified into 3 classes; values below 4 ppt were assigned low exposure; moderate 

exposure values were between 4 and 8 ppt; and values above 8 ppt were considered to have 

high exposure (see Table 5.1). Furthermore, two maps showing modelled seawater incursion 

in 2030, and 2050, compared to a baseline map observed in May 1998, were used (presented 

maps in chapter 4 Appendices 8d.5, 8d.2, and 8d.3, respectively). Table 5.2 gives a summary 

of proportions of the study area in each category in 2010, 2030, and 2050 (see in detail for 

each district in Appendix 11a.2). 

 

Table 5.2 Proportions of the study area classed as low to high in terms of salinity incursion 
exposure.   

Coastal district  
Seawater incursion, % of area 

Low 
< 4 ppt 

Moderate 
4 - 8 

High 
> 8 

Observed in 2010 31.60 9.83 58.57 
Modelled in 2030 31.66 4.26 64.08 
Modelled in 2050 33.57 5.10 61.33 

Note: See details of classification in chapter 3, Tables 3.10, and 5.1. 
 

Table 5.2 shows that 58.57% of the area (equivalent to 175 700 ha) was exposed to high 

seawater incursion in 2010, including the entire area of three districts An Minh, An Bien, and 

Ha Tien (see Appendix 8d.5), and considerable areas in Chau Thanh (65.72%), Rach Gia 

(about 63%), and Kien Luong (52.45%) (see Appendix 11a.2). An Minh is most at risk 

because it is further from the Bassac, and the Giang Thanh Rivers, and therefore receives 

limited floods in the wet season. 
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Table 5.2 also indicates a likely increase in the high salinity incursion area to 64.08% (~192 

000 ha) in 2030, and a slightly lesser increase to 61.33% (~184 000 ha) in 2050. Maps of 

modelled seawater incursion showed large increases in Rach Gia, Chau Thanh, and Kien 

Luong in 2030, while some areas appear to be less affected in 2050. 

5.3.1.2 Soil type variable 

As mentioned in chapter 4, sub-section 4.4.2.4, it has generally been assumed that projections 

of seawater incursion for the study can be more accurate if combined with soil types. The soil 

type variable for the study area was based on the soil map (presented in Appendix 3c). Six 

main soil type categories were identified and then reclassified into 5 classes representing 

susceptibility to seawater incursion in this study (see details in Table 5.1).  

•  The alluvial soils were assigned very low exposure, and assigned a value of 1.  

•  The acrisols and gray soils were assigned as low exposure with a value of 2.  

•  Potential acid sulphate soils (PASS), and active acid sulphate soils (ASS) were ranked 

with values of 3 and 4, representing moderate and high exposure, respectively.  

•  Finally, seasonal and regular saline soils were combined, and assigned the highest 

exposure value of 5. 

 

Results obtained from this soil map variable indicated the largest proportion of area 

representing moderate exposure (31.9%, ~95 700 ha), is mainly in An Minh, and Hon Dat, 

and scattered within An Bien, Kien Luong, and Ha Tien. In particular, An Bien appears to 

have the greatest exposure, due to it having the largest extent of seasonal saline soils. The 

second largest proportion consisted of high exposure (29.37%, ~88 100 ha), and was 

distributed mainly in Kien Luong, and Hon Dat, and scattered in An Minh, Chau Thanh, and 

Ha Tien. This was followed by the very high exposure (20.41%, ~61 200 ha) class, which was 

mainly distributed in the adjacent coastal areas of An Bien, An Minh, and scattered in Kien 

Luong, Chau Thanh, and Rach Gia. The very low exposure (12.89%, ~38 700 ha) class was 

distributed mainly in Chau Thanh, and Rach Gia, and scattered in Hon Dat. The low exposure 

(5.43%, ~16 300 ha) class had the smallest extent and was distributed mainly in the adjacent 

coastal areas of Ha Tien to Hon Dat.  

 

5.3.1.3 Aggregation of seawater incursion sub-component 

Figure 5.1 displays GIS-AHP mapping of seawater incursion sub-components for the study 

area observed in 2010, and modelled in 2030, and 2050. Only the map of seawater incursion 
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sub-component in 2010 was used in the aggregate of the exposure (see sub-section 5.3.4). In 

Figure 5.1, the left hand side a) shows maps of classified variables used in the analysis, 

whereas the right hand side b) displays maps of reclassified seawater incursion sub-

components obtained. 
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Figure 5.1 GIS-AHP mapping of seawater incursion sub-component: a) aggregate of classified 
variables: seawater incursion variables [si], observed in 2010, and modelled in 2030, and 2050, 
and soil type variable [st]; and b) reclassified seawater incursion sub-components [SI], observed 
in 2010, and modelled in 2030, and 2050, respectively. 
Note: The sub-component was reclassified in a range of 1 – 9 by using the Jenks natural breaks algorithm in 
ArcGIS: values of 1 and 2 representing very low exposure (least) as shaded dark green; values of 3 and 4 
representing low exposure as shaded green; a value of 5 representing moderate exposure as shaded yellow; 
values of 6 and 7 representing high exposure as shaded orange; and finally, values of 8 and 9 representing very 
high exposure (the most) as shaded red. Numbers in square brackets are presented together with variables 
indicating relative weights of those variables, simultaneously obtained by AHP. Black circles show areas most 
changeable in seawater incursion exposure in 2030, compared to 2010 and 2050.   
 

As seen in Figure 5.1, the model results of seawater incursion [si] on the left hand side in a) 

for 2030, and 2050 have linear change between Kien Luong, and Hon Dat, as well as between 

Hon Dat and Rach Gia which is quite different from that observed in 2010. The reclassified 

[si] sub-component, as shown in b) reflects the seawater incursion exposure sub-component in 

2010, 2030, and 2050. This is likely to be due to the relative weight of the seawater incursion 

variable obtained [.7500], which is much higher than those of the soil type variable obtained 

[.2500] in representing the sub-component. The red in [si] maps is not, of course, the same as 

the red in the reclassifed maps [SI]: red in [si] is values above 8 ppt, but red in [SI] is values 

of 8 and 9 out of 9 classes set by Jenks, indicating the area most likely to be salty, and 

consists of much of the above 8 ppt area; except that some where soils are not so risky may be 

shown as less vulnerable, and perhaps some areas with salty soil but values between 4 and 8 

ppt might be considered at risk. Some caveats apply, (i.e., the 8 ppt and above zone in the [si] 

+ 
si 

2050 

st 
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maps was not expected to match the red zone in the reclassified [SI] maps as the [st] map will 

modify the final outcome and Jenks assigns areas that are highly exposed, or red).  

 

Figure 5.1 also indicates that there is significant variability in seawater incursion, with very 

high to high seawater incursion exposure in Kien Luong, and very low to low exposure in 

Chau Thanh (see details in Appendix 11a.2). The analysed results for Chau Thanh indicated a 

marked increase in low to very low exposure in 2010, obtained for [si] (21.8% of area, ~6 228 

ha), and for [SI] (up to 34.78%, ~9 587 ha). This was followed by 0 - 2.53% in 2030, and by 0 

- 4.24% in 2050. A possible explanation for this may be due to the aggregation of the values 

between 4 and 8 ppt zone, and the distribution of water bodies or alluvisol areas. It also 

indicated a slight increase in very high to high exposure for Kien Luong from 52.45% for [si] 

- 80.36% for [SI] in 2010, a marked increase by 79.05 - 85.8% in 2030, and a slight increase 

by 66.6 - 78.53% in 2050, respectively. A possible explanation for this may be the 

aggregation of the values within the 4 and 8 ppt zone, and a large proportion of AASS. 

Although it has not clearly explained the relationship between the variables of seawater 

incursion and soil type, saline sulphate-rich groundwater appears in some agricultural areas. 

Moreover, the results in Kien Luong also provide support for the premise that the interaction 

of humans (i.e., reclamation activities, drainage or excavation of ASS) combined with 

projected sea-level rise has exacerbated adverse effects (if soils are drained, excavated or 

exposed to the air by a lowering of the water table, the acid produced by the oxidation can 

damage the environment severely). Surprisingly, it has not only captured the weighting in the 

analysis with areas that have moderate seawater incursion and high soil type exposures being 

classified as having high seawater exposure, but it is also appropriate based on an agricultural 

point of view. The maps of [SI] shown in b), when augmented with supporting text, can offer 

an overview of the nature and extent of problems that are likely to result from a relative rise in 

sea level along the coast.  

 

Overall aggregated rankings within seven districts are summarised in Appendix 14 according 

to proportions of the study area classed as very high to high, in terms of seawater incursion 

exposure based on the observed salinities in 2010. The rankings indicated that An Minh is 

most likely to be exposed to salinity incursion (ranked at 7). This result in An Minh is 

explained because 100% of that district is classed as high in terms of seawater incursion 

exposure (> 8 ppt, ranked at 7), and it has predominantly saline soils with a large proportion 

of ASS (ranked at 6). However, one discrepant ranking in the sub-component for Rach Gia 
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should be interpreted with caution. The ranking for [si] with the value of 3, and those of [st] 

with the value of 5 were combined in order to represent those of [SI] with the value of 2.  

 

Determining [SI] is very dependent on the input data. This can be shown by comparison of 

two maps of [si] observed in 1998, one obtained from Le and Le (2013) (see chapter 4 

Appendix 8d.4), and another obtained from Mackey and Russell (2011) (see Appendix 8d.1).  

 
Figure 5.2 A comparison of GIS-AHP mapping of seawater incursion sub-component in 1998: a) 
reclassified seawater incursion sub-component generated from seawater incursion variable by 
Le and Le (2013); and b) from seawater incursion variable by Mackey and Russell (2011).   
Note: small insets present seawater incursion sub-component in 2010 generated in this study using the AHP tool. 
 

As seen in Figure 5.2, there was a marked difference in projected seawater incursion areas in 

the two maps (see Hon Dat, in particular). There was also a clear difference between [SI] 

when compared with [st], as shown in the insets, respectively (Figure 5.2a, in particular). This 

may be explained because there was a deficiency in seawater incursion data observed from 

stations in 1998 as indicated by Le and Le (2013). Since 2004, there have been several new 

stations built for observing and monitoring salinity within the MRD, enabling a better map of 

seawater incursion observed in 2010 as discussed by Le and Le (2013). Moreover, the 2030 

and 2050 models are of unknown reliability; in particular, Kien Luong and Hon Dat are 

anomalous and, therefore, have not been used further in this thesis.  

  

a) b) 
Hon Dat 
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5.3.2 Mapping of the flood risk sub-component 

As mentioned in chapter 3, in order to represent the flood risk sub-component, two variables 

flood depth, and elevation, were used. The flood depth variable is considered to be more 

important than the elevation variable. Objectives of this sub-section are two-fold. The first 

objective is to evaluate flood exposure for the study area with regard to climate change in the 

period up to 2050. The second objective is to aggregate the sub-components in the exposure 

component. A map showing the sub-component exposure levels for the study area is 

presented in Figure 5.3. The sub-component map was reclassified into 9 categories using 

Jenks, and mapped into 5 levels from very low to very high, with proportions of the study area 

reported in Appendix 11b.2. A summary of overall aggregated rankings for each district, 

according to proportions of the study area classed as very high to high exposure is shown in 

Appendix 14. Relative weights of the variables of the aggregate using AHP, simultaneously, 

were obtained (see details in Appendix 11b.1).  

 

5.3.2.1 Flood depth variable 

The flood depth variable for the study area was based on the map of flood extents observed in 

2000. The variable was classified into 5 classes. Values below 0.2 m were assigned very low 

exposure. Low-exposure was between 0.2 and 0.5 m. Moderate-exposure values lie above 0.5 

to below 1 m. High-exposure lies between 1 and 2 m. Values above 2 m were considered to 

have very high exposure (see Table 5.1). Furthermore, two maps of modelled simulations of 

flood extents in 2030 and 2050 were used in order to assess the flood exposures in the future 

(presented maps in Appendices 8c.1 to 8c.3, respectively). Table 5.3 gives a summary of 

proportions of the study area classed as low to high exposure obtained from mapping of three 

flood depth variables in 2000, 2030, and 2050, respectively (see in detail for each district in 

Appendix 11b.2). 

 

Table 5.3 Proportions of the study area classed as very low to very high in terms of flood depth 
exposure.   

 Coastal district 
Flood depth , % of area 

Very low 
0 – 0.2 m  

Low 
0.2 – 0.5 

Moderate 
0.5 - 1 

High 
1 – 2 

Very high 
> 2 

Observed in 2000 29.87 15.57 22.41 31.75 0.41 
Modelled in 2030 18.93 22.36 24.36 33.83 0.53 
Modelled in 2050 11.45 20.88 15.55 33.87 18.24 

Note: See details of classification in Table 5.1. 
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As seen in Table 5.3, the study area appeared to have large proportions of high flood depth 

exposure (31.75%, ~95 250 ha) in 2000, (33.83%, ~101 500 ha) in 2030, and (33.81%, ~101 

430 ha) in 2050. In addition, there were minor proportions of very high exposure (0.41%, ~1 

230 ha) in 2000, (0.53%, ~1 600 ha) in 2030, and a major proportion of which was 18.24%, 

~54 720 ha in 2050, mainly occurring in a half of Hon Dat (45.63%), and northwest Kien 

Luong (14.08%) (see Appendices 8c and 11b.2). A possible explanation for these results may 

be due to a marked increase in water flow through the river and canal network in Kien Giang, 

particularly in Hon Dat, obtained from the hydrological modelling in 2030, and 2050 during 

the wet season (Mackey and Russell, 2011). Hon Dat is likely to be the worst exposed district 

to flood depth during the wet season, although it is the least exposed to seawater incursion 

during the dry season. It is likely to become more exacerbated in 2030, and particularly in 

2050 with a large increase in very high exposure. 

 

Adjacent coastal and low-lying surrounding areas appear to have elevations below 1 m above 

MSL (i.e., parts of An Bien, and An Minh), which are scarcely above the high tide level. They 

are, therefore expected to have relatively high exposure to flood risk associated with projected 

sea-level rise and coincident stronger southwesterly monsoons. However, they appear to have 

a relatively low flood exposure indicated by the green colour (see Figure 5.3a). Although 

these three maps obtained have successfully demonstrated the integration of GIS, hydrology 

and hydraulic simulations associated with projected sea-level rise, they have certain 

limitations in terms of tide gauge data, and broad variation in elevations. It has commonly 

been assumed that the estimation of the degree of exposure to flood for the study can be 

improved when more accurate or finer resolution elevation data is combined to create the 

flood risk sub-component, as discussed in the following sub-section. 

 

5.3.2.2 Elevation variable 

A Digital Elevation Model with the resolution of 15 m for the study area (see chapter 3 sub-

section 3.5.2.2, and chapter 4 sub-section 4.4.2.1) was used as the most detailed digital 

topographic dataset available (see Appendix 8b). Only 5 levels instead of 7 categories were 

reported, in order to make the area indicator suitable for the local scale with assigned values 

below 0.5 m representing very high exposure, whereas those between 0.5 - 1 m were 

considered to be high exposure. The mangroves are the most appropriate benchmark for 

distinguishing tidal ranges, and they exhibit elevations of 0.3 - 0.5 m above MSL. Also, low-

lying areas landward of mangroves are likely to be very vulnerable; their elevations, which 
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often are lower than 1 m, may be easily submerged, especially during high tides. The 

elevations of 1.2 - 1 m were assigned moderate exposure. These are the heights to which 

sluice gates, or earthen dykes are built, and beyond which rice paddies do not receive 

seawater. Elevations between 1.2 - 2 m were considered to be low exposure, and those values 

above 2 m above MSL represent very low exposure. The elevations of 2 m and above were 

considered related only to minor flood exposure (see details in Table 5.1). Table 5.4 

summarises proportions classed as very low to very high in terms of elevation exposure.  

 

Table 5.4 Proportions of the study area classed as very low to very high in terms of elevation 
exposure.   

 Coastal district  
Elevation , % of area 

Very low 
> 2 m  

Low 
2.0 – 1.2 

Moderate 
1.2 – 1.0 

High 
1.0 – (0.8) - 0.5 

Very high 
< 0.5 – (< 0.3) 

An Bien 0.0 0.3 0.6 29.0 70.1 
An Minh 0.0 0.5 2.9 39.1 57.5 
Chau Thanh 0.2 5.2 5.6 30.9 58.2 
Hon Dat 1.9 11.6 18.1 34.2 34.2 
Ha Tien 15.6 4.8 4.2 25.6 49.8 
Kien Luong 5.2 2.8 4.3 37.7 50.0 
Rach Gia 0.7 17.2 5.4 21.2 55.5 
Seven coastal districts 2.4 6.1 8.2 32.9 50.3 

Note: See details of classification in Table 5.1. 
 

Table 5.4 indicates that about 83% of the area (~249 000 ha) is below 1 m above MSL; this 

area is going to be most at risk as the high tide is approximately 1 m. An Bien is the district 

most likely to be exposed to flood risk because it is almost entirely below 1 m (> 99%). The 

second largest proportion (96.7%) occurs in An Minh. This was followed by 89% in Chau 

Thanh, 87.7% in Kien Luong, 76.7% in Rach Gia, and 75.4% in Ha Tien. The least proportion 

was 68.4% in Hon Dat.  

   

5.3.2.3 Aggregation of flood risk sub-component 

Figure 5.3 presents GIS-AHP mapping of flood risk sub-components for the study area 

observed in 2000, and modelled in 2030 and 2050. Figure 5.3a displays maps of classified 

flood depth variables [fd] in 2000, and modelled in 2030 and 2050. Figure 5.3b displays three 

maps of reclassified flood risk sub-components [FR]. Only the map of [FR] in 2000 was used 

in the aggregate of the exposure (see sub-section 5.3.4). Table 5.5 summarises proportions of 

the study area classed as very low to very high in terms of flood exposure. 
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Figure 5.3 GIS-AHP mapping of flood risk sub-component: a) aggregate of classified variables: 
flood depths [fd], observed in 2000, and modelled in 2030, and 2050, and elevation variable [el]; 
and b) reclassified flood risk sub-components [FR], observed in 2000, and modelled in 2030, and 
2050, respectively. 
Note: As described in Figure 5.1. Numbers in brackets are presented together with variables indicating relative 
weights of those variables, simultaneously obtained by AHP. Black circles show areas most changeable in flood 
risk exposure in 2030, and 2050, compared to 2010. 
 

Table 5.5 Proportions of the study area classed as very low to very high in terms of flood risk 
exposure.   

Coastal district 
Flood risk sub-component using AHP , % of area 

Very low 
1 – 2 

Low 
3 - 4 

Moderate 
5  

High 
6-7 

Very high 
8- 9 

Observed in 2000 16.59 20.36 7.60 30.87 24.59 
Modelled in 2030 13.16 15.07 13.23 30.16 28.38 
Modelled in 2050 8.41 11.95 11.89 36.64 31.11 

Note: See details of reclassifying values of results using Jenks in Figure 5.1. 
 

As seen in Figure 5.3 on the left side a), the maps of [fd] show areas on the northern side of 

Kien Giang, including Ha Tien, Kien Luong, Hon Dat, and Rach Gia that are more likely to 

be more exposed to flood than those on the southern side, including Chau Thanh, An Bien, 

and An Minh. The model result for [fd] in 2050 has markedly changed compared to results in 

2010 and 2030 with areas in Kien Luong, Hon Dat, and Rach Gia becoming more inundated. 

The results in the model of [fd] are primarily simulated from the river.  

+ 

 

fd 
2050 

el 
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As with the seawater, flood depth is an observed depth of water, and the proportions are set by 

thresholds, while Jenks is used to categorise [FR]. The analysed results obtained from [fd] 

(see Table 5.3), and [FR] (see Table 5.5) were not the same, but they do indicate marked 

increases in very high exposure to flood for the study area from 0.41% (~1 230 ha) for [fd] - 

up to 24.59% (~73 800 ha) for [FR] in 2010, 0.53% (~1 590 ha) for [fd] - 28.38%  (~85 150 

ha) for [FR] in 2030, and 18.24% (~54 720 ha) for [fd] - 31.11% (~93 330 ha) for [FR] in 

2050, respectively (see details for each coastal district in Appendix 11b.2). An Bien appeared 

to account for an extension of the proportion of area representing very high to high exposure, 

in terms of [FR]: 28.09% in 2010, 35.32% in 2030, and 43.93% in 2050, while the proportion 

in An Minh was 5.6% in 2010, 10.11% in 2030, and 15.31% in 2050. A possible explanation 

for these results may be due to the aggregate of the flood depths of 0.5 - 1 m zone in An Bien 

and An Minh and the almost entire areas below 1 m, because elevation will modify it (see 

Table 5.4 and Appendix 11b.2). In fact, these areas are very low and it is expected they would 

rank high to very high exposure because they can be easily submerged at high tides, and even 

more so with projected sea-level rise and influences of stronger southwesterly monsoons. This 

finding, therefore, further supports the idea of the aggregate of finer elevations for local scale 

in representing the flood risk sub-component.  

 

Overall aggregated rankings of each district within seven districts are summarised in 

Appendix 14 according to proportions of the study area classed as very high to high exposure 

in representing [FR]. The rankings of each district in [fd] are similar to those in [FR], and 

were consistent with the idea that [fd] is considered to be more important than [el] in 

representing [FR]. In addition, Hon Dat is the district most likely to be exposed to flood 

(ranked at 7). The explanation may be that flood from the Bassac River (or Cambodia) 

traverses Hon Dat. This result in Hon Dat may also explain why an area of 85% following 

aggregation was classed as very high to high flood depth exposure (ranked at 7), and even the 

least proportion of area (34.2%) was classed as very high to high exposure in terms of their 

elevations (ranked at 1). 

 

5.3.3 Mapping of the shoreline change sub-component  

The Kien Giang coast generally remains stable with protection by a 300 - 400 m wide fringe 

of mangrove forest, experiencing a small tidal range and wave height (see chapter 4, sub-

section 4.4.2.5). In the contexts of climate change, particularly sea-level rise, combined with 

human induced effects, however, the coast may be markedly changed. The shoreline change 



Coastal Vulnerability assessment of Kien Giang 
 

126 | P a g e  
 

sub-component, as used here, refers to two variables: shoreline displacement, and coastal 

adjacent landuse. In representing the shoreline change sub-component, the shoreline 

displacement variable is considered to be more important than the adjacent landuse variable. 

Objectives of this sub-section are two-fold. The first objective is to evaluate the shoreline 

change that has occurred in the study area in the period of last 40 years. The second objective 

is to use those sub-components in the aggregate of the exposure study. A map showing the 

sub-component exposure levels for the study area is presented in Figure 5.6. The sub-

component map was reclassified into 9 categories by using Jenks, and mapped using 5 levels 

from very low to very high, shaded as for the shoreline change sub-component, with 

proportions of the study area reported in Appendix 14. Relative weights of the variables of the 

aggregate using AHP were obtained simultaneously (see details in Appendix 11c.4).  

 

5.3.3.1 Shoreline displacement variable 

a. Overview 

Shoreline erosion may be accelerated by projected rising sea levels. Past patterns of 

shoreline change can be determined using rapid assessment techniques to assess rates of 

change and clearly identify a feature position at discrete times.   

 
Studies of shoreline dynamics are critically dependent on the spatial and temporal scale of 

analysis. Solomon (2005) indicated that temporal changes in shorelines may be driven by 

inter-annual and decadal scale fluctuations in response to atmospheric and hydrodynamic 

forcing, while spatial variation is a function of geological and geomorphologic conditions, 

which control coastal erosion and sediment supply. Additionally, there are three time scales at 

which shoreline dynamics operate based on different causes of shoreline movement. First, 

there is short-term variation as a result of individual large storm events (Donnelly et al., 

2001), seasonal changes in wave energy, and circulation in the near-shore zone (Masselink and 

Pattiaratchi, 2001). These occur at small spatial scales detectable with beach topographical 

profiling techniques employed at regular intervals to measure variations daily, and annually, 

with durations less than 10 years (Anfuso et al., 2007). Second, there is medium term 

variation of decadal changes in wave energy, and coastal morphodynamics (Shand et al., 2001) 

observed from sources such as satellite images, maps and charts that are used to reconstruct 

spatial and temporal shoreline changes with a period of 10 - 60 years (Jimenez and Sanchez-

Arcilla, 1993). Finally, there is long-term variation in relation to climate and sediment supply 
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(Orford et al., 2002), and relative sea-level change, with a period of more than 60 years (Anfuso 

et al., 2007).  

 
Measuring historical shoreline change has been formalised in the Digital Shoreline Analysis 

System version 4.3, an extension to ArcGIS developed by the USGS (Thieler et al., 2009). The 

extension consists of three key components: defining a baseline, generating orthogonal 

transects at a user-defined separation along the coast, and calculating rates of change (end 

point rate, linear regression rate, weighted linear regression, etc). ArcGIS 10 was used to 

digitise satellite imagery and create shoreline positions in specific years for the study area (see 

chapter 3, sub-section 3.4.2.2). 

 
Landsat imagery, freely available from the USGS, was geo-referenced to UTM WGS-1984 

zone 48N projection and coordinate system. Imagery acquired to date includes a range of 

Landsat images that enable a comprehensive assessment along the Kien Giang coast. Two 

scenes (p135-r53 and p126-r53) capture the entire coast of Kien Giang. The shoreline 

positions for Kien Giang in 1973, 1979, 1992, 1995, 1997, 2003, 2004, 2007, 2009, and 2013 

were compared (see Table 5.6), obtained from MSS, TM, ETM+, and OLI_TIRS sensors, with 

resolutions of 30 m, and 60 m.  

 
Table 5.6 A list of Landsat images used for the study. 

No. Images Date Resolution, m Path Row RMSe, m 
1 Landsat 1 MSS 07/20/1973 60x60 135 53 7.03759 
2 Landsat 3 MSS 01/26/1979 60x60 135 53 0.71946 
3 Landsat 5- TM 12/01/1992 30x30 126 53 8.52077 
4 Landsat 5- TM 12/10/1995 30x30 126 53 0.16133 
5 Landsat 5- TM 01/13/1997 30x30 126 53 5.74391 
6 Landsat 7- ETM+ 02/07/2003 30x30 126 53 9.06718 
7 Landsat 7- ETM+ 02/10/2004 30x30 126 53 8.83740 
8 Landsat 7- ETM+ 12/03/2007 30x30 126 53 8.82677 
9 Landsat 5- TM 01/14/2009 30x30 126 53 0.00010 
10 Landsat 8-OLI_TIRS 05/01/2013 30x30 126 53 7.03759 

Note: Landsat 1, 3 were only at path 135 and row 53, while others were at path 126 and row 53. 
 

Transects were created at 50m intervals along the baseline to cross the shoreline positions in 

the study area. Each baseline segment must be placed entirely onshore (or landward, assigned 

as the value of “0”) or offshore (or seaward assigned as the value of “1”) with regard to the 

shorelines. A baseline was created using a 600 m buffer from the shoreline in 2009. DSAS 

assigns a unique ID to each transect. Originating from the baseline, transects intersect all 

shorelines and DSAS calculates the distances of the shorelines from the baseline. By 
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subtracting the distance between the baseline from the earliest imagery (the shoreline in 1973) 

and the distance between the baseline and the latest imagery (the shoreline in 2013), DSAS 

calculates the net shoreline movement (NSM). The end point rate (EPR) is calculated by 

dividing the NSM by the numbers of years between the earliest and the latest year (a medium 

term variation of 40 years in the study area); therefore, the EPR is obtained in m/year. On the 

basis of the positions of shorelines compared to the baseline, DSAS calculates if the shoreline 

change involved net erosion or accretion. It is accretion if the distance between the baseline 

and the earliest year is smaller than the distance between the baseline and the latest year. An 

inverse distance addresses erosion. DSAS generates results in numerical form with positive 

numbers for accretion and negative numbers for erosion. Then, all attributes of transects 

obtained were transferred into the shoreline in 2009. After this new shoreline was buffered at 

1 km distance, it was converted into raster data that was used to estimate the shoreline change 

sub-component. 

 

b. Uncertainty sources   

Trends and rates of shoreline change are only reliable within the measurement errors that 

determine the accuracy of each shoreline position (Hapke et al., 2006). Several sources of 

uncertainty may affect the historical shoreline mapping and change rates. These errors are 

assumed to be uncorrelated and random, and can be quantified by calculating the square root 

of the sum of the squares of all uncertainty factors (Fletcher et al., 2003). Seasonal error, 

geometric or rectification error, digitising error, and pixel error were taken into account in this 

analysis.  

 

First, Landsat images were selected during the dry season to avoid seasonal error; an 

exception was an image in mid July 1973. Second, geometry error is calculated from the 

residual of the study area Ground Control Points by Root Mean Square Error (RMSe) (Cenci 

et al., 2013). Furthermore, Table 5.6 presents a series of the RMS errors of satellite image 

rectification. Third, digitising error is evaluated by delineating the same feature, on the same 

image, several times and calculating the error as the standard deviation of position residuals 

for that feature (Virdis et al., 2012). The digitising method of mapping the shoreline was used 

to extract shoreline positions from the satellite images. Each shoreline position was mapped 

three times to reduce uncertainty in the mapping process. However, it is not able to avoid 

uncertainty to extract shoreline positions from Landsat images with coarse resolutions, 

especially for those scattered mangroves (see Appendix 11c.3). The uncertainty error 
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digitising from Landsat images was estimated as ± 15 m (Angnuureng et al., 2013). Finally, 

the pixel size of the satellite image is important in constraining the accuracy of shoreline 

estimation. Extracting the shoreline from Landsat images generates a shoreline with a 

probability of an undetectable error, equivalent to the size of a one Landsat image pixel. 

Thereby, two shorelines extracted from Landsat image 1 (in 1973) and Landsat image 3 (in 

1979) can have an error of ± 60 m, while other shorelines can have an error of ± 30 m. 

   

The uncertainty of results from EPR for shoreline displacement, therefore, is a quadrature 

addition of the uncertainties in each year’s shoreline position, divided by the number of years 

between the shoreline surveys. That is also called the annualised error for the shoreline 

displacement over a period of time (Morton et al., 2004; Hapke et al., 2010; Angnuureng et 

al., 2013). The rate of shoreline displacement in the study area, therefore, may have a total 

error estimation of ±1.56 m/year during a period of 40 years. 

 
c. Shoreline displacement 

Rates of shoreline change were calculated for 3 956 transects generated at 50 m intervals 

along the Kien Giang coast (~208 km), using the EPR method in the DSAS extension in 

ArcGIS. Historic shoreline locations with transects were spatially compared to interpret rates 

of shoreline displacements. The results obtained using DSAS indicate that a range of rates of 

historical shoreline displacement over the study area varied up to 1.51 km of erosion to 1.4 

km of accretion (net shoreline movement), and from -37.95 to 35.12 m/year (end point rate) 

over a period of last 40 years (1973 - 2013). The analyses of EPR indicate the trend of 

shoreline displacement along the Kien Giang coast over the last 40 years that is presented in 

Figure 5.4, and described detail for each coastal district in Appendix 11c.2.  

 
Shoreline displacement was a difficult variable to determine, because erosion is episodic and 

Landsat images are fairly coarse resolution. In addition, erosion was commonly restricted to 

small parts of an otherwise stable coast. The shores with erosion rates of more than -15.0 m/yr 

considered to be of a very high exposure assigning a value of 5, whereas those in the range of 

-5.0 to -15.0 m/yr were assigned a value of 4 representing high exposure. Shoreline change 

rates in the range ± 5.0 m/yr and were assigned a value of 3 representing moderate exposure 

(see Table 5.1). Such coasts can be said to be relatively stable in the medium term.  
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Figure 5.4 The trend of shoreline displacement over 1973 - 2013. 
Note: The orientation of transects starts from the northwest (the Ha Tien coast) to the south (the An Minh coast); 
the yellow-dotted line indicates moderate erosion (-5 m/yr), and the dark red-dotted line shows a high erosion 
rate trend (-15 m/yr).   
 

Figure 5.4 also reveals a relatively stable trend of shoreline position along the Kien Giang 

coast over 1973 - 2013, except some hotspots that eroded in Ha Tien, and Kien Luong. A 

possible explanation for these results may be related to the tendency to increase the errors due 

to casting transects at curved positions rather than straight sections of shorelines. In addition, 

the An Bien, and An Minh coasts appear to have experienced rapid accretion. Interestingly, 

these coasts have fringes of large mangroves as effective protective barriers, compared to 

other coasts (see Appendix 11c.1).  

 
Table 5.7 Proportions of coastal change obtained from the results in EPR during 1973 - 2013. 

Shoreline change Kien 
Giang 

Ha 
Tien 

Kien 
Luong 

Hon 
Dat 

Rach 
Gia 

Chau 
Thanh 

An  
Bien 

An 
Minh 

1 Very low (very high 
accretion rate):  
EPR > 15 m/yr 

4.87 0.00 0.22 0.00 0.00 0.00 22.64 8.89 

2 Low  (high accretion 
rate):  
5 < EPR <15 

6.67 0.00 1.89 0.00 1.87 0.00 21.32 16.4 

3 Moderate:  
-5 < EPR <5 

86.34 98.73 92.89 100 96.63 100 55.66 74.71 

4 High (high erosion 
rate):  
-15 < EPR <-5  

1.44 0.76 2.22 0.00 1.5 0.00 0.38 0.00 

5 Very high (very high 
erosion rate): 
 -15 m/yr > EPR 

0.68 0.51 2.78 0.00 0.00 0.00 0.00 0.00 

Note: see details of classification in Table 5.1. 
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The proportions of coastal change obtained from the results in EPR, presented in Table 5.7, 

also indicate that only 2.12% of the Kien Giang coast (equivalent to a length of 4.43 km) eroded 

quickly, representing very high to high exposure, while the majority (86.34%, eq. 179.58 km) 

showed relative stability. Only 0.51% length of the Ha Tien coast (0.1 km) and 2.78% of the 

Kien Luong coast (1.29 km) eroded at a very high rate. 
 

 

 

 

 

Figure 5.5 GIS-DSAS mapping of shoreline displacement variable over 1973 - 2013: a) Transect 
rate-of-change calculations obtained using DSAS for Ha Tien, Kien Luong, and An Minh, 
respectively; and b) The shoreline displacement variable of the Kien Giang coast [sd]. 
Note: see details of classification in Table 5.1. 
 

Figure 5.5 presents GIS-DSAS mapping of the shoreline displacement variable for the Kien 

Giang coast. In Figure 5.5, the left hand side a) displays maps of transects and rate-of-change 

calculations obtained using DSAS, whereas the right hand side b) shows the map of the 

shoreline displacement variable for the Kien Giang coast classified into 5 classes, from very 

high exposure (most eroded rate), shaded red, to very low exposure (most accreted rate), 

b) 

a) 

Casting 
transects 

Baseline (the shoreline in 2009) 



Coastal Vulnerability assessment of Kien Giang 
 

132 | P a g e  
 

shaded dark green. In order to represent the shoreline displacement, several steps were 

followed.  

•  First, the transect rate-of-change calculations were classified into 5 classes and 

represented as new features along the shoreline in 2009.  

•  Second, a 1-km buffer polygon was created around this new shoreline; third, the 

polygon was converted into raster.  

•  Finally, the raster shoreline was reclassified into 5 classes to generate the shoreline 

displacement variable. 

 
The linear regression rate (LRR) refers to the result of estimating the average rate of change 

using a number of shoreline positions over time, with the change statistic of fitting a least-

squared regression line to all shoreline points for each transect. The linear regression rate is 

the slope of the line. LRR, therefore, was used to analyse the medium term shoreline change 

(over the last 40 years) of the Kien Giang’s shoreline. In this study, the total data uncertainty 

was ± 1.56 m, and confidence interval was 95% (95% CI) determined as a weighted linear 

rate parameter. The analyses of LRR showed a range from -19.1 to 31.2 m/yr over a period of 

1973 - 2013 (see Table 5.8). The results also indicated an average erosion rate of 4.8 m/yr 

(whereas an average accretion rate of 5.7 m/yr) occurred along the shoreline. The shoreline 

along the Kien Giang coast is expected to be fairly stable, compared to other studies, such as 

with a mean shoreline erosion LRR of 33.24 m/yr along the east of Ca Mau cape in Ca Mau, 

one of coastal provinces in the western part of the delta, indicated by Tran et al. (2014b), an 

erosion rate of 15 m/yr occurred along the Mekong riverbank indicated by Lam et al. (2011), 

loss of land, due to erosion of up to 30 m/yr in some areas of Soc Trang recorded by Schmitt 

et al. (2013).  

 
Table 5.8 Coastal change obtained from the results in LRR during 1973 - 2013. 

Shoreline Numbers of transects value ≥ 0 
stable and accreted 

The analyses of LRR,  
a range of m/yr over last 40 years 

Ha Tien 335 -14.7 to 25.9 
Kien Luong 656 -19.1 to 23.5 
Hon Dat 842 -1.9 to 8.4 
Rach Gia 213 -3.0 to 14.5 
Chau Thanh 27 -5.5 to 4.2 
An Bien 307 -4.5 to 31.2 
An Minh 195 -18.2 to 30.6 
Kien Giang 2,567 (~65%) -19.1 to 31.2 

Note: Positions of shoreline, which is marked by the seaward side of the thin mangrove fringe along the Kien 
Giang coast. 
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Table 5.8 also reveals that accretion was dominant, observed along ~65% of the Kien Giang 

coastline (2 567 transects). It seems to be that the Hon Dat, Rach Gia, and Chau Thanh coasts 

were the most stable, with an average range from -5.5 to 14.5 m/yr over last 40 years, in 

terms of LRR. On the other hand, the coasts in Ha Tien, Kien Luong, An Bien, and An Minh 

seemed to be the most changeable, with an average range from -19.1 to 31.2 m/yr. However, 

values of accretion are much higher than values of erosion, particularly those in the An Bien, 

and An Minh coasts. 

 

This approach provides only limited insight into likely shoreline change. Combining historic 

data using Landsat satellite images (at a coarse resolution of 30x30 m and 60x60 m of each 

cell-size) and the DSAS tool provides only a general overview of shoreline displacement at 

specific places along the Kien Giang coast over a medium term period. However, there is an 

urgent need to purchase high spatial resolution imagery, such as historic aerial photos, Lidars, 

and SPOT5 over a long-term (at least over 60 years) captured entire the Kien Giang coast to 

get better quality results. Several researchers indicate that spatial physical shoreline dynamics 

over time such as reduction in sediment supply and human pressures such as mangrove 

overexploitation (Ellison and Zouh, 2012), shrimp farm expansion (Nguyen et al., 2013; Tran 

et al., 2013; Tran et al., 2014a) together with impacts of projected sea-level rise can cause 

rapid shoreline erosion. It has commonly been assumed that adjacent landuse of the study area 

should be taken into account to classify the further coastal erosion to human landuse and 

development that will be provided in the following sub-sections.  

 

5.3.3.2 Adjacent landuse variable 

The adjacent coastal areas are considered most at risk, particularly impacts of sea-level rise, 

and other physical factors such as high tides, strong waves, together with anthropogenic 

impacts. The Kien Giang coast is characterised by mangroves (present along 65% of the 

shoreline), which have not undergone much change to their seaward extent (Nguyen et al., 

2013). The shoreline remains quite stable with the protection of a thin line of mangroves that 

historical imagery in Google Earth suggested little change (see Appendix 11c.1). Only 37% of 

this shoreline was experiencing mangrove loss that might be due to several reasons such as 

mangroves were illegally cut down to provide firewood and building materials; a seriously 

limiting factor in the local response that most of local community members do not know of 

the importance of mangrove forests as natural coastal stabilisers (Duke et al., 2010). It is the 

fact that mangroves provide a thin green line of salt-tolerant vegetation that buffers and 
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protects valuable farming lands from rising seas and storm damage. Behind the mangroves, 

protection of agricultural land and settlements was much more achievable through 

construction of earth sea dykes. However, a large area of mangroves has been reduced on 

their landward side through conversion to shrimp farms since 2000. The expansion of shrimp 

farms together with the impacts of projected sea-level rise makes the shoreline much more 

prone to erosion (Lam et al., 2011; Nguyen et al., 2013; Tran et al., 2013; Tran et al., 2014a). 

Furthermore, inappropriate regulations for the management of mangrove forests and 

institutions for shrimp management coupled with weak official oversight and poor 

coordination among relevant ministries and departments have all contributed to the massive 

mangrove loss (Le, 2008). 

 

Coastal erosion generally threatens coastal investment, destroys habitats and infrastructure, 

damages sources of livelihood of coastal dwellers, affects coastal ecology, and negatively 

impacts the coastal environment. The analysis from DSAS shows that there is little change to 

position of the shoreline in Kien Giang, which is marked by the seaward side of the thin 

mangrove fringe; however, the landward side of this fringe has shrunk. Therefore, a map of 

the adjacent landuse of the study (accounts for ~3% area of the study area, ~9 000 ha) was 

used in order to supplement the shoreline change sub-component (see chapter 4, Appendix 

9a.2c). It examines where different aspects of landuse will be emphasised, that may capture 

the relation between the shoreline change and landuse. It is important to note that another map 

of landuse for the entire study area, which is at a different scale and source, will be used in 

representing the landuse sensitivity sub-component, described in sub-section 5.4.2.  

 

The mangroves are natural coastal vegetation, which can promote sedimentation, so may 

erode slowly (or even build seaward, or support artificial infrastructure, such as earthen 

dykes). By contrast, unprotected agricultural land is very susceptible to erosion. There are 7 

main categories of adjacent coastal landuse, which were reclassified into 5 classes:  

•  Mangroves (natural and planted), grass land, etc assigning a value of 1, associated 

with water bodies assigning a value of 2, both representing very low sensitivity. 

•  Man-made infrastructure: sluice gates assigned a value of 3, and dykes assigned a 

value of 4, both representing low sensitivity. 

•  Fishery farming (farming with forest and other forests) assigned a value of 5, 

representing moderate sensitivity.  
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•  Agricultural production (farming and crops) assigned a value of 6, representing high 

sensitivity.  

•  Built-up (rural and urban settlements) assigned a value of 7, representing very high 

sensitivity (see Table 5.1); with proportions of the study area presented in Table 5.9. 

 
Table 5.9 Proportions of the study area classed as very low to very high in terms of adjacent 
coastal landuse. 

Coastal district 
     

Adjacent coastal landuse in 2010 , % of area  The furthest 
landward 

distance, km 
Very low 

1 - 2 
Low 
3 - 4 

Moderate 
5 

High 
6 

Very high 
7 

An Bien 23.55 8.68 66.39 0.08 1.30 2.7  
An Minh 11.03 4.01 82.59 0.00 2.37 2.1  
Chau Thanh* - - - - -           -  
Hon Dat 28.61 8.97 59.21 2.57 0.65 1.2  
Ha Tien** 22.80 2.33 74.87 0.00 0.00 1.7  
Kien Luong 11.01 1.48 86.72 0.00 0.78 4.5  
Rach Gia* - - - - -           -  
Seven coastal districts 16.83 4.62 76.80 0.53 1.22   

Note: (*) Data on the adjacent landuse variables were unavailable for Chau Thanh and Rach Gia. 
 

Table 5.9 shows the lack of adequate data relating to the adjacent landuse variable obtained; 

data is unavailable for the entire coastal areas adjacent to Rach Gia, and in Chau Thanh, and 

some parts of Ha Tien. The Kien Giang coast appears to have a major proportion of area 

representing moderate sensitivity in terms of the adjacent landuse (76.8% of area, ~6 850 ha). 

Hon Dat appears to have the largest proportion experiencing very high to high sensitivity, in 

terms of adjacent coastal landuse (3.22%, ~59 ha). This was followed by 2.37% (~62 ha) for 

An Minh, and then by 1.38% (~14 ha) for An Bien. The least proportion, 0.78% (~23 ha) was 

for Kien Luong. It is necessary to treat this adjacent landuse with caution, as inspection of 

Google Earth shows that there are settlements, some with relatively dense population (e.g., 

along the Ha Tien coast, particularly in the Ha Tien embayment, shows that there is a town 

with a relatively dense population living) that are not apparent in the landuse data (e.g., it 

indicated that there has not any built-up 1.7 km area landward of the Ha Tien coast). The 

settlements in Ha Tien and others will be provided in the next chapter, sub-section 6.4.3.4.  

  

5.3.3.3 Aggregation of shoreline change sub-component 

Figure 5.6 presents the GIS-AHP mapping of the shoreline change sub-component. In Figure 

5.6, the left hand side a) presents maps of two classified variables used in the analysis, and the 

middle b) shows the map of reclassified shoreline change sub-component, whereas the right 
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hand side c) shows extracted maps representing shoreline change for the Hon Dat coast; 

proportions of the study area presented in Table 5.10. This table showed that nearly 83.5% of 

area (~6 270 ha) representing very high to high exposure to [SC], comprising the largest 

proportion in Hon Dat (91.03%, ~1 650 ha), followed by Kien Luong (90.93%, ~1 940 ha), 

An Minh (87.75%, ~1 950 ha), Ha Tien (87.26%, ~425 ha), and An Bien (34.63%, ~300 ha). 

The low proportion was 0.14% (~2 ha) in Rach Gia, and the least proportion was (0%) in 

Chau Thanh. 

 

Table 5.10 Proportions of the study area classed as very low to very high in representing 
shoreline change exposure. 

Coastal district 
 

Shoreline change sub-component using AHP , % of area 

Very low 
1 - 2 

Low 
3 - 4 

Moderate 
5  

High 
6-7 

Very high 
8- 9 

An Bien 3.20 16.35 45.82 26.42 8.21 
An Minh 1.37 2.85 8.03 32.43 55.32 
Chau Thanh 

  
100.00 

  Hon Dat 0.00 0.00 8.98 28.27 62.76 
Ha Tien 0.00 0.00 12.74 14.11 73.15 
Kien Luong 0.00 0.67 8.40 9.92 81.01 
Rach Gia 0.74 1.60 97.52 0.14 0.00 
Seven coastal districts 0.47 2.96 13.09 23.25 60.24 

Note: See details of reclassifying values of results using Jenks in Figure 5.1. 
 

It seems to be unexpected results for the Kien Giang coast indicating very high to high [SC] 

obtained (83.5%) (see Table 5.10), differ from the aggregating the results in LRR obtained, 

indicated that only 35.1% of the Kien Giang coastline have undergone erosion (see Table 5.8), 

and the result indicating moderate [al], considered as fishery activities, obtained (76.8%) (see 

Table 5.9). These proportions are set by thresholds, by Jenks, and extracted from Landsat 

images with fairly coarse resolutions, however, they are roughly possible, due to only 21.45% 

of area of the shoreline protected by barriers (mangroves, and human infrastructure) (see 

Table 5.9), and active and eroded mangrove loss occurred 37% of the shoreline, observed by 

Duke et al. (2010). It is necessary to treat these results with caution, they indicate that [al], 

especially the area of mangroves will modify [sd], and then supplement [SC]. 
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Figure 5.6 GIS-AHP mapping of shoreline change sub-component: a) Aggregate of classified variables for the Kien Giang coast: shoreline 
displacement [sd], and coastal adjacent landuse [al]; b) Reclassified shoreline change sub-component for the Kien Giang coast [SC]; and c) Extracted 
the shoreline sub-component for the Hon Dat coast. 
Note: As described in Figure 5.1. Numbers in square brackets are presented together with variables indicating relative weights of those variables, obtained by AHP. As [sd] 
presented in Figure 5.5b, and [al] presented in chapter 4, Appendix 9a.2.    
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Appendix 14 gives a summary of overall aggregated rankings within the seven districts, 1 

according to proportions of the study area classed as very high to high [SC]. Hon Dat 2 

appeared to have the largest proportion (ranked at 7) because of the aggregate of least 3 

proportion of coastal erosion from LRR (11.6%, ranked at 1), and the largest proportion of 4 

representing very high to high [al] (3.22%, ranked at 7). This finding also indicates a strong 5 

relation between adjacent coastal landuse and shoreline change. However, it highlighted the 6 

discrepancy on the rankings of [SC] obtained, for Kien Luong (90.93%, ranked at 6), An 7 

Minh (87.75%, ranked at 5), Ha Tien (87.26%, ranked at 4), and particularly for An Bien with 8 

a much smaller proportion (only 34.63%, ranked at 3). For instance, An Minh ranked only at 9 

5 because of the aggregate of the result in erosion obtained from LRR ranked at 7, and the 10 

result obtained from [al] ranked at 6. A possible explanation for these results may be the lack 11 

of adequate data provided in the previous sub-sections. It is important to keep in mind that all 12 

these results are relative values, and identification and visualisation the pattern is more useful 13 

and significant to give policy makers or planners a generalised overview of potential impacts 14 

of sea-level rise induced shoreline erosion and landuse change. 15 

 16 

5.3.4 Mapping of the exposure component 17 

Figure 5.7 shows the exposure map derived from the aggregation of three maps of [SI], [FR], 18 

and [SC], obtained from the previous sub-sections. The exposure map was reclassified into 9 19 

categories by using Jenks, and mapped using 5 levels from very low to very high, shaded as 20 

for this component, with proportions of the study area presented in Table 5.11. Relative 21 

weights of sub-components of the aggregate using AHP, were obtained simultaneously (see 22 

details in Appendix 11d).   23 

 24 

Table 5.11 Proportions of the study area classed as very low to very high in representing 25 
exposure. 26 

 Coastal district  
Exposure using AHP , % of area 

Very low 
1 - 2 

Low 
3 - 4 

Moderate 
5  

High 
6 - 7 

Very high 
8 – 9 

An Bien 0.05 0.79 0.48 45.25 53.43 
An Minh 0.00 0.07 0.75 82.57 16.60 
Chau Thanh 12.28 22.08 22.99 38.51 4.14 
Hon Dat 2.50 19.58 37.02 26.61 14.28 
Ha Tien 0.23 10.54 10.06 22.91 56.26 
Kien Luong 0.73 6.16 5.93 27.93 59.25 
Rach Gia 9.41 26.47 9.69 34.38 20.05 
7 districts 2.51 11.35 17.13 41.68 27.32 

Note: See details of reclassifying values of results using Jenks in Figure 5.1. 27 
 28 
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Figure 5.7 GIS-AHP mapping of exposure component: a) aggregate of reclassified sub-components: seawater incursion [SI], flood risk [FR], and 
shoreline change [SC]; b) mosaic raster dataset5: input rasters and target raster; and c) reclassified exposure [E].  
Note: As described in Figure 5.1. Numbers in square brackets are presented together with sub-components indicating relative weights of those sub-components, obtained by 
AHP. As [SI], [FR], and [SC] presented in Figures 5.1b (2010), 5.3b (2000), and 5.6b, respectively. 

                                                 
5 Three sub-components: [SI], [FR], and [SC] were aggregated by AHP to generate the input raster, whereas two sub-components: [SI] and [FR] were aggregated by AHP to 
generate the target raster, which is considered the first raster in the list of input rasters. And then, mosaics multiple input rasters into the target raster to get the final outcome. 
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In Figure 5.7, the middle b) displays maps of raster dataset that were used to produce the 

mosaic exposure map, whereas the left hand side c) shows the map of reclassified exposure. 

Figure 5.7c indicates that almost all of the entire districts of An Minh and An Bien are most at 

risk to potential impacts, as well as within district areas (shaded red) in the north and 

southeast of Ha Tien, three fifths of Kien Luong, southeast and southwest of Hon Dat, and 

south of Rach Gia. There is 69% of the study area (~207 000 ha) representing very high to 

high [E] to potential impacts (see Table 5.11). An Minh appeared to have the largest 

proportion (99.17% of area, ~58 600 ha), followed by 98.68% (~39 500 ha) in An Bien, 

87.18% (~41 200 ha) in Kien Luong, 79.17% (~7 900 ha) in Ha Tien, 54.43% (~5 600 ha) in 

Rach Gia, and 42.65% (~12 200 ha) in Chau Thanh. The least proportion was 40.89% (~42 

500 ha) in Hon Dat.  

 

5.3.5 Discussion   

5.3.5.1 Coastal exposure study 

A large proportion of the study area is mapped as very high to high [E] (69%, ~207 000 ha) 

(see Table 5.11), focusing on 27.32% of area (~78 300 ha) representing very high [E] (shaded 

red), comprising 59.25% of area (~28 000 ha) in Kien Luong, 53.43% (~21 400 ha) in An 

Bien, 14.28% (~14 850 ha) in Hon Dat, 16.6% (~9 830 ha) in An Minh, 56.26% (~5 600 ha) 

in Ha Tien, 20.05% (~2 100 ha) in Rach Gia, and only 4.14% (~1 200 ha) in Chau Thanh (see 

Figure 5.7c). Although these results are relative values, and the proportions are sensitive to 

the thresholds adopted, weightings used, and the classification of apparent breaks (Jenks), the 

geographical pattern provides a valuable overview for policy makers and planners.  

 

In general, the study area is expected to be highly exposed to potential impacts due to several 

reasons. Nearly 60% of area is considered high salinity with over 8 ppt observed in 2010 

(Table 5.2), and ~20% of area appears to have seasonal and regularly saline soils (see sub-

section 5.3.1.2); ~32% of area is submerged with ≥ 1 m depth observed from the river-flood 

in 2000 (Table 5.3), and ~83% of area is below 1 m above MSL, which is going to be most at 

risk, especially at high tides (Table 5.4); and ~35% of the Kien Giang coastline has undergone 

erosion (Table 5.8), and ~21% of area of the adjacent coastal area protected by barriers 

(mangroves, and human infrastructure) with other ~77% of area appearing as fishery activities 

(see Table 5.9)     
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Moreover, overall aggregated rankings in this study have been undertaken, in order to provide 

initial indications of exposure, especially for provincial and district policy makers. Table 5.12 

gives a summary of overall aggregated rankings for each district according to proportions of 

the study area representing very high to high [E].  

 

Table 5.12 Overall aggregated rankings for each district obtained by aggregating three sub-
components: seawater incursion, flood risk, and shoreline change in representing the exposure 
component. 

Rank Seawater incursion         Flood Shoreline change Exposure 
1 Hon Dat An Minh Chau Thanh Hon Dat  
2 Rach Gia  An Bien Rach Gia Chau Thanh 
3 Chau Thanh Chau Thanh An Bien  Rach Gia 
4 Kien Luong Rach Gia Ha Tien Ha Tien 
5 Ha Tien Ha Tien An Minh  Kien Luong  
6 An Bien Kien Luong Kien Luong An Bien 
7 An Minh Hon Dat Hon Dat An Minh 

Note: A value of 7 indicates the highest rank within seven districts, while a value of 1 indicates the least rank in 
representing the exposure (see details in Appendix 14); The colour indicates districts exposure with red, yellow, 
and green colours representing districts high, moderate, and low exposure, respectively.    
 

 

Interestingly, it was found that the rankings of [E] for districts seem to reflect their rankings 

of [SI] considered as the highest priority. Table 5.12 indicates An Minh appears to have the 

largest proportion of area representing very high to high [E] (99.17%, ranked at 7) due to the 

largest proportion experiencing very high to high [SI] (100%, ranked at 7), the least 

proportion very high to high [FR] (5.6%, ranked at 1), and the large proportion very high to 

high [SC] (87.57%, ranked at 3) (see Appendices 11a.2, 11b.2, and Table 5.10). On the other 

hand, Hon Dat appears to have the least proportion representing very high to high [E] 

(40.89%, ranked at 1) because of the least proportion experiencing very high to high [SI] 

(15.16%, ranked at 1), the largest proportion very high to high [FR] (85.1%, ranked at 7), and 

the largest proportion very high to high [SC] (91.03%, ranked at 7). 

 

This study is the first empirical study examining exposure to seawater incursion, flood risk, 

and shoreline erosion by using GIS integrated with AHP, six variables into the three sub-

components were to be used in the aggregate. The map of exposure levels shown in Figure 

5.7c, when augmented with supporting text, can give policy makers or planners a generalised 

overview the areas of incursion, inundation, and erosion that are likely to be exacerbated by a 

relative rise in sea level. It enables identification and prioritisation of the areas most likely to 

be exposed to the impacts indicated by areas shaded red. 
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As mentioned in chapter 3, sub-section 3.4.2.3, it is believed that AHP is a valuable technique 

for multiple criteria decision-making. AHP provides the objective mathematics to process the 

inescapably subjective and personal preferences of an individual or a group in making 

decisions (Saaty, 2001). It assists decision makers in organising and evaluating the 

significance of the criteria and alternative solutions of a decision. It helps the decision makers 

find the one that best suits their needs rather than prescribing a correct decision. However, 

AHP is based on subjective judgements; in fact, these judgements are not always consistent. 

Consistency, as used here, refers to thinking in the same way throughout an entire 

circumstance. The judgements about sub-variables, variables, sub-components, and the three 

main components were applied, based on their contributions to the impacts of climate change, 

particularly sea-level rise, using pair-wise comparisons. The choice of variables and their 

priorities within pair-wise comparisons for the study area depended on a number of factors 

including required level of existing analyses, accuracy, data available, and the author’s 

knowledge and experience.  

 

It is important to keep in mind that changes in judgements can influence the mapping 

outcome. This will be examined by changing the priorities of variables in order to represent 

exposure in the following sub-section. The weight value of the exposure study is summarised 

in equations as follows. The consistency ratios (CR) obtained were acceptable in the way 

demonstrated by Saaty (1980; 1994) (see Appendix 15). The results in Equation 5.1.1 show 

relative weights of three layers assigning three sub-components [SI], [FR], and [SC] obtained, 

in terms of representing the exposure in the analysis (see Figure 5.7). A summary of those 

relative weights in order to represent [E] is presented in Equation 5.1. Moreover, the results in 

Equation 5.1.2 show that relative weights of two layers variables: [si], and [st] in mapping 

[SI], relative weights of two [fd], and [el] in mapping [FR], and relative weights of two [sd], 

and [al] in mapping [SC], which were aggregated to obtain relative weight of the exposure 

study (see Figures 5.1, 5.3, and 5.6). A summary of those relative weights in order to 

represent [E] is presented in Equation 5.1.3. 

 

LayerE = 0.5185 * layerSI + 0.3975 * layerFR + 0.0841 * layerSC                          [Equation 5.1] 
                                                           

 LayerE = [½ * (0.4746 + 0.5624) * layerSI] + [½ * (0.3573 + 0.4376) * layerFR] + (½ * 

0.1681 * layerSC)                                                                                                 [Equation 5.1.16] 

                                                 
6 See Figure 5.7a. 
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 LayerE = 0.5185 * (0.7500 * layersi + 0.2500 * layerst) + 0.3975 * (0.6923 * layerfd + 

0.3077 * layerel) + 0.0841 * (0.6667 * layersd + 0.3333 * layeral)                      [Equation 5.1.27] 

 
 LayerE = (0.3889 * layersi + 0.1296 * layerst) + (0.2752 * layerfd + 0.1223 * layerel) + 

(0.0560 * layersd + 0.0280 * layeral)                                                                    [Equation 5.1.3] 
Note: Abbreviation of variables, sub-components constituent to the exposure, and relative weights of those 
variables, and sub-components, obtained by AHP as presented in Figures 5.1, 5.3, 5.6, and 5.7. See a summary 
of those relative weights in Appendix 15. 
 

These equations produced by the AHP analysis provide objective mathematics that have 

captured subjective judgements using pair-wise comparisons. They are portrayed spatially 

using GIS in order to represent the exposure, which is assigned its relative value as 1 (that is 

visualised in Figure 5.7c). The [SI] is considered as the highest priority (its relative value 

obtained as 0.5185). The second priority is [FR] (its relative value obtained as 0.3975). The 

least is [SC] (its relative value obtained as 0.0841). These values also may be useful to give a 

general idea for local authorities to re-analyse their wise-priorities for potential impacts in the 

context of climate change, particularly sea-level rise, within the limitation of their budget 

capacity.   

 

5.3.5.2 Evaluation of changing priorities of variables based on pair-wise comparisons 

One of the strengths of AHP proposed by Saaty (1980) is its ability to carry out a consistency 

check of the subjective pair-wise judgements. Figure 5.8 presents an example of changes in 

priorities of the six variables combined into the 3 sub-components representing exposure, 

whereas Table 5.13 presents a comparison of relative weights from changing their priorities 

obtained, in representing the exposure by using AHP. On the right hand side b) of Figure 5.8, 

priorities of six variables were changed, but remained the principle of their pair-wise 

comparisons ([SI] > [FR] > [SC]; [si] > [st], [fd] > [el], and [sd] > [al]) in representing the 

alternative adjusted exposure. Specifically, the priority assigned to soil type [st] was markedly 

increased, together with a significant increase in shoreline change [SC] by increasing the 

priority of adjacent coastal landuse [al].   
 

                                                 
7 See Figures 5.1a, 5.3a, and 5.6a. 
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Figure 5.8 An example for GIS- AHP mapping of exposure component by changing priorities of 
variables in pair-wise comparisons: a) exposure used in vulnerability analysis; and b) alternative 
adjusted exposure (with increase weighting of soil type [st] and adjacent coastal landuse [al]). 
Note: a) as presented in Figure 5.7c. 
 

Table 5.13 A comparison of the relative weights of the variables obtained by changing priorities 
of variables using AHP in representing exposure. 

 Layersi Layerst Layerfd Layerel Layersd Layeral 
LayerE in a) 0.3889 0.1296 0.2752 0.1223 0.0560 0.0280 

 LayerSI = 0.5185 LayerFR = 0.3975 LayerSC = 0.0841 
LayerE in b) 0.3000 0.1969 0.2341 0.1193 0.0695 0.0804 

 LayerSI = 0.4969 LayerFR = 0.3534 LayerSC = 0.1499 
Note: layerE in a) as presented in Equation 5.1.3, while layerE in b) see Appendix 16. 
 

As seen in Figure 5.8, there are some subtle changes to mapping exposure between a) and b). 

Maps look similar, except strongly changes in small areas in Kien Luong, Chau Thanh, and 

An Bien, and a larger area in An Minh, so exposure seems realistic. Similarly, Equation 5.1.4 

summarises those relative weights obtained, in order to represent the alternative adjusted 

exposure (see details in Appendix 16).  

 
LayerE = (0.3000 * layersi + 0.1969 * layerst) + (0.2341 * layerfd + 0.1193 * layerel) + (0.0695 

* layersd + 0.0804 * layeral)                                                                                        [Equation 5.1.48] 

 

                                                 
8 As presented in Figure 5.8b. See Table 5.13. 

b) a) 
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This alternative exposure in Figure 5.8b seems reflects more closely the map of soil type (see 

Figure 5.1a). Table 5.13 also indicates that there has been the significant change in the weight 

value of [st] (an increase from 0.1296 to 0.1969), and the weight value of [al] (an increase 

from 0.0280 to 0.0804). It should be underlined that the results of AHP also illustrate the 

perception of experts regarding human-nature interaction and the threat posed by climate 

change, particularly sea-level rise. It can thus be an implication for further practice that it 

might involve groups of local experts, including physical and social experts that can resolve 

discrepancies of evaluations. Apart from the limitation of AHP, GIS-based multi-criteria 

approaches, in this thesis, integrated AHP into GIS methods, are easy applicable and can be 

projected to other coastal areas. 

 

5.4 Sensitivity component 

The sensitivity, as used here, reflects the potential to be affected, or display the stability that is 

a complex interaction between society and land-use sensitivity factors. It indicates the area 

that displays the least stability, meaning the area that is the most sensitive. “Who (is 

sensitive)” is always of a greater interest than “What (is sensitive)”. Therefore, societal factors 

are considered to be more important than landuse factors, in terms of representing the 

sensitivity. In this study, societal factors sensitivity was judged to have an extremely high 

influence and was assigned a priority of [9], while the study landuse factors sensitivity was 

judged to have a very strong influence and assigned a priority of [7].  

 

5.4.1 Mapping of the societal factors sensitivity sub-component 

Four variables, comprising population density, proportions of rural people, ethnic minorities, 

and female people, were used in representing the societal sensitivity sub-component. 

However, one of the limitations with all available variables is that data were only available 

obtained at entire district level. A map showing the sub-component for the study area is 

presented in Figure 5.9. Objectives of this sub-section are two-fold. The first objective is to 

evaluate societal sensitivity for the study area. The second objective is to use those sub-

components in the aggregate of the sensitivity study. The sub-component map was 

reclassified into 9 categories by using Jenks, and mapped using 5 levels from very low to very 

high, shaded as for the societal sensitivity sub-component, with proportions of the study area 

reported in Table 5.14. Relative weights of the variables of the aggregate using AHP, 

simultaneously, were obtained (see details in Appendix 12a).  
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5.4.1.1 Overview 

Statistical data obtained from the Kien Giang Statistical Office’s Book in 2012 indicated the 

population density of the entire Kien Giang in 2011 (271 inhabitants/ km2) that was slightly 

higher than the national average population density (260 inhabitants/ km2); however, there has 

markedly higher proportion of population density of the seven coastal districts in Kien Giang 

(308 inhabitants/ km2) (see details in Appendix 10). In addition, there was about 73% of the 

population living in rural areas for the entire province in 2011, whereas only 62% for the 

seven coastal districts were rural. Furthermore, the proportion of ethnic minority group 

reached 17% for the entire province, while having only 15% for the seven coastal districts. 

Generally, areas with higher population densities are expected to be more sensitive to coastal 

impacts resulting from future sea-level rise. Moreover, specific groups of people are more 

sensitive than other groups to climate change impacts; for example, the impacts are likely to 

affect rural people more severely than urban people; women are often more at risk than men, 

etc., which is described greater detail in chapter 4, sub-section 4.3.2.1. A strong relationship 

between population density and vulnerability has been reported in the literature chapter (see 

details in chapter 2 section 2.6, and appendix 1). The population density variable was, 

therefore, considered as the most important in representing the societal factors sub-

component. This was followed by the proportion of rural people variable, and then the 

proportion of ethnic minorities. The least important was the proportion of female people 

variable, in representing the societal factors sub-component.  

 

5.4.1.2 Aggregation of societal factors sensitivity sub-component 

Figure 5.9 presents GIS-AHP mapping of the societal factors sub-component of the study 

area. In Figure 5.9, the left hand side a) displays maps of classified variables used in the 

analysis, whereas the right hand side b) visualises the map of reclassified the societal factors 

sub-component.  
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Figure 5.9 GIS-AHP mapping of societal factors sub-component: a) aggregate of classified 
variables: population density [pd], rural people [ru], ethnic minorities group [et], and female 
people [fe]; and b) reclassified societal sub-component [SF].  
 

Note: as described in Figure 5.1. Numbers in square brackets are presented together with variables indicating 
relative weights of those variables, obtained by AHP.  
 

Figure 5.9b indicated two districts An Bien, and Chau Thanh experienced the most sensitive 

areas (shaded red), while Hon Dat experienced the least sensitive (shaded dark green). 

Contrary to expectations, this Figure also indicated that urban areas, comprising Rach Gia and 

Ha Tien, seem less sensitive than rural areas in terms of societal factors sensitivity. A possible 

explanation for these results may be that input data are only available at an entire district 

level. To examine this, scale-based approaches to the coastal vulnerability assessment will be 

discussed later in this chapter to see whether or not they influence the mapping outcome. 

Three different scale-based approaches, using population density will be demonstrated in 

order to represent the scale-based sensitivities in sub-section 5.4.4.2. The analyses of the 

coastal vulnerability for a settlement scale will be provided in chapter 6, sub-section 6.4.3.4. 

 

Seven districts were ranked in the study area based on the areas representing very high to high 

sensitivity of the four variables, respectively, in representing the societal factors sub-

component, that are summarised in Table 5.14.  
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Table 5.14 Overall aggregated rankings from four variables: population density, rural people, 
ethnic group, and female people in representing societal factors sensitivity sub-component for 
each district. 

Rank Population density Rural people Ethnic group Female people Societal factors 
1 Hon Dat Rach Gia An Minh An Minh Hon Dat 
2 Kien Luong Ha Tien Rach Gia Kien Luong Kien Luong 
3 An Minh Kien Luong An Bien Hon Dat An Minh 
4 An Bien Hon Dat  Hon Dat An Bien  Ha Tien  
5 Ha Tien Chau Thanh Ha Tien Chau Thanh Rach Gia 
6 Chau Thanh An Bien  Kien Luong Ha Tien Chau Thanh 
7 Rach Gia An Minh Chau Thanh Rach Gia An Bien 

Note: as described in Table 5.12. 
 

As seen in Table 5.14, the rankings in societal factors sub-component seem to reflect their 

rankings using the population density variable. A probable explanation for this is that the 

population density variable was assigned the most importance, compared to the other three 

variables. An Bien appears area the most sensitive (ranked at 7) due to moderate [pd] (309 

inhabitants/ km2, in a range of 164 - 2 246; ranked at 4), a large proportion of rural people (at 

91%, ~112 650 rural people, in a range of 7 - 94%; ranked at 6), a small proportion of ethnic 

group (at 11%, ~13 617 ethnic people, in a range of 2 - 38%; ranked at 3), and a large 

proportion of female people (49.49%, ~61 266 females, in a range of 48.98 - 50.88%; ranked 

at 4). Similarly, Chau Thanh appeared the second highest sensitive area (ranked at 6) due to 

high [pd] 531 inhabitants/ km2 (ranked at 6), a large proportion of rural people (at 86%, ~130 

342 rural people; ranked at 5), and the largest proportion of ethnic group (at 38%, ~57 593 

ethnic people; ranked at 7), and a large proportion of female people (at 50.22%, ~76 108 

females; ranked at 5). On the other hand, Hon Dat appeared the area least sensitive (ranked at 

1) due to the lowest population density 164 inhabitants/ km2 (ranked at 1), a moderate 

proportion of rural people (at 82%, ~139 773 rural people; ranked at 4), and a moderate 

proportion of ethnic minorities (at 14%, ~23 864 ethnic people; ranked at 4), and a fairly 

small proportion of female people (at 49.18%, ~83 830 females; ranked at 3) (see chapter 4, 

sub-section 4.5.3.2). However, one discrepancy was the ranking in the sub-component for An 

Bien. A possible explanation for this result may be due to data being available only at entire 

district level.  

 

5.4.2 Mapping of the landuse factors sensitivity sub-component 

5.4.2.1 Overview 

As described in chapter 4, sub-section 4.5.3.3a, Kien Giang generally has a greater proportion 

of agricultural land, while having less non-agricultural land and unused land compared to 
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average proportions for the delta. Objectives of this sub-section are two-fold. The first 

objective is to evaluate landuse sensitivity for the study area. The second objective is to use 

those sub-components in the aggregate of the sensitivity study. A map showing the landuse 

sensitivity sub-component for the study area is presented in Figure 5.10b. The sub-component 

map was reclassified into 7 categories by using Jenks, and mapped using 3 levels from low to 

high, shaded as for the landuse sensitivity sub-component, with proportions of the study area 

reported in Table 5.15.  

 

5.4.2.2 Aggregation of landuse sensitivity sub-component 

As described in greater detail in chapter 4, sub-section 4.5.3.3 (see Appendices 4 and 9), the 

landuse sensitivity sub-variable, and variable were based on the landuse map, respectively.  

Eleven sub-categories of a map of landuse were classified into 7 sub-classes, and then were 

reclassified into 3 main categories assigning as the three classes (see Table 5.1). These are:  

•  Unused land consists of the bare land.  

•  Agricultural land consists of forest land, perennial industrial plant land, and perennial 

fruits and orchard land, annual crops in the plain-field, salt pond land, paddy field, and fishery 

farm land.  

•  Non-agricultural land consists of specially used land, rural and urban land, it is 

largely for settlements and roads etc.,.  

 

In Figure 5.10, the left hand side a) presents the map of classified 7 sub-classed, whereas the 

right hand side b) displays the map of reclassified 3 classes, in terms of representing the 

landuse sensitivity sub-component. The non-agricultural land variable was considered the 

most important, followed by agricultural land variable, whereas unused land was the least 

significant, in representing the landuse factors sensitivity. Densely populated settlements 

associated with urbanisation (with a high road density) are most at risk under climate change 

impacts (areas shaded red). Table 5.15 presents proportions of the study area classed as low to 

high landuse sensitivity. 
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The unused land ~ 1 The used land ~ 1: low sensitivity 
Forests and perennial industrial plants, 
fruits, and orchards land 

~ 2 The agricultural land ~ 2: moderate sensitivity 

Other annual crops, except rice, and salt 
ponds land 

~ 3 

Rice field and fishery farming land ~ 4 
Specially used land ~ 5 The non- agricultural 

land 
~ 3: high sensitivity 

Rural area ~ 6 
Urban area ~ 7 

Figure 5.10 A map of landuse sub-component study: a) classifed into seven sub-classes; and b) 
reclassified into 3 classes in representing landuse sub-component [LU].  
Note: 11 categories of landuse, assigned as sub-variables, were classified into 7 sub-classes (see Table 5.1, and 
Appendix 4); And then, these sub-classes were reclassified into 3 main classes, assigned as variables, from low 
sensitivity shaded dark green, moderate sensitivity shaded yellow, and high sensitivity shaded red (see Table 
5.15). 
 

Table 5.15 Proportions of the study area classed as low to high in representing landuse factors 
sensitivity.  

Coastal district 
Landuse , % of area 

Low 
1 

Moderate 
2 – 4 

High 
5 – 7 

An Bien 0.5 75.8 23.7 
An Minh 29.2 63.8 7.0 
Chau Thanh 0.0 77.7 22.3 
Hon Dat 5.4 87.5 7.1 
Ha Tien 32.1 53.6 14.3 
Kien Luong 17.4 80.4 2.3 
Rach Gia 0.0 75.8 24.2 
Seven coastal districts 24.0 53.2 22.8 

Note: The sub-component was classified into a range of 1 - 7, and then reclassified into 3 classes:  a value of 1 
representing low sensitivity; values of 2, 3, and 4 representing moderate sensitivity; and values of 5, 6, and 7 
representing high sensitivity.  
 

a) b) 
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Table 5.15 shows that only small proportions of the area were either bare land, considered low 

sensitivity (shaded dark green) to account for 24% (~72 000 ha), or non-agricultural land, 

considered high sensitivity (shaded red) to account for 22.8% (~68 400 ha). On the other 

hand, the largest proportion of agricultural land (shaded yellow) was 53.2% representing 

moderate sensitivity (see Figure 5.10b). This land is mainly used for rice cultivation, shrimp 

farmings, and forest activities. Rach Gia appeared the most sensitive area (i.e., a city), due to 

the largest proportion representing high [LU] (24.2%, ~2 500 ha), together with a large 

proportion representing moderate [LU] (75.8%, ~7 850 ha). On the other hand, Kien Luong 

appears the least sensitive area, due to the least proportion representing high [LU] (only 2.3%, 

~1 068 ha), and a large proportion representing moderate [LU] (80.4%, ~38 000 ha), and a 

fairly large proportion representing low [LU] (17.4%, ~8 210 ha). There are several possible 

explanations for these results obtained. Rach Gia is the densely populated city, and relatively 

well developed and accounted a large proportion of urban area, compared to other districts, 

with little available unused land in Rach Gia. By contrast, Kien Luong is one of districts that 

relies heavily on the agricultural activities, having a large agricultural land, together with the 

bare land, (i.e., hills and mountains) scattered along the coast. 

 

5.4.3 Mapping of the sensitivity component 

Figure 5.11 presents GIS-AHP mapping of the sensitivity study. In Figure 5.11, the left hand 

side a) presents maps of reclassified sub-components used in the analysis, whereas the right 

hand side b) displays the sensitivity levels map. The sensitivity component map was 

reclassified into 9 categories by using Jenks, and mapped using 5 levels from very low to very 

high, shaded as for the component, with proportions of the study area reported in Table 5.16. 

Relative weights of aggregated sub-components using AHP, were obtained simultaneously 

(see details in Appendix 12b). 
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Figure 5.11 GIS-AHP mapping of sensitivity component: a) aggregate of reclassified sub-
components: societal factors [SF], landuse [LU]; and b) reclassified sensitivity component [S]. 
Note: As described in Figure 5.1. Numbers in square brackets are presented together with sub-components 
indicating relative weights of those sub-components, obtained by AHP. As [SF] and [LU] presented in Figures 
5.9 and 5.10, respectively. 
 

Table 5.16 Proportions of the study area classed as very low to very high in representing 
sensitivity. 

Coastal district 
Sensitivity component using AHP , % of area 

Very low 
1 - 2 

Low 
3 - 4 

Moderate 
5 

High 
6 - 7 

Very high 
8 – 9 

An Bien 0.0 0.0 0.5 1.2 98.2 
An Minh 0.0 36.4 0.0 56.6 7.0 
Chau Thanh 0.0 0.0 0.0 0.9 99.1 
Hon Dat 36.3 56.6 7.1 0.0 0.0 
Ha Tien 0.0 32.1 10.8 42.8 14.3 
Kien Luong 51.3 46.4 0.0 2.3 0.0 
Rach Gia 0.0 0.0 2.6 73.0 24.4 
7 districts 21.0 35.4 3.0 15.4 25.2 

Note: See details of reclassifying values of results using Jenks in Figure 5.1. 
 

Figure 5.11b indicates that An Bien and Chau Thanh appear to be the most sensitive areas 

(mostly shaded red), while Hon Dat and Kien Luong appeared the least sensitive areas 

(dominantly areas shaded green). Moreover, Table 5.16 indicated the moderate proportion of 

area representing very high to high sensitivity (shaded red and orange) (40.6%, ~121 800 ha) 

(see Figure 5.11). Specifically, the largest proportion of this was 99.1% in Chau Thanh, 

+ [.5625] 

[.4375] 

SF 

LU 

a) b) 
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followed by 98.2% in An Bien. On the other hand, there was a small proportion of only 2.3% 

in Kien Luong. The least proportion was in Hon Dat (0%). 

 

5.4.4 Discussion  

5.4.4.1 Coastal sensitivity study 

Results for the sensitivity obtained for the study area, are relative values; however, the large 

proportion of area representing very high to high sensitivity (nearly 41%) indicates the study 

area is expected to be relatively sensitive. These include about 25% (~75 700 ha) representing 

very high [S], comprising almost all of Chau Thanh (99%, ~28 300 ha) and An Bien (98%, 

~39 300 ha), together with nearly 16% (~44 900 ha) representing high [S] (see Table 5.16). 

Moreover, “who” is not spatially very accurate due to the limitations of data available in 

representing the societal factors (at an entire district level) (see Figure 5.9). Most of input data 

derived from the Kien Giang Statistical Office 2012, used in the aggregate of sensitivity 

component, were at a given time (i.e., mostly in 2011) which may influence the outcome. The 

societal factors [SF] have changed over time, thus, different chosen times of input data may 

obtain different outcomes. The sensitivity outcome [S] is likely to be more changeable, 

compared to the exposure outcome [E], involving physical factors. Results for the sensitivity 

study should therefore be interpreted with caution, particularly areas shaded red (see Figure 

5.11). It seems that aggregate map of [S] in b) closely resembles district map of societal data 

[SF] in a), and even including [LU] for this analysis that has led to some variation within 

districts. There appears to be the modifications in areas in Ha Tien and An Minh, especially to 

unbounded areas between Kien Luong and Hon Dat. In fact, the interaction of detailed spatial 

evaluations and societal factors increases the accuracy of the results and will remain 

challenging for science. Scale-based approaches, especially to using accessible data about the 

population density variable in representing [S], therefore, will be further discussed in the 

following sub-section 5.4.4.2. 

  
Overall aggregated rankings for each district in representing coastal sensitivity are 

summarised in Table 5.17. The rankings of [S] closely reflect rankings of [SF], because [SF] 

was assigned more importance than [LU], and because of the data of [SF] was obtained only 

at district level. Chau Thanh appeared to have the largest proportion representing very high to 

high [S] (ranked at 7), due to high [SF] (ranked at 6), and a large proportion representing high 

[LU] (ranked at 5). On the other hand, Hon Dat appeared to have the least proportion 

representing very high to high [S] (ranked at 1), due to the lowest ranking of [SF] (ranked at 
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1), and a moderate proportion representing high [LU] (ranked at 4). However, there was a 

discrepancy in the rankings of two sub-components representing [S] for Chau Thanh and An 

Minh.  

 
Table 5.17 Overall aggregated rankings for two sub-components: societal factors, and landuse 
factors in representing sensitivity component for each district. 
Rank Societal factors Landuse Sensitivity 
1 Hon Dat Kien Luong Hon Dat  
2 Kien Luong An Minh Kien Luong 
3 An Minh Ha Tien Ha Tien 
4 Ha Tien Hon Dat An Minh 
5 Rach Gia Chau Thanh Rach Gia 
6 Chau Thanh An Bien An Bien 
7 An Bien Rach Gia Chau Thanh 

Note: as described in Table 5.12. 
 

The weight value of the sensitivity study is summarised in equations as follows. The 

consistency ratios (CR) obtained were acceptable, according to the procedures of Saaty (1980; 

1994) (see Appendix 15).  

 
LayerS = 0.5625 * layerSF + 0.4375 * layerLU            [Equation 5.29] 

 
 LayerS = 0.5625 * [0.3611 * layerpd + 0.2635 * layerru + 0.2307 * layeret + 0.1448 * 

layerfe] + 0.4375 * layerLU                                                                                                                         [Equation 5.2.110] 

 
 LayerS = [0.2031 * layerpd + 0.1482 * layerru + 0.1298 * layeret + 0.0815 * layerfe] + 

0.4375 * layerLU                                                                                                                                                     [Equation 5.2.2] 
Note: Abbreviation of variables, sub-components constituent to the sensitivity, and relative weights of those 
variables, and sub-components, obtained by AHP as presented in Figures 5.9 to 5.11. See a summary of those 
relative weights in Appendix 15.  
 

Similar to Equations presented in the previous section representing the exposure, the results in 

Equations 5.2 summarise the relative weights of two layers of sub-components: [SF], and 

[LU] obtained in order to represent the sensitivity component [S] (see Figure 5.11). The 

results in Equation 5.2.1 indicate that relative weights of layers of two sub-components, 

comprising those of four layers variables: [pd], [ru], [et], and [fe], in mapping [SF], and those 

of three layers: classes non-agricultural land, agricultural land, and unused land, in mapping 

[LU] were aggregated to obtain the map of [S] (see Figures 5.9, and 5.10). A summary of 

those relative weights of variables, and landuse sub-component in mapping the sensitivity is 
                                                 
9 See Figure 5.11a. 
10 See Figures 5.9a and 5.11a. 
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shown in Equation 5.2.2. The societal sensitivity was considered more important than the 

landuse sensitivity in order to represent overall sensitivity. The relative weight of [SF] 

obtained by AHP, therefore, was 0.5625, whereas the relative weight of [LU] was 0.4375.  

 

5.4.4.2 Evaluation of the effect of scale of input data 

Figure 5.12 presents an evaluation of the effect of the scale at which input data is available, 

and its influence on the sensitivity outcomes. In Figure 5.12, the left hand side a) presents the 

map of the sensitivity obtained by using the 2.5 arc-minute grid cells of population density 

variable [pd] - at the global scale from Center for International Earth Science Information 

Network (CIESIN) - Columbia University, and Centro Internacional de Agricultura Tropical 

(CIAT) (2005) - version 3 (GPWv3), the estimate for the year 2010 was used in the analysis, 

assigned as [SF]. The middle b) shows the map of sensitivity obtained in this study ([pd] and 

three other societal variables at an entire district level (see the previous sub-section). The right 

hand side c) displays the map of sensitivity obtained by using the population density data [pd] 

within the district level, comprising data within a pilot GIS database (undated, MARD) where 

buildings, such as households, centre malls, or settlements are digitised as polygons. Two 

variables: the urban population density and the rural population density, were used to generate 

the aggregated sub-component [SF]. The maps of the sensitivity were reclassified into 9 

categories by using Jenks, and mapped into 5 levels from very low to very high, shaded as for 

[S], with proportions reported in Table 5.18 (see details in Appendix 17). 

 
The objectives of this sub-section are two-fold. The first objective is to evaluate the effect of 

the scale at which input data is available (e.g., the population density variable) in mapping the 

sensitivity. The second objective is to use those sensitivity outcomes in evaluation the 

aggregated potential impacts that will be provided later in this chapter (sub-section 5.5.3.2), 

and the final vulnerability (see chapter 6, sub-section 6.4.3.2). 
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Figure 5.12 Evaluation of the effect of scale of input data in order to represent the sensitivity component: a) the sensitivity obtained by using the 
population density at global scale11; b) the sensitivity obtained by using the population density at an entire district level12; and c) the sensitivity 
obtained by using the population density within district level13. 
Note: As described in Figure 5.1; And a) and c) see details in Appendix 17, whereas b) as presented in Figure 5.11b.  

                                                 
11 Accessible [pd] at global scale. As see Appendix 17. 
12 Accessible [pd] at an entire district level. As see Figure 5.11b. 
13 Accessible [pd] within district level. As see Appendix 17. 

a) b) c) 



Coastal Vulnerability assessment of Kien Giang 
 

157 | P a g e  
 

In fact, there are major population magnets within the Kien Giang province: the city of Rach 

Gia (on the coast in the centre of the province), and Ha Tien (at the northern tip of the 

Cambodian border) (see Figure 5.12, the left hand side a), and the right hand side c), 

respectively). Particularly in Figure 5.12c, densely populated areas seem to be very high, and 

high sensitivity (shaded red and orange). Rach Gia appears to be the district most sensitive, 

with a large proportion of area shaded red. Half the area of Chau Thanh appears very high to 

high sensitivity (shaded red and orange). Some high sensitivity areas occurred in Ha Tien, 

Hon Dat, Kien Luong, An Bien, and An Minh that may be settlement areas. 

 

Table 5.18 A comparison of proportions of the study area in representing evaluating the 
sensitivity, obtained from scale-based approaches of the population density input data. 

Coastal district 
Sensitivity components using AHP, respectively , % of area 

Very low 
1 - 2 

Low 
3 - 4 

Moderate 
5 

High 
6 - 7 

Very high 
8 – 9 

[S] in a)7 16.9 26.6 29.8 16.1 10.5 
[S] in b)8 21.0 35.4 3.0 15.4 25.2 
[S] in c)9 53.6 30.1 5.1 7.7 3.5 

Note: See details of reclassifying values of results using Jenks in Figure 5.1. 
 

Table 5.18 indicates that a large proportion of the study area (26.6%) representing very high 

to high sensitivity if the global gridded population density variable (at 2.5 arc-minute grid 

cells) was used in the aggregate of sensitivity, compared with a larger proportion, up to 

40.6%, if [pd] data is only available at an entire district level (see details in sub-section 

5.4.4.1), and the least proportion, only 11.2%, if [pd] data is accessible within district level. 

Particularly, proportions assigned as very high sensitivity (shaded red) were markedly 

decreased from 25.2% in b), and 10.5% in a) to only 3.5% in c) (see Figure 5.12). Therefore, 

it is clear that the scale of available input data used in the aggregate of sensitivity can 

influence the outcomes. This is intended to help coastal managers, policy makers, and 

scientists in identifying the scale at which input data is most suitable for the coastal 

assessment to be undertaken. The information gained from a finer scale is useful as a basis for 

conducting more accurate and detailed local studies. If population density data were 

accessible for input within the district level it would be expected to produce a finer scale for 

the analysis. This data, however, could not be used instead of district data, because little is 

available and is time consuming to calibrate (e.g., overlaying this population density layer 

into Google Earth satellite images with 3D Buildings, and then digitising infrastructure, such 

as focusing on houses or high buildings). In any case, other societal data are not available for 

analysis at this finer scale. These findings further support the evaluations of Cutter el al. 
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(2003) who address the construction of an index of social vulnerability to environmental 

hazards.  

 

5.5. Potential impacts of climate change, particularly sea-level rise 

Differences in exposure to the various direct effects of climate change and different 

sensitivities to these direct effects lead to different potential impacts on the system of interest. 

When integrated with sensitivity, the result allows identification of geographical areas where 

potential impacts are likely to be most pronounced. Potential impacts, as used here, refer to an 

aggregate of the two components: exposure, and sensitivity, before adaptive capacity (or the 

ability of a system to manage risk to prevent potential impacts) is considered. 

 

The exposure component was judged to have an extremely high influence, and was assigned a 

priority of [9], while the sensitivity component was judged to have a moderate influence, and 

was assigned a priority of [5], in representing potential impacts. This is because of several 

reasons:  

•  Exposure is considered a higher priority in terms of vulnerability than sensitivity 

because these physical factors that can not really be changed (i.e., seawater incursion, the 

flood risk, and erosion are naturally occurirng), whereas sensitivity could be changed (i.e., 

how many people live in particular areas, and the type of landuse).  

•  The study area is expected to be highly exposed to existing impacts, such as seawater 

incursion and flood depth, together with moderate loss of mangroves characterising the 

coastal fringe of each district. The fact that 69% of the area indicates very high to high 

exposure in the analysis is relative value the specifics of which may be a result of the 

apportioning of natural breaks by the Jenks algorithm, but it produces a realistic ranking of 

areas in terms of their exposure (see section 5.3).  

•  The study area seems to be moderately sensitive in terms of the societal and landuse 

sensitivity factors. The societal factors of the study area, compared to the whole province, 

indicate greater sensitivity characterised by the higher proportion of population density. In 

addition to this, landuse factors of the study area were more sensitive in terms of non-

agricultural land because of its fairly high proportion. Similarly, nearly 41% of area indicating 

very high to high sensitivity seems to be realisable (see section 5.4).   
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5.5.1 Overview 

The analyses from the previous sections 5.3 and 5.4 showed a large proportion of area 

representing very high to high exposure (69%, ~207 000 ha), together with a moderate 

proportion representing very high to high sensitive (41%, ~123 000 ha). The study area, thus, 

is expected to experience relatively high potential impacts. The potential impacts map was 

reclassified into 9 categories by using Jenks, and mapped using 5 levels from very low to very 

high, shaded as for potential impacts, with proportions reported in Table 5.19. Relative 

weights of components for aggregate using AHP were obtained simultaneously (see details in 

Appendix 13).  

 

5.5.2 Aggregation of exposure and sensitivity components 

Two first components, exposure and sensitivity, were used in the aggregate of potential 

impacts in the study area (see Figure 5.13). Figure 5.13a presents the reclassified components 

that were used in the aggregate of potential impacts, shown in Figure 5.13b.  
 

 

 

Figure 5.13 GIS-AHP mapping of potential impacts study: a) aggregate of reclassified 
components: exposure [E], and sensitivity [S]; and b) reclassified potential impacts [PI].   
Note: As described in Figure 5.1. Numbers in brackets are presented together with sub-components indicating 
relative weights of those sub-components, obtained by AHP. As [E], and [S] presented in Figures 5.7c, and 
5.11b, respectively. 
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Table 5.19 Proportions of the study area classed as very low to very high in representing 
potential impacts. 

Coastal district 
Potential impacts using AHP , % of area 

Very low 
1 - 2 

Low 
3 - 4 

Moderate 
5 

High 
6 - 7 

Very high 
8 – 9 

An Bien 0.00 0.02 0.05 7.68 92.23 
An Minh 0.00 0.13 19.37 62.60 17.90 
Chau Thanh 0.03 12.55 13.70 49.74 23.98 
Hon Dat 15.34 49.26 15.47 18.16 1.77 
Ha Tien 0.25 7.16 14.19 25.35 53.05 
Kien Luong 1.09 17.59 14.23 49.08 18.00 
Rach Gia 1.36 21.68 10.51 27.70 38.76 
7 districts 5.7 22.49 13.64 34.02 24.15 

Note: See details of reclassifying values of results using Jenks in Figure 5.1. 
 

Figure 5.13 shows that the map of the potential impacts is broadly similar to the exposure 

map. Table 5.19 indicates that a major proportion of area representing very high to high [PI] 

was 58% (~174 500 ha), whereas the remainder is either moderate of 13.64% (~40 924 ha), or 

low of 22.49% (~67 470 ha), and very low of only 5.7% (~17 110 ha). An Bien appeared to 

be the area having the largest proportion representing very high to high [PI] (99.91%, ~40 000 

ha), while the least proportion was only 19.93% (~20 720 ha) in Hon Dat. 

 
The weight value of the potential impacts study is summarised in equations as follows. The 

consistency ratios (CR) obtained were acceptable according to the procedures of Saaty (1980; 

1994) (see Appendix 15).  
 

LayerPI = 0.6428 * layerE + 0.3572 * layerS                                                                                   [Equation 5.314]  

 
 LayerPI = 0.6428 * [0.5185 * layerSI + 0.3975 * layerFR + 0.0841 * layerSC] + 0.3572 * 

[0.5625 * layerSF + 0.4375 * layerLU]                                                                  [Equation 5.3.1] 

 
 LayerPI = [0.3333 * layerSI + 0.2555 * layerFR + 0.0540 * layerSC] + [0.2009 * layerSF + 

0.1563 * layerLU]                                                                                                  [Equation 5.3.2] 
Note: Abbreviation of two components constituent to potential impacts, and relative weights of those 
components, obtained by AHP as presented in Figure 5.13. See details in Equations in sub-sections 5.3.5.1 for 
layerE, and 5.4.4.1 for layerS. See a summary of those relative weights in Appendix 15.  
 

Similar to Equations presented in the previous sections, representing the exposure and 

sensitivity, the results in Equations 5.3 summarise the relative weights of two key layers of 

components: [E], and [S] obtained in order to represent the potential impacts [PI] (see Figure 

                                                 
14 See Figure 5.13. 
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5.13). The results in Equations 5.3.1 and 5.3.2 indicate that the relative weight value of the 

mapping [PI] is a sum of the relative weights of layers of two components, comprising those 

of 3 layers sub-components: [SI], [FR], and [SC], in mapping [E], and those of 2 layers sub-

components: [SF] and [LU], in mapping [S]. The exposure was considered to be more 

important than the sensitivity in order to represent potential impacts. The relative weight of 

[E] obtained by AHP, therefore, was 0.6428, whereas the relative weight of [S] was 0.3572.  

 

5.5.3 Discussion 

5.5.3.1 Coastal potential impacts study 

This study was the first attempt to rigorously assess potential impacts at a local scale by using 

the Spatial Analyst tools and the analytical hierarchy process tool, extensions to ArcGIS. It 

considered the 11 sub-variables and 13 variables into 5 sub-components of 2 components, 

respectively that may influence the exposure, and sensitivity of the study area to the impacts 

of coastal hazards and sea-level rise. The large proportion representing very high to high [PI] 

(about 58%, ~174 500 ha) indicates the study area is expected to experience relatively high 

impacts. These include 24.15% of area (~74 000 ha) representing very high [PI], comprising 

92.2% (~36 920 ha) in An Bien, 17.9% (~10 570 ha) in An Minh, 18% (~8 510 ha) in Kien 

Luong, 24% (~6 850 ha) in Chau Thanh, 53.1% (~5 280 ha) in Ha Tien, 38.8% (~4 000 ha) in 

Rach Gia, and only 1.8% (~1 840 ha) in Hon Dat, together with 34% (~97 000 ha) 

representing high [PI] (see Table 5.19). Figure 5.14 gives a summary of proportions of the 

study area representing very high to high exposure on the left hand side a), sensitivity in the 

middle b), and combined potential impacts on the right hand side c). 
 

E S PI 

    
Figure 5.14 Proportions of the study area within seven districts indicating very high to high: in 
terms of a) exposure; b) sensitivity; and c) combined potential impacts. 
Note: Exposure in a), sensitivity in b), and combined potential impacts in c) see Tables 5.11, 5.16, and 5.19, 
respectively. 
 

a) c) b) 
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As seen in Figure 5.14, An Minh (~99.2% of area), An Bien (~98.7%), and Kien Luong 

(~87.2%) appear to be characterised by very high to high exposure, while Chau Thanh (100%), 

An Bien (99.4%), and Rach Gia (97.4%) appear to have proportions indicating very high to 

high sensitivity. An Bien (~99.9%), An Minh (~80.5%), and Ha Tien (~78.4%) have the 

greatest proportion subject to very high to high potential impacts. Furthermore, aggregated 

rankings for each district, based on proportions of high to very high in measuring the exposure, 

sensitivity, and combined potential impacts, were summarised and illustrated in Figure 5.15. 

One discrepancy was the high potential impacts ranking for Ha Tien (ranked at 5). This was a 

result of aggregate of moderate exposure (ranked at 4), and relatively low sensitivity (ranked 

at 3) (see Appendix 14). It can therefore be concluded that overall aggregated rankings of 

potential impacts for seven coastal districts were from moderate (the least for Hon Dat) to 

high (for other districts) and very high (the highest for An Bien). Again, results in the 

exposure, sensitivity, and combined potential impacts obtained (% of area) are shown by 

Jenks, and they are relative values, but they are realistic and appear meaningful. Those areas 

identified and visualised as at risk reflect patterns in the landscape relatively representing [E], 

[S], and [PI] and the maps may be useful to make decisions.  

 

Figure 5.15 visualises maps obtained using AHP for exposure in a), sensitivity in b), and 

combined potential impacts in c) for each of the seven coastal district respectively, extracted 

from the maps of exposure, sensitivity, and potential impacts levels for the study area. An 

Minh and An Bien are the areas regarded as most exposed, though some sections of their 

shorelines are less so (i.e., they are accreting). There is more variability in the maps of the 

sensitivity. Several sensitivity maps, such as Chau Thanh and An Bien, appear almost entirely 

red because of availability of societal data only at entire district, whereas in other districts this 

is a function of landuse (e.g., roads are shaded orange in Kien Luong, shaded yellow in Hon 

Dat, and shaded red in An Minh; or settlement areas parallel roads shaded red in Rach Gia, and 

Ha Tien). These maps give policy makers or planners, especially local authorities (at 

provincial, or district level), and communities, a generalised overview of potential impacts of 

climate change, which areas or patterns are likely to be most at risk, related to seawater 

incursion, flood risk, shoreline erosion and human effects.  
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District                       a) Exposure [E] b) Sensitivity [S] c) Potential impacts [PI] 
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District          a) Exposure [E] b) Sensitivity [S] c) Potential impacts [PI] 
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District                   a) Exposure [E]                  b) Sensitivity [S] c) Potential impacts [PI] 

 
Figure 5.15 GIS-AHP mapping of: a) exposure15, b) sensitivity16, and c) combined potential impacts17 for each district, comprising Ha Tien, Kien 
Luong, Hon Dat, Rach Gia, Chau Thanh, An Bien, and An Minh. 
Note: Numbers are in each map that indicating overall aggregated rankings of each coastal district in representing exposure, sensitivity, and potential impacts, respectively.

                                                 
15 Extracted from the exposure map in Figure 5.7c. 
16 Extracted from the sensitivity map in Figure 5.11b. 
17 Extracted from the potential impacts map in Figure 5.13b. 
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In summary, pair-wise comparisons between exposure, and sensitivity were undertaken in 

order to represent the potential impacts for the study area. The relative weight of exposure 

was 0.6428, while the relative weight of sensitivity was 0.3572 (see a summary in Appendix 

15). Although the assessment met the consistency criteria used in AHP; however, it is 

important to bear in mind that their possible subjective nature of some of the judgements can 

influence the outcomes. 

 

5.5.3.2 Evaluation of potential impacts outcome  

A comparison was undertaken to illustrate how more detail societal data might provide 

improved outcomes. Figure 5.16 presents GIS-AHP mapping of potential impacts for the 

study area. In Figure 5.16, the left hand side a) shows the map of [PI] obtained for an entire 

district level, whereas the right hand side b) displays the map of those within district level. 

The [PI] was reclassified into 9 categories by using Jenks, mapped into 5 levels from very low 

to very high, shaded as for [PI], with proportions reported in Table 5.20.  
 

 
Figure 5.16 GIS-AHP mapping of potential impacts outcomes: a) potential impacts for an entire 
district level18; and b) potential impacts within district level19. 
Note: Potential impacts for the study area in a) as presented in Figure 5.13b; and evaluated potential impacts 
outcome in b) see Appendix 18. 
 
 

                                                 
18 The map of potential impacts for an entire district level. As see Figure 5.13b.  
19 The map of potential impacts within district level. As see Appendix 18. 

a) b) 
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Table 5.20 A comparison of proportions of the study area classed as very low to very high in 
representing potential impacts outcomes. 

Coastal district 
Potential impacts using AHP, respectively , % of area 

Very low 
1 - 2 

Low 
3 - 4 

Moderate 
5 

High 
6 - 7 

Very high 
8 – 9 

[PI] in a)18 5.7 22.49 13.64 34.02 24.15 
[PI] in b)19 8.36 29.5 16.67 33.22 12.26 

Note: Potential impacts for the study area in a) as presented in Table 5.19. 
 

As seen in Table 5.20, a large proportion of area representing very high to high potential 

impacts was 58% (~174 500 ha) in a), while a lesser proportion was 45.5% (~129 710 ha) in 

b). There was also a marked reduction of proportion, particularly in representing very high 

potential impacts from 24.15% (~73 980 ha) in a) to only 12.26% (~34 970 ha) in b). 

Therefore, different scale-based approaches of input data can produce different outcomes. 

Interestingly, the map of potential impacts within district level (see Figure 5.16b) shows a 

pattern similar to the map of sensitivity using finer scale input data for the population density 

variable (see Figures 5.12). It also seems that areas shaded red seem to be coastal settlements 

considered as most likely at risk under very high potential impacts as other areas. A finer 

scale such as a settlement scale for the coastal vulnerability assessment needs to be explored 

further, and will be described in the next chapter, sub-section 6.4.3.4.  

 
It can therefore be concluded that the study area is relatively highly exposed to potential 

impacts with a large proportion of area representing very high to high potential impacts 

obtained from different scale-based approaches. However, it is important to keep in mind that 

in view of the weighting methods, the outcomes representing very high potential impacts 

(hotspots or areas) depend on subjective judgements. All of these numbers are of course 

relative, characterised by specific sites. By changing thresholds (classification for variables, 

see chapter 5 Table 5.1), or priorities of variables in pair-wise comparisons (see chapter 5, sub-

section 5.3.5.2), or reclassification for sub-components, exposure and sensitivity components 

by using Jenks, scaled from a fundamental range of 1 to 9 into 5 levels), different values would 

result. Furthermore, scale-based approaches can influence the outcomes somewhat (see chapter 

5, sub-section 5.4.4.2, and chapter 6, sub-sections 6.3.5.2, and 6.4.3.2). The map of potential 

impacts levels shown in Figure 5.16, when augmented with supporting text, can offer an 

overview of nature, human impacts, and the extent of problems that are likely to result from a 

relative rise in sea level along the coast. 

 



Coastal Vulnerability assessment of Kien Giang 
 

169 | P a g e  
 

5.6 Summary of this chapter 

This chapter aimed to examine potential impacts comprising exposure to seawater incursion, 

flood risk, shoreline erosion caused by climate change, particularly sea-level rise, as well as 

sensitivity because of human effects in the study area. It did this by the aggregation of eleven 

sub-variables, and thirteen variables into five sub-components of two components, exposure, and 

sensitivity (see Table 5.1), using GIS and AHP.  

 
Each variable was classified into a range from 1 up to 9 (maximum), where applicable and 

mapped at a scale of one to five, where level one was for very low exposure and sensitivity, 

and level five was for very high exposure and sensitivity. The level for each variable was 

assigned within integer raster pixels using three criteria. First, weighted values from pair-wise 

comparison obtained for each raster variable using AHP. Second, break values for each sub-

component, and two key components exposure and sensitivity were used, reclassified into 9 

classes. Third, each variable was scaled into 5 levels, level one shaded red, while level 5 

shaded dark green. This enabled identification and prioritisation of the hotspots or areas of the 

study area that have the most potential to be affected, related to seawater incursion, flood risk, 

shoreline erosion, exacerbated by relative sea-level rise, as well as human factors. 

 
The results from coastal exposure showed that the study area is expected to be relatively 

highly exposed to seawater incursion, flood risk, and shoreline change with approximately 

69% of area representing very high to high exposure. An Minh appears to have the greatest 

exposure, due to the considerable threat of seawater incursion, although it is the least exposed 

to flood risk, and experiences accretion along some of the coast. Hon Dat appears to be the 

least exposed due to the least exposure to seawater incursion, although it is exposed to 

flooding, and had the highest rates of erosion.  

 

AHP is a multi-criteria decision making method, combining quantitative and qualitative data 

that is based on pair-wise comparisons. It allows decision makers to select the best alternative 

within feasible alternatives under diverse priorities. The change in priorities of variables was 

also undertaken to indicate that this can somewhat influence the outcomes, although AHP 

allows a check for inconsistency in subjective judgments after the method followed by Saaty 

(1980; 1994) (see sub-section 5.3.5.2). 
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Due to limitations of data available in representing societal factors, most available only at an 

entire district level, it has not enabled identification of spatial variations in human sensitivity 

for the study area. The study area is expected to be moderate sensitivity with nearly 41% of 

area representing very high to high sensitive. However, input data of societal factors obtained, 

might be changeable over time, thus, this can influence the map of sensitivity. Additionally, 

different scale-based approaches of input data have been undertaken that indicate their influence 

on the outcomes (see sub-section 5.4.4.2). This is meant to help coastal managers, policy 

makers, and scientists in identifying the scale-based approach characteristics most suitable for 

the coastal assessment to be undertaken. Coastal settlements are possibly most at risk under 

very high potential impacts and may require further coastal vulnerability assessments. 

 

In summary, taken together the results from aggregating the first two components, exposure 

and sensitivity, showed that a large proportion of area has very high to high potential impacts 

(58%). An Bien appears the area the most likely to experience potential impacts, while Hon 

Dat appears the area with the least potential impacts. Due to changing social factors input data 

over time and space, sensitivity outcomes obtained have changed, thus the potential impacts 

outcomes can be influenced. Despite these, the maps and data presented in this study can 

provide an indication of the geographical pattern of physical changes most likely to occur as 

sea level continues to rise. It provides a preliminary tool for coastal managers to undertake 

more site-specific assessments at the most threatened hotspots or areas densely populated, 

generally with a large rural population and high numbers of ethnic households with limited 

availability of agricultural land. The next chapter will examine adaptive capacity that aims to 

assess the ability to manage the potential impacts. The adaptive capacity will be combined 

with the potential impacts to provide an assessment of the final coastal vulnerability for the 

study area. 
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Chapter Six 

 

Adaptive capacity component and coastal vulnerability assessment 

 

6.1 Aims of this chapter 

The aim of this chapter is to assess the vulnerability levels of the study area. This involved an 

examination of the ability of policy makers or communities to manage potential impacts. As 

mentioned in chapter 5, results of exposure and sensitivity were used in the aggregate of the 

potential impacts. The chapter is structured as follows. Section 6.2 introduces several steps 

involved in representing the vulnerability levels. Sub-sections 6.3.1 to 6.3.5 present and 

discuss the mapping of the adaptive capacity component by aggregating three sub-components, 

comprising socioeconomic, technological, and infrastructure capabilities. The output was 

scaled to a range of five levels, namely: very low, low, moderate, high, and very high, based 

on their ability to manage, in which an area of very low adaptive capacity can scarcely reduce 

the impacts, and remains vulnerable. Sub-sections 6.4.1, and 6.4.2 present mapping of the 

vulnerability levels by aggregating the three key components: exposure, sensitivity, and 

adaptive capacity. The final vulnerability map indicates hotspots, and areas together with 

“who, and what” is most likely to be vulnerable. A system is anticipated to be vulnerable if it 

is highly exposed, and sensitive to the impacts, and has a low capability to cope with those 

impacts. Sub-section 6.4.3 discusses mapping of the vulnerability levels. The results to be 

presented include the final coastal vulnerability study in sub-section 6.4.3.1, and evaluating 

vulnerability outcomes obtained according to scale-based approaches of input data in sub-

section 6.4.3.2. Sub-section 6.4.3.3 presents ArcGIS ModelBuilders with weighted overlay 

applied to mapping the vulnerability levels, and compared to maps of the final vulnerability 

obtained, using AHP. Sub-section 6.4.3.4 presents analyses of the coastal vulnerability at a 

settlement scale. A summary of this chapter is presented in section 6.5. 

 

6.2 Introduction 

Vulnerability based on the definition proposed by IPCC AR4 (2007), is the degree to which a 

system is susceptible to, and unable to cope with, adverse effects of climate change, including 

climate variability and extremes. It highlights the fact that the first two components, exposure 

and sensitivity, dictate the potential of a system or process to be affected by impacts; whereas 
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the third, adaptive capacity, refers to the ability of the system to adjust to climate change, to 

moderate potential damages, to take advantage of opportunities, or to cope with the 

consequences. As mentioned in chapter 3, it involves several steps in order to estimate the 

vulnerability levels for the study area. These include: 

•  Organise the hierarchical structure from thirteen sub-variables into nine variables used 

in three sub-components of the adaptive capacity component (see Figure 3.3).  

•  Classify these sub-variables and variables prior to their aggregation (see Table 3.14).  

•  Reclassify these sub-components to be used in the aggregate adaptive capacity 

component.  

•  Reclassify the adaptive capacity component to be used in the aggregation of the three 

key components (E, S, and A) for generating a final map of coastal vulnerability. This 

involved pair-wise comparisons of sub-variables, variables, sub-components, and components, 

following the fundamental AHP rule scale, originally developed by Saaty (1980). 

Simultaneously, relative weights of these variables, sub-components, and components were 

obtained, based on their initial prioritisations. 

 

6.3 Adaptive capacity component  

Adaptive capacity incorporates the system’s potential to adjust to climate variations, including 

the ability to learn from experience or information, and hence to reduce somewhat its 

sensitivity. Estimates of adaptive capacity, therefore, enable policy makers and other 

stakeholders, such as farmers, to adopt suitable strategies in order to enhance the adaptive 

capacity or resilience of the system to respond to the impacts of climate change. Actions related 

to building adaptive capacity may involve using climate change knowledge, building 

awareness of potential impacts, maintaining well-being, protecting property or land, or 

maintaining economic growth (Adger et al., 2005). “Who, and what” with appropriate 

adaptive capacity information, thus, were used to represent the adaptive capacity. The 

adaptive capacity component, as used here, refers to three sub-components: socioeconomic, 

technological, and infrastructure capability.  

 
The socioeconomic sub-component, in terms of representing the adaptive capacity 

component, was judged to have a very high effect on managing impacts, therefore, being able 

to reduce the vulnerability. The socioeconomic sub-component was considered the most 

important and assigned a priority of [9]. This was followed by the technological sub-

component, because it has relatively strong effects on managing impacts, and assigned was a 
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priority of [5.4]. The least was the infrastructure sub-component, considered similar to the 

technological sub-component, and assigned a priority of [5]. Reasons include:  

•  Socioeconomic capability prepares a society to better cope with the impacts, 

reflecting a greater level of development in any society, in terms of income, quality of 

education, and health services, etc.  

•  Technological capability, as used here, refers to the capacities of irrigation and 

drainage, and electricity, while infrastructure capability refers to the capacities of road, 

communication access, and households having solid houses in order to cope with the impacts. 

These capabilities play crucial roles in development; however, livelihoods of most local 

people rely on agricultural activities. Therefore, from an agricultural viewpoint, the 

technological sub-component is considered slightly more important than the infrastructure 

sub-component.  

 
Table 6.1 summarises adaptive capacity variables together with the relative directions of their 

effects on potential impacts, which is described in detail in Table 3.14. The arrows indicate 

the direction of effects of adaptive capacity variables on the impacts (i.e., higher income can 

reduce impacts (↓) because people can afford to take action, while a higher poverty ratio may 

increase impacts (↑)). 

 
Table 6.1 Adaptive capacity component, and the direction of its effects on the impact in this 
study. 

No Component/  
sub-component/ Variable 

The direction of 
the effects on 
the impacts 

No Component/  
sub-component/ Variable 

The direction 
of the effects 
on the impacts 

A Adaptive capacity     
A1 Socioeconomic capability  A2 Technological capability  
 Income, GDP/capita ↓  Irrigation & drainage capability ↓ 
 Education ↓  Canal capability ↓ 
 Pupils/ primary & secondary school ↓  Sea dyke capability ↓ 
 Pupils/ teacher at  primary & 

secondary school 
↑  River density ↑ 

 Kids/ kindergarten ↓  River embankment capability ↓ 
 Kids/ teacher at kindergarten ↑  Sluice gate density ↓ 
 Health services ↓  Electricity density ↓ 
 Inhabitants/ establishment ↑  Voltage power line density ↓ 
 Inhabitants/ health staff ↑  Transformer station density ↓ 
 Poverty ratio, % ↑    
A3 Infrastructure capability     
 % household having solid house ↓    
 Road density (radius)  ↓    
 Inhabitants/ fixed-line telephone 

subscriber 
↑    

Note: An arrow (↑) indicates the ability to increase the impacts; an arrow (↓) indicates the ability to reduce the 
impacts. 
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6.3.1 Mapping the socioeconomic sub-component  

The socioeconomic sub-component, as used here, refers to the aggregate of four variables. 

They include income, poverty ratio, health services and education system. However, these 

variables were obtained using statistical datasets at an entire district level. Objectives of this 

sub-section are two-fold. The first objective is to evaluate socioeconomic capability for the 

study area. The second objective is to aggregate these sub-components for use in the adaptive 

capacity. A map showing the socioeconomic sub-component for the study area is presented in 

Figure 6.1c. This sub-component map was reclassified into 9 categories by using Jenks, and 

mapped using 5 levels from very low to very high, shaded as for the sub-component, with 

proportions of the study area reported in Table 6.2. Relative weights of sub-variables, and 

variables of the aggregate using AHP, were obtained simultaneously (see Appendices 19a).  

 
6.3.1.1 Overview 

According to the Kien Giang district Survey 2011, the average income for the study area (at 

US$ 949) was slightly lower than the income for the entire province (at US$ 972). However, 

only 6.6% of the households in the study area fall into this category considered poor 

compared to the poverty ratio for the entire province (at 7.2%). Furthermore, based on 

statistical datasets obtained from the Kien Giang Statistical Office 2012, education and health 

care services in the study area were slightly improved, compared with the entire province (see 

greater detail in chapter 4, sub-section 4.5.3.4). In terms of representing the sub-component, 

the income variable was thus considered the most important. This was followed by the 

education system variable, and then by the health services variable, whereas the least important 

variable was the poverty ratio.  

 

6.3.1.2 Aggregation of the socioeconomic sub-component 

Figure 6.1 presents GIS-AHP mapping of the socioeconomic sub-component. Figure 6.1a 

presents six classified sub-variables, comprising four layers, namely pupils per primary and 

secondary school, and per teacher, together with kids per kindergarten, and per teacher. These 

were used in the aggregate of the education variable, and two layers of inhabitants per health 

establishment, and per health staff were used in the aggregate of the health services variable. 

Pupils per primary and secondary school was considered the most important sub-variable, in 

terms of representing the education variable. This was followed by pupils per teacher at 

primary and secondary school, and then by kids per kindergarten. The least important sub-

variable was the kids per teacher at kindergarten. On the other hand, the inhabitants per health 
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establishment sub-variable was considered more important than the inhabitants per health 

staff, in terms of representing the health services variable. Figure 6.1b presents four classified 

variables, comprising income, education, health services, and poverty ratio used in the 

aggregate of the socioeconomic sub-component, whereas a map of aggregated socioeconomic 

adaptive capacity levels is shown in Figure 6.1c.  

 

In Figure 6.1, the middle b) shows An Minh to be the least able to adapt to reduce potential 

impacts, while Rach Gia appears the most adaptable in terms of income capability [in]. This 

reflects the greater wealth in the urban area but mapping is limited, because input data is only 

available at entire district level (see Appendix 19a.3). Ha Tien, Hon Dat, and An Minh appear 

to have the lowest capabilities, while An Bien appears the highest in terms of education 

capability [ed] (see Appendix 19a.1). Ha Tien and An Minh appear to have the lowest 

capabilities, while Rach Gia appears the highest in terms of health services capability [he] 

(see Appendix 19a.2). An Minh, An Bien, and Chau Thanh have the highest poverty ratios 

[po], while Kien Luong appears the lowest (see Appendix 19a.3). As a result, the right hand 

side c) shows that Hon Dat and An Minh appeared areas the least adaptable to manage 

potential impacts, whereas Rach Gia appears the most adaptable, in representing the 

socioeconomic sub-component.  

 

Table 6.2 gives a summary of overall aggregated rankings from the four variables: income, 

education, health services, and poverty ratio, obtained from the socioeconomic sub-

component for each district. 

 

Table 6.2 Overall aggregated rankings from four variables: income, education, health, and 
poverty ratio in representing the socioeconomic sub-component for each district. 

Rank Income Education Health Poverty ratio Socioeconomic 
1 Rach Gia An Bien Rach Gia Kien Luong Rach Gia 
2 Ha Tien Rach Gia Chau Thanh Rach Gia Kien Luong 
3 Kien Luong Chau Thanh An Bien Ha Tien An Bien 
4 Hon Dat Kien Luong Kien Luong Hon Dat Ha Tien 
5 Chau Thanh Ha Tien Hon Dat Chau Thanh Chau Thanh 
6 An Bien Hon Dat Ha Tien An Minh Hon Dat 
7 An Minh An Minh An Minh An Bien An Minh 

Note: A value of 7 indicates the least rank within seven districts, while a value of 1 indicates the highest rank in 
representing the socioeconomic sub-component; The colour indicates districts adaptability to the impacts, with 
red, yellow, and green colours in representing low, moderate, and high adaptability, respectively.  
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Figure 6.1 GIS-AHP mapping of the socioeconomic sub-component: a) aggregate of classified sub-variables: pupils per primary and secondary 
school [ps], and per teacher [pt], kids per kindergarten [kk], and per teacher [kt], inhabitants per health establishment [ht], and per health staff [hs]; 
b) aggregate of classified variables: income [in], education [ed], health [he], and poverty [po]; and c) reclassified socioeconomic sub-component . 
Note: The sub-component was reclassified in a range of 1 – 5 by using Jenks: a value of 1 representing very high adaptability as indicated by shaded dark green; a value of 2 
representing high adaptability as indicated by shaded green; a value of 3 representing moderate adaptability as indicated by shaded yellow; a value of 4 representing low 
adaptability as indicated by shaded orange; and finally, a value of 5 representing very low adaptability as indicated by shaded red. Numbers in square brackets are presented 
together with sub-variables, and variables indicating relative weights of those sub-variables, and variables, simultaneously obtained by AHP.  

+ 
[.2972] 

[.2891] 

[.2564] 

[.1573] 

[.3183] 

[.2718] 

[.2476] 

[.1623] 

+ 

+ 

+ 

+ 

+ 

in 

ed 

he 

po 

c) 

b) a) 

ps 

pt 

kk 

kt 

[.6428] 

[.3572] 

+ 
ht 

hs 



Coastal Vulnerability assessment of Kien Giang 
 

177 | P a g e  
 

Table 6.2 shows that An Minh appears the least adaptable (ranked at 7) because of the lowest 

value of income (698 $US/capita, in a range up to 1 480), the lowest capabilities of education 

and health services, and the second highest poverty ratio (ranked at 6; 13%, in a range of 1 - 

15%, ~15 106 poor people; see Appendix 9d.1). Hon Dat appears the second lowest adaptable 

(ranked at 6) because of a moderate value of income (808 $US/capita, in a range of 698 - 1 

480), the second lowest capability of education, the third lowest capability of health services, 

and the fourth highest value of the poverty ratio (6%, ~10 345 poor people). On the other 

hand, Rach Gia appeared the most adaptable to the impacts (ranked at 1) because of the 

highest value of income (1 480 $US/capita), the second highest capability of education, the 

highest capability of health services, and the second lowest value of the poverty ratio (only 

2%, ~4 687 poor people). Urban population is definitely better able to adapt than rural 

population.  

 
The weight value of the socioeconomic sub-component obtained is summarised in equations 

as follows. The consistency ratios (CR) were acceptable in the way demonstrated by Saaty 

(1980; 1994). The results in Equations 6.1 summarise relative weights of four layers assigning 

four variables [in], [ed], [he], and [po] obtained in this analysis (see Figure 6.1c). Moreover, 

the results in Equations 6.1.1 and 6.1.2 show relative weights of the layer of [in], relative 

weights of four layers sub-variables: [ps], [pt], [kk], and [kt] in mapping [ed], relative weights 

of two [ht], and [hs] in mapping [he], and the layer of [po], which were aggregated to obtain 

the relative weight of [SO].  

 
LayerSO = 0.2972 * layerin + 0.2891 * layered + 0.2564 * layerhe + 0.1573 * layerpo 

                 [Equation 6.120] 
 

 LayerSO = 0.2972 * layerin + 0.2891 * [0.3183 * layerps + 0.2718 * layerpt + 0.2476 * 

layerkk + 0.1623 * layerkt] + 0.2564 * [0.6428 * layerht + 0.3572 * layerhs] + 0.1573 * layerpo 

                                                                                                                                                                                         [Equation 6.1.121] 
 
 LayerSO = 0.2972 * layerin + [0.0920 * layerps + 0.0786 * layerpt + 0.0716 * layerkk + 

0.0469 * layerkt] + [0.1648 * layerht + 0.0916 * layerhs] + 0.1573 * layerpo 

[Equation 6.1.2] 
Note: Abbreviation of sub-variables, and variables constituent to the socioeconomic sub-component, and relative 
weights of those sub-variables, and variables, obtained by AHP as presented in Figure 6.1. See a summary of 
those relative weights in Appendix 21. 

                                                 
20 See Figure 6.1b. 
21 See Figure 6.1a, b. 



Coastal Vulnerability assessment of Kien Giang 
 

178 | P a g e  
 

As mentioned in the previous chapter, these equations have captured subjective judgements 

using AHP and GIS in the analysis into objective mathematics. The [in] is considered as the 

highest priority (its relative value obtained as 0.2972). This is followed by [ed] (0.2891), and 

then by [he] (0.2564). The least is [po] (0.1573). These relative values also may be useful to 

give a general idea for local authorities to set priorities or design response actions to climate 

change, particularly sea-level rise, within limitations of budget capacity.   

 

6.3.2 Mapping the technological sub-component 

The technological sub-component, as used here, involves the interaction between two 

variables: irrigation and drainage capabilities, and electricity capability. As mentioned in 

chapter 4, the Vietnamese Government puts special emphasis on rural production (both for 

export and national food security) and undertakes high investments for double or triple rice 

cropping particularly in the country’s deltas and coastal plains. Therefore, water resources 

management in Vietnam is, to date, under strict state control and irrigation constitutes the 

dominant concern. Therefore, the irrigation and drainage capability variable was considered 

more important than the electricity capability variable, in representing the sub-component. 

The objectives of this sub-section are two-fold. The first objective is to evaluate the 

technological capability for the study area. The second objective is to aggregate these sub- 

components for use in the adaptive capacity. A map showing the technological adaptive 

capacity levels for the study area is presented in Figure 6.4. The sub-component map was 

reclassified into 9 categories by using Jenks, and mapping into 5 levels from very low to very 

high, shaded as for the sub-component, with proportions of the study area reported in Table 

6.5. Relative weights of variables of the aggregate using AHP, were obtained simultaneously 

(see Appendices 19c.3 and 21).  

 

6.3.2.1 Irrigation and drainage capability variable 

The irrigation and drainage network, as used here, refers to facilities for taking advantage of 

water resources, mainly in agricultural and aquaculture activities in the study area that most 

local people rely heavily on. These comprise: canals, sea dykes, rivers, river embankments, 

and sluice gates. The agricultural output, particularly rice production, is markedly aided by 

the expansion and increased density of the irrigation and drainage. Furthermore, the 

development of an extensive irrigation network has made water available particularly in the 

dry season. The irrigation and drainage capability variable for the study area was based on a 

map of the irrigation and drainage network obtained from the database of the SIWRP (2010) 
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(chapter 4, Appendix 9d.3). A Kernel function was used to calculate the magnitude per unit 

area (searching within a radius of 5km) from point features, (i.e., from sluice gates) or 

polyline features, (i.e., from canals, or sea dykes), in order to concentrate on areas, which can 

be short of irrigation and drainage capability and can thus, find it difficult to adapt.  

 

Figure 6.2a presents five maps of the sub-variables, capabilities of canals, sea dykes, rivers, 

river embankments, and sluice gates, respectively, used in the aggregate of the irrigation and 

drainage variable (see details in Appendix 19c.1). The canal capability sub-variable was 

considered the most important, followed by sea dyke capability, river capability, and river 

embankments capability sub-variables. The least important sub-variable was the sluice gate 

capability. As a result, a map of irrigation and drainage capability variable is shown in Figure 

6.2b. Relative weights of sub-variables of aggregate using AHP, were obtained 

simultaneously (see Appendices 19c.1 and 21). 
 

  
Figure 6.2 GIS-AHP mapping of irrigation and drainage capability study: a) aggregate of sub-
variables: canal capability [ca], sea dyke capability [se], river density [ri], river embankment 
capability [re], and sluice gate capability [sg]; and b) reclassified irrigation and drainage 
variable [id].   
Note: As described in Figure 6.1. Numbers in square brackets are presented together with sub-variables 
indicating relative weights of those sub-variables, simultaneously obtained by AHP. Data on the irrigation and 
drainage capability variable was unavailable for half the area of Ha Tien. 
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The map of irrigation and drainage capability on the right hand side b) of Figure 6.2 seems to 

reflect the map of canal capability on the left hand side a). This result may be explained by the 

fact that canal capability was considered the most important sub-variable, compared to other 

sub-variables in representing irrigation and drainage capability. In fact, the canal system in the 

study area combines an old, well-known and significant, Vinh Te Canal with a series of 

complicated 20-year canals (see chapter 4, sub-section 4.5.3.6a). 

 
Table 6.3 gives a summary of proportions of the study area obtained from the irrigation and 

drainage capability variable. The results of the irrigation and drainage capability showed that 

37.7% of area (~113 100 ha) is low to very low in terms of adaptability to manage the 

impacts, due to much shortage of irrigation and drainage network, while the majority of area 

was either high capability (34.7%, ~104 100 ha) or moderate capability (19.6%, ~58 800 ha).  

 
Table 6.3 Proportions of the study area classed as very high to very low adaptability in terms of 
irrigation and drainage capability. 

 Coastal district  
Irrigation and drainage capability using AHP, % of area 

Very high 
1 - 3 

High 
4 - 6 

Moderate 
7 

Low 
8 

Very low 
9 

An Bien 15.3 32.1 30.9 17.5 4.2 
An Minh 18.0 42.6 12.1 11.5 15.8 
Chau Thanh 3.5 43.4 17.6 15.8 19.7 
Hon Dat 3.6 29.2 20.8 29.2 17.2 
Ha Tien* 0.1 24.0 18.2 19.3 38.4 
Kien Luong 4.6 36.3 18.7 18.0 22.4 
Rach Gia 0.3 33.3 21.1 25.2 20.1 
7 districts 8.1 34.7 19.6 20.6 17.1 

Note: The irrigation and drainage capability variable was reclassified in a range of 1 – 9 by using Jenks; (*): Data 
on the irrigation and drainage capability variable was unavailable for half the area of Ha Tien. 
 
Table 6.3 also indicated that the largest proportion of area that has low to very low capacity to 

manage the impacts, being short of irrigation and drainage capability was 57.7% (~4 500 ha) 

in Ha Tien, while the least proportion was only 21.7% (~8 400 ha) in An Bien. There are 

several possible explanations for these results obtained for Ha Tien. Data on the irrigation and 

drainage was unavailable for half the area of Ha Tien which may be influencing the analysis 

of its capability. Ha Tien is a popular tourist site in the region because of its beautiful beaches 

and landscapes. Agriculture and aquaculture activities have not been prioritised in Ha Tien, 

therefore, its irrigation and drainage capability may be the least, compared to those of others 

districts. Surprisingly, the most interesting finding was that high irrigation and drainage 

capabilities are mainly distributed in rural areas, where agricultural, and aquaculture activities 

occur widely. Therefore, rural areas would seem to have higher capabilities to cope with 
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adverse effects, compared to those of urban areas, in terms of irrigation and drainage 

capability. Apart from these advantages, it is important to manage the irrigation and drainage 

network, particularly irrigation canals and sluice gates, as seawater incursion is considered 

most important in relation to exposure. The analyses in Table 6.3 also indicated that Rach Gia 

was one of the least adaptable districts (45.3%, ~4 370 ha). Again, it is important to keep in 

mind that results obtained for the analysis are relative values; they are influenced by 

subjective judgements, thresholds, and Jenks, but they look realistic.   

 
6.3.2.2 Electricity capability variable 

The electricity capability variable for the study area was based on the map of the electricity 

network, comprising voltage power line and transformer station data obtained from Tran et al. 

(2013) (see a map in Appendix 9d.3). As reviewed in chapter 4, the electricity network for the 

study area is a relatively modern and extensive power distribution system. Similar to 

representing irrigation and drainage capability in the previous sub-section, a Kernel function 

was also used to map areas that might be short of electricity capability, such as lower voltage 

or less power poles, that would hamper adaptation.  
 

 

 
Figure 6.3 GIS-AHP mapping of electricity capability study: a) aggregate of sub-variables: 
voltage power line density [pl], and transformer station density [ts]; and b) reclassified 
electricity variable [ey].   
Note: As described in Figure 6.1. Numbers in square brackets are presented together with sub-variables 
indicating relative weights of those sub-variables, simultaneously obtained by AHP. Data on the electricity 
capability variable was unavailable for half the area of An Minh, as well as half the area of Ha Tien. 
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In Figure 6.3, the left hand side a) presents two sub-variables: voltage power lines and 

transformer stations, which were used in the aggregate of the electricity capability variable 

(see details in Appendix 19c.2). The voltage power lines sub-variable was considered more 

important than the transformer stations in representing the variable. And the right hand side b) 

shows a map of the aggregated electricity capability variable. This Figure shows that half of 

the study area, shaded red, is not going to be as adaptable to potential impacts in terms of 

electricity capability. Proportions of the study area obtained from this variable are 

summarised in Table 6.4. Relative weights of sub-variables of the aggregate using AHP, were 

obtained simultaneously (see Appendices 19c.2 and 21). 

 
Table 6.4 Proportions of the study area classed as very high to very low adaptability in terms of 
electricity capability. 

 Coastal district  
Electricity capability using AHP, % of area 

Very high 
1 - 3 

High 
4 – 6 

Moderate 
7 

Low 
8 

Very low 
9 

An Bien 0.0 1.6 11.5 14.2 72.6 
An Minh* 0.0 0.0 0.3 2.4 97.3 
Chau Thanh 0.4 19.5 31.4 16.4 28.5 
Hon Dat 2.3 3.4 18.1 13.2 60.4 
Ha Tien** 0.0 22.7 52.0 24.0 0.8 
Kien Luong 10.6 16.5 23.3 13.3 30.3 
Rach Gia 0.0 29.0 26.6 16.0 28.2 
7 districts 2.9 8.6 19.1 13.2 53.5 

Note: As presented in Table 6.3; Data on the electricity capability variable was unavailable for half the area of 
An Minh (*), as well as half the area of Ha Tien (**). 
 

Table 6.4 shows that a major proportion of the area (66.7%, ~200 100 ha) is low to very low 

in terms of electricity adaptability, while a minor proportion is either very high (2.9%, ~8 700 

ha), and high (8.6%, ~25 800 ha), or moderate capability (19.1%, ~57 300 ha). The electricity 

capability to manage the impacts, particularly outside the focal areas of 5 km from point 

features (i.e., from transformer station) or polyline features (i.e., from voltage power line) of 

of the study area, appears to be relatively low. Specifically, An Minh was the least adaptable 

district, with nearly 100% of area (~57 680 ha) low to very low capability to manage the 

impacts, while Ha Tien was the highest capability, with the least proportion being short of 

electricity capability (only 24.8%, ~1 950 ha). Kien Giang has a current relatively modern and 

extensive power distribution system, especially much stronger in the northern part, including 

Ha Tien and Kien Luong (having several industrial estates), and Rach Gia (a city), compared 

to those in the southern part, especially in An Minh and An Bien, as reviewed in chapter 4. 

Several power outages have occurred for a half or full day, particularly in the dry season, that 
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can threaten lectrical supply. These results, however, need to be treated with caution due to 

unavailable data for half the area of An Minh as well as half the area of Ha Tien. 

  

6.3.2.3 Aggregation of technological sub-component 

Figure 6.4a presents two variables, irrigation and drainage capabilities, and electricity 

capability, that were used in the aggregate of the technological sub-component (see details in 

Appendix 19c.3). The irrigation and drainage variable was considered more important than 

electricity, in representing the sub-component. As a result, a map of technological capability 

sub-component is presented in Figure 6.4b.  

 

 

 
Figure 6.4 GIS-AHP mapping of technological sub-component study: a) aggregate of variables: 
irrigation and drainage [id], and electricity [ey]; and b) reclassified technological sub-component 
[TE]. 
 

Note: As described in Figure 6.1. The [id] and [ey] as presented in Figures 6.2b and 6.3b, respectively. Numbers 
in square brackets are presented together with variables indicating relative weights of those variables, 
simultaneously obtained by AHP; Data on the technological capability sub-component was unavailable for half 
the area of Ha Tien. 
 

In Figure 6.4, the right hand side b) shows the map of technological capability that seems to 

reflect the map of irrigation and drainage capability on the left hand side a), which occurs 

because the irrigation and drainage capability was considered more important than the 

electricity capability. Generally, it highlighted the fact that the technological capability was 

relatively high making it possible to reduce the vulnerability. Figure 6.4b visualises a few 

parts of the study area with little technological capability, indicated by being shaded red, that 
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are not going to be as adaptable to potential impacts. Shaded red areas (very low adaptability), 

as used here, are most likely to be isolated areas (located over 5 km from the nearest service 

centre, making difficulty of access, such as by irrigation canal) that occurred along the gulf of 

Ha Tien, scattered in the hills and mountains of Ha Tien, and on the Kien Luong coast and 

mangrove fringes in An Minh, as well as in other rural areas that seem to have poor 

adaptability in terms of technological capability.  

 

Table 6.5 gives a summary of proportions of the study area considered very high to very low 

in adaptability in terms of the technological sub-component. This table showed 13.2% of area 

(~39 600 ha) would experience very low technological capability, and with 28.9% (~86 700 

ha) considered as low, while the remainder of area (57.9%) comprised 26.9% of moderate 

(~80 700 ha), 18.9% of high (~56 700 ha), and 3.2% of very high (~9 600 ha). Ha Tien was 

the least adaptable area, although this is influenced by unavailable data on the technological 

capability for half the area of Ha Tien (with 55.6% low to very low capability, ~4 350 ha), 

while An Minh was the most adaptable area (with only 30.7%, ~17 760 ha), in terms of 

technological capability.  

 

Table 6.5 Proportions of the study area classed as very high to very low adaptability in terms of 
technological capability. 

 Coastal district  
Technological capability using AHP, % of area 

Very high 
1 - 3 

High 
4 – 6 

Moderate 
7 

Low 
8 

Very low 
9 

An Bien 0.4 10.1 28.6 42.3 4.2 
An Minh 9.2 19.7 19.3 14.9 15.8 
Chau Thanh 0.0 31.6 27.2 19.8 14.4 
Hon Dat 1.9 13.8 30.6 36.2 14.9 
Ha Tien* 0.0 24.5 20.6 43.3 12.3 
Kien Luong 3.3 24.8 24.9 24.3 13.6 
Rach Gia 0.0 23.8 39.8 27.1 11.4 
7 districts 3.2 18.9 26.9 28.9 13.2 

Note: As described in Table 6.3; (*): Data on the technological capability sub-component was unavailable for 
half the area of Ha Tien. 
 

Figure 6.5 gives a summary of proportions of the study area indicating low to very low 

capacities in representing technological capability to manage potential impacts. In addition to 

this, Table 6.6 gives a summary of the rankings of the coastal technological capability of the 

study area according to proportions indicating low to very low adaptability to manage 

potential impacts. 
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id ey TE 

   
Figure 6.5 Proportions of the study area within seven districts indicating low to very low 
adapabilities to manage the impacts: in terms of capabilities of a) irrigation and drainage [id]; b) 
electricity [ey]; and c) technological [TE].  
Note: [id], [ey], and [TE] as presented in Tables 6.3 to 6.5. 
 

Table 6.6 Overall aggregated rankings from two variables of capabilities of irrigation and 
drainage and electricity in representing technological sub-component for each district. 

Rank Irrigation & drainage capability Electricity capability Technological capability 
1 An Bien  Ha Tien An Minh 
2 An Minh Kien Luong Chau Thanh 
3 Chau Thanh Rach Gia Kien Luong 
4 Kien Luong Chau Thanh  Rach Gia  
5 Rach Gia  Hon Dat An Bien  
6 Hon Dat An Bien Hon Dat 
7 Ha Tien An Minh Ha Tien 

Note: As described in Table 6.2. 
 

Figure 6.5a shows that Ha Tien was the least adaptable district (ranked at 7; 57.5% of area 

low to very low), while An Bien was the most adaptable district (ranked at 1; only 21.7%) in 

terms of irrigation and drainage capability (see rankings in Table 6.6). Figure 6.5b shows that 

An Minh was the least adaptable district (~99%), and Ha Tien was the most adaptable district 

(only 24.8%) in terms of electricity capability. As a result, Figure 6.5c shows that, Ha Tien 

was the least adaptable district (55.6%), while An Minh was the most adaptable district (only 

30.7%) in terms of technological capability. However, a discrepancy was the rankings in the 

sub-components for An Minh and Chau Thanh. On the one hand, An Minh appeared to be the 

most adaptable district in terms of technological capability (ranked at 1) due to being the 

second highest in terms of irrigation and drainage adaptability (ranked at 2), and the least 

adaptable in terms of electricity (ranked at 7). On the other hand, Chau Thanh appeared to be 

the most adaptable district in terms of technological capability (ranked at 2) due to high 

adaptability in terms of irrigation and drainage (ranked at 3), and moderate adaptability in 

terms of electricity (ranked at 4). Therefore, rankings for other districts should be interpreted 

a) b) c) 
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with caution. Further contradictory findings, particularly in Ha Tien, indicating it to be less 

adaptable to potential impacts compared to rural areas, may be inaccurate because data was 

unavailable for half the area of Ha Tien.  

 

The weight value of the technological sub-component is summarised in equations as follows. 

The consistency ratios (CR) obtained were acceptable according to the procedures of Saaty 

(1980; 1994). 

 
LayerTE = 0.5625 * layerid + 0.4375 * layerey                                                                              [Equation 6.222] 

 
 LayerTE = 0.5625 * [0.2868 * layerca + 0.2356 * layerse + 0.1884 * layerri + 0.1715 * 

layerre + 0.1178 * layersg] + 0.4375 * [0.6000 * layerpl + 0.4000 * layerts]     [Equation 6.2.123] 

 
 LayerTE = [0.1613 * layerca + 0.1325 * layerse + 0.1060 * layerri + 0.0965 * layerre + 

0.0663 * layersg] + [0.2625 * layerpl + 0.1750 * layerts]                                         [Equation 6.2.2] 
Note: Abbreviation of sub-variables, and variables constituent to the technological sub-component, and relative 
weights of those sub-variables, and variables, obtained by AHP as presented in Figures 6.2 to 6.4. See a 
summary of those relative weights in Appendix 21. 
 

The results in Equations 6.2.1 and 6.2.2 show relative weights of mapping the technological 

sub-component being the sum of those five layers of sub-variables: [ca], [se], [ri], [re], and 

[sg] in mapping the irrigation and drainage capability variable, and those of two layers of sub-

variables: [pl] and [ts] in mapping the electricity capability variable (see Figures 6.2 and 6.3). 

A summary of those relative weights in order to represent [TE] is presented in Equation 6.2. 

The [id] (its relative value obtained as 0.5625) is considered more important than the [ey] (its 

relative value obtained as 0.4375), in terms of [TE]. 

 

6.3.3 Mapping the infrastructure sub-component 

The infrastructure capability, as used here, refers to three variables: house characteristics, road, 

and communication access. However, these data also are limited in that housing standards 

(percentages of households having solid houses), and communication access (inhabitants per 

fixed-line telephone subscriber) were only obtained at the scale of the entire district. In terms 

of representing infrastructure capability, the housing variable was regarded as the most 

important, followed by road capability and the least important variable was communication 

                                                 
22 See Figure 6.4. 
23 See Figures 6.2 to 6.4. 
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access capability. Objectives of this sub-section are two-fold. The first objective is to evaluate 

the infrastructure capability. The second objective is to aggregate these sub-components for 

use in adaptive capacity. A map showing the infrastructure adaptive capacity levels for the 

study area is presented in Figure 6.7. The sub-component map was reclassified into 9 

categories by using Jenks, and mapped into 5 levels from very low to very high, shaded as 

reported in Table 6.7. A summary of overall aggregated rankings for each district representing 

very low to low adaptability is shown in Table 6.8. Relative weights of variables of the 

aggregate using AHP, were obtained simultaneously (see Appendix 19b). 

  

6.3.3.1 Road capability variable 

The road capability variable for the study area was based on the map of road networks 

obtained from Tran et al. (2013) (see a map in Appendix 9d.2). A Kernel function was used in 

order to represent road capability, similar to that used in representing irrigation and drainage 

capability in sub-section 6.3.2.1. It also indicates the most isolated areas, as used here, located 

over 5 km from the nearest road, meaning greater difficulty of access. Figure 6.6 presents a 

map of the road capability variable.   

 
Figure 6.6 GIS mapping of the road capability variable [rd]. 
 

Note: as described in Figure 6.1. 
 

As seen in Figure 6.6, the major proportion of area in terms of road capability was either very 

low, shaded red (accounted for 23.3%, ~69 900 ha) or low adaptability, shaded orange 

(18.6%, ~55 800 ha). It also indicated that roads in the study area were quite dense, and 
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relatively accessible. On the other hand, a small proportion (5.2%, ~15 600 ha), shaded dark 

green, indicated very high adaptability. These areas were largely main roads (very high 

densities) running through settlement areas. Road capabilities in Kien Luong, Hon Dat, and 

An Minh imply that these may be less adaptable than in other districts. 

 

6.3.3.2 Aggregation of the infrastructure sub-component 

Figure 6.7 presents GIS-AHP mapping of the infrastructure sub-component. In Figure 6.7, the 

left hand side a) presents three classified maps of variables for the analysis, whereas the right 

hand side b) displays the map of aggregated infrastructure adaptive capacity levels for the 

study area.  

 
 

Figure 6.7 GIS-AHP mapping of infrastructure sub-component study: a) aggregate of variables: 
capacities of houses [ho], road [rd], and communication access [te]; and b) reclassified 
infrastructure sub-component [IN].  
 

Note: As described in Figure 6.1. Numbers in square brackets are presented together with variables indicating 
relative weights of those variables, simultaneously obtained by AHP.   
 

The results of the infrastructure sub-component revealed that the majority of the study area 

was considered as either low (32.2%, ~96 600 ha), or very low adaptability (39.5%, ~118 500 

ha), while the minority was either very high (only 2.7%, ~8 100 ha), and high adaptability 

(11.3%, ~33 900 ha). An Minh appeared to have the largest proportion representing low to 

very low adaptability (98.4%, ~56 930 ha), while Rach Gia appeared to have the least 

proportion (0%) in terms of infrastructure capability (Table 6.7).  
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Table 6.7 Proportions of the study area classed as very high to very low adaptability in terms of 
infrastructure capability. 

 Coastal district 
Infrastructure capability sub-component using AHP, % of area 

Very high 
1 - 2 

High 
3 - 4 

Moderate 
5 

Low 
6 - 7 

Very low  
8- 9 

An Bien 0.0 4.4 9.0 35.0 51.6 
An Minh 0.0 1.6 5.0 23.2 70.2 
Chau Thanh 8.7 15.4 18.1 41.8 16.0 
Hon Dat 0.0 6.5 12.8 33.1 47.6 
Ha Tien 10.7 64.7 24.6 0.0 0.0 
Kien Luong 0.7 20.9 32.0 46.4 0.0 
Rach Gia 44.0 46.9 8.9 0.0 0.0 
Seven coastal districts 2.7 11.3 14.3 32.2 39.5 

Note: as described in Table 6.3. 
 

Table 6.8 gives a summary of the rankings of the coastal infrastructure capability for the study 

area. An Minh, An Bien, and Hon Dat appeared to be the areas that are least adaptable. On the 

other hand, urban areas, such as Rach Gia and Ha Tien, have considerably higher percentages 

of households having solid structure, better road capabilities, and communication access, 

compared to rural areas; therefore, they may have stronger capacities to cope with potential 

impacts. However, one discrepancy was the ranking for Kien Luong. High adaptability is 

indicated for Kien Luong, ranked at 3, due to the highest percentages of households having 

solid houses (ranked at 1), the most isolated areas from road access (ranked at 7), and 

relatively high numbers of people who have access to fixed-line telephone subscriber services 

(ranked at 3). Another discrepancy was the ranking for An Minh. An Minh was ranked at 7 

(the least adaptability district), due to low percentages of households having solid structures 

(ranked at 6), isolated areas from road access (ranked at 5), and low access to telephone 

services (ranked at 6). A possible explanation for this result may be the limitations of data 

with house and communication data available only at an entire district level. 

 
Table 6.8 Overall aggregated rankings from the three variables capabilities of houses, road, and 
communication access in representing the infrastructure sub-component for each district. 

Rank Houses capability Road capability Communication access Infrastructure 
1 Kien Luong Rach Gia  Rach Gia Rach Gia 
2 Rach Gia  Chau Thanh  Ha Tien Ha Tien 
3 Ha Tien An Bien Kien Luong  Kien Luong  
4 Hon Dat Ha Tien An Bien Chau Thanh 
5 Chau Thanh An Minh  Chau Thanh Hon Dat 
6 An Minh Hon Dat An Minh An Bien 
7 An Bien Kien Luong  Hon Dat  An Minh 

Note: as described in Table 6.2. 
 

A summary of relative weights of the three variables related to houses, roads, and 

communication access, in order to represent the aggregated infrastructure sub-component 
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[IN], is presented in Equation 6.3 (see Figures 6.6 and 6.7). The consistency ratios (CR) were 

acceptable according to the procedures of Saaty (1980; 1994). The [ho] is considered with 

most priority (its relative value obtained as 0.4263). The second priority is [rd] (its relative 

value obtained as 0.3408). The least is [te] (its relative value obtained as 0.2329). 

 
LayerIN = 0.4263 * layerho + 0.3408 * layerrd + 0.2329 * layerte                                    [Equation 6.324] 
Note: Abbreviation of variables constituent to the infrastructure sub-component, and relative weights of those 
variables, obtained by AHP as presented in Figures 6.6, and 6.7. See a summary of those relative weights in 
Appendix 21. 
 
 

6.3.4 Aggregation of the adaptive capacity component 

Figure 6.8 presents GIS-AHP mapping of the adaptive capacity component. In Figure 6.8, the 

left hand side a) presents maps of the three sub-components capabilities: [SO], [TE], and [IN] 

for the analysis, whereas the right hand side b) presents the map of the adaptive capacity 

component for the study area. The adaptive capacity component map was reclassified into 9 

categories by using Jenks, and mapped into 5 levels from very low to very high, shaded as for 

other components, with proportions of the study area reported in Table 6.9. Relative weights 

of sub-components, were obtained simultaneously (see details in Appendix 19d).  

 

Table 6.9 Proportions of the study area classed as very high to very low adaptability in terms of 
adaptive capacity. 

 Coastal district  
Adaptive capacity component using AHP, % of area 

Very high 
1 - 2 

High 
3 - 4 

Moderate 
5 

Low 
6 - 7 

Very low 
8 - 9 

An Bien 0.0 5.8 9.4 60.5 24.4 
An Minh 0.0 0.8 1.6 21.2 76.4 
Chau Thanh 0.8 6.1 9.8 41.6 41.7 
Hon Dat 0.0 0.1 0.3 14.1 85.4 
Ha Tien* 0.0 2.8 29.9 67.3 0.0 
Kien Luong 7.2 30.5 31.2 31.2 0.0 
Rach Gia 75.0 24.7 0.1 0.2 0.1 
Seven coastal districts 3.7 7.2 8.2 27.8 53.1 

Note: As described in Table 6.3; (*): Data on adaptive capacity was unavailable for quarter of the area of Ha 
Tien. 
 

                                                 
24 See Figure 6.7. 
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Figure 6.8 GIS-AHP mapping of adaptive capacity component study: a) aggregate of sub-
components: capabilities of socioeconomic [SO], technological [TE], and infrastructure [IN]; and 
b) reclassified adaptive capacity component [A].  
 

Note: As described in Figure 6.1. Numbers in square brackets are presented together with sub-components 
indicating relative weights of those sub-components, simultaneously obtained by AHP; [SO], [TE], and [IN] as 
presented in Figures 6.1b, 6.4b, and 6.7b, respectively. 
 

The map of the adaptive capacity component on the right hand side b) of Figure 6.8 seems to 

closely reflect the map of the socioeconomic sub-component on the left hand side a), this is 

because [SO] was considered the most important sub-component, compared to the two others, 

in the aggregation. Hon Dat, and An Minh indicated by shaded red were areas shown to be 

least adaptable to potential impacts, while Rach Gia, Ha Tien, and Kien Luong indicated by 

shaded dark green were areas that are most adaptable, providing support for the idea that 

urban areas are expected to be more adaptable than rural areas. Kien Luong is an excpetion 

and may be inaccurate because socioeconomic data was available only at the scale of the 

entire district.  

 

A major proportion of area representing low to very low adaptability to the impacts (~81%, 

243 000 ha) indicated that the adaptive capacity for the study area is likely to be relatively low 

(see Table 6.9). Hon Dat appeared to have the largest proportion of area representing low to 

very low adaptability to the impacts (99.5%, ~103 180 ha), while Rach Gia appeared to have 

the least proportion (only 0.3%, ~29 ha). These results also indicate that the study area is 
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expected to be relatively vulnerable due to relatively low adaptive capacity to manage 

relatively high potential impacts (addressed in the previous chapter, sub-section 5.5.3.1).  

 

6.3.5 Discussion  

6.3.5.1 Coastal adaptive capacity in this study 

This study was the first attempt to assess the adaptive capacity by using thirteen sub-variables 

and nine variables combined into the three sub-components. Table 6.10 gives a summary of 

the rankings of coastal adaptive capacity for each district.  

 

Table 6.10 Overall aggregated rankings from three sub-components: socioeconomic, 
technological, and infrastructure in representing adaptive capacity component for each district. 

Rank Socioeconomic Technological Infrastructure Adaptive capacity 
1 Rach Gia An Minh Rach Gia Rach Gia 
2 Kien Luong Chau Thanh  Ha Tien Kien Luong  
3 An Bien Kien Luong Kien Luong  Ha Tien 
4 Ha Tien Rach Gia  Chau Thanh Chau Thanh 
5 Chau Thanh An Bien Hon Dat An Bien  
6 Hon Dat Hon Dat An Bien An Minh 
7 An Minh Ha Tien An Minh Hon Dat  

Note: As described in Table 6.2. 
 

As seen in Table 6.10, Hon Dat, An Minh, and An Bien seem to be the districts least able to 

cope with potential impacts, whereas Rach Gia, Ha Tien, and Kien Luong appear to have the 

strongest adaptabilities. It also indicates the fact that urban areas are expected to be more 

adaptable to the impacts, except Kien Luong. Kien Luong appeared to have second least 

proportion representing low to very low adaptable (only 31.2%, ranked at 2) due to high 

capabilities of socioeconomic (ranked at 2), technological and infrastructure (both ranked at 

3). One discrepancy was the ranking for Hon Dat. Hon Dat appeared to have the least 

adaptive capacity (ranked at 7) due to low capabilities of socioeconomic, technological, and 

infrastructure (ranked at 6, 6, and 5, respectively). It is noted that unavailable data on adaptive 

capacity for quarter of the area of Ha Tien, and the limitations of these input data at an entire 

district level in representing socioeconomic and infrastructure, may influence these rankings. 

 

The weight value of the study adaptive capacity component is summarised in equations as 

follows. The consistency ratios (CR) obtained were acceptable according to the procedures of 

Saaty (1980; 1994). 
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LayerA = 0.4641 * layerSO + 0.2714 * layerTE + 0.2645 * layerIN                      [Equation 6.425] 

 
 LayerA = 0.4641 * [0.2972 * layerin + 0.2891 * layered + 0.2564 * layerhe + 0.1573 * 

layerpo] + 0.2714 * [0.5625 * layerid + 0.4375 * layerey] + 0.2645 * [0.4263 * layerho + 0.3408 

* layerrd + 0.2329 * layerte]                                                                               [Equation 6.4.126] 

                                         
 LayerA = [0.1379 * layerin + 0.1342 * layered + 0.1190 * layerhe + 0.0730 * layerpo] + 

[0.1527 * layerid + 0.1187 * layerey] + [0.1128 * layerho + 0.0901 * layerrd + 0.0616 * layerte] 

                                                                                                                            [Equation 6.4.2] 
Note: Abbreviation of sub-variables, variables, and sub-components constituent to the adaptive capacity, and 
relative weights of those sub-variables, variables, and sub-components, obtained by AHP as presented in Figures 
6.1, 6.4, 6.7, and 6.8. See a summary of those relative weights in Appendix 21. 
 

The results in Equations 6.4.1 and 6.4.2 show relative weights of mapping the adaptive 

capacity component being the sum of relative weights of the four variables: [in], [ed], [he], 

and [po] in mapping the socioeconomic sub-component, two variables: [id], and [ey] in 

mapping the technological sub-component, and three variables: [ho], [rd], and [te] in mapping 

the infrastructure sub-component (see Figures 6.1, 6.4, and 6.7). A summary of relative 

weights of the three sub-components: [SO], [TE], and [IN] was used in order to represent the 

adaptive capacity component, presented in Equations 6.4 (see Figure 6.8). The [SO] is 

considered as the most priority (its relative value obtained as 0.4641). This was followed by 

[TE] (its relative value obtained as 0.2714). The least is [IN] (its relative value obtained as 

0.2645). 

 

6.3.5.2 Evaluation of the adaptive capacity outcome 

Scale-based approaches using input data within district level, comprising only three variables, 

irrigation and drainage, electricity, and road capabilities, were evaluated to assess their 

influence on the aggregated adaptive capacity outcome. Relative weights of these variables, 

were obtained simultaneously (see Appendix 22). The objectives of this sub-section are two-

fold. The first objective is to evaluate how sensitive the adaptive capacity outcome is to the 

weighting of input data. The second objective is to use the aggregated sub-components in the 

broader study of adaptive capacity (see sub-section 6.4.3.2).  

                                                 
25 See Figure 6.8. 
26 See Figures 6.1b, 6.4, 6.7, and 6.8. 
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Figure 6.9 GIS-AHP mapping of adaptive capacity component within district level: a) aggregate of variables: irrigation and drainage capability [id], 
electricity capability [ey], and road capability [rd]; b) mosaic raster dataset27; and c) reclassified adaptive capacity component [A]. 
Note: As described in Figure 6.1; Numbers in square brackets are presented together with variables indicating relative weights of those variables, simultaneously obtained by 
AHP; See details in Appendix 22.  
                                                 
27 As similar to Figure 5.75; [id], [ey], and [rd] were aggregated by AHP to generate the input raster, whereas [id] and [rd] were aggregated by AHP to generate the target 
raster. And then, mosaics multiple input rasters into the target raster to get the final outcome. 
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Figure 6.9 presents GIS-AHP mapping of the adaptive capacity component within district 

level. In Figure 6.9, the left hand side a) presents the three variables irrigation and drainage 

(see sub-section 6.3.2.1), electricity (see sub-section 6.3.2.2), and road capabilities (see sub-

section 6.3.3.1) used in the analysis, the middle b) displays maps of raster dataset were used 

to produce the mosaic adaptive capacity map, whereas the right hand side c) presents the map 

of reclassified adaptive capacity within district level. 

 

The analyses from a comparison between the adaptive capacity at an entire district level (see 

Figure 6.8b and Table 6.9), and the adaptive capacity within district level (see Figure 6.9c) 

indicate that there was an extent of low to very low adaptability (89.74%, especially a large 

proportion of which was 47.87% representing very low) in the adaptive capacity within 

district level. This was 80.9% representing low to very low adaptability, and a major 

proportion (53.1%) representing very low for adaptive capacity at an entire district level. 

These results indicate that scale-based approaches of input data may be influence the 

outcomes, finer resolution input data can give better output projection. Interestingly, the 

analysis shows that the adaptive capacity in the study is likely to be relatively low in both the 

assessments.  

 

The maps of adaptive capacity levels shown in Figures 6.8b and 6.9c can offer policy makers 

a generalised overview of areas within the study area that area likely to be least adaptable to 

potential impacts, indicated by shaded red, and therefore remaining vulnerable. But policy 

making needs to keep in mind the limitations of empirical research, and these maps have not 

enabled identification of all adaptation strategies, and supporting adaptation in the long term. 

Adaptive capacity to climate change can be improved by including socioeconomic factors at 

finer spatial scales, which are considered to be the main driving forces of social vulnerability 

to the impacts of climate change. 

 

6.4 Coastal vulnerability assessment 

This study uses the initial vulnerability definition of the IPCC (2007) as the starting point 

based on the three key components: exposure, sensitivity, and adaptive capacity, and the 

subsequently extended definition developed by Schauser et al. (2010) to allow a better 

assignment of different variable to those three components of vulnerability. As mentioned in 

the literature review chapter (chapter 2), according to Soares et al. (2012), vulnerability 

assessments that are considered as “second generation” further address relevant non-climatic 
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drivers (i.e., economic, demographic), and the adaptive capacity of the system under analysis 

(Fussel and Klein, 2006). At a macro-scale level (i.e., national to global scale) vulnerability 

assessment highlights the overall significance of climate changes for coastal societies and 

could provide useful information for central Government policies, while meso- to micro-scale 

studies, (i.e., sub-national/regional to local scale) allow identification of more specific 

vulnerable areas (i.e., regional and sectors), and could support policy makers in the design of 

appropriate adaptation strategies (Torresan et al., 2008). 

 

6.4.1 Overview 

The study area comprises seven coastal districts along the Kien Giang coast that is home for 

~921 000 people in 2011, based on the statistical data obtained from the Kien Giang 

Statistical Office (2012). It comprises much very low-lying land, with elevations on average 

of 0.3 - 0.8 m above MSL.  

 

The analyses in the previous chapter showed that much of the study area was likely to be 

highly exposed (~69% of total area high to very high) (see sub-section 5.3.5.1), and 

moderately sensitive (~40%) (see sub-section 5.4.4.1), resulting in relatively high potential 

impacts (~58%). Furthermore, the analyses of the adaptive capacity study, from sub-sections 

6.3.4 and 6.3.5, showed that the adaptive capacity is likely to be relatively low, with ~81% of 

the total area low to very low in terms of adaptability, making it difficult to handle negative 

impacts. It is important to keep in mind that although results from this analysis look realisable 

and realistic, these are relative values, and they may be influenced by thresholds, weightings, 

and Jenks. 

 

The exposure component was judged to have an extremely high influence on coastal 

vulnerability, and was considered the most important of the three key components: exposure, 

sensitivity, and adaptive capacity. It was assigned a priority of [9], based on the fundamental 

rule scale by Saaty (1980). While the sensitivity was judged to have a strong influence, it was 

considered the second most important component, and therefore, it was assigned a priority of 

[7]. Correspondingly, the adaptive capacity component was judged to have a relatively lesser 

influence on coastal vulnerability, considered the least important component, and was 

assigned a priority of [4.5]. That is because of several reasons:  

•  As mentioned in the previous chapter (section 5.5), exposure is considered a higher 

priority than sensitivity because it includes physical aspects of vulnerability.  
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•  Sensitivity refers to the degree to which a system is affected by such changes, 

whereas adaptive capacity describes the system's ability to adjust to these changes. Future 

sensitivity depends on current adaptive capacities and measures. The adaptive capacity is 

considered a lesser priority than exposure, because adaptive capacity, like sensitivity, it 

comprises social factors that could be changed, whereas exposure comprises physical factors 

that can not really be changed. 

•  The adaptive capacity is inversely related to vulnerability, compared to exposure and 

sensitivity. In other words, the greater the exposure or sensitivity, and the less the adaptive 

capacity, the greater is the vulnerability. The adaptive capacity of the study area seems to be 

limited, which makes it difficult to reduce adverse impacts; therefore, it is considered to least 

influence vulnerability in this analysis. Although the adaptive capacity does not necessarily 

contribute to effective adaptation, it can never eliminate all vulnerabilities. Moreover, 

responsibility for management of some risks may be beyond the household or local 

authorities’ level.  

 

6.4.2 Vulnerability assessment 

Figure 6.10 presents GIS-AHP mapping of the final vulnerability for the study area. The 

vulnerability map was reclassified into 9 categories by using Jenks, and mapped into 5 levels 

from very low to very high, shaded as for the final vulnerability outcome, with proportions of 

the study area reported in Table 6.11. Relative weights of components, were obtained 

simultaneously (see details in Appendix 20). 

 

Table 6.11 Proportions of the study area classed as very high to very low in representing the 
final vulnerability.  

 Coastal district 
Vulnerability using AHP, % of area 

Very low 
1 - 2 

Low 
3 - 4 

Moderate 
5 

   High 
    6 - 7 

Very high 
8 - 9 

An Bien 0.00 0.00 0.03 3.13 96.83 
An Minh 0.00 0.11 3.15 54.05 42.70 
Chau Thanh 0.25 2.48 11.24 45.50 40.52 
Hon Dat 8.84 27.80 30.66 29.67 3.04 
Ha Tien* 0.36 7.33 9.16 32.65 50.51 
Kien Luong 6.42 22.80 22.01 47.93 0.85 
Rach Gia 6.77 25.86 10.48 45.82 11.08 
Average 4.46 14.87 16.74 36.03 27.91 

Note: As described in Table 6.3; (*): Data on vulnerability outcome was unavailable for quarter of the area of Ha 
Tien. 
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Figure 6.10 GIS-AHP mapping of the final vulnerability study: a) aggregate of sub-components: exposure [E], sensitivity [S], and 
adaptive capacity [A]; and b) reclassified final vulnerability [V].  
Note: As described in Figure 6.1; Numbers in square brackets are presented together with components indicating relative weights of those 
components, simultaneously obtained by AHP. [E], [S], and [A] as presented in Figures 5.7b, 5.11b and 6.8b, respectively. 
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6.4.3 Discussion 

6.4.3.1 Coastal vulnerability study 

This study was the first attempt to rigorously examine coastal vulnerability assessment using 

associated GIS and AHP. It explored applying this to seven districts along the Kien Giang 

coast as a case study. The hierarchical structure comprised three key components: [E], [S], 

and [A], at level 1. At the next level, 8 sub-components were mapped: [SI], [FR], and [SC]; 

[SF], and [LU]; and [SO], [IN], and [TE]. A further 22 variables (level 3) and 24 sub-

variables (level 4) were incorporated into the analysis. Outcomes indicate that the study area 

is expected to be relatively high in vulnerability (~64% of area representing very high to high 

vulnerability) as a result of ~69% high exposure, ~40% moderate sensitivity, with ~81% 

relatively low adaptability to the impacts. Mapping indicates the areas that are most 

vulnerable, although the percentages obtained may be influenced by the nature of the 

classification algorithm underlying Jenks.  

 

Table 6.11 records the major proportions of the study area represented as either moderate 

(16.7%, ~50 100 ha) or high (36%, ~108 000 ha), and very high vulnerability (27.9%, ~89 

100 ha). This finding seems to accord with earlier outcomes, which showed that the study was 

highly exposed, moderately sensitive, with relatively low adaptability. Moreover, Figure 6.10 

shows that An Bien, and An Minh appear the most vulnerable (shaded red and orange). An 

Bien was the most vulnerable district with ~100% of area (~38 720 ha) high, and very high 

vulnerability. This was followed by An Minh with ~97% (~ 56 120 ha). On the other hand, 

Hon Dat was the least vulnerable district with only 32.71% (~33 910 ha) in this class. Again, 

these values are not absolute values, and the ranking is based on the largest percentage of the 

area of each district representing very high to high vulnerability. Identified and visualised 

patterns or areas representing very high to high vulnerability in Figure 6.10b are more useful 

to policy makers and planners in order to provide an overview of potential impacts of climate 

change than relative proportions of area or rankings. However, the proportions provide a 

guide for making decisions.       

 

Figure 6.11 gives a summary of proportions of area representing very high to high potential 

impacts on the left hand side a), low to very low capacities in the middle b), and very high to 

high vulnerability on the right hand side c). In addition to this, Table 6.12 gives a summary of 

the rankings of the three key components: exposure, sensitivity, and adaptive capacity to show 

combined potential impacts as discussed in chapter 5, sub-section 5.5.3.1. 
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PI A V 

 
Figure 6.11 Proportions of the study area within seven districts indicating: a) very high to high 
in terms of potential impacts; b) low to very low adaptive capacity; and c) very high to high final 
vulnerability. 
Note: [PI], [A], and [V] as presented in Tables 5.19 (chapter 5), 6.9, and 6.11, respectively. 
 

A comparison between potential impacts, and vulnerability, which involves adaptive capacity 

as summarised in Figure 6.11, aims to examine adaptability to manage impacts so as to further 

assist the local authorities and communities in better coastal management and conservation. 

An Minh, An Bien, and Chau Thanh appear to have the least adaptive capacities to reduce 

potential impacts (with 97.6%, 84.9%, and 83.3% of area representing low to very low 

adaptability, respectively), whereas Rach Gia, and Kien Luong appear to have higher adaptive 

capacities (with 0.3%, and 31.2%, respectively). An Bien, An Minh, and Chau Thanh appear to 

be the districts most vulnerable (with 99.96%, 96.97%, and 86.02% of area representing very 

high to high vulnerability, respectively), while Kien Luong, and Rach Gia appear the districts 

least vulnerable (with 48.78%, and 56.9%, respectively). These results may be explained by 

the fact that if areas have low adaptability, they find it difficult to manage potential impacts, 

and therefore can reduce the vulnerability only a little, while if areas have high adaptability, 

they may be able to manage potential impacts, and reduce the vulnerability. Another 

interesting finding was the results for Hon Dat which appears to have little adaptive capacity to 

reduce potential impacts (99.5%), associated with district least potential impacts (19.93%), 

therefore appears to be the most vulnerable district (32.72%). This supports the idea that the 

adaptive capacity influences vulnerability less in some cases. The result in the vulnerability for 

Ha Tien, however, needs to be treated with caution due to unavailable data on adaptive 

capacity for quarter of the area. 

 

a) 

b) 

c) 
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Table 6.12 Overall aggregated rankings from three components: exposure, sensitivity, and 
adaptive capacity in representing the final vulnerability for each district. 

Rank Exposure Sensitivity Potential impacts Adaptive capacity Vulnerability 
7 An Minh  Chau Thanh An Bien Hon Dat An Bien (~) 
6 An Bien An Bien An Minh An Minh An Minh (+) 
5 Kien Luong Rach Gia Ha Tien  An Bien Chau Thanh (+) 
4 Ha Tien An Minh Chau Thanh Chau Thanh Ha Tien (+) 
3 Rach Gia  Ha Tien Kien Luong Ha Tien Rach Gia (-) 
2 Chau Thanh Kien Luong  Rach Gia Kien Luong Kien Luong (-) 
1 Hon Dat Hon Dat Hon Dat Rach Gia Hon Dat (+) 

Note: A value of 7 assigns the highest rank within seven coastal districts in representing exposure, sensitivity, 
potential impacts, and vulnerability, while assigning the lowest rank in representing adaptive capacity; the minus 
(-) indicates a decrease, (~) a stability, (+) an increase in the final vulnerability outcomes involved in adaptive 
capacity, compared to potential impacts outcomes. 
 

A quick inspection of Table 6.12 reveals the overall aggregated rankings of exposure, 

sensitivity, potential impacts, adaptive capacity, and vulnerability among the seven coastal 

districts. The rank order of districts for potential impacts and that for vulnerability, including 

the adaptive capacity, is fairly similar. An Minh, An Bien, and Kien Luong appear districts 

most exposed, whereas Chau Thanh, An Bien, and Rach Gia appear districts most sensitive. 

An Bien, An Minh, and Ha Tien appear districts with highest potential impacts. The adaptive 

capacities of Rach Gia and Kien Luong mean they are the least vulnerable, which reflects how 

adaptive capacity helps these districts. The rankings of Chau Thanh and Rach Gia, however, 

were discrepant. The vulnerability for Chau Thanh ranked at 5 (relatively high) as a result of 

aggregate of moderate potential impacts and adaptive capacity (ranked at 4), while the 

vulnerability for Rach Gia ranked at 3 (relatively low) as a result of aggregate of low potential 

impacts (ranked at 2) and the least adaptive capacity (ranked at 1, very low). Therefore, the 

rankings for other districts should be interpreted with caution.   

 

Kien Giang, especially the seven coastal district areas, is a highly vulnerability part of the 

MRD. First, it experiences relatively high exposure to salinity, flood, and moderate loss of 

mangroves which characterise the coastal fringe of each district. Second, those areas found to 

be most sensitive tended to have moderate population density, generally with a large rural 

population and high numbers of ethnic households with limited availability of agricultural 

land. Third, many aspects of adaptive capacity could only be represented at district scale, with 

the least adaptable areas consisting of high numbers of poor households, low income, and 

moderate densities of transport, irrigation and drainage systems. Hon Dat, Kien Luong, Rach 

Gia, and Ha Tien appear to be the districts with the least vulnerability, while An Bien, An 

Minh, and Chau Thanh appear districts with most vulnerability. Rach Gia and Ha Tien are 
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urban areas, in fact they have many options to adapt (e.g., good income, education, and health 

care). On the other hand, An Bien is particularly low-lying, and after a reduction of a thin line 

of mangroves, much is already at risk of inundation at high tide.  

 

Subsidence of deltas has been shown to be a threat that can accentuate relative sea-level rise at 

rates well in excess of the global mean rate of sea-level rise (Syvitski, 2008; Syvitski et al., 

2009). Subsidence has been omitted in this study as there is no data on the rate of subsidence 

for this part of the MRD. Recent assessment of subsidence rates based on drawdown of 

groundwater compared with interferometric synthetic aperature radar (InSAR), indicates that 

subsidence rates are likely to be of the order of 1 cm/yr, exceeding rates of eustatic sea-level 

rise in the Kien Giang region (Erban et al., 2014). This will exacerbate the threat to low-lying 

areas like An Bien and An Minh. 
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District       a) Potential impacts [PI]         b) Adaptive capacity [A]                    c) Vulnerability [V] 

 
Figure 6.12 GIS-AHP mapping of the final vulnerability study: a) potential impacts [PI]14; b) adaptive capacity [A]28; and c) vulnerability [V]29 for 
each district, comprising Ha Tien, Kien Luong, Hon Dat, Rach Gia, Chau Thanh, An Bien, and An Minh. 
Note: Numbers are in each map that indicating overall aggregated rankings of each coastal district in representing potential impacts, adaptive capacity, and vulnerability, 
respectively (see Table 6.12). 

                                                 
28 Extracted from the adaptive map in Figure 6.8b. 
29 Extracted from the vulnerability map in Figure 6.10b. 
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Figure 6.12 gives a summary of extracted maps for each district, comprising potential impacts 

on the left hand side a), adaptive capacity in the middle b), and aggregated vulnerability on the 

right hand side c). Maps of the vulnerability reflect the maps for potential impacts. There are 

larger areas indicating high to very high vulnerability in the maps for An Minh, Hon Dat, and 

Chau Thanh, whereas there are less areas indicating high to very high potential impacts for 

Kien Luong and Rach Gia. The map of vulnerability for An Bien looks the same as the map of 

potential impacts. Maps show the relative variability in a district. Areas shaded green indicate 

strong adaptabilities, (i.e., high capabilities of road, canals, electricity to reduce potential 

impacts), whereas areas shaded red indicate weak adaptive capacity. However, if 

socioeconomic and infrastructure input data were available at finer resolution, this might 

influence the outcome. The maps of adaptive capacity for Hon Dat and An Minh look almost 

entirely red, whereas that for Rach Gia looks green. These maps give policy makers or 

planners, especially local authorities (at provincial or district level), and communities, a 

generalised overview of potential impacts, indicate adaptability, and enable users to identify 

and visualise which areas are likely to be most vulnerable, related to seawater incursion, flood 

risk, shoreline erosion and human effects.  

 

Relative weights of variables for the coastal vulnerability assessment for the study area were 

obtained from AHP and are summarised in Appendices 20 and 21. 

 
LayerV = 0.6428 * layerPI + 0.3572 * layerA                                                       [Equation 6.530] 

                                                     
 LayerV = 0.4359 * layerE + 0.3413 * layerS + 0.2227 * layerA                                 [Equation 6.631] 

 

Results in Equation 6.5 summarise the relative weights of potential impacts, and adaptive 

capacity, whereas those in Equation 6.6 summarise the relative weights of the three key 

components: exposure, sensitivity, and adaptive capacity, both in order to represent the final 

vulnerability. The relative weight of potential impacts was 0.6428, while the relative weight 

of adaptive capacity was 0.3572. On the other hand, the relative weights were 0.4359 for 

exposure, 0.3413 for sensitivity, and 0.2227 for adaptive capacity, with its acceptable CR 

which was 0.0005 (see a summary in Appendix 21). It is important to bear in mind that 

changing the priorities of variables (changing the subjective judgements) based on pair-wise 

                                                 
30 See Appendix 20. 
31 See Figure 6.10. 
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comparisons can influence the outcomes (see an evaluation of representing the exposure in the 

previous chapter, sub-section 5.3.5.2).  

 

6.4.3.2 Evaluation of the vulnerability outcome  

Scale-based approaches of input data, representing three components obtained within district 

level: exposure (see chapter 5, sub-section 5.3.5.1), sensitivity (see sub-section 5.4.4.2), and 

adaptive capacity (see sub-section 6.3.5.2), were aggregated in order to examine the final 

vulnerability outcome. Figure 6.13 presents GIS-AHP mapping of the vulnerability within 

district level. This vulnerability map was reclassified into 9 categories by using Jenks, and 

mapped using 5 levels from very low to very high, with proportions of the study area reported 

in Table 6.13. Relative weights of components, were obtained simultaneously (see Appendix 

23). 
 
 

 

 
Figure 6.13 GIS-AHP mapping of the vulnerability within district level: a) aggregate of 
components: exposure [E], sensitivity [S], and adaptive capacity [A]; and b) reclassified 
vulnerability [V].  
Note: [E] as presented in Figure 5.7c, [S] in Figure 5.12c, and [A] in Figure 6.9c. 
 

The analyses from a comparison between the final vulnerability at an entire district (see 

Figure 6.10b and Table 6.11), and the vulnerability within district level (see Figure 6.13b and 

Table 6.13) indicate that there was an extent of very high to high vulnerability (shaded red 

and orange) in the final vulnerability at an entire district (63.94%, ~191 800 ha), compared to 

+ [.4359] 

+ [.3413] 

[.2227] 
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only 43.43% (~130 300 ha) for those within district level. Particularly, proportions 

representing very high vulnerability (shaded red) was 27.91% (~78 879 ha) for the 

vulnerability at an entire district, whereas only 11.52% of total area (~32 736 ha) for the 

vulnerability within district level. This finding again supports the idea that finer data would 

help produce better maps. Moreover, as seen in Figure 6.13b, shaded red indicates areas most 

likely to be densely populated. These areas will be discussed in the following sub-section. 

 

6.4.3.3 Sensitive analysis using ModelBuilder with weighted overlay 

The overall aim of this sub-section is to test how sensitive the vulnerability map is to 

concerning weightings using ModelBuilder (MB). MB is an application in ArcGIS allowing 

you to create, edit, modify and share your models as tools. It can also be thought of as a visual 

programming language for building workflows, therefore, can minimise time running 

analyses with different parameters. It is possible to repeat procedures, modifying values used 

in AHP priorities. The objectives of this sub-section are two-fold. The first objective is to 

evaluate the vulnerability outcome in terms of considering weightings using MB with the 

weighted overlay tool32, compared to those using AHP. The second objective is to further 

support the idea of using MB with the weighted overlay tool, and supplement AHP, both can 

be applied in order to represent the vulnerability at local scale. 

 

Percentages of influence of parameters, (e.g., sub-variables, variables, sub-components, and 

components) representing the vulnerability by using the weighted overlay in MB, were 

adopted from the relative values of those using AHP. For instance, relative weights of three 

components, exposure, sensitivity, and adaptive capacity representing the aggregated 

vulnerability by AHP were 0.4359, 0.3413, and 0.2227 out of 1, respectively (see Equation 

6.6). Percentages of influence of exposure, sensitivity, adaptive capacity by using the 

weighted overlay in MB, therefore, were 44%, 34%, and 22% out of 100%, respectively. MB 

was used in order to represent the aggregated vulnerability map. Figure 6.14 shows four 

attempts to test influence of two different methods of processing data.  

 

 

 

                                                 
32 It is one of the Spatial Analyst Tools, aims to overlay several rasters using a common measurement scale, and 
weights each according to its importance. 
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     Using GIS-AHP Using the weighted overlay tool in MB 

 
Figure 6.14 Mapping of the vulnerability outcomes: the final vulnerability at an entire district a) 
obtained from AHP33 and b) obtained from the weighted overlay34; the vulnerability within 
district level c) obtained from AHP35 and d) obtained from the weighted overlay34. 
Note: a) presented in Figure 6.10, and c) in Figure 6.13; b) and d) in Appendix 24. 
 

In Figure 6.14, the left hand side a) and c) presents the vulnerability outcomes by using AHP, 

whereas the right hand side b) and d) displays the vulnerability outcomes by using the 

                                                 
33 See Figure 6.10. 
34 See Appendix 24. 
35 See Figure 6.13. 
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weighted overlay in MB. These vulnerability maps were reclassified into 9 categories by 

using Jenks, and mapped using 5 levels from very low to very high, shaded as for these maps, 

with proportions of the study area reported in Table 6.13. 

 

Table 6.13 A comparison of proportions of the study area classed as very high to very low in 
representing the vulnerability outcomes, respectively. 

Coastal district 
Vulnerability using AHP or the weighted overlay in MB, % of area 

Very low 
1 - 2 

Low 
3 - 4 

Moderate 
5 

High 
6 - 7 

Very high 
8 – 9 

[V] for an entire district in a) 4.46 14.87 16.74 36.03 27.91 
[V] within district level in b) 0.02 10.85 27.61 50.15 11.37 
[V] for an entire district in c) 9.54 31.96 15.08 31.91 11.52 
[V] within district level in d) 0.23 18.89 35.77 43.30 1.81 

Note: a) as presented in Table 6.11 and c) results using AHP, whereas b) and d) results using MB with weighted 
overlay. 
 

Table 6.13 shows comparisons of these four attempts. It indicates that the study area varies 

from moderate vulnerability with 43.43% of area (~127 874 ha) high to very high 

vulnerability obtained from the analysis of the vulnerability within district level by using the 

weighted overlay in MB (see Figure 6.14d), to high vulnerability (64%, ~184 700 ha) 

obtained from the analysis of the vulnerability at an entire district level by using AHP (see 

Figure 6.14a). Each analysis indicates that the study area appears to be highly vulnerable to 

potential impacts. There was a marked reduction of the proportion of the study area mapped 

as very high vulnerability (shaded red areas) in d) with only 1.81% (~5 128 ha), compared to 

27.91% (~78 879 ha) in a). Different scale-based approaches and different relative weights of 

variables can influence the outcomes somewhat. Finer resolution data would help produce 

better maps. Vulnerability mapping is shown in Figure 6.14d that identifies and visualises a 

number of hotspots (shaded red) within the study area which are considered most at risk to the 

effects of sea-level rise. These hotspots will be extracted and further discussed in the 

following sub-section 6.4.3.4. On the other hand, it is noted that percentages of area (i.e., % of 

map) are a relative indicator. It is more important to look at the patterns in the maps. For 

instance, almost all (~100% of area) of An Bien and An Minh are mapped as highly 

vulnerable, but there are local areas of higher ground within each district which are not 

vulnerable.  

 
Changing percentages of influence of sub-variables, variables, sub-components, and 

components using the weighted overlay in MB that are similar to that of changing relative 
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weights using AHP, therefore, can be generated different outcomes. Moreover, running 

analyses with different parameters by taking advantages of MB with the weighted overlay 

tool, can be independent or adopted from AHP that suggests for further studies. 

 

6.4.3.4 Coastal vulnerability assessment at a settlement scale 

The overall aim of this sub-section is to test areas, patterns, or hotspots representing very high 

vulnerability obtained from the vulnerability map. Figure 6.15 examines some hotspots 

(shaded red) obtained, extracted from the map showing the vulnerability levels within district 

level obtained (a finer scale) by using the weighted overlay in MB as preliminary outcome 

(see Figure 6.14d), as accounted to 1.81% of area (~5 128 ha) (see Table 6.13).  

 

Finer data help produce better maps, but they are not always useful ones. In Figure 6.15, the 

left hand side a) shows hotspots, comprising Dong Ho, Binh San, and Phao Dai wards36 along 

the left bank of the Giang Thanh River in Ha Tien; Kien Luong town in Kien Luong; Soc Son 

town in Hon Dat; Vinh Thanh, Vinh Thanh Van, Vinh Bao, and Vinh Lac wards in Rach Gia;  

Minh Luong town in Chau Thanh; and Thu Ba town in An Bien (see their population densities 

in Figure 6.16), as overlaid on Google Earth. On the right hand side c) showing some photos, 

some houses may be off ground so not flooded, but others will be flooded. Maps can not 

capture this level of detail. On-ground assessment of settlements shows several aspects that 

are not captured in general maps. This finding suggests that settlements may require further 

on-ground assessment. The visit to hotspot locations as identified in the analysis is a valuable 

contribution of the study that paid more attention to show the strengths and limitations of the 

vulnerability assessment methodology employed. 
 

                                                 
36 A ward in Vietnam is subordinates to the second-level units, including district-level town or the provincial 

city or the urban district of centrally-controlled municipality. Currently, for management the urban areas and 

associating families, each ward is divided into neighbourhoods, the neighbourhoods is the organisation of 

population.  

http://en.wikipedia.org/wiki/Vietnam
http://en.wikipedia.org/wiki/Direct-controlled_municipality#Vietnam
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Figure 6.15 Hotspots (shaded red) obtained from the evaluating vulnerability outcomes in Ha 
Tien, Hon Dat, Rach Gia, Chau Thanh, An Bien: a) obtained from the weighted overlay in MB; 
b) and c) relative images, and photos taken from the fieldtrip during the dry season in 2015, and 
obtained from Google Earth.    
Note: a) presented in Figure 6.14d. 
 

 
 
Figure 6.16 Population densities (inhabitants/km2) derived from the Kien Giang Statistical 
Office of hotspots obtained from evaluating vulnerability outcomes in towns, compared to their 
population densitites, on the average, in Ha Tien, Hon Dat, Rach Gia, Chau Thanh, and An 
Bien, respectively.  
Note: (   ): a district ~ a city level or a satellite town level;               ~ a ward36 or a town. 
 

Figure 6.16 shows that the population densities in towns, particularly in wards in Rach Gia, 

were much higher than those on the average at district level. For some instances, on the one 

hand, the largest population density was 30 199 inhabitants/ km2 for Vinh Thanh, followed by 

28 522 inhabitants/ km2 for Vinh Thanh Van, 23 103 inhabitants/ km2 for Vinh Bao, and 9 

144 inhabitants/ km2 for Vinh Lac. The least proportion was 2 246 inhabitants/ km2 on 

average for Rach Gia. On the other hand, Hon Dat was the least proportion on the average 

(164 inhabitants/ km2), while Soc Son was much higher with its proportion at 684 inhabitants/ 

km2. Generally, settlements in wards in Rach Gia and a town in Ha Tien appear hotspots most 

likely to be vulnerable due to an existing population at high density combined with large in-

migration, a range of different industries and services contributing to households high income 

streams, a low number of poor households, the large area of the urban area and the 
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concentration of transport, and better access to health and education facilities. In addition to 

this, other towns in Hon Dat, Chau Thanh, and An Bien appear hotspots most likely to be 

vulnerable due to high population densities with a high number of rural households, a range of 

different agricultural activities contributing to households poorer access to other sources of 

income streams, limited access to health and education facilities compared to those in Rach 

Gia and Ha Tien.  

 

The maps of vulnerability could be used as a starting point for subsequent discussions of the 

vulnerability and adaptive capacity among local government authorities (at district level), and 

settlements (hotspots) within the seven coastal districts in Kien Giang, and further discussed 

with provincial or state governmental levels. Therefore, while the assessment provides an 

indication of potential areas that should be considered further, ultimately more focused work 

is required to develop a comprehensive understanding of risk that may guide future 

management decisions. 

 

Results of vulnerability from this study support the evaluations of Mackey and Russell 

(2011), as mentioned in the literature review chapter (chapter 2), who indicate that seven 

coastal districts along the Kien Giang coast are likely to be more vulnerable than other inland 

districts to potential impacts, such as flood, seawater incursion, and storm surge. Mackey and 

Russell (2011) have undertaken a study to identify the comparative vulnerability and adaptive 

capacity of natural and human systems, across four sectors: socioeconomic, agriculture and 

livelihoods, urban settlements and transport, energy and industry, among particularly 

vulnerable geographic hotspots (a district boundary). They adopted a standard comparative 

vulnerability and risk assessment methodology and framework, that comprised 15 districts in 

the inland of Kien Giang province. Their findings on overall rankings of vulnerability for each 

district, however, are different. They indicated that rankings of vulnerability for each district 

were currently low, becoming low to moderate (particularly Rach Gia appears to be the most 

vulnerable district) in 2030, and moderate to high (particularly Rach Gia, Hon Dat, and Chau 

Thanh appear to be most vulnerable districts) in 2050. Reasons can be: 

•  First, the vulnerability assessments in both studies were based to some extent on 

subjective judgements. In the study by Mackey and Russell (2011), the process started with 

team meetings designed to develop questionnaires that were used to survey officials. In 

addition to this, the questionnaire was designed to provide data for measures and indices, 
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considered to be useful by the experts in each sector. It is important to keep in mind the 

possible bias or over-estimate in these results obtained, when undertaking simultaneous 

comparisons of many variables selected at a time (more than 7 ± 2 variables) as previously 

mentioned in chapter 3, section 3.4. In this study, AHP was used to permit explicit exhibition 

of appraisement variables, and handle complicated situations where different weights are 

assigned, with the accepted inconsistency for judgements. However, these are also subjective 

in some cases. 

•  Second, biophysical vulnerability assessments in Mackey and Russell (2011) were 

based on a range of time horizons for impacts seawater incursion (a period of 1998 - 2050), 

and river-flood depth (2000 - 2050), while in this study, the current biophysical factors were 

based on impacts of seawater incursion (a year 2010), flood risk (a year 2000, combined with 

elevations) and shoreline erosion of 40 years (1973 - 2013). 

•  Finally, social vulnerability assessments in Mackey and Russell (2011) were based on 

statistical data provincially across four sectors from 2010, and conducted at an entire district 

level, while in this study, the social factors were based on data from 2011, and conducted 

using different scale-based approaches. The outcomes in social factors, therefore, may have 

changed over time and space, respectively.  

 

Vulnerability maps should be interpreted with caution in the context of the framework used to 

generate the vulnerability and the limitations imposed by the methods (Preston et al., 2011). 

One must also be cautious in how one interprets “very high” or “very low” estimates of 

vulnerability. Vulnerability estimates should not be viewed here in such absolute values, but 

rather in a more relative context, based on the subjective judgements. Questions of 

“vulnerability of what” and “vulnerability to what” are also related to how vulnerability 

mapping exercises represent proxy data. Hotspots or areas indicated by shaded red identified 

as being most vulnerable are presumed to have a greater likelihood of experiencing an adverse 

effect than those that are least vulnerable, even if the nature, absolute probability, or severity 

of the impacts remains unknown. Therefore, vulnerability cannot necessarily provide 

information on where development activities should be restricted, or where management 

planning should be taken into account, but it can support identification of areas which require 

further examination and investigation (Preston et al., 2008). The maps of vulnerability in the 

seven coastal districts along the Kien Giang coast could be used as a starting point for 

subsequent discussions of the vulnerability and adaptive capacity among local government 
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authorities (at district level), and settlements or hotspots (within district level), and further 

discussed with provincial or state governmental levels. Therefore, while the assessment 

provides an indication of potential areas that should be considered further, ultimately more 

focused work is required to develop a comprehensive understanding of risk that may guide 

future management decisions. 

 

6.5 Summary of this chapter 

This chapter describes the first attempt to assess the adaptive capacity using the Spatial 

Analyst tools and the AHP tool. Thirteen sub-variables and nine variables were used, 

aggregated into the three sub-components, comprising socioeconomic, technological, and 

infrastructure capabilities (see Table 6.1). The analysis showed that generally the adaptive 

capacity of the study area was considered relatively low; with 81% of area low to very low 

adaptability to manage the impacts, therefore, scarcely reducing the vulnerability.  

 

This chapter also aimed to examine the vulnerability levels, when the adaptive capacity was 

combined with potential impacts. This enabled identification and prioritisation of hotspots or 

patterns, and areas most likely to be vulnerable to impacts of climate change, particularly sea-

level rise. A hierarchical structure of 24 sub-variables and 22 variables, combined into 8 sub-

components of the three key components: exposure, sensitivity, and adaptive capacity, was used 

in representing the vulnerability levels.  

  

Table 6.12 gives a summary of overall aggregated rankings of the seven coastal districts final 

vulnerability, comprising the three components: exposure, sensitivity, and adaptive capacity. 

The analysis indicated that An Bien, An Minh, and Chau Thanh appeared to be the most 

vulnerable districts, while Hon Dat, Kien Luong, and Rach Gia appeared to be the least 

vulnerable districts.  

 

Scale-based approaches using AHP have been conducted to examine the adaptive capacity and 

the vulnerability outcomes. Particularly, variations of input data within district level were used 

to evaluate these mapping outcomes. Furthermore, the weighted overlay was used in MB to 

compare the effect of different weightings, in order to evaluate the vulnerability outcomes. 

Figure 6.14 is therefore meant to assist policy makers, or planners, in identifying areas or 

hotspots most likely to be vulnerable, indicated by shaded red. But policy making needs to 
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keep in mind the specificities and limitations of empirical research, and the different scale-

based approaches, and social contexts. Coastal settlements within the study area were 

preliminary tested, and are shown in Figures 6.15 and 6.16. Conclusions, together with future 

research directions will be discussed in the last chapter. 
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Chapter Seven 

 

Conclusions and future directions 

 

7.1 Introduction 

Coastal areas are highly vulnerable to sea-level rise. Capacity to cope with the impacts of sea-

level rise in coastal areas is especially significant because many megacities are located along 

the coast and the existing problems due to high exploitation of resources in coastal areas may 

be exacerbated by climate change risks. Developing and implementing effective adaptation 

options are crucial for future development. The Mekong River Delta plays a staple role for the 

region in terms of food security and socioeconomic development in Vietnam; however, it is 

widely considered as one of the most low-lying and densely populated areas in the world. It is 

vulnerable to seawater incursion, flood risk, and shoreline change, exacerbated as a 

consequence of climate change, particularly sea-level rise. Therefore, management of these 

impacts is a priority at all levels in Vietnam, particularly the local level. This study examined 

the seven coastal districts of the Kien Giang coast in the western part of the delta, the 

economy of which is important in terms of agriculture and aquaculture.  

 

A comprehensive coastal vulnerability assessment needs to assess both physical and social 

factors, combining exposure and sensitivity in relation to potential impacts, as well as 

adaptive capacity (Soares et al., 2012). The overall aim of this thesis was to enable 

identification and prioritisation of hotspots, or areas most likely to be vulnerable, specifically 

for Kien Giang. It attempted to look at the local level, comprising the seven coastal districts, 

by using GIS and MCDM. The site-specific assessments were intended to further assist the 

local authorities and communities in better coastal management and conservation. This 

chapter presents the key contributions of the research, its implications and recommendations 

for future studies for coastal vulnerability assessments of the MRD. 

 

As a result, several regional patterns emerged. First, relatively high exposure to salinity, flood 

risk, and moderate loss of mangroves characterised the coastal fringe of each district. Second, 

those areas found to be most sensitive tended to have moderate population density, generally 
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with a large rural population and high numbers of ethnic households with limited availability 

of agricultural land, although societal factor sensitivity could only be represented at district 

scale. Third, the least adaptable areas consisted of high numbers of poor households, low 

income, literate but educational standard not high, poor healthcare services, and moderate 

densities of transport, irrigation and drainage systems, although several aspects of adaptive 

capacity could only be represented at district scale. Finally, most coastal districts were 

determined to be of relatively moderate to high vulnerability, with scattered hotspots along 

the Kien Giang coast, particularly in the settlement areas. 

 

7.2 Research contribution  

This study attempts to fill research gaps to provide a comprehensive analysis of coastal 

vulnerability in terms of climate change induced sea-level rise, by aggregating local physical 

and social effects in relation to three key components: exposure, sensitivity, and adaptive 

capacity. It makes significant contributions in three areas, including: 1) the concept of 

vulnerability, 2) methodology, and 3) application to coastal vulnerability assessment: 

1) Regarding the concept of vulnerability: first, the literature review chapter indicates 

that there are various concepts of vulnerability in the context of climate change and its 

impacts. The present study is considered to be the first empirical study at a local scale for a 

key section of the MRD to map all three components, exposure, sensitivity, and adaptive 

capacity, consistent with the IPCC’s concept of vulnerability to the impacts of climate change, 

and sea-level rise. Second, the literature review chapter also indicates that a majority of 

vulnerability assessments have considered biophysical factors and relatively few examine 

social factors. This study is one of only a few empirical studies to rigorously apply both 

biophysical and social aspects in representing vulnerability. Third, many studies have 

contributed to expanding scientific knowledge about the risks posed by climatic variability to 

agricultural production and water resources in the MRD. However, such studies have mainly 

concentrated on analysis at regional and national scale, with fewer at local scale. This thesis is 

innovative because it applies analysis at different spatial scales, focused mainly on the local 

scale. 

2) Regarding the methodology: the present study is one of only a few empirical studies 

to examine multi-criteria-based approaches in vulnerability assessments (i.e., indicator and 

mapping-based approaches to vulnerability assessment). Doing so, first, the present study is 

one of only a few empirical studies to examine multi-criteria-based approaches in 
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vulnerability assessments. The framework adopted from the European Environment Agency 

undertaken by Schauser et al. (2010) was proposed for this assessment, and is presented in 

chapter 3 (Figures 3.1 and 3.3). Second,  six variables were used in representing the three sub-

components of the exposure component for the study area (see chapter 5, section 5.3). Third, 

eleven sub-variables and seven variables were used in representing the two sub-components 

of sensitivity (see section 5.4). Fourth, thirteen sub-variables and nine variables were used in 

representing the three sub-components of the adaptive capacity (see chapter 6, section 6.3). 

Finally, the three main components exposure, sensitivity, and adaptive capacity, were used in 

the aggregated vulnerability for the study area (see section 6.4).   

This research, on the other hand, examined weighting of factors by using the AHP 

multi-criteria-based approach, an extension tool run in ArcGIS, for the vulnerability 

assessments. This is an objective way to handle many variables or rank them based on pair-

wise comparisons. Moreover, this combination of GIS and AHP enhances the analysis by 

reducing the time spent in considering other complicated weighting methods. The results 

obtained enable visualisation, and prioritisation of the hotspots, or areas that appear most 

likely to be vulnerable.  

3) Regarding the application: vulnerability maps are just one of a number of tools that 

were utilised in the study to elicit information about adaptive capacity. In addition, local 

authorities, and policy makers may be able to respond to the vulnerability maps to identify 

potential strengths or weaknesses, creating the opportunity for revision of the vulnerability 

maps in light of new insight, information, and data. 

This assessment of climate change vulnerability represents a starting point for further 

exploration of vulnerability and adaptive capacity within the entire Kien Giang province, 

which could be extended to the other six coastal provinces, and their districts. Moreover, this 

research represents only a preliminary examination of vulnerability at the settlement scale. 

The research findings provide a basis for further study at a finer scale. Future more site-

specific assessments might further assist the local authorities and communities in better 

coastal management and conservation of hotspots.  

 

7.3. Directions for future research 

The current research is exploratory work and there is much more that could be done. Findings 

from this study are significant in explaining how spatial and temporal factors, particularly 

social factors, can affect the mapping of vulnerability outcomes. In addition to this, the 



Coastal Vulnerability assessment of Kien Giang 
 

222 | P a g e  
  
 

application of GIS-AHP is a useful technique in order to visualise, and prioritise hotspots or 

areas most likely to be vulnerable to the potential impacts. The following ideas are 

recommended for future study of the coastal vulnerability assessments: 

1) This study indicates that GIS-based multi-criteria analysis, involving weightings 

using AHP, can be used for coastal vulnerability assessments at the local scale. The integrated 

GIS-AHP framework can be easily re-run in ArcGIS ModelBuilder with adjusted weightings 

reducing the limitations of other less-tested methods, with potential to improve decision 

making and the quality and consistency of decisions.  

2) As weighting of the variables might be considered subjective judgements, it is 

suggested that future contributions might adopt rankings proposed by groups of local experts, 

scientists, policy makers, and particularly local communities, in terms of prioritisation of 

variables, in order to generate increasingly objective outcomes. 

3) Further mapping of this kind could be easily and effectively applied in relevant 

coastal areas along the coast of the Mekong River Delta in Vietnam (e.g., coastal districts 

along the western side of Ca Mau) adopting the framework proposed for this vulnerability 

assessment. 

4) This study provides support for the suggestions from the coastal vulnerability 

assessment using AHP that the inclusion of social factors (e.g., public awareness, policy 

foundation, and governance) for coastal vulnerability index assessment should be encouraged. 

5) As data becomes available, the approach can be applied further at finer scales, such 

as the settlement scale, identifying, as shown in the previous chapter, coastal settlements, or 

individual households within them, that are considered hotspots. It will be more significant to 

consider local issues such as appropriate sustainable adaptation strategies, at these finer 

scales. 

 

7.4. Conclusion 

This study demonstrates comprehensive approaches to provide quantitative and qualitative 

information to guide the process of adaptation, and provide visualisations that will enhance 

local authority’s decision making to adapt to climate change, particularly sea-level rise. Based 

on the concept of vulnerability discussed, and methods integrated into the GIS-AHP 

framework, biophysical and social effects have been mapped over different space and time 

scales to visualise and prioritise hotspots and areas most likely to be vulnerable to the 
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potential impacts. The study, applied in Kien Giang, has been able to draw the following 

conclusions: 

1) The study has yielded new insights, in terms of the concept of vulnerability, 

comprising three components: exposure, sensitivity, and adaptive capacity; and multi-criteria 

and holistic vulnerability mapping using AHP with scale-based approaches which have been 

conducted to examine these three components and the vulnerability outcomes for case studies 

(e.g., seven coastal districts along the Kien Giang province, a commune scale, hotspots). 

2) Mappable factors, including biophysical and social data were combined based on 

pair-wise comparisons to develop a final composite vulnerability index, visualisation and 

prioritisation and targeting of adaptation strategies. In particular, estimates of adaptive 

capacity enable policy makers and other stakeholders to adopt suitable strategies in order to 

enhance the adaptive capacity or resilience of the system to respond to the impacts of climate 

change. 

3) The results highlight, and suggest the wider implications, beyond the case study area 

for other localities and situations confronting similar challenges. 
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Appendix 1 A review of vulnerability indices used to assess vulnerability to impacts of climate change. 
 

No. Name of 
indicator 

Purpose Scale (spatial/ 
temporal)  

Methods/ Tools 
(Aggregation) 

Exposure Sensitivity Adaptive Capacity Reference 

 Overall vulnerability 
1 An overall 

vulnerability 
indicator 

Estimate & compare 
overall vulnerability of 
very different cities 

Cities 
observed trend 
& projections 
for 2050s 
 

City experts 1. Temperature  
2. Precipitation  
3. Sea‐level  
4. Tropical cyclone 
5. Drought 
6. Heat waves 

1. Population 
2. Density 
3. Percent slum population 
4. Percent of urban area 
susceptible to flooding 
5. City % of national GDP 

Institutions and 
Governance 
1. Urban governance 
(corruption index ranking 
for city) 
2. City leadership is 
willing to address climate 
change 
Information and Resources 
3. Comprehensive analysis 
of climate risks for the city 
4. Administrative unit 
assigned to address climate 
change 
5. Balance between 
adaptation & mitigation 

Mehrotra et al. 
(2009) 

 Climatic threat/ issue: Heat wave: Higher temperatures, heat wave and health problems 
2 Heat vulnerability 

indicator 
Neighbourhood level 
heat vulnerability 
assessment for the city 
of Toronto to assess  
cartographic design 
decisions in creating 
heat vulnerability 
maps  

City, Toronto, 
Canada 

Aggregation by 
specific multi criteria 
& cluster analysis 
methods 

1. Surface temperature 19 components 
(related to dwellings, 
income, specific population 
groups, age classes) 
 

Partly included in S Rinner et al. 
(2010) 
 

3 Heat waves 
vulnerability index 

Components 
influencing the 
vulnerability of 
European 
populations to heat 
waves 

European 
Regions 

Not aggregated 1. Warm spell  
duration index  
2. Tropical nights 

1. Age classes  
2. Age > 65 yrs 

1. GDP 
2. Education level 

Harvey et al. 
(2009) 

4 Cumulative heat 
vulnerability index 

Cumulative heat 
vulnerability index for 
the USA to create 
maps for comparison 
& to give guidance at 
regional (county) 
& national scales for 
further analysis & 
intervention 

At regional 
(county) 
& national, 
USA 

Aggregated by 
principal component 
analysis 

None 1. Race 
2. Age ≥ 65 
3. Living alone & age ≥ 65, 
4. Diabetes 
5. Area without vegetation 
 

1. Poor 
2. Education level  
3. Living alone  
4. Without central 
5. Any air conditioning 

Reid et al. (2009) 
 



Coastal Vulnerability assessment of Kien Giang 
 

249 | P a g e  
  
 

5 Vulnerability 
Indicators for 
Extreme Heat and 
Human Health 

Vulnerability 
Indicators for 
Extreme Heat & 
Human Health for the 
region to initiate a 
dialogue among 
researchers & 
stakeholders 
& a bottom‐up 
assessment of local 
governments 

Regional, 
Sydney 
Coastal 
Councils 
Groups 
in 2030 

Aggregation by 
summation of 
components 
values for each 
element, scoring, 
weighting 
based on expert 
values & summation 
of the elements 
values for 
vulnerability 
indicator 

1. Present average 
January maximum 
temperature  
2. Present average 
January minimum 
Temperature 
3. Present # Days > 
30oC 
4. Projected change in 
average DJF maximum 
temperature in 2030 
5. Land cover 
6. Population density 
7. Road density 

1. % population≥65 years of 
age  
2. % population≥65 years of 
age & living alone 
3. % population≤4 years of 
age 
4. % of housing as multiunit 
dwellings  
5. Projected population 
growth to 2019  

1. % population 
completing year 12 
2. % population that 
speaks language other than 
English  
3. Median home loan 
repayment  
4. % home ownership 
5. Median household 
income  
6. % households 
requiring financial 
assistance  
7. % population with 
internet access  
8. Current ratios  
9. Per capita business 
rates  
10. Per capita residential 
rates  
11. Per capita 
community service 
expenses  
12. Per capita environment 
& health expenses 

Preston et al. 
(2008) 

6 Indicator for heat 
related risk  

Heat related risk 
assessment & a 
generic framework for 
risk management  

Local, Greater 
Manchester & 
Lewes 

Normalised in 
classes, ggregated by 
unweighted 
addition 

1. Daily max. & min. 
temperatures 

1. Urban Morphology Types 
2. Age > 75 
3. Age < 4, 
4. Population health 
5. Residence dependency 

None Lindley et al. 
(2006) 

 Climatic threat/ issue: Decreased precipitation, water scarcity and drought 
7 Indicators of 

vulnerability to 
climate change 

Indicators of 
vulnerability to 
climate change to 
inform the 
pertinent political 
debate on international 
adaptation funding 
within the framework 
of the UNFCCC 

Global No aggregation 
suggested 

3 variables 
(median & standard 
deviation of projected 
change in precipitation, 
median of the 
projected change in 
runoff) 

3 variables 
(current population 
weighted precipitation, 
renewable water resources 
per person, water use ratio) 

2 variables 
(households with improved 
water supply or with 
improved sanitation) 

Füssel (2010) 

8 The social 
vulnerability index 
for water 
availability 

The social 
vulnerability index for 
countries in Africa is 
an aggregate index of 
human vulnerability to 

Africa 
(country 
level) / water 
availability 

Weights are applied 
to the indicators in 
forming the sub-
indices, & then when 
aggregating the sub-

 Natural resources sensitive 
to water stress & water 
availability 

1. Economic well-being & 
stability 
2. Demographic structure 
3. Institutional stability 
4. Strength of public 

Adger and 
Vincent (2005) 
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climate change-
induced changes in 
water availability  

indices to form the 
aggregate index, in 
keeping with the 
theory-driven nature 
of the index, & based 
on expert judgment 

infrastructure 
5. Global interconnectivity 
& dependence 

9 Drought 
vulnerability index 

To assess 
vulnerability index to 
agricultural drought in 
Nebraska 

In Nebraska Each factor a relative 
weight was given 
between 1 & 5, & 5 
is the most 
significant.  
4 classes of 
vulnerability: low, 
low-to-moderate, 
moderate & high 

1. biophysical: soil & 
climate  
 

1. social: landuse 
& irrigation 

 Wilhelmi and 
Wilhite (2002) 

10 Indicators for 
water resources 

Indicators for water 
resources to 
investigate the 
integrated impacts of 
potential global 
warming 

National, USA Only graphical 
aggregation as 
percentage of 
thresholds 

2 variables (Climate & 
economic scenarios, 
runoff ratio) 
 

3 variables 
(Storage vulnerability, 
hydropower, water 
quality, coefficient of 
variation, dependence ratio) 

5 variables (consumptive 
use, relative poverty, 
import demand ratio, 
withdrawal ratio) 

Lane et al. (1999) 

 Climatic threat/ issue: Wild fires 
11 Vulnerability 

Indicators for 
Bush Fires 

Vulnerability 
Indicators for 
Bush Fires for the 
region to initiate a 
dialogue among 
researchers & 
stakeholders & a 
bottom up 
assessment of local 
governments 

Regional, 
Sydney 
Coastal 
Councils 
Groups 
in 2030 

Aggregation by 
summation of 
components 
values for each 
element, scoring, 
weighting 
based on expert 
values & summation 
of the elements 
values for 
vulnerability 
indicator 

1. Present average 
maximum January 
temperature  
2. Present # Days > 
30oC 
3. Projected change in 
average maximum DJF 
temperature in 2030 
4. Present average 
annual rainfall  
5. Present average 
annual 10th percentile 
rainfall 
6. Projected average 
annual rainfall change 
in 2030 

1. Annual primary 
production  
2. Land cover  
3. Slope  
4. Aspect 
5. Population density 
6. Road density  

1. % population 
completing year 12 
2. % population that 
speaks language 
other than English 
3. Median home loan 
repayment 
4. % home ownership 
5. Median household 
income  
6. % households 
requiring financial 
assistance  
7. % population with 
internet access & 
Current ratios 
8. Per capita business 
rates  
9. Per capita residential 
rates 
10. Per capita community 
service expenses 

Preston et al. 
(2008) 
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 Climatic threat/ issue: Fluvial floods, flood claims and health effects of flooding 
12 Flood 

Vulnerability 
Index 
(FVI) for river 
basins 

To use 11 indicators 
(out of 40 indicators) 
divided in 4 
components, 2 sub-
indices, as a tool for 
assessing flood risk 
due to climate change 
in relation to 
underlying 
socioeconomic 
conditions & 
management policies  

River basins 
 

Acknowledged by a 
group of over 50 
participants to the 
Asian Development 
Bank Water 
Week of 2004 in 
Manila 

1. Frequency of heavy 
rainfall (I1) belonging 
to climate component 
(C) 
2. Average slope (I2), 
urbanised area rationa 
(I3) belonging to hydro-
geological component 
(H) 
 
 

The human index, which corresponds to the social effects 
of floods & the material which covers the economic effects 
of floods: 
1. TV penetration rate (I4), literacy rate (I5), population 
rate under poverty (I6), years sustaining healthy life (I7), 
population in flooded area (I8), infant mortality rate (I9) 
belonging to socioeconomic component (S) 
2. Investment amount for structural measures (I10), 
investment amount for non-structural measures (I11) 
belonging to countermeasures 
component (M) 
 

Connor and 
Hiroki (2005); 
Quinn et al. 
(2010)  

13 Flood 
Vulnerability 
Index (FVI) 

To develop a Flood 
Vulnerability Index 
methodology, based on 
3 factors of 
vulnerability: 
exposure, 
susceptibility & 
resilience; these 
factors are interlinked 
with the three 
components, using 19 
indicators 

Coastal cities  1. Hydro-geological 
(sea level rise, storm 
surge, number of 
cyclones, river 
discharge, foreshore 
slope, soil subsidence, 
coastal line) 

 1. Socioeconomic (cultural 
heritage, population close 
to coastal line, growing 
coastal population, 
shelters, awareness/ 
preparedness, disable 
people, km of drainage, 
recovery time)  
2. Politico-administrative 
(uncontrolled planning 
zones, flood hazard maps, 
institutional organizations 
& flood protection) 

Balica and Wright 
(2009, 2010); 
Balica et al. 
(2009) 

14 Indicator for river 
flooding 
vulnerability  

Components 
influencing 
vulnerability of 
European urban areas 
to river flooding to 
raise awareness of 
river flooding risk & 
to identify hotspots for 
more detailed 
analysis  

European 
urban areas 

No aggregation 
suggested 

1. River flows  
2. River floods 

1. Population density 
 

1. GDP 
2. Education level 
3. Money spend on flood 
protection 

Harvey et al. 
(2009) 

15 Social 
vulnerability index 
in context to 
river‐floods 

Social vulnerability 
index in context to 
river‐floods in 
Germany to generate 
information about 
people potentially 
flooded 

Elbe & Rhine 
river valleys, 
Germany 

Aggregation by 
component analysis 
& regression analysis 
to derive 3 most 
sensitive 
parameters (fragility, 
region, 
socio‐economic 
conditions), which 

None 
 

1. Age >65 yrs 
2. Population density 
3. Housing type 

1. Living space per person 
2. Unemployment ratio 
3. Education level 

Fekete (2009) 
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were combined to an 
index 

16 Indicator for flood 
vulnerability 

Integrated urban flood 
risk 
assessment 

Leipzig Aggregation by multi 
criteria assessment to 
derive different risks 
(social, economic, 
land value, ecologic) 

1. Depth of inundation 
 

11 variables 
(landuse, classification of 
buildings, land values, 
affected population & 
special population groups 
per building, social hot 
spots, contaminated sites, 
soil erodibility, oligotrophic 
biotopes, protected biotopes, 
vulnerable trees) 

None Kubal et al. 
(2009); Meyer et 
al. (2009) 
 

17 Spatial 
vulnerability based 
on flood modeling 

Spatial vulnerability 
units for 
socio‐economic flood 
modeling  
 

Regional, 
urban areas 

Aggregation based 
on multiple criterion 
analysis & on expert 
opinion (weights) 

None 
 

6 variables (with more 
sub‐variables) 
(households & building 
uses, infrastructure 
length, assets, sensitive land 
covers age distribution, 
employments) 
 

7 variables (with more 
sub‐variables) (workforce 
in different economy 
sectors, size of companies/ 
workplaces, ecosystem 
integrity of sensitive areas, 
distance to health facilities 
& roads, early warning 
system available, origin of 
population, education 
level) 

Kienberger et al. 
(2009) 
 

18 Social Flood 
Vulnerability 
Index 

Social Flood 
Vulnerability 
Index for 
communities  

Communities, 
i.e., 
Manchester & 
Maidenhead 

Aggregation by 
simple  weighting & 
summation the 
components in an 
index. The 
index was classified 
in 5 bands 

None 
 

3 variables 
(long‐term sick, single 
parents elderly > 75 yrs) 
 

4 variables 
(unemployment, 
overcrowding, non‐car 
ownership, non‐home 
ownership) 

Tapsell et al. 
(2002) 
 

 Climatic threat/ issue: Intensive precipitation and urban drainage floods 
19 Vulnerability 

Indicators for 
Extreme Rainfall 
and Storm water 
Management 

Vulnerability 
Indicators for 
Extreme Rainfall & 
Storm water 
management for the 
region to initiate a 
dialogue among 
researchers & 
stakeholders & a 
bottom up 
assessment of local 
governments 

Sydney 
Coastal 
Councils 
Groups in 
2030 

Aggregation by 
summation of 
components 
values for each 
element, scoring, 
weighting 
based on expert 
values & summation 
of the elements 
values for 
vulnerability 
indicator 

1. Present average 
annual rainfall  
2. Present average 90th 
percentile annual 
rainfall 
3. Projected change in 
extreme rainfall events 
in 2030  

1. Land cover  
2. Elevation  
3. Slope 
4. Drainage  
5. Average soil water 
holding capacity  
6. Population density 
7. Road density  
8. Projected population 
growth to 2019  

1. % population 
completing year 12 
2. % population that 
speaks language 
other than English 
3. Median home loan 
repayment  
4. % home ownership 
5. Median household 
income  
6. % households 
requiring financial 
assistance  
7. % population with 

Preston et al. 
(2008) 
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internet access  
8. Current ratios  
9. Per capita business 
rates 
10. Per capita residential 
rates  
11. Per capita community 
service expenses 

 Climatic threat/ issue: Sea level rise and storm surge-driven flooding 
20 The coastal 

vulnerability 
index 

The coastal 
vulnerability index to 
identify areas at risk of 
erosion &/or extreme 
climatic events 

Coastal areas Aggregation based 
on classification & 
ranking 
into one indicator 

1. Average swell 
2. Relative sea‐level 
change tax 
3. Average tidal range  

1. Geology resistance 
2. Erosion tax 
3. Coastal slope 
 

None Gornitz (1991) 

21 A multi-scale 
coastal 
vulnerability 
index: a tool for 
coastal managers 

A multi-scale coastal 
vulnerability index 
based on coastal 
characteristics, coastal 
forcing, 
socioeconomic factors 

A multi-scale   1. Coastal characteristics 
(solid geology, drift 
geology, shoreline type, 
elevation, river mouths, 
orientation, inland buffer) 
2. Coastal forcing 
(significant wave height, 
tidal range, difference in 
storm & modal wave height, 
storm frequently) 

1. Socioeconomic: 
(population, cultural 
heritage, roads, railways, 
landuse & conservation 
status) 

McLaughlin and 
Cooper (2010) 

22 Coastal sensitivity 
index 

Coastal sensitivity 
index (CSI) to assess 
& characterise 
susceptibility  

Coastal areas Aggregation based 
on classification & 
ranking into one 
indicator 

 1. Relative sea-level rise 
2. Mean wave height 
3. Mean tidal range  
4. Rock type  
5. Coastal slope  
6. Geomorphology  
7. Barrier type 
8. Shoreline exposure 
9. Shoreline change 

None Abuodha and 
Woodroffe (2010) 
 

23 Indicator for storm 
surge‐driven 
flooding 
vulnerability  

Components 
influencing the 
vulnerability of 
European 
urban coastal areas to 
storm 
surge‐driven flooding 
to raise 
awareness of the 
potential increase in 
flooding events 

European 
urban coastal 
area 

No aggregation 
suggested 

1. Sea-level rise 
projection 
2. Change in height of 
storm surges) 
 

1. Flooded people 
2. Population density 
3. Elevation & slope 
4. Sea defences 
 

1. GDP 
2. Education level 
 

Harvey et al. 
(2009) 
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24 Vulnerability 
Indicators for Sea-
Level Rise and 
Coastal 
Management 

Vulnerability 
Indicators for 
Sea-Level Rise & 
Coastal Management 
for the region to 
initiate a dialogue 
among Researchers &  
stakeholders & a 
bottom‐up assessment 
of local governments 

Sydney 
Coastal 
Councils 
Groups 
Up to 2019 

Aggregation by 
summation of 
components 
values for each 
element, scoring, 
weighting 
based on expert 
values & summation 
of the elements 
values for 
vulnerability 
indicator 

1. Distance to coastline  
2. Present relative storm 
surge along Sydney 
Coastal Councils 
Groups coast 
3. SEPP 71-defined 
sensitive coastal 
locations  
4. Coastal elevation  
5. Slope 

1. Land cover  
2. Population density 
3. Road density  
4. Projected population 
growth to 2019  
5. Acid sulphate soils  

1. % population 
completing year 12 
2. % population that 
speaks language 
other than English 
3. Median home loan 
repayment  
4. % home ownership 
5. Median household 
income  
6. % households 
requiring financial 
assistance  
7. % population with 
internet access  
8. Current ratios  
9. Per capita business 
rates  
10. Per capita residential 
rates  
11. Per capita community 
service expenses 

Preston et al. 
(2008) 

25 Indicators for 
coastal 
vulnerability 
assessment 

Indicators for coastal 
vulnerability 
assessment at the 
regional scale to 
understand & manage 
the complexities of a 
specific study area 

Regional, 
coastal areas 

Aggregation by 
classification & GIS 
overlay to derive 
homogeneous units 

None 1. Administrative units 
2. Location of rivers 
3. Geo-morphological 
characteristics 
4. Wetland migratory 
potential 
5. Coastal population 
density 

None Torresan et al. 
(2008)  

26 Physical & social 
Vulnerability to 
sea level rise & 
storm‐surge 
flooding 

Physical & social 
vulnerability to sea-
level rise & 
storm‐surge flooding 
for local planners at a 
region to understand 
how sea‐level rise 
will increase the 
vulnerability of people 
& infrastructure 
to hurricane storm 
surge flooding over the 
next century  

Hampton 
Roads, 
metropolitan, 
Counties, 
cities, 
southeastern 
Virginia 
Next century 

Aggregation by 
combination of 
statistical 
methods & 
combination of 
physical &  
social vulnerability 

maximum surge heights, 
elevation 
 

S, AC: different approaches: 
1. 3 variables based on principal component analysis 
(current poverty, income, old age/ disabilities) 
2. current spatial distribution of critical features 
3. projected spatial distribution of population density 
Combination of current & future physical (based on 
storm‐surge model) & social vulnerability (based on 
different approaches) 

Kleinosky et al. 
(2007) 

 Climatic threat/ issue: Erosion 
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27 Spatial & 
numerical 
methodologies on 
Coastal 
Erosion and 
Flooding Risk 
Assessment 

Spatial analysis based 
on GIS & numerical 
Modeling: DINAS-
COAST & DIVA; 
CVAT, The 
Geomorphic Stability 
Mapping – GSM; CVI, 
Digital Shoreline 
Analysis System- 
DSAS & the Wind 
Fetch Model (ArcGIS 
extension tools) 

The 3 case 
studies of 
beaches with 
historical 
sensibility to 
erosion & 
storm surge 
flooding 
presented a 
very good 
correlation 
with reality in 
southern 
Brazil 

    Bonetti et al. 
(2013) 

28 To produce a 
social 
vulnerability index 
in terms of erosion 
hazard 
vulnerability  

To use socioeconomic 
data from US- Census 
database in order to 
produce a social  
vulnerability index in 
terms of erosion 
hazard vulnerability 

213 US 
coastal 
counties: 
socioeconomi
c variables 
(SoVI) placed 
in a principal 
components 
analysis 
(PCA) & 
physical 
variables  
(CVI) 

An analysis of 
variance (ANOVA) 
for regional 
differences in the 
overall place (PVI), 
SoVI, & CVI (at the 
95% confidence 
level) 

 6 physical variables (CVI) 39 availability data out of 
42 socioeconomic 
variables (SoVI) 

Boruff et al. 
(2005); Cutter et 
al. (2003); Thieler 
and Hammer-
Klose (1999, 
2000a, b) 

 Social/ ecological vulnerability 
29 Social 

Vulnerability 
Index (SoVI) to 
environmental 
hazards  

To define a robust set 
of variables that 
capture the 
characteristics of 
social vulnerability of 
counties, which then 
allows us to monitor 
changes in social 
vulnerability 
geographically & over 
time. 

US counties 
Spatial: all 
3,141 U.S. 
counties 
Temporal: 
1990 data 

After all the 
computations & 
normalization of data 
(to percentages, per 
capita, or density 
functions), 42 
independent variables 
used, reduce to 11 
independent 
components (76% of 
the variance). These 
components were 
placed in an additive 
model which equal 
weights to compute a 
summary score - the 
SoVI 

None 1. Personal wealth (per 
capita income, % of 
households earning > 
$75,000/ year, median house 
values, & median rents) 
2. Age (median age) 
3. Density of the built 
environment ( No. 
commercial 
establishments/mi2) 
4. Single‐sector economic 
dependence (employed in 
extractive industries) 
5. Housing stock & tenancy 
(housing units that are 
mobile homes) 
6. Race-African American 

None Cutter et al. 
(2003) 
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(African American) 
7. Ethnicity-Hispanic 
(Hispanic) 
8. Ethnicity-Native 
American (Native 
American) 
9. Race-Asian (Asian) 
10. Occupation (employed 
in service occupations) 
11. Infrastructure 
dependence (employed in 
transportation, 
communication, 
& public utilities) 

30 To examine the 
vulnerability to 
climate change 

Citizen participation in 
emergency response 
following the Loma 
Prieta Earthquake 

  Earthquake 1. The structure & health of 
the population: Age is an 
important consideration as 
to be inherently more 
susceptible to environmental 
risk & hazard exposure 

 O’Brien and 
Mileti (1992) 

31 To study the 
coping 
mechanisms to 
environmental 
shock/ or hazard 
by biophysical 
vulnerability 

Societal Vulnerability 
to Climate Change and 
Variability 
 

   1. Human population 1. Institutional stability 
2. Strength of public 
infrastructure 

Handmer et al. 
(1999) 

32 To construct 
vulnerability 
resilience 
variables to 
climate change 

To identify 10 proxies 
for 5 sectors of climate 
sensitivities & 7 
proxies for 3  sectors 
of coping/or adaptive 
capacity 

US Proxies aggregated 
into sectoral 
variables, sensitivity 
variables & coping/ 
or adaptive capacity 
variables to finally 
construct 
vulnerability 
resilience variables to 
climate change 

 1. Settlement sensitivity 
2. Food security 
3. Human health sensitivity 
4. Ecosystem sensitivity  
5. Water availability 

1. Economic capacity 
2. Human resources  
3. Environmental /or 
natural resources capacity 

Moss et al. (2001) 

33 Socioeconomic 
indicators 
of Community 
vulnerability to 
natural hazards 

To use socioeconomic 
indicators 
of Community 
vulnerability to natural 
hazards/ disasters in 
Northern Australia & 
address limitations: 
ageing of the data, the 

In Northern 
Australia 

 1. Tropical cyclones  
2. Floods 

1. Land data 
2. Demographic indicators 

1. Socioeconomic 
indicators 

King (2001) 
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arbitrary nature of 
boundaries, problems 
of weighting 
indicators, & 
categorisation of 
vulnerability 

34 The environmental 
vulnerability index 
(EnVI) 

50 smart indicators 
used to capture a large 
number of elements in 
a 
complex interactive 
system while 
simultaneously 
showing how the value 
obtained relates to 
some ideal condition  

Country level Country experts, 
international 
experts, interest 
groups & other 
agencies judgments 
 

The indicators are classified into 5 classes:  
1. M = Meteorological 
2. G = Geological 
3. B = Biological 
4. C = Country Characteristics 
5. A = Anthropogenic 
classified into a range of sub-indices including: hazards, resistance, damage, climate 
change, biodiversity, water, agriculture & fisheries, human health aspects, 
desertification, & exposure to natural disasters; grouped into three sub-indices namely: 
REI = Exposure to human & natural risks per hazards; EDI = Environmental 
Degradation Index; measures the present position of the “health” of the environment. 
IRI = Intrinsic Resilience Index; values are rated on a scale of 1 to 7, with 7 
representing high vulnerability, an overall average of all is calculated to generate a 
country’s EnVI 

Peduzzi et al. 
(2003); Peduzzi et 
al. (2001) 

35 The Climate 
Vulnerability 
Index (CVI) for 
assessing Water 
Poverty Index 

 Country-level Every component is 
made up of 
subcomponents; the 
components are joint 
using a 
composite index 
structure. 
The index ranges 
between 0 to 100 

6 major categories/components: Resource (R), Access (A), Capacity (C), Use (U), 
Environment (E) & Geospatial (G). 
There are different vulnerabilities to climate change, some of the studied 
are vulnerability to climate related mortality, social vulnerability to climate change, 
even some countries have defined their vulnerability to climate change using different 
indicators; for example: Canada, Peru, USA etc. 
Mortality from climate-related disasters can be quantified via emergency actions 
database data set, statistical relations between mortality & select likely proxies for 
vulnerability are used to spot key vulnerability indicators. Other CVI use 11 indicators: 
literacy rate; literacy rate, > 15 yrs; population with access to sanitation; maternal 
mortality; life expectancy at birth; 15-25 yrs; calorific intake; civil liberties & political 
rights; voice & accountability; government effectiveness literacy ratio (female or male). 
The indicators can be separated in three categories: Governance; Health status & 
Education. 
Almost 100 possible indicators were examined for climate change report in Canada; 2 
groups (Nature: sea-level rise, sea ice, river & lake ice, glaciers, polar bears, plant 
development & People: traditional way of life, drought, great lakes, frost & frost free 
season, heating & cooling, extreme weather) 

Sullivan (2002); 
Sullivan et al. 
(2003) 

36 The 
Composite 
Vulnerability 
Index  
 

The 
Composite 
Vulnerability 
Index for Small 
Island States 

Country 
Level 
focusing 
On developing 
Small island 
states/ hazard 

Point out the intrinsic 
vulnerability 
of small island states 
in comparison 
to large countries 
which possess 
several advantages 

   Briguglio (2003, 
2004)  
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associated with 
their large scale 
Application of 
weighted least square 
(determination of 
weights through 
regression) routines 
to integrate the 
basic indicators 

37 Advanced 
Terrestrial 
Ecosystem 
Analysis and 
Modelling 
(ATEAM) 

To assess potential 
impacts of global 
change on ecosystem 
sensitivity to climate 
change in Europe, & to 
translate these impacts 
into maps of our 
vulnerability; the 
sectors: agriculture, 
forestry, carbon 
storage, water, 
nature conservation & 
mountain tourism in 
the 21st century were 
mapped 

European data 
sets at 
regional scale 
10’ x 10’ grid 
resolution 
over EU15 
plus Norway 
& 
Switzerland, 
baseline 
1990, future 
time slices 
2020, 2050, 
2080 

Fuzzy inference rules 
were applied to 
aggregate the 
individual indicator 
values into one 
generic measure of 
adaptive capacity per 
spatial unit. The 
resulting generic 
index captures one of 
many dimensions of 
adaptive 
capacity 

A consistent set of 
multiple, spatially 
explicit global change 
scenarios for A1F, 
A2, B1 & B2. 
1. Past & future climate 
change scenarios for 
monthly values of five 
different climatic 
variables (monthly 
temperature, diurnal 
temperature range, 
precipitation, vapour 
pressure & cloud cover) 

A range of state of the art 
ecosystem models that 
represent the sensitivity of 
the human- environment 
system were used. 
Agriculture sensitivity 
indicators: 
1. Agricultural land area 
(Farmer livelihood) 
2. Soil organic carbon 
content 
3. Nitrate leaching 
4. Suitability of crops 
5. Biomass energy yield 
Forestry sensitivity 
indicators: 
6. Forest area 
7. Tree productivity: 
growing stock, increment, 
age class distribution 
8. Tree species suitability 
Carbon storage sensitivity 
indicators: 
9. Net biome exchange 
10. Carbon off‐set by fossil 
fuel substitution 
Water sensitivity indicators: 
11. Runoff quantity 
12. Runoff seasonality 
13. Water resources per 
capita 
14. “Drought runoff” (the 
annual runoff that is 
exceeded in 9 years out of 
10) 
15. “Flood runoff” (the 

Spatially explicit & 
quantitative generic index 
of adaptive capacity 
(macro-scale: provincial 
level). This index is based 
on 6 determinants 
identified by the IPCC 
TAR (power, lexibility, 
freedom, motivation, 
knowledge & urgency) 
categorized into 12 
indicators, such as: 
1. GDP  
2. Female activity rate 
3. Age structure 
4. Literacy index 
5. Urbanisation, etc 

Schröter, D., et al, 
(2004); Schröter, 
D., (2004) 
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mean maximum monthly 
runoff) 
Biodiversity & nature 
conservation sensitivity 
indicators: 
16. Species richness & 
turnover (plants, mammals, 
birds, reptiles, amphibian) 
17. Shifts in suitable habitats 
Mountains sensitivity 
indicators: 
18. Elevation of reliable 
snow cover 
19. Number of heat days 

38 Vulnerability 
Index to climate 
change 

Vulnerability 
Index to climate 
change in Africa 
 

Africa 
(country 
level) / water 
availability 

Expert weighted 
index of five 
indicators; however 
the indicators 
are not directly 
related to “water 
availability” 
Draws from the 
global climate 
change research 
community who 
align social 
vulnerability with 
adaptation capacity 

 1. Economic well‐being & 
stability (Standard of 
living/poverty, Change in % 
urban population) 
2. Demographic structure 
(Dependent population, 
Proportion of the working 
population with HIV/AIDS) 
3. Institutional stability & 
strength of public 
infrastructure (Health 
expenditure as a proportion 
of GDP, Telephones, 
Corruption) 
4. Global interconnectivity 
(Trade balance) 
5. Natural resource 
dependence (Rural 
population) 

 Vincent (2004) 

39 Mapping 
vulnerability to 
multiple 
stressors: 
climate change & 
globalization  
 

Mapping 
vulnerability to 
multiple stressors: 
climate change & 
globalization in India 

India To measure adaptive 
capacity, significant 
biophysical, 
socioeconomic, & 
technological 
components that 
influence agricultural 
production were 
identified. To 
measure sensitivity 
under exposure to 
climate change in 

1. Biophysical (soil 
conditions (quality & 
depth), ground 
water availability) 

None 1. Socio‐economic 
(levels of human & social 
capital, presence or lack of 
alternative economic 
activities)  
2. Technological 
(availability of irrigation & 
quality of infrastructure) 

O’Brien et al. 
(2004) 
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regard to dryness & 
monsoon 
dependence, they 
constructed a 
climate sensitivity 
index 

40 Predictive 
Indicators of 
Vulnerability 
 

Predictive 
Indicators of 
Vulnerability 
 

Global Set of 11 indicators 
based on correlations 
with decadal hazard 
mortality; 
unweighted 
combination 
within an index (no 
ranking, 
classification of 
different 
vulnerabilities) 
 

Selection of social 
vulnerability 
indicators guided by 
historic hazard 
mortality 

1. Population with access to 
sanitation 
2. Literacy rate, 15‐24 year 
olds 
3. Maternal mortality 
4. Literacy rate, > 15 yrs 
5. Calorie intake 
6. Voice & accountability 
7. Civil liberties 
8. Political rights 
9. Government effectiveness 
10. Literacy ratio (female to 
male) 
11. Life expectancy at birth 

None Adger et al. 
(2004) 
 

41 Indicators for 
vulnerability 

National level 
indicators of 
vulnerability & 
capacity to adapt to 
climate hazards to 
support policy 

Spatial: 
national data 
Temporal: 
averaged, 
decadal data 
for past 
damages & 
system 
characteristics 

Adaptive capacity 
variables were 
selected by 
correlation analysis 
with the exposure 
component. 
Standarisation based 
on ranges (quintiles) 
& scores between 1 
& 5. 
Different weightings 
of the indicators 
based on expert 
interviews 

None 1. Numbers of people killed 
by climate related disasters 
per decade as percentage of 
national population 

1. Population with access 
to sanitation 
2. Literacy rate (15‐24 yrs) 
3. Maternal mortality 
4. Literacy rate > 15 yrs 
5. Calorific intake 
6. Voice & accountability 
7. Civil liberties 
8. Political rights 
9. Government 
effectiveness 
10. Literacy ratio (female 
to male) 
11. Life expectancy at birth 

Brooks et al. 
(2005) 

42 The climate 
vulnerability index 
(CVI) 

Assessment of human 
vulnerability to 
develop adaptation 
strategies 

Variable Composite index as 
weighted average of 
all components. The 
weighs should be 
assigned by 
participatory 
consultation & expert 
opinion. Here they 
were all given the 
value 1 

1. Different scenarios 1. Resource factor, i.e., 
evaluation of water storage 
capacity 
2. Access factor 
3. Environment factor 
4. Geospatial factor 

1. Capacity factor 
2. Use factor 

Sullivan and 
Meigh (2005) 
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43 Indicators for 
country- level 
adaptive capacity  

To suggest 8 
determinants of 
country- level adaptive 
capacity; To develop a 
set of indices of 
(aggregated outcome) 
vulnerability to 
climate change;  
The indices endure 
from fundamental 
methodological 
& conceptual 
limitations. The 
project website 
displays 144 global 
vulnerability maps  

country- level  None Climate sensitivity 1. The availability of 
technological options for 
adaptation 
2. The availability of 
resources and their 
distribution 
3. The structure of critical 
institutions 
4. The stocks of human 
and social capital 
5. Access to risk spreading 
mechanisms 
6. The ability of decision-
makers to manage risks 
and information 
7. The public’s perceived 
attribution of the source of 
the stress 
8. The significance of 
exposure to its local 
manifestations 

Yohe et al. 
(2006); Yohe and 
Tol (2002) 

44 A case study of 
coastal assessment 
of climate change 
vulnerabilities 

A case study of 
assessment of climate 
change vulnerabilities 
in the Canada’s most 
sensitive coast, 
Graham Island.  

Coastal 
vulnerability 
assessment at 
a case study in 
Graham Island 
(Canada) 

Based on a 
qualitative statement: 
Local & traditional 
knowledge is the key 
to research design &  
implementation & 
allows for locally 
relevant outcomes 
that could aid in 
more effective 
decision making, 
planning &  
management in 
remote coastal 
regions 

1. Biophysical impacts: 
extreme climate 
variability 

1. Sensitive landscape 
2. Restricted  natural  
resources  

1. Socioeconomic capacity: 
access to and distribution 
of wealth, technology, and 
information, risk 
perception &  awareness, 
social capital & critical 
institutional frameworks  

Dolan and Walker 
(2006) 

45 Vulnerability 
concepts in 
hazard & risk 
assessment 

Vulnerability 
concepts in 
hazard & risk 
assessment 

Regional The indicators were 
weighted in a way 
that the overall 
regional 
vulnerability is 
100%. 
Integrated 
vulnerability index: 
regional GDP/capita 

None 1. Damage potential: 
GDP/capita; population 
density; tourism; culturally 
significant sites; significant 
natural areas; fragmented 
natural areas 
 

1. Coping capacity: 
education rate; 
dependency ratio; risk 
perception; level of 
mitigation; medical 
infrastructure 

Kumpulainen 
(2006)  
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30%, population 
density 30%, 
fragmented natural 
areas 10% (only 10% 
because this 
component only 
depicts one aspect of 
ecological 
vulnerability), 
national 
GDP/capita 30%. 

46 To evaluate 
impacts of natural 
disasters across 
income 
Groups (social 
vulnerability) 

Distribution of impacts 
of natural disasters 
across income 
groups: A case study 
of New Orleans 

A case study 
of New 
Orleans 
(USA) 
impacted 
differently by 
Hurricane 
Katrina 

 1. Elevation 
2. Flood levels 

1. Population characteristics: 
gender, race & ethnicity, 
age, residential property, 
renters, education, health 
status, social dependence, 
special-needs populations 
(infirm, institutionalized, 
transient, & homeless) 

1. Socioeconomic status 
(income, savings, 
employment, access to 
communication 
channels and information, 
insurance influences, 
political power, prestige) 
2. Transport 

Cutter et al. 
(2001); Masozera 
et al. (2007) 
 

47 To select 
indicators and 
methods to 
measure revealed 
and emergent 
vulnerability of 
coastal 
communities at the 
local scale 

To focus on the social 
dimension of 
vulnerability to select 
indicators & methods 
to measure revealed & 
emergent vulnerability 
of coastal communities 
at the local scale: 
susceptibility & degree 
of exposure, coping 
capacities, & 
intervention tools 

Coastal 
communities 
at local scale 
in the 
examples of 
Batticaloa & 
Galle tsunami-
affected in Sri 
Lanka 

A meta-framework to 
structure the 
questionnaire survey 
& the analysis of the 
tsunami census data 
Not mention about 
the aggregation 

 1. Impact of tsunami on 
household members & their 
assets 
2. Structure of household 
(age, gender, education & 
income, etc) 
3. Housing conditions & 
impact of tsunami 
4. Direct loss of possessions 
5. Activity & occupation of 
household members 
 

1. Social networks 
2. Knowledge of coastal 
hazards & tsunami 
3. Financial support from 
formal &  informal 
organisations 
4. Access to information 
(radio) 
5. Intervention tools 
(Relocation of housing & 
infrastructure to inland; 
Early warning system; 
100-metre ‘buffer zone’ 
(implemented by 
government) 

Birkmann and 
Fernando (2008) 

48 The new Climate 
Change 
Vulnerability 
Index (CCVI) 

A new global ranking, 
calculating the 
vulnerability of 170 
countries to the 
impacts of climate 
change over the next 
30 years 

National-
scale, 42 
indicators 
categorized 
into 3 areas: 
social, 
economic, & 
environmental 
factors 

 Exposure to climate-
related natural disasters 
& sea-level rise 

Human sensitivity, in terms 
of population patterns, 
development, natural 
resources, agricultural 
dependency & conflicts 

The future vulnerability 
index assessed by 
considering the adaptive 
capacity of a country's 
government & 
infrastructure to combat 
climate change 

Maplecroft (2010) 

49 Human 
vulnerability to 

 Central 
America, 

  1. Population density is one 
of indices of human 

 Samson et al. 
(2011) 
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climate change central South 
America, the 
Arabian 
Peninsula, 
Southeast 
Asia, & much 
of Africa 

vulnerability to climate 
change  
2. Agriculture sector 

50 Assess the impacts 
of climate change 

Assess the impacts of 
climate change based 
on 5 climate hazard 
crossed 4 sectoral 
effects for western part 
of the Mekong river 
delta in Vietnam (Kien 
Giang, Ca Mau)  

District level 
for 2 
provinces in 
the western 
part of the 
Mekong river 
delta in 
Vietnam 

No aggregation 1. Sea-level rise 
2. Flood 
3. Typhoon 
4. Storm surge 
5. Heat wave 

 1. Energy & industry 
2. Urban planning & 
transportation 
3. Livelihood &  
agriculture 
4. Socioeconomic pattern 

Mackey and 
Russell (2011) 

 Intergrated vulnerability assessment 
51 A conventional 

methodology to 
assess 
vulnerability to 
climate change 

A general 
methodology to assess 
vulnerability to 
climate change 
followed the 
conceptual framework 
provided by IPCC 

Coastal cities 
in South 
Korea 

Synthesizing by 
standardized using a 
dimension index 
method (Min-Max), 
expert suggestions 
for weighting 

1. Sea-level rise 
2. Heavy rain-storm 
3. Heat wave 

1. Population density (with 
more sub‐variables: age at 
65yrs & >65yrs or < 5 yrs) 
2. Land cover (with more 
sub‐variables: flooded area, 
ratio between flooded area 
& total area in each county): 
agricultural land, forest/ 
wetland/ grassland, 
commercial area, residential 
area, industrial area, & 
recreational & other 
urbanized parts. 

1. Economic capability: 
financial independence) 
2. Infra-structure (green 
area, state support for 
health, water resource 
accessibility) 
3. Institutional capability 
(awareness, governance, 
policy foundation) 

Yoo et al. (2011)  

52 An index of the 
climate change 
vulnerability 

Construct an index of 
the climate change 
vulnerability 

Sub-national 
areas, regions, 
provinces, 
districts for 
South East 
Asia 

Synthesizing by 
standardized using a 
dimension index 
method (Min-Max), 
expert suggestions 
for weighting 

1. Tropical cyclones 
2. Floods 
3. Landslides 
4. Droughts 
5. Sea-level rise 

1. Population density 
(Human sensitivity) 
2. Percentage of protected 
areas (Ecological sensitivity) 

1. Soci-economic factors 
(HDI: Standard of living, 
longevity, education; 
poverty incidence, income 
inequality ) 
2. Technology (electricity 
coverage, extent of 
irrigation) 
3. Infra-structure (road 
density, communication) 
4. Policy & institutions 

Yusuf and 
Francisco (2009)  

53 Vulnerability 
Indicators for 
Ecosystems & 
Natural Resources 

Vulnerability 
Indicators for 
Ecosystems & Natural 
Resources for the 

Regional, 
Sydney 
Coastal 
Councils 

Aggregation by 
summation of 
components 
values for each 

1. Projected change in 
annual average 
temperature in 2030 
2. Projected change in 

1. Elevation  
2. Land cover  
3. % Native vegetation  
4. Water condition 

1. % population 
completing year 12 
2. % population that 
speaks language 

Preston et al. 
(2008) 
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region to initiate a 
dialogue among 
researchers & 
stakeholders 
& a bottom‐up 
assessment of local 
governments 

Groups 
in 2030 

element, scoring, 
weighting 
based on expert 
values & summation 
of the elements 
values for 
vulnerability 
indicator 

average DJF maximum 
temperature in 2030 
3. Projected change in 
annual average JJA 
minimum temperature 
in 2030  
4. Projected change in 
average annual rainfall 
in 2030 

5. Land condition 
6. Population density 
7. Road density  
8. Projected population 
growth to 2019  
9. SEPP 14 wetland 
areas 

other than English 
3. Median home loan 
repayment  
4. % home ownership 
5. Median household 
income  
6. % households 
requiring financial 
assistance  
7. % population with 
internet access  
8. Current ratios  
9. Per capita business 
rates 
10. Per capita residential 
rates  
11. Per capita community 
service expenses  
12. Per capita 
environment & 
health expenses  
13. Per capita annual 
recycling 
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Appendix 2 Description of the landform units in the MRD, adapted from Nguyen (1993). 
 

No. Landform Subunits 1 Subunits 2 Location 

1 Old alluvial 

terrace 

  Occupy small areas, about 150 000 ha in the northeast of the delta, 

along the Cambodia-Vietnam border. The soil is very compact, 

containing many gravel, Fe-oxide and brown mottles.  

     

2 Floodplain High floodplain  The northwest of the delta; the greatest inundation depth: 2 - 3 m in the 

flood season 

   Natural levee Parallel to the banks of the Mekong and Bassac Rivers; occupying the 

highest position in the floodplain: 3 -  4 m a.MSL and showing a 

gradual decrease in elevation away from the river banks; width from 

0.5 to several km 

   Sand bar Lie between branches of rivers; They look like natural levees: small 

areas (5 - 10 ha) but others are very large, having the same area as a 

village several hundred ha 

   Back swamp Lie behind the natural levees. The maximum inundation can reach as 

deep as 2 - 3 m at the end of September. Several kinds of ASS are 

found here. 

   Closed 

floodplain 

A plain of reeds enclosed by sand ridges between CanTho and Saigon, 

the natural levee of the Mekong River in the southwest, and the old 

alluvial terrace in the north; Resembles a big shallow lake, the water 

level can rise up to 3 m and very difficult and slow drainage. Today, 

more than 60% of the area is under cultivation and the remainder is 

covered by Melaleuca and Eleocharis, which can tolerate the strongly 

ASS. 

   Opened 

floodplain 

It slopesgently from the Bassac river to the Gulf of Thailand (the west 

sea), forming a fan-like terrain from which floodwater easily drains. 

Strong ASS are also found here. 

  Tide affected 

floodplain 

 Occupies the center of the delta; It is strongly influenced by the daily 

tides of the rivers Mekong and Bassac. ASS are also present here but 

their effects are less serious because toxicity is readily washed away by 

the tidal rivers. Therefore, the soil quality is constantly improving, and 

the tide affected floodplain has the highest potential for agricultural 

production in the delta 

   Natural levee Along the Mekong and Bassac Rivers and their branches; These levees 

are narrow and low compared to those of the high floodplain.  

  Back swamp These are the same as the back swamps in the high floodplain, but the 

water regime is quite different, being strongly influenced by the diurnal 

tides of the Mekong and Bassac Rivers. 

  Broad 

depression 

This area is situated between the tide affected floodplain and the broad 

depression and is low-lying and poorly drained. Several kinds of ASS 
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floodplain can be found here. 

     

3 Coastal 

complex 

  Along the coasts of the east sea and west sea 

 

 Sand ridge  Run parallel with the coastline 

 Coastal flat  These have moderate relief of about 1 - 1.5 m  above MSL. Seawater 

cannot intrude directly but it can enter by capillary movement from the 

subsoil to the topsoil layer during the dry season. 

 Inter ridge  The tides of the east sea determine the water regime of these areas. 

ASS are also common in these areas but they pose no serious effect, 

because toxicity is washed away by tidal action and fresh sediments are 

deposited on the soil surface every year. On the other hand, they are 

always submerged under alternately brackish or freshwater in the dry 

and rainy seasons, respectively. 

 Mangrove 

swamp 

 These are dominant along the coast, the mouth of the Mekong River 

and Ca Mau cape. ASS are found in these swamps, and a sulfidic 

horizon lies very close to the topsoil. Many species of mangrove thrive 

in these swamps, of which the dominants are Avicennia and 

Rhizophora. Every year the mangrove continues to extend seaward, 

especially in the Ca Mau cape and the mouth of Mekong River. 

     

4 Broad 

depression 

  Occupies a large area in the south of the delta; It is very flat and low, 

0.5 - 1 m a.MSL, and it encompasses Ca Mau and parts of Hau Giang 

and Kien Giang province.  

 Broad 

depression 

 Nearly isolated from the delta system; water of the Bassac river cannot 

reach this area. Although there are some artificial canals, these are only 

used for drainage and transportation, because the broad depression is so 

far from the river. As a result, the soil is influenced by saltwater and 

acidity in the dry season 

  Peat depression  Located at U Minh Thuong (Kien Giang) and U Minh Ha (Ca Mau), 

they have a lot of peat soil on which Phragmites and Melaleuca are 

dominant. They resemble two large natural big lakes, and they provide 

supplementary irrigation water for the surrounding areas during the dry 

season 

     

5 Hill and 

mountain 

  Consist of large and small separate ranges in the west of the delta. The 

highest mountain is the Cam Mountain, 710 m. All of these hills and 

mountains are composed of granitic rock, except for some small 

mountains in Kien Luong, Ha Tien district (Kien Giang), where the 

dominant component is limestone 
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Appendix 3 Soils in the MRD and the seven coastal districts in Kien Giang. 
 
Appendix 3a Classification of soil names and groups to Vietnam and the MRD by 
FAO/UNESCO. 
 
Việt Nam FAO (%) 
I. ĐẤT CÁT 
1. Đất cát giồng 
 
II. ĐẤT MẶN 
2. Đất mặn dưới rừng ngập mặn 
3. Đất mặn nhiều 
4. Đất mặn trung bình 
5. Đất mặn ít 
 
III. ĐẤT PHÈN 
Đất phèn tiềm tàng (PTT) 
6. Đất PTT nông nghiệp rừng ngập mặn 
7. Đất PTT sâu dưới rừng ngập mặn 
8. Đất PTT nông, mặn 
9. Đất PTT sâu, mặn 
10. Đất PTT nông 
11. Đất PTT sâu 
Đất phèn hoạt động (PHĐ) 
12. Đất PHĐ nông, mặn 
13. Đất PHĐ sâu, mặn 
14. Đất PHĐ nông 
15. Đất PHĐ sâu 
 
IV. ĐẤT PHÙ SA 
16. Đất phù sa được bồi 
17. Đất phù sa không được bồi (KĐB) 
18. Đất phù sa KĐB gely 
19. Đất phù sa KĐB có tầng loang lổ 
 
V. ĐẤT LẤY VÀ THAN BÙN 
20. Đất than bùn- Phèn 
 
VI. ĐẤT XÁM 
21. Đất xám trên phù sa cổ 
22. Đất xám đọng mùn trên phù sa cổ 
23. Đất xám trên Granit 
 
VII. ĐẤT ĐỎ VÀNG 
24. Đất đỏ vàng trên đá Granit 
 
VIII. ĐẤT XÓI MÒN TRƠ SỎI ĐÁ 
25. Đất xói mòn trơ sỏi đá 
 
SÔNG RẠCH 
TỔNG CỘNG TOÀN ĐBSCL 

Arenosols 
Haplic Arenosols 
 
Salic Fluvisols 
Gleyi- Salic Fluvisols 
Hapli- Salic Fluvisols 
Molli- Salic Fluvisols 
Molli- Salic Fluvisols 
 
Thionic Fluvisols 
Protothionic Fluvisols 
Sali-Epiproto- Thionic Fluvisols 
Sali- Endoproto- Thionic Fluvisols 
Sali-Epiproto- Thionic Fluvisols 
Sali- Endoproto- Thionic Fluvisols 
Epiproto- Thionic Fluvisols 
Endoproto- Thionic Fluvisols 
Orthi- Thionic Fluvisols 
Sali- Epiorthi- Thionic Fluvisols 
Sali- Endoorthi- Thionic Fluvisols 
Epiorthi- Thionic Fluvisols 
Endoorthi –Thionic Fluvisols 
 
Fluvisols 
Eutric Fluvisols 
Eutric Fluvisols  
Gleyic Fluvisols 
Cambic Fluvisols 
 
Histosols 
Thionic Histosols 
 
Acrisols 
Haplic Acrisols 
Gleyic Acrisols 
Haplic Acrisols 
 
Acrisols 
Haplic Acrisols 
 
Leptosols 
Dystric Leptosols 
 
Water bodies 
Total of the whole delta 

1,10 
1,10 
 
18,93 
1,42 
2,60 
3,79 
11,12 
 
40,69 
10,73 
3,43 
0,78 
1,28 
0,88 
1,40 
2,96 
29,96 
3,01 
8,26 
4,88 
13,81 
 
30,13 
2,13 
2,46 
9,04 
16,49 
 
0,61 
0,61 
 
3,42 
2,16 
0,79 
0,48 
 
0,06 
0,06 
 
0,22 
0,22 
 
4,84 
100 

  

                                                                                                    Source: NIAPP Vietnam 
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Appendix 3b Distribution of several main soil types in the MRD classification by FAO, adopted by MONRE (undated), and then modified 
in 2013 by the author. 
 

 



Coastal Vulnerability assessment of Kien Giang 
 

269 | P a g e  
  
 

Appendix 3c Distribution of soil types in the seven coastal districts in Kien Giang, derived from 
the soil map for the MRD by MONRE, and then modified in 2013 by the author. 
 

 
 

Very low 
1 

Low 
2 

Moderate 
3 

High 
4 

Very high 
5 + 6 

Water bodies, 
Alluvial soils 

Acrisols  
& Gray soils 

PASS AASS Seasonal & regular 
saline soils 

 
Note: The left figure was extracted from the soil map for the whole MRD (see Appendix 3b), whereas the right 
figure is the reclassified the soil map, comprising 6 classes that were used for the analysis. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) 
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Appendix 4 A classification of landuse patterns in Vietnam by MONRE. 
 

Group Land type Code Definition 
I Agricultural land NNP  

    
 Agricultural production 

land 
SXN The land used in agricultural production, including annual and 

perennial crop land 
 Annual crop land HNK  
 Paddy land LUA  
 Land for growing water-

rice 
LUC  

 Annual crops in the plain-
field 

BHK  

 Perennial crop land CLN  
 Perennial industry-tree 

land 
LNC  

 Perennial fruit crop land LNQ  
    
 Forestry land LNP Land used in forestall production or experiment which includes 

productive, protective, and specially used forest 
 Productive forest RSX  
 Protective forest RPH  
 Specially used forest RDD  
    
 Water surface land for 

fishing 
NTS  

    
 Salt ponds LMU  
    
 Others NKH  
    

II Non- agricultural land PNN  
    
 Homestead land OTC Land used for houses and buildings other buildings 
 Rural ONT  
 Urban ODT  
    
 Specially used land CDG Land being used for other purposes, not for agriculture, forestry 

and living which includes land used by offices and non-profit 
agencies, security and defence land, land for non-agricultural 
production and business and public land 

    
 Water bodies SMN  
    
 Others ODT  
    

III Unused land CSD It includes unused flat and mountainous land, and non-tree rocky 
mountain 
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Appendix 5 Selected variables for coastal vulnerability assessment in the seven coastal districts along the Kien Giang coast. 

Appendix 5a. Variables used for study area. 
 

No Component Variables Definition Format input data  Source Note 
I Exposure           
1 Flood risk  Flood depth, m 

(benefits from the flood and 
inundation) 

0 -0.2; 0.2-0.5; 0.5-1.0; 1-2; >2 
DEM (<0.3; 0.3-0.5; 0.5-0.8; 0.8-
1; 1-1.2; 1.2-2; >2) 

Scenario maps/  
Raster (in 2000, 2030, 
& 2050) 

Tran et al. 2013 and others Rising/ high/ falling stage 
≠ river-flood depth warning in the rivers MK, 
Bassac by MRC 
Limit of data: duration 

2 Seawater incursion  Salinity, ppt 
(rice crops, shrimp) 

< 4ppt (rice & veg); 4 - 8 (rice &  
shrimp); >8 (special shrimp)  
Soil type (water bodies, 
alluvisols; acrisols, gray soils; 
PASS; AASS; seasonal and 
regular saline soil) 

Scenario maps/  
Raster (in 2010, 2030, 
& 2050) 

Le and Le (2013), Mackey 
and Russell (2011); 
MONRE undated 

Reduce the acidity from acid sulphat soil ASS/ 
thionic fluvisols 
Limit of data: duration, ASS; classification by 
FAO 

3 Shoreline change Shoreline displacement 
based on EPR (1km), area 

EPR: -37- -15; -15- -5; -5-5; 5-
15; >15 
Adjacent coastal landuse 

Landsat images 
 from 1973 - 2013 

MARD 2010; US 
Geological  
Survey; the Global land 
cover Facility 

DSAS, EPR, NSM, etc 
Limit of data: Landsat images 1973 - 2013 (coarse 
resolutions: 30 m or 60 m) 
 

II Sensitivity         All strategies/ master plans  
for development on socioeconomic; education, 
health care etc in Kien Giang have been approved 
only up to 2020 

1 Societal factors sensitivity           
1.1 Population density PD, inhabitants/ km2   Statistical data KGI SO, 2012 The trend of population  

growth in Kien Giang/ district scale 
1.2 Rural people % rural persons living out of 

district population 
  Statistical data KGI SO, 2012 District scale 

1.3 Females  % females out of district  
population 

  Statistical data KGI SO, 2012 District scale 

1.4 Ethnic group %   Statistical data KGI district  
survey 2011 

District scale 

2 Landuse factors sensitivity   The bare land: 1; agri land: 2-4; 
non.agri land: 5-7 

Map/ polygon MONRE, 2008 Landuse classified by MONRE 
 

2.1 Agriculture landuse NNP, area (ha) (Area NPP 
(ha)/district inhabitants) 

        

2.1.1 Paddy fields LUA, area         
2.1.1.1 Water rice fields LUC, area         
2.1.2 Annual crop land HNK, area         
2.1.2.1 Annual crops in the  

plain-field 
BHK, area         

2.1.3 Perennial crops CLN, area         
2.1.3.1 Perennial industrial plants LNC, area         
2.1.3.2 Perennial fruits and orchards LNQ, area         
2.1.4 Forests LNP, area     Sub-FIPI 2008 References 
2.1.4.1 Productive forests RSX, area       Planting forests 
2.1.4.2 Protective forests RPH, area       Maybe mangroves 
2.1.4.3 Specially used forests RDD, area       Conservation 
2.1.5 Fishing farming NTS, area       Rice-shrimp farming 
2.1.6 Salt pond LMU, area         
2.1.7 Water bodies  SMN, area         
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2.2 Non agri.land  PNN, area (Area PNN (ha)/  
district inhabitants) 

        

2.2.1 Homestead land OTC, area         
2.2.1.1 Urban land ODT, area         
2.2.1.2 Rural land ONT, area         
2.2.2 Specially used land CDG, area         
2.3 Unused land  CSD, area (Area CSD (ha)/  

district inhabitants) 
      Plain and hill unused land and  

bare mountains 
III Adaptive capacity           
1 Socioeconomic           
1.1 Income $USD/capita   Statistical data KGI district survey 2011 District scale 
1.2 Poverty ratio %   Statistical data KGI SO, 2012 District scale 
1.3 Health     Statistical data KGI SO, 2012 District scale 
1.3.1 Capacity of health  

establishments 
Inhabitants/health  
establishment 

        

1.3.2 Capacity of medical and 
pharmacy staffs 

Inhabitants/medical and 
pharmacy staff 

        

1.4 Education     Statistical data KGI SO, 2012 District scale 
1.4.1 Kindergartens/ school Kids/school         
1.4.2 Kindergartens/ teacher Kids/teacher         
1.4.3 Primary & secondary/  

school 
Pupils/school         

1.4.4 Primary & secondary/  
teacher 

Pupils/teacher         

2 Infrastructure         
2.1 Road capability Road density A Kernel function radius 5km Map/ raster Tran et al. 2013   
2.2 Solid house capability % household having  

solid houses 
  Statistical data KGI SO, 2012 District scale 

2.3 Communication access Inhabitants per fixed-
telephone subscriber 

  Statistical data KGI SO, 2012 District scale 

3 Technological           
3.1 Electricity capability Electricity density A Kernel function radius 5km Map/ polylines  

& multi-points 
Tran et al. 2013 A modern and extensive power distribution 

system; Technically reliable, 100% covered at 
district level 

3.1.1 Substation: transformers          

3.1.2 Substation: voltage power 
 lines 

        

3.2 Irrigation and drainage  
capability 

Irrigation and drainage  
density 

A Kernel function radius 5km Map/ raster SIWRP, 2010 An extensive network of river, canals, sluices, etc. 
connected to the open sea 

3.2.1 River density   River density       
3.2.2 Canal capability   Canal density       
3.2.3 Sluice capability    Sluice density       
3.2.4 River embankment capability   River embankment density       
3.2.5 Sea dyke capability    Sea dyke density       
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Appendix 5b. Outcomes during the fieldwork for coastal vulnerability assessment. 

The most widely adopted analytical approaches to vulnerability assessment are described, 

including spatial scales, the need for hybrid approaches comprising both biophysical and social 

dimensions of vulnerability, and the gradual incorporation of resilience aspects in such 

methodologies. In particular, the development and application of vulnerability indices is 

examined, based on a review of fifty-three studies that applied such indices across a range of 

hazards.  

 

The coastal vulnerability assessment contributes a variety of datasets, combining assessment 

findings from physical as well as social factors. With regard to the specific physical factors, maps 

of inundation, seawater incursion, and shoreline erosion with others will be used and aggregated 

to generate the exposure map. With regard to the specific challenges, statistical data on census, 

socioeconomic transformation processes, such as economic growth, landuse, household income, 

poverty, health services, education, irrigation and drainage system, electricity network, road, etc. 

Moreover, based on meetings during the fieldwork with the relevant planning agencies, expert 

workshops, joint science seminars with partners from academic institutions, and other 

stakeholders such as farmers, policy makers, all of which remain an important basis of this work, 

vulnerability profiles are developed which are represented in schematic figures highlighting 

archetype vulnerability pathways as well as in maps showing the spatial distribution of the main 

vulnerability parameters, hence allowing for the identification of vulnerability hotspots and 

priority areas for action. Particularly for estimation weightings of pair-wise comparisons, a group 

of five (05) experts from different disciplines was asked for their general judgements:  

• 02 experts from remote sensing and GIS application;  

• 01 expert from meteorological and hydrological modelling;  

• 01 economist and landuse expert;  

• 01 policy maker and environmental and climate change.  
 

 

 

 

 



Coastal Vulnerability assessment of Kien Giang 
 

274 | P a g e  
  
 

1. The first fieldwork: Duration: from 30 of November 2011 to 10 February of 2012 
 Location/ Organisation:  

- In Ha Noi (03):  
 Vietnam Institute of Meteorology, Hydrology and Environment (IMHEN)- MONRE; 
 Vietnam administration of seas and islands- MONRE; 
 Hanoi University of Science 

 - Ho Chi Minh (03): 
 Ho Chi Minh City University of Technology 
 Ho Chi Minh City University of Agriculture and Forestry 
 Institute of Agricultural Science for Southern Vietnam 

 - Can Tho (02): 
 Can Tho University 
 Research Institute for Climate Change 

 - An Giang (01): 
 Phu My Tan town, Phu Tan district (along to the Mekong River) 

 - Kien Giang (05): 
 Department of Industry and Trade of Kien Giang (DOIT) 
 Department of Science and Technology of Kien Giang (DOST) 
 GIZ Kien Giang 
 Kien Giang biosphere reserve 
 Department of Natural resources and Environment (DONRE)  

 Activities and Outcomes:  
 Meeting with policy makers, scientists, engineers, etc in different disciplines 
 Informal talks with other stakeholders such as local farmers, communities 
 Review approaches and methodologies or parameters to VAs. 
 Collect primary datasets 

2. The second fieldwork: Duration: from 12 October of 2012 to 3 March of 2013 
 Location/ Organisation:  

- In Ha Noi (04): 
 Center for Hydrology and Water Resources, IMHEN 
 National Center for Water Resources Planning and Investigation, MONRE 
 Marine natural resources- environment survey Centre, Vietnam administration of seas and islands 
 Hanoi University of Science 

 - Ho Chi Minh (05): 
 Institute of coastal and offshore engineering (ICOE), MARD 
 Southern Institute for water resources planning, MARD 
 Ho Chi Minh City University of Agriculture and Forestry 
 Ho Chi Minh City Institute of resources geography, VAST 
 Institute for environment and resources, Ho Chi Minh City University of Technology 

 - Kien Giang (04): 
 The Kien Giang Statistical Office 
 Department of Science and Technology of Kien Giang (DOST) 
 GIZ Kien Giang 
 Department of Natural resources and Environment (DONRE) 

 - Long An (01): 
 Vinh Hung town, Vinh Hung district  

 Activities and Outcomes: 
 Supplementary data collected 

3. The third fieldwork: Duration: from 18 to 26 of January 2015  
 Location: Ha Noi, Nam Dinh, Ho Chi Minh, Kien Giang, and Ca Mau 

- Kien Giang  
 Department of Science and Technology of Kien Giang (DOST) 
 GIZ Kien Giang 
 Kien Giang biosphere reserve 
 Coastal districts, such as Rach Gia, Hon Dat, and An Bien and some communes 

 Activities and Outcomes:  
 Validation of hotspots, which determine areas most vulnerable in the coastal districts along the Kien Giang coast.  
 The visit to hotspot locations as identified in the analysis is a valuable contribution of the study that warranted more attention to 

show the strengths and limitations of the vulnerability assessment methodology employed. 

 

http://www.imh.ac.vn/a_gioi_thieu/ae_donvi_tructhuoc/g_tt_nc_tv_va_tnnuoc
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Appendix 6 Information of mangroves in the seven coastal districts in Kien Giang, adapted from 
GIZ Kien Giang (2008 - 2011). 
 

TT 

Names Distribution  
Vietnamese 
names 

English names Scientific names Ha 
Tien 

Kien 
Luong 

Hon 
Dat 

Rach 
Gia 

Chau 
Thanh 

An 
Bien 

An 
Minh  

   
1 Ô rô trắng Bractless holly 

mangroves 
Acanthus ebracteatus     X      

 
2 Ô rô tím Spiny holly mangroves Acanthus ilicifolius X X     X X 

 
3 Ráng đại Golden leather fern Acrostichum aureum X X X  X X X 

 
4 Ráng biển 

thường 
Mangrove fern Acrostichum 

speciosum 
X   X X X X X 

 
5 Sú River mangroves Aegiceras 

corniculatum 
X X  X      

 
6 Mấm trắng White mangrove Avicennia alba X X X X X X X 

 
7 Mấm biển Grey & white 

mangroves 
Avicennia marina X X X X  X X 

 
8 Mấm đen  Black mangrove Avicennia officinalis X        X 

 
9 Vẹt trụ Reflexed orange 

mangrove 
Bruguiera cylindrica X   X X  X X 

 
10 Vẹt dù Large-leafed orange 

mangrove 
Bruguiera gymnorhiza   X X X     

 
11 Vẹt khang  

(Vẹt đen) 
Upriver orange 
mangrove 

Bruguiera sexangula X X X    X 
 

12 Dà quánh Clumped yellow 
mangrove 

Ceriops decandra (C. 
zippeliana) 

X X     X X 
 

13 Dà vôi Rib-fruited yellow 
mangrove 

Ceriops tagal   X     X X 
 

14 Quao nước Trumpet mangrove Dolichandrone 
spathacea 

X       X X 
 

15 Giá Milky mangroves Excoecaria agallocha X X X X X X X  16 Cui biển Keeled-pod mangrove Heritiera littoralis X X  X  X X   
 

17 Tra nhớt Beach hibiscus Hibiscus tiliaceous X X X    X 
 

18 Cóc đỏ Red-flowered black 
mangrove 

Lumnitzera littorea X   X      
 

19 Cóc vàng White-flowered black 
mangrove 

Lumnitzera racemosa X X X   X X 
 

20 Cóc hồng (cây 
lai) 

Pink-flowered black 
mangrove 

Lumnitzera X rosea X          

 
21 Dừa nước Mangrove palm Nypa fruticans X X X X X X X 

 
22 Đước đôi Corky stilt mangrove Rhizophora apiculata X X X X X X X 

 
23 Đước bộp 

(Đưng) 
Upriver stilt mangrove Rhizophora mucronata         X X 

 
24 Côi Yamstick mangrove Scyphiphora 

hydrophylacea 
X X        

 
25 Bần trắng White-flowered apple 

mangrove 
Sonneratia alba X X X   X X 

 
26 Bần chua Red-flowered apple 

mangrove 
Sonneratia caseolaris X   X X X X X 

 
27 Bần ổi Apple mangrove  Sonneratia ovata X X X X  X X 

 
28 Tra bồ đề Portia Tree, Umberlla 

Tree, Indian Tulip Tree, 
False Rosewood 

Thespesia populnea X X X    X 

 
29 Xu ổi Cannonball mangrove Xylocarpus granatum   X     X X 

 
30 Xu Mekong Cedar mangrove Xylocarpus 

moluccensis (X. 
mekongensis) 

X        X 
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Appendix 7 The scenarios of climate change and sea-level rise by the year 2100, relative to 1980 - 
1999, based on the IPCC SRES for 12 provinces, and Can Tho City in the MRD, especially Kien 
Giang. 
 

Appendix 7a The scenarios of an increase in temperature (°C) by 2100, relative to 1980 - 1999, based 
on the IPCC SRES medium (B2) in 13 provinces in the MRD derived from The-Second-Scenarios-
VN (2011).  
 

No City/ 
Province 

Years 

2020 2030 2040 2050 2060 2070 2080 2090 2100 
1 Long An 0.4 0.6 0.9 1.1 (1.0- 1.4) 1.4 1.6 1.8 2.0 2.2 (1.9 - 2.8) 
2 Dong Thap 0.4 0.7 1.0 1.3 (1.0 - 1.4) 1.6 1.9 2.1 2.3 2.5 (2.2 - 2.8) 
3 Tien Giang 0.5 0.6 0.8 1.0 (0.9 - 1.2) 1.3 1.5 1.7 1.8 2.0 (1.9 - 2.5) 
4 Ben Tre 0.4 0.7 0.9 1.2 (1.0 - 1.4) 1.5 1.7 1.9 2.1 2.3 (1.9 - 2.5) 
5 Vinh Long 0.4 0.6 0.8 1.0 (1.0 - 1.2) 1.3 1.5 1.7 1.8 2.0  (1.8 - 2.5) 
6 Tra Vinh 0.4 0.6 0.9 1.2 (1.0 - 1.4) 1.4 1.6 1.8 2.0 2.2  (1.9 - 2.4) 
7 An Giang 0.4 0.6 0.8 1.0 (0.5 - 1.2) 1.3 1.5 1.7 1.8 2.0  (1.8 - 2.3) 
8 Can Tho 0.5 0.7 1.0 1.2 (1.0 - 1.4) 1.5 1.7 2.0 2.2 2.3 (1.9 - 2.5) 
9 Hau Giang 0.4 0.6 0.9 1.1 (1.0 - 1.4) 1.4 1.6 1.8 2.0 2.2 (1.9 - 2.5) 
10 Soc Trang 0.4 0.6 0.8 1.1 (1.0 - 1.4) 1.3 1.5 1.7 1.9 2.0 (1.9 - 2.5) 
11 Bac Lieu 0.5 0.7 1.0 1.3 (1.0 - 1.4) 1.5 1.8 2.0 2.2 2.4 (2.2 - 2.8) 
12 Kien Giang 0.4 0.6 0.9 1.1 (0.9 - 1.2) 1.3 1.6 1.8 1.9 2.1 (1.5 - 2.2) 
13 Ca Mau 0.5 0.7 1.0 1.4 (1.2 - 1.6) 1.6 1.9 2.2 2.4 2.6 (1.9 - 2.8) 

 

Appendix 7b The scenarios of average temperature increase (°C) in 2030 and 2050, relative to 1980 -
1999, based on the IPCC SRES medium (B2), and high (A2) for Kien Giang province, derived from 
reports prepared by IMHEN (2010a, b). 
 

Average 
temperature 
increase, °C  

Kien Giang province 
B2 A2 

2030 2050 2030 2050 
January 0.5 0.8 0.5 0.8 
February 0.3 0.5 0.3 0.5 
March 0.3 0.6 0.3 0.6 
April 0.4 0.6 0.4 0.6 
May 0.5 0.9 0.5 0.9 
June 0.7 1.2 0.7 1.1 
July 0.6 1.1 0.6 1.1 
August 0.3 0.5 0.3 0.5 
September 0.5 0.8 0.5 0.8 
October 0.5 1 0.5 0.9 
November 0.7 1.2 0.7 1.2 
December 0.6 1.1 0.6 1 
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Appendix 7c The scenarios of an increase in rainfall (%) by the 2100, relative to 1980 - 1999, based 
on the IPCC SRES medium (B2) in 13 provinces in the MRD derived from The-Second-Scenarios-
VN (2011). 
 

No City/ 

Province 

Years 

2020 2030 2040 2050 2060 2070 2080 2090 2100 

1 Long An 1.6 2.3 3.2 4.2 (1.0 - 5.0) 5.1 5.9 6.7 7.4 8.0 (4.0 - 8.0) 

2 Dong Thap 1.3 1.9 2.6 3.4 (3.0 - 5.0) 4.1 4.8 5.4 6.0 6.5 (6.0 - 8.0) 

3 Tien Giang 0.8 1.2 1.7 2.1 (2.0 - 4.0) 2.6 3.0 3.4 3.8 4.1 (4.0 - 7.0) 

4 Ben Tre 1.3 1.8 2.6 3.3 (2.0 - 4.0) 4.0 4.7 5.3 5.8 6.3 (4.0 - 7.0) 

5 Vinh Long 1.0 1.5 2.1 2.7 (2.0 - 4.0) 3.2 3.8 4.3 4.7 5.1 (4.0 - 6.0) 

6 Tra Vinh 0.9 1.3 1.8 2.3 (2.0 - 4.0) 2.8 3.2 3.7 4.0 4.4 (4.0 - 6.0) 

7 An Giang 1.1 1.7 2.4 3.0 (2.0 - 4.0) 3.7 4.3 4.9 5.4 5.8 (5.0 - 7.0) 

8 Can Tho 1.2 1.8 2.5 3.2 (3.0 - 4.0) 3.9 4.5 5.1 5.6 6.1 (5.0 - 7.0) 

9 Hau Giang 1.2 1.8 2.5 3.2 (2.0 - 4.0) 3.9 4.5 5.1 5.6 6.1 (5.0 - 7.0) 

10 Soc Trang 1.1 1.7 2.4 3.0 (2.0 - 4.0) 3.7 4.3 4.9 5.4 5.8 (5.0 - 6.0) 

11 Bac Lieu 1.0 1.5 2.1 2.7 (2.0 - 3.0) 3.3 3.9 4.4 4.8 5.2 (4.0 - 6.0) 

12 Kien Giang 1.0 1.5 2.1 2.8 (2.0 - 3.0) 3.4 3.9 4.4 4.9 5.3 (4.0 - 6.0) 

13 Ca Mau 0.9 1.3 1.9 2.4 (2.0 - 3.0) 2.9 3.4 3.8 4.2 4.6 (4.0 - 5.0) 

 

Appendix 7d The scenarios of change in rainfall (%) in 2030 and 2050, relative to 1980 - 1999, 
based on the IPCC SRES medium (B2), and high (A2) for Kien Giang province, derived from 
reports prepared by IMHEN (2010a, b).  
 

Change in 

rainfall, % 

Kien Giang province 

B2 A2 

2030 2050 2030 2050 

January -5.8 -10.5 -5.9 -10.1 

February -2.1 -3.8 -2.1 -3.6 

March -10.8 -19.5 -10.9 -18.7 

April -4 -7.2 -4 -6.9 

May -0.3 -0.6 -0.4 -0.6 

June 1.5 2.7 1.5 2.6 

July 1.8 3.3 1.8 3.1 

August 0.7 1.2 0.7 1.2 

September 0.9 1.6 0.9 1.5 

October 7.4 13.5 7.6 12.9 

November 1.9 3.4 1.9 3.2 

December -3.6 -6.5 -3.6 -6.3 
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Appendix 7e The scenarios of sea-level rise (cm) by 2100, relative to 1980 - 1999, based on the IPCC 
SRES low (B1), medium (B2), and high (A1FI) along the Vietnam coast, extracted from The-Second-
Scenarios-VN (2011).     

No. Region Years 

2020 2030 2040 2050 2060 2070 2080 2090 2100 

I Mong Cai-Hon Dau          
1 Low emissions scenario B1 7-8 10-12 14-17 19-22 23-29 28-36 33-43 38-50 42-57 
2 Medium emissions scenario B2 7-8 11-12 15-17 20-24 25-31 31-38 36-47 42-55 49-64 
3 High emissions scenario A1FI 7-8       11-13 16-18 22-26 29-35 38-46 47-58 56-71 66-85 
           
II Hon Dau- Deo Ngang          
1 Low emissions scenario B1 8-9 11-13 15-17 19-23 24-30 29-37 34-44 38-51 42-58 
2 Medium emissions scenario B2 7-8 11-13 15-18 20-24 25-32 31-39 37-48 43-56 49-65 
3 High emissions scenario A1FI 8-9        12-14 16-19 22-27 30-36 38-47 47-59 56-72 66-86 
           
III Deo Ngang- Deo Hai Van          
1 Low emissions scenario B1 7-8 11-12 16-18 22-24 28-31 34-39 41-47 46-55 52-63 
2 Medium emissions scenario B2 8-9 12-13 17-19 23-25 30-33 37-42 45-51 52-61 60-71 
3 High emissions scenario A1FI 8-9       13-14 19-20 26-28 36-39 46-51 58-64 70-79 82-94 
           
IV Deo Hai Van- Dai Lanh Cape          
1 Low emissions scenario B1 7-8 12-13 17-18 22-25 29-33 35-41 41-49 47-57 52-65 
2 Medium emissions scenario B2 8-9 12-13 18-19 24-26 31-35 38-44 45-53 53-63 61-74 
3 High emissions scenario A1FI 8-9 13-14 19-21 27-29 36-40 47-53 58-67 70-82 83-97 
           
V Dai Lanh Cape- Ke Ga Cape          
1 Low emissions scenario B1 7-8 11-13 16-19 22-26 29-34 35-42 42-51 47-59 53-68 
2 Medium emissions scenario B2 8-9 12-13 17-20 24-27 31-36 38-45 46-55 54-66 62-77 
3 High emissions scenario A1FI 8-9 13-14 19-21 27-30 37-42 48-55 59-70 72-85 84-102 
           
VI Ke Ga cape - Ca Mau cape (The east coast) 
1 Low emissions scenario B1 8-9 11-13 17-19 22-26 28-34 34-42 40-50 46-59 51-66 
2 Medium emissions scenario B2 8-9 12-14 17-20 23-27 30-35 37-44 44-54 51-64 59-75 
3 High emissions scenario A1FI 8-9 13-14 19-21 26-30 35-41 45-53 56-68 68-83 79-99 
           
VII Ca Mau cape – Ha Tien (The  west coast) 
1 Low emissions scenario B1 9-10 13-15 18-21 24-28 30-37 36-45 43-54 48-63 54-72 
2 Medium emissions scenario B2 9-10 13-15 19-22 25-30 32-39 39-49 47-59 55-70 62-82 
3 High emissions scenario A1FI 9-10 14-15 20-23 28-32 38-44 48-57 60-72 72-88 85-105 

 

Appendix 7f The scenarios of sea-level rise (cm) by the 2100, relative to 1980 - 1999, based on the 
IPCC SRES low (B1), medium (B2), and high (A1FI) for Kien Giang coast, derived from reports 
prepared by IMHEN (2010a, b). 
Emission scenario             Years  

2030 2050 2070 2090 2100 
Low (B1)  15 28 45 63 72 
Medium (B2)  15 30 49 70 82 
High (A1F1)  16 32 57 88     105 
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Appendix 8 Physical factors in provinces in the MRD, and Kien Giang. 
 
Appendix 8a.1 The tidal station Rach Gia, measured tidal ranges from 1991 to 2007. 
 

 
 
Appendix 8a.2 The tidal station Xeo Ro, measured tidal ranges from 1984 to 2010. 
 

 
 
Appendix 8a.3 The dominated wind direction at the west and the east seas of Southern Vietnam. 
.3 

 

 

 

Trends of tidal ranges: High tide (red arrows); Moderate tide (purple arrows); Low tide (blue arrows) 
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Trends of tidal ranges: High tide (red arrows); Moderate tide (purple arrows); Low tide (blue arrows) 
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Appendix 8b The Digital Elevation Model classification in the seven coastal districts along the Kien 
Giang coast, derived from the project conducted by Tran et al. (2013) with permission. 
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Appendix 8c.1 Simulated extreme historical flood depth (m) that occurred in 2000 (A baseline 
scenario) classification in the seven coastal districts, derived from Tran et al. (2013). 
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Appendix 8c.2 A projected simulation of flood depth of 15 cm sea-level rise in an A2 emission 
scenario by 2030 (m) classification in the seven coastal districts, derived from Tran et al. (2013). 
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Appendix 8c.3 A projected simulation of flood depth of 30 cm sea-level rise in an A2 emission 
scenario by 2050 (m) classification in the seven coastal districts, derived from Tran et al. (2013). 
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Appendix 8d.1 A simulated extreme historical drought and salinity incursion in 1998 (ppt) 
classification in the seven coastal districts, derived from Mackey and Russell (2011). 
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Appendix 8d.2 A projected simulation of salinity incursion of 15 cm sea-level rise by May 2030 (ppt) 
classification in the seven coastal districts, derived from Mackey and Russell (2011). 
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Appendix 8d.3 A projected simulation of salinity incursion of 30 cm sea-level rise by May 2050 (ppt) 
classification in the seven coastal districts, derived from Mackey and Russell (2011). 
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Appendix 8d.4 A maximum seawater incursion map in 1998 (ppt) classification in the seven coastal 
districts, derived from Le and Le (2013). 
 

 
 

 



Coastal Vulnerability assessment of Kien Giang 
 

288 | P a g e  
  
 

Appendix 8d.5 A maximum seawater incursion map in 2010 (ppt) classification in the seven coastal 
districts, derived from Le and Le (2013). 
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Appendix 8d.6 A maximum seawater incursion map in 2011 (ppt) classification in the seven coastal 
districts, derived from Le and Le (2013).  
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Appendix 9 Social factors in coastal provinces, especially Kien Giang, and Can Tho City in the 
MRD. 
 
Appendix 9a Area and population in coastal provinces, and Can Tho City in the MRD, derived from 
GSO (2011). 

 
Appendix 9a.1 Landuse in coastal provinces, and Can Tho City in the MRD, derived from GSO 
(2011). 
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Appendix 9a.2 Landuse in Kien Giang province: a) The map of landuse in the seven coastal districts, derived from MONRE (2008); and 
b) Proportions of landuse, with regard to agricultural landuse categories in 2011, derived from the Kien Giang Statistical Office 2012. 
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Appendix 9a.2 c) Adjacent coastal landuse along the Kien Giang coast, derived from the GIS 
database of MARD in 2010. 
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Appendix 9a.3 Trends of three categories of landuse: agricultural land, non-agricultural, and unused land categories in Kien Giang from 
2005 to 2011, derived from the Kien Giang Statistical Office 2012. 

 
Note: Agricultural land includes: (a) paddy land, (b) perennial cropland, (c) forestry land, (d) water surface land for fishing; (e) Non-agricultural land includes 
homestead land, (f) specially used land, and (g) others; and (h) Unused land. 
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Appendix 9a.4 Forests in Kien Giang: a) A map of forest distribution in the seven coastal districts, obtained from the Sub-FIPI (2008); 
and b) Trends of forestry land, consisting of three categories: productive forest land, protective forest land, and specially used forest land 
in Kien Giang province from 2005 to 2011, derived from the Kien Giang Statistical Office 2012. 
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Appendix 9b.1 Trends of Gross output of: a) Agriculture; b) Forestry; c) Fishery sector; and d) 
Industry sector; e) Construction and f) Retail sales of goods and services in coastal provinces and 
Can Tho City in the MRD from 2005 to 2011, derived from GSO 2011. 
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Appendix 9b.2 Structure of Gross domestic product by three main economic sectors (%) in 2011 in 
Kien Giang, derived from the Kien Giang Statistical Office 2012. 
 

 
 

Appendix 9c Societal impacts of the seven coastal districts: 1) Population density (inhabitants/ km2); 
2) Rural population (%); 3) Female population (%) in 2011, derived from the Kien Giang Statistical 
Office 2012; and 4) Ethnic population (%) in 2010, derived from the Kien Giang District survey 
2011. 
 

 

46.66%

22.93%

30.41%
Sector I: Agriculture, Forestry, 
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Construction
Sector III: Services (Inc. 
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Appendix 9d.1 Socioeconomic factors in the seven coastal districts: a) GDP/capita per district (US$) 
2010, derived from the Kien Giang district survey 2011; b) Poverty ratio (%) per district in 2011; c) 
District key health variables; and d) District key education variables in 2011, derived from the Kien 
Giang Statistical Office 2012. 
 

 
 

4) 

a) 
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c Districts Health 
establishments 

Per # 
inhabitants 

Medical and 
pharmacy staffs 

Per # 
inhabitants 

 Rach Gia City 15 15,502 2,283 102 

 Ha Tien  8 5,734 151 304 

 Kien Luong  9 8,945 211 382 

 Hon Dat  15 11,364 262 651 

 Chau Thanh  11 13,778 194 781 

 An Bien  10 12,379 224 553 

 An Minh  12 9,689 205 567 

 Average/KGI 11 10,435 347 331 
 

 

d Districts Kindergarten Primary and secondary 

Schools Per # kids Teachers Per # kids Schools Per # 

pupils 

Teachers     Per #  

    pupils 

 Rach Gia City 11 514 284 20 46 838 1,832 21 

 Ha Tien  1 653 29 23 16 480 402 19 

 Kien Luong  5 327 58 28 18 692 637 20 

 Hon Dat  15 256 149 26 51 549 1,629 17 

 Chau Thanh  7 384 133 20 41 567 1,306 18 

 An Bien  2 1,351 125 22 35 533 1,149 16 

 An Minh  2 829 68 24 43 415 1,023 17 

 Average/KGI 5 468 101 23 35 535 1,072 17 
 

b) 
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Appendix 9d.2 Infrastructure in the seven coastal districts: a) Rate of communes having 
communication routine in 2011, derived from the Kien Giang Statistical Office 2012; b) a map of 
transport network for study area, obtained from Tran et al. (2013); c) Percentage household having 
solid houses; and d) Numbers of inhabitants per telephone subscriber in 2011, derived from the Kien 
Giang Statistical Office 2012. 
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Appendix 9d.3 Technology in the seven coastal districts: a) A map of irrigation and drainage system 
for study area from SIWRP (2010); b) A map of electricity network for study area, obtained from 
Tran et al. (2013). 
 

 

a) 
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Appendix 10 A summary of preliminary outcomes for the study area. 
 
No. Component Sub-com Variable Explanation The delta Kien Giang Seven coastal districts Note 

1 The scenarios of an increase in temperature (°C), rainfall (%) by the 2100, relative to 1980 - 1999, based 

on the IPCC SRES B2 in 13 provinces in the MRD;  

 

The scenarios of sea-level rise (cm) by 2100, relative to 1980 - 1999, based on the SRES B1, B2, and A1FI 

along the Vietnam coast; 

Scenarios for Kien Giang for the two time periods 2030 and 2050, relative to 1980 - 1999 based on SRES 

B2 and A2 are simulated. 

Appendix 7a, c The annual temperature in Kien Giang is projected to increase (see Appendix 7b)  

 

 

2 

 

 

Appendix 7e 

Rainfall will tend to increase slightly in rainy months; rainfall will tend to decrease 

slightly in dry months (Appendix 7d) 

 

 

3 

  

The predicted rising sea levels of 15 cm by 2030 and 30 cm 2050 under A2 (Appendix 

7f) 

 

E Exposure   3 sub-components, 6 

variables  

    

 A.1 Seawater 

incursion 

 2 variables     

 A.1.1  Salinity, ppt 

Maximum 2010; 

Simulation 15cm of SLR in 

2030, & 30 cm of SLR in 2050 

< 4ppt (rice & veg); 4 - 8 

(rice & shrimp); >8 

(special shrimp) 

- - The 2010 observed, and 15cm of SLR in 2030, & 30cm of 

SLR in 2050 modelling based on the 1998 drought event 

(based on the maximum isohaline). These maps of seawater 

incursion for the study area was used to assess where could 

be the most exposed, which will be explained in Chapter 5, 

sub-section 5.3.1.1 

R 

 A.1.2  Soil type alluvisols; PASS; AASS; 

seasonal saline soils; 

regular saline soil 

- - These results obtained will be explained in Chapter 5, sub-

section 5.3.1.2 

P, V 

 A.2 Flood risk   2 variables     

 A.2.1  Flood depth, m 

2000, 15 cm of SLR in 2030, 

& 30 cm of SLR in 2050 SRES 

A2 

[0 -0.2; 0.2-0.5; 0.5-1.0; 

1-2; >2] 

- - The 2000 flood- an extreme event observed and 15cm of SLR 

in 2030, & 30cm of SLR in 2050 SRES A2 modeling. These 

maps of flood depth for the study area were used to assess 

where could be the most exposed, that will be explained in 

Chapter 5, sub-section 5.3.2.1 

R 

 A.2.2  Elevation, m [< 0.3; 0.3-0.5; 0.5-0.8; 

0.8-1; 1-1.2; 1.2-2; >2] 

- - 83% of the total area is below 1 m above MSL: 1) Ha Tien, 

Kien Luong, Hon Dat, and Rach Gia, average elevations of 

0.8 - 1.2m, known as the flood openings; 2) Plains are largely 

distributed in districts Chau Thanh, An Bien, An Minh; 3) 

Low hills are scattered in some parts of districts Ha Tien, 

Kien Luong and Hon Dat. These results obtained will be 

explained in Chapter 5, sub-section 5.3.2.2 

P,  R 

 A.3 Shoreline change  2 variables      
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 A.3.1  Shoreline displacement- 

(buffer, 1 km), m/yr 

 [-37- -15; -15- -5; -5-5; 

5-15; >15] 

- Overall, the west coast of the MRD is undergoing less shoreline change than other 

sections of the delta. The shoreline of Kien Giang (208 km) is characterised by 

mangrove fringes, covered with about 65% of the coast’s length. These results 

obtained will be explained in Chapter 5, sub-section 5.3.3.1 

L 

 A.3.2  Adjacent coastal landuse [Highest level aged MF/ 

water/ wetland/ grass; 

Mangroves forest (natural 

& planted); Sluice gate; 

Dyke; Farming with 

forest & other forests; 

Farming & crop; 

Settlement] 

- - There was a steady decrease of area of protective mangrove 

forests. These results obtained will be explained in Chapter 5, 

sub-section 5.3.3.2 

V 

S Sensitivity   2 sub-components, 7 

variables 

- -   

 S.1 Societal factors  4 variables < 20 mil 1.7 mil Population of coastal districts: 920,979 in 2011 (54.7% of the 

provincial population) 

 

 S.1.1  Population density, 

inhabitants/ km2 

Entire district level 429 271 308; in which Rach Gia experienced the most sensitive area 

(the most densely populated district at 2,246 inhabitant/ km2) 

F, V 

 S.1.2  Rural people, % Entire district level 75 73 62; in which An Minh experienced the most sensitive area in 

terms of rural people (94%) 

F, V 

 S.1.3  Ethnic groups, % Entire district level - 17 15; in which Chau Thanh experienced the most sensitive area 

in terms of ethnic groups (38%) 

F, V 

 S.1.4  Female, % Entire district level > 50 > 50 > 50 F, V 

 S.2 Landuse factors  3 variables Statistical data 

in 2011 

Statistical data in 

2011 

Area: 300,000 ha (47% of the total area of Kien Giang) in 

2008 

F, V 

 S.2.1  Unused land (CSD)  1 0.9 11.4; These results obtained will be explained in Chapter 5, 

sub-section 5.4.2 

 

 S.2.2  Agri. Land (NNP)  89.7 90.8 77.8  

    LU for agri.production 64.5 71.9   

    LU for forests 7.7 14.4   

 S.2.3  Non Agri. Land (PNN)  9.3 8.3 10.8  

    Urban land - 1.9   

    Rural land - 3.8   

A Adaptive 

capacity 

  3 sub-components, 9 

variables 

    

 A.1 Socioeconomic  4 variables     

 A.1.1  Income, $USD/ capita Entire district level 747 972 949; Particularly An Minh (698), An Bien (729) experienced 

the most lowest income 

F, V 
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 A.1.2  Education Entire district level - Education in coastal districts experienced stronger than education in the province F, V 

    Kids/ kindergarten - 468 616; the lowest capacity of a kindergarten was in Hon Dat at 

256 kids 

 

    Kids/teacher at 

kindergarten 

- 23 23.2; the highest figure of kids under a teacher’s supervision 

in terms of kindergarten was in Kien Luong at 28 kids 

 

    Pupils/primary & 

secondary school 

- 535 582; the lowest capacity of a primary and secondary school 

was in An Minh at 415 pupils 

 

    Pupils/teacher at primary 

& secondary school 

- 17 18.3; the highest figure of pupils under a teacher’s 

supervision in terms of primary and secondary school was in 

Rach Gia at 21 pupils 

 

 A.1.3  Health Entire district level - -  F, V 

    Inhabitants/health 

establishment 

- 10,435 11,056; Ha Tien experienced the lowest capacity of a health 

establishment (5,734 inhabitants) 

 

    Inhabitants/health staff - 331 477; Chau Thanh experienced the highest deficiency that a 

health staff had to take care of 781 inhabitants 

 

 A.1.4  Poverty ratio, % Entire district level 12.5 7.2 6.6; Particularly An Bien (15), An Minh (13) experienced the 

most highest poverty ratios 

F, V 

 A.2 Technological  2 variables     

 A.2.1  Irrigation & drainage network a system of rivers, & river 

embankments, sea dykes, 

canals, & sluice gates 

- - These results obtained will be explained in Chapter 6, sub-

section 6.3.2.1 

V 

 A.2.2  Electricity network electricity transformer 

stations, & high voltage 

power lines 

- 100% at district level 100% at district level; These results obtained will be 

explained in Chapter 6, sub-section 6.3.2.2 

F, V 

 A.3 Infrastructure  3 variables      

 A.3.1  Solid house, % households 

having solid houses  

Entire district level 

 

78 93 93.3; Particularly An Bien (85), An Minh (87) experienced 

the most lowest capacities in terms of households having 

solid houses 

F, V 

 A.3.2  Road network  - 91% at communal 

level 

86% at communal level; Particularly An Minh (73), Rach Gia 

(75) experienced the lowest road densities at communal level. 

These results obtained will be explained in Chapter 6, sub-

section 6.3.3.1 

F, V 

 A.3.3  Fixed-line telephone 

subscribers, pers per telephone 

subscriber 

Entire district level 

 

17.9 17.1 14.2; the lowest capacity of a fixed-line telephone subscriber 

was in Hon Dat at 37.6 inhabitants 

F, V 

Note: (-): NA, beyond of this study; (P): the potential variable; (R): raster; (L): Landsat images; (V): vector; (F): Figure. 
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Appendix 11 Mapping of the exposure component for the study area. 
 
Appendix 11a.1 Mapping of seawater incursion sub-component for the study area. 
 

 

a) b) 
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Figure a + b → Figure c by AHP  
The report files outlined as below can be automatically created 
where all the information of the AHP procedure are stored 
 
[Criteria & LayerSource (clsfd.)] 
k7dvd_sal_re k7dvd_sal_re 
k7_sal2010_re k7_sal2010_re 
 
[Preference Matrix] 
 k7dvd_sal_re k7_sal2010_re 
k7dvd_sal_re 1 0.3333 
k7_sal2010_re 3 1 
 
[*****AHP results*****] 
[Eigenvalues] 
1.9999 
0.0001 
 
[Eigenvector of largest Eigenvalue] 
0.3162 
0.9487 
 
[criteria weights] 
0.25 (k7dvd_sal_re) 
0.75 (k7_sal2010_re) 
 
[consistency ratio CR] 
0 
(Revision of preference values is recommended if CR > 0.1) 

 

c) 
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Appendix 11a.2 Proportions of the study area classed as low to high, obtained from seawater 
incursion variable, from [1] to [3], and proportions classed as very low to very high, obtained from 
seawater incursion sub-component, from [4] to [6]. 
 

 Coastal district 
           [1] 

Seawater incursion observed in 2010, % of area  
Low 

< 4 ppt 
Moderate 

4 - 8 
High 
> 8 

An Bien 
  

100 
An Minh 

  
100 

Chau Thanh 21.8 12.48 65.72 
Hon Dat 75.34 9.5 15.16 
Ha Tien 

  
100 

Kien Luong 15.84 31.71 52.45 
Rach Gia 23.58 13.4 63.02 
7 coastal districts 31.6 9.83 58.57 

 

 Coastal district 
           [2] 

Seawater incursion modelled in 2030, % of area   
Low 

< 4 ppt 
Moderate 

4 - 8 
High 
> 8 

An Bien 
  

100 
An Minh 

  
100 

Chau Thanh 0 2.54 97.46 
Hon Dat 86.32 6.91 6.77 
Ha Tien 

  
100 

Kien Luong 10.83 10.12 79.05 
Rach Gia 0 1.8 98.2 
7 coastal districts 31.66 4.26 64.08 

 

 Coastal district 
           [3] 

Seawater incursion modelled in 2050, % of area   
Low 

< 4 ppt 
Moderate 

4 - 8 
High 
> 8 

An Bien 
  

100 
An Minh 

  
100 

Chau Thanh 0 4.45 95.55 
Hon Dat 88.56 6.25 5.18 
Ha Tien 

  
100 

Kien Luong 18.21 15.19 66.6 
Rach Gia 0 5 95 
7 coastal districts 33.57 5.1 61.33 

Note: less than 4 ppt and higher than 8 ppt is a range of classification for seawater incursion (see Table 5.1). These 
tables were obtained from three maps in Appendices 8d.5, 8d.2, and 8d.3, respectively. 
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 Coastal district 
           [4] 

Seawater incursion observed in 2010 using AHP, % of area 
Very low 

1 - 2 
Low 
3 - 4 

Moderate 
5  

High 
6-7 

Very high 
8- 9 

An Bien 
    

100 
An Minh 

    
100 

Chau Thanh 20.38 14.4 0.07 64.82 0.32 
Hon Dat 3.64 74.46 3.57 9.18 9.15 
Ha Tien 

    
100 

Kien Luong 0 15.81 3.83 40.71 39.65 
Rach Gia 24.64 14.17 0 33.6 27.6 

 

 Coastal district  
         [5] 

Seawater incursion modelled in 2030 using AHP, % of area 
Very low 

1 - 2 
Low 
3 - 4 

Moderate 
5  

High 
6-7 

Very high 
8- 9 

An Bien 
    

100 
An Minh 

    
100 

Chau Thanh 0 2.53 0 94.29 3.18 
Hon Dat 9.32 77.87 4.85 2.06 5.9 
Ha Tien 

    
100 

Kien Luong 0.69 10.16 3.34 16.94 68.86 
Rach Gia 0 2.27 0.02 70.09 27.62 

 

 Coastal district  
         [6] 

Seawater incursion modelled in 2050 using AHP, % of area 
Very low 

1 - 2 
Low 
3 - 4 

Moderate 
5  

High 
6-7 

Very high 
8- 9 

An Bien 
    

100 
An Minh 

    
100 

Chau Thanh 0 4.24 0 92.78 2.98 
Hon Dat 9.4 80.03 3.53 2.62 4.41 
Ha Tien 

    
100 

Kien Luong 1.03 17.4 3.05 22.01 56.52 
Rach Gia 0 5.93 0.02 66.43 27.62 

Note: 1 – 9 is a range of classification: the value of “9” indicates areas very high exposure, while the value of “1” 
indicates areas very low exposure, in representing seawater incursion sub-component. 
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Appendix 11b.1 Mapping of flood risk sub-component for the study area. 
 

  
  

a) b) 
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Figure a + b → Figure c by AHP  
The report files outlined as below can be automatically created 
where all the information of the AHP procedure are stored 
 
[Criteria & LayerSource (clsfd.)] 
kgi7_dem15_re kgi7_dem15_re 
Flood depth in 2000 Flood depth in 2000 
 
[Preference Matrix] 
                kgi7_dem15_re        Flood depth in 2000 
kgi7_dem15_re              1                               0.4444 
Flood depth in 2000            2.25               1 
 
[*****AHP results*****] 
[Eigenvalues] 
1.9999 
0.0001 
 
[Eigenvector of largest Eigenvalue] 
0.4061 
0.9138 
 
[criteria weights] 
0.3077 (kgi7_dem15_re) 
0.6923 (Flood depth in 2000) 
 
[consistency ratio CR] 
0 
(Revision of preference values is recommended if CR > 0.1) 

 

 

c) 



Coastal Vulnerability assessment of Kien Giang 
 

316 | P a g e  
  
 

Appendix 11b.2 Proportions of the study area classed as very low to very high, derived from flood 
depth variable, from [1] to [3], and flood risk sub-component, from [4] to [6]. 
 

 Coastal district 
           [1] 

Flood depth observed in 2000, % of area  
Very low 
0 – 0.2 m  

Low 
0.2 – 0.5 

Moderate 
0.5 - 1 

High 
1 - 2 

Very high 
> 2 

An Bien 50.28 48.05 1.67 0.00 0.00 
An Minh 84.45 15.20 0.35 0.00 0.00 
Chau Thanh 22.02 32.88 43.44 1.65 0.00 
Hon Dat 2.97 3.36 22.38 70.26 1.03 
Ha Tien 29.20 16.76 39.82 14.22 0.00 
Kien Luong 9.32 4.97 45.17 40.26 0.28 
Rach Gia 29.15 13.87 51.39 5.60 0.00 
7 coastal districts 29.87 15.57 22.41 31.75 0.41 

 

 Coastal district  
         [2] 

Flood depth modelled in 2030, % of area  
Very low 
0 – 0.2 m  

Low 
0.2 – 0.5 

Moderate 
0.5 - 1 

High 
1 - 2 

Very high 
> 2 

An Bien 22.05 61.62 16.34 0.00 0.00 

An Minh 51.22 44.33 4.45 0.00 0.00 

Chau Thanh 17.58 30.31 48.91 3.21 0.00 

Hon Dat 2.72 3.12 19.29 73.52 1.35 

Ha Tien 26.91 9.24 43.35 20.50 0.00 

Kien Luong 9.72 5.16 44.54 40.23 0.34 

Rach Gia 25.84 8.12 43.22 22.82 0.00 

7 coastal districts 18.93 22.36 24.36 33.83 0.53 

 

 Coastal district  
         [3] 

Flood depth modelled in 2050, % of area  
Very low 
0 – 0.2 m  

Low 
0.2 – 0.5 

Moderate 
0.5 - 1 

High 
1 - 2 

Very high 
> 2 

An Bien 13.45 49.70 36.85 0.00 0.00 

An Minh 27.48 61.34 11.18 0.00 0.00 

Chau Thanh 12.67 13.36 39.54 34.41 0.02 

Hon Dat 1.24 0.59 3.76 48.78 45.63 

Ha Tien 24.53 7.50 33.88 34.01 0.08 

Kien Luong 7.31 1.54 10.76 66.32 14.08 

Rach Gia 19.71 5.92 14.93 58.89 0.56 

7 coastal districts 11.45 20.88 15.55 33.87 18.24 

Note: 0 – higher than 2m is a range of classification for flood depth (see Table 5.1). 
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 Coastal district 
           [4] 

Flood observed in 2000 using AHP, % of area 
Very low 

1 - 2 
Low 
3 - 4 

Moderate 
5  

High 
6-7 

Very high 
8- 9 

An Bien 23.20 32.78 15.94 26.80 1.29 
An Minh 44.14 42.99 7.27 5.42 0.18 
Chau Thanh 12.18 25.21 17.43 39.11 6.06 
Hon Dat 2.63 8.24 4.02 41.55 43.55 
Ha Tien 27.42 10.54 6.69 26.96 28.38 
Kien Luong 6.51 8.04 3.17 36.91 45.37 
Rach Gia 22.8 15.96 6.97 37.42 16.86 
7 coastal districts 16.59 20.36 7.60 30.87 24.59 

 

 Coastal district  
         [5] 

Flood modelled in 2030 using AHP, % of area 
Very low 

1 - 2 
Low 
3 - 4 

Moderate 
5  

High 
6-7 

Very high 
8- 9 

An Bien 11.94 25.59 27.15 23.85 11.47 
An Minh 36.58 23.79 29.51 7.50 2.61 
Chau Thanh 10.03 23.87 17.91 38.09 10.10 
Hon Dat 2.37 7.31 3.70 40.96 45.67 
Ha Tien 25.15 9.69 4.00 27.32 33.84 
Kien Luong 6.78 8.18 2.89 35.65 46.50 
Rach Gia 20.12 14.54 4.23 30.40 30.71 
7 coastal districts 13.16 15.07 13.23 30.16 28.38 

 

 Coastal district  
         [6] 

Flood modelled in 2050 using AHP, % of area 
Very low 

1 - 2 
Low 
3 - 4 

Moderate 
5  

High 
6-7 

Very high 
8- 9 

An Bien 6.49 25.75 23.83 43.93 0.00 
An Minh 21.71 28.64 34.33 15.31 0.00 
Chau Thanh 7.28 13.99 8.95 48.52 21.27 
Hon Dat 1.14 1.12 1.27 43.00 53.46 
Ha Tien 23.11 9.31 3.31 39.69 24.58 
Kien Luong 5.56 2.94 2.52 37.10 51.87 
Rach Gia 16.58 9.99 2.58 28.20 42.65 
7 coastal districts 8.41 11.95 11.89 36.64 31.11 

Note: 1 – 9 is a range of classification for flood risk sub-component of Jenks’s Natural Breaks; The value of “1” 
indicates area the least flood exposure, while the value of “9” indicates area the most flood exposure in representing 
flood risk sub-component. 
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Appendix 11c.1 illustrates several patterns of the Kien Giang coast: a) Mui Nai (Deer cape) and Ha 
Tien bay; b) 5km far from Ha Tien town taken during the dry season in 2013; c) Dua Cape, Kien 
Luong; d) My Lam, Hon Dat; e) Rach Gia bay; f) Chau Thanh; g) Nam Thai A, An Bien and Thuan 
Hoa, An Minh; and h) An Minh, derived from Google Earth.  
 

  
 

Note: The mangrove forests were fringed, shown in the red circle lines, mainly distributed in four coastal districts: An 
Bien, An Minh, Hon Dat, and Kien Luong along the Kien Giang coast. 
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Appendix 11c.2 The analyses of EPR showed the trends of shoreline displacement in seven coastal 
districts over 1973 - 2013. 
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Appendix 11c.3 The digitised patterns of the shoreline a) of the Hon Dat coast, and d) of the An Bien 
coast extracted from the Landsat image in 2013; Photos showing the pattern c) of the Hon Dat coast, 
and b) of the An Bien coast, taken in field trip during the dry season in 2015. 
 
 

 
Note: ( ): Scattered mangroves seawards.  
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Appendix 11c.4 Mapping of shoreline change sub-component for the study area. 
 

 

a) b) 
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Figure a + b  →Figure c by AHP  
The report files outlined as below can be automatically created where all the 
information of the AHP procedure are stored 
 
[Criteria & LayerSource (clsfd.)] 
shorebu1km1re shorebu1km1re 
k7_htr2010_re k7_htr2010_re 
 
[Preference Matrix] 
 shorebu1km1re k7_htr2010_re 
shorebu1km1re     1     2 
k7_htr2010_re   0.5     1 
 
[*****AHP results*****] 
[Eigenvalues] 
2 
0 
 
[Eigenvector of largest Eigenvalue] 
0.8944 
0.4472 
 
[criteria weights] 
0.6667  (shorebu1km1re) 
0.3333  (k7_htr2010_re) 
 
[consistency ratio CR] 
0 
(Revision of preference values is recommended if CR > 0.1) 

c) 
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Appendix 11d Mapping of the exposure component for the study area. 
 

 

a) b) c) 
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d) e) 
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Figure a + b + c → Figure d by AHP (input raster)  
 
 
 
[Criteria & LayerSource (clsfd.)] 
k7inu00dem_re k7inu00dem_re 
k7ahp2shkm1re k7ahp2shkm1re 
k7max10dvd_re k7max10dvd_re 
 
[Preference Matrix] 
 k7inu00dem_re k7ahp2shkm1re k7max10dvd_re 
k7inu00dem_re   1         2              0.8 
k7ahp2shkm1re   0.5         1              0.3333 
k7max10dvd_re   1.25         3              1 
 
[*****AHP results*****] 
[Eigenvalues] 
3.0037 
-0.0018 
-0.0018 
 
[Eigenvector of largest Eigenvalue] 
0.5787 
0.2723 
0.7687 
 
[criteria weights] 
0.3573            (k7inu00dem_re) 
0.1681  (k7ahp2shkm1re) 
0.4746  (k7max10dvd_re) 
 
[consistency ratio CR] 
0.0035 
(Revision of preference values is recommended if CR > 0.1) 

Figures a & b are aggregated by AHP to generate Figure e (target raster). 
Finally,  Mosaic was used to generate a map of exposure levels in Figure f 
 
[Criteria & LayerSource (clsfd.)] 
k7max10dvd_re k7max10dvd_re 
k7inu00dem_re k7inu00dem_re 
 
[Preference Matrix] 
    k7max10dvd_re k7inu00dem_re 
k7max10dvd_re   1               1.285 
k7inu00dem_re   0.7782               1 
 
[*****AHP results*****] 
[Eigenvalues] 
2 
0 
 
[Eigenvector of largest Eigenvalue] 
0.7892 
0.6142 
 
[criteria weights] 
0.5624            (k7max10dvd_re) 
0.4376   (k7inu00dem_re) 
 
[consistency ratio CR] 
0 
(Revision of preference values is recommended if CR > 0.1) 
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f) 
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Appendix 12 Mapping of the sensitivity component for the study area. 
 
Appendix 12a Mapping of societal factors sub-component for the study area. 
 

 

 

 

a)  

c) 
 

b) 

d) 
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Figure a + b + c + d→ Figure e by AHP  
The report files outlined as below can be automatically created where all the 
information of the AHP procedure are stored 
 
[Criteria & LayerSource (clsfd.)] 
k7_pd_30414re k7_pd_30414re 
k7_ru_30414re k7_ru_30414re 
k7_eth30414re k7_eth30414re 
k7_gen30414re k7_gen30414re 
 
[Preference Matrix] 
      k7_pd_30414re   k7_ru_30414re  k7_eth30414 re k7_gen30414re 
k7_pd_30414re 1 0.8           2.5                     2.5 
k7_ru_30414re 1.25 1           0.8        1.4 
k7_eth30414re 0.4 1.25           1                     1.8 
k7_gen30414re 0.4 0.7143           0.5556      1 
 
[*****AHP results*****] 
[Eigenvalues] 
4.1831 
-0.0884 
-0.0884 
-0.0064 
 
[Eigenvector of largest Eigenvalue] 
0.6899 
0.5033 
0.4407 
0.2766 
 
[criteria weights] 
0.3611            (k7_pd_30414re) 
0.2635            (k7_ru_30414re) 
0.2307           (k7_eth30414re) 
0.1448           (k7_gen30414re) 
 
[consistency ratio CR] 
0.0678 
(Revision of preference values is recommended if CR > 0.1) 

e) 
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Appendix 12b Mapping of the sensitivity component for the study area. 
 

  

a) b) 
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Figure a + b → Figure c by AHP  
The report files outlined as below can be automatically 
created where all the information of the AHP procedure 
are stored 
 
[Criteria & LayerSource (clsfd.)] 
k7_ahp4pop_re k7_ahp4pop_re 
k7_lulc_re k7_lulc_re 
 
[Preference Matrix] 
 k7_ahp4pop_re           k7_lulc_re 
k7_ahp4pop_re       1                  1.2857 
k7_lulc_re       0.7778 1 
 
[*****AHP results*****] 
[Eigenvalues] 
2 
0 
 
[Eigenvector of largest Eigenvalue] 
0.7893 
0.6139 
 
[criteria weights] 
0.5625  (k7_ahp4pop_re) 
0.4375  (k7_lulc_re) 
 
[consistency ratio CR] 
0 
(Revision of preference values is recommended if CR > 0.1) 

 
 

c) 
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Appendix 13 Mapping of potential impacts for the study area. 
 

  

a) b) 
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Figure a + b → Figure c by AHP 
[Criteria & LayerSource (clsfd.)] 
k7_ex61tes_re k7_ex61tes_re 
k7_sen3ahp_re k7_sen3ahp_re 
 
[Preference Matrix] 
 k7_ex61tes_re         k7_sen3ahp_re 
k7_ex61tes_re      1          1.8 
k7_sen3ahp_re    0.5556  1 
 
[*****AHP results*****] 
[Eigenvalues] 
2 
0 
 
[Eigenvector of largest Eigenvalue] 
0.8741 
0.4857 
 
[criteria weights] 
0.6428 (k7_ex61tes_re) 
0.3572 (k7_sen3ahp_re) 
 
[consistency ratio CR] 
0 
(Revision of preference values is recommended if CR > 0.1) 

 
 

c) 
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Appendix 14 Overall aggregated rankings of each coastal district within seven ones in terms of measuring coastal potential impacts study. 
 

Rank 
* Seawater 
incursion 2010 

** Soil type 
undated 

Seawater 
incursion sub-
component 

Flood depth 
2000 

Elevation 
Flood risk sub-
component 

*** Analysis of 
LRR during 
1973 - 2013 

****Adjacent 
coastal landuse 
2010 

Shoreline 
change 
vulnerability 

Exposure 

1 Hon Dat Chau Thanh Hon Dat An Minh Hon Dat An Minh Hon Dat Chau Thanh Chau Thanh Hon Dat 
2 Kien Luong Ha Tien Rach Gia An Bien Ha Tien An Bien Ha Tien Rach Gia Rach Gia Chau Thanh 
3 Rach Gia Hon Dat Chau Thanh Chau Thanh Rach Gia Chau Thanh Rach Gia Ha Tien An Bien Rach Gia  
4 Chau Thanh Kien Luong Kien Luong Rach Gia Kien Luong Rach Gia Kien Luong Kien Luong Ha Tien Ha Tien 
5 Ha Tien Rach Gia Ha Tien Ha Tien Chau Thanh Ha Tien An Bien An Bien An Minh Kien Luong 
6 An Bien An Minh An Bien Kien Luong An Minh Kien Luong Chau Thanh An Minh  Kien Luong An Bien  
7 An Minh An Bien An Minh Hon Dat An Bien Hon Dat An Minh Hon Dat Hon Dat An Minh 

           

Rank 
Population  
density 2011 

Rural  
population 
2011 

Ethnic group 
2010 

Female  
population 2011 

  Societal factors 
Landuse/ 
landcover 2008 

Sensitivity 
[41%] 

Exposure 
[69%] 

Potential 
impacts [58%] 

1 Hon Dat Rach Gia An Minh An Minh   Hon Dat Kien Luong Hon Dat Hon Dat Hon Dat 
2 Kien Luong Ha Tien Rach Gia Kien Luong   Kien Luong An Minh Kien Luong Chau Thanh Rach Gia  
3 An Minh Kien Luong An Bien Hon Dat   An Minh Ha Tien Ha Tien Rach Gia  Kien Luong 
4 An Bien Hon Dat Hon Dat An Bien   Ha Tien Hon Dat An Minh Ha Tien Chau Thanh 
5 Ha Tien Chau Thanh Ha Tien Chau Thanh   Rach Gia Chau Thanh Rach Gia Kien Luong Ha Tien 
6 Chau Thanh An Bien Kien Luong Ha Tien 

 
Chau Thanh An Bien An Bien An Bien  An Minh 

7 Rach Gia An Minh Chau Thanh Rach Gia   An Bien Rach Gia Chau Thanh An Minh An Bien  

Note: The value of 7 indicates the highest rank, while the value of 1 indicates the lowest one within 7 coastal districts, in terms of representing exposure, sensitivity. 
 

 
Shaded red indicates districts are likely to be high exposure, sensitivity, potential impacts, shaded yellow for moderate and shaded green for low. 
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Appendix 15 A summary of relative weights of variables, sub-components, two components: exposure, sensitivity, and potential impacts 
for the study that were simultaneously obtained from AHP. 
 

No. Component Sub-component Variable Weight  CR Mosaic Sub-
component 

Variable Final References 

1 Exposure   0.6428      Appendix 13 
1.1  Shoreline change  0.1681   0.0841  0.0540 Appendix 11d 
1.1.1   Shoreline displacement 

(1km buffer) 
0.6667    0.0560 

 

Appendix 11c.3 

1.1.2   Coastal adjacent landuse  0.3333    0.0280 

 

Appendix 11c.3 

     0     Appendix 11c.3 
1.2  Flood  0.3573  0.4376 0.3975  0.2555 Appendix 11d 
1.2.1   Flood depth 0.6923    0.2752  Appendix 11b.2 
1.2.2   Elevation 0.3077    0.1223  Appendix 11b.2 
     0     Appendix 11b.2 
1.3  Seawater incursion  0.4746  0.5624 0.5185  0.3333 Appendix 11d 
1.3.1   Salinity 0.75    0.3889  Appendix 11a.1 
1.3.2   Soil type 0.25    0.1296  Appendix 11a.1 
     0     Appendix 11a.1 
     0.00

35 
    Appendix 11d 

2 Sensitivity   0.3572      Appendix 13 
2.1  Societal factors 

sensitivity 
 0.5625   0.5625  0.2009 Appendix 12a 

2.1.1   Population density 0.3611    0.2031  Appendix 12a 

2.1.2   Rural people 0.2635    0.1482  Appendix 12a 
2.1.3   Female people 0.1448    0.0815  Appendix 12a 

2.1.4   Ethnicity minorities 0.2307    0.1298  Appendix 12a 

     0.06
78 

    Appendix 12a 

2.2  Landuse  0.4375   0.4375  0.1563 Appendix 12b 
     0     Appendix 12b 
3 Potential impacts   1,000      Appendix 13 

          0         Appendix 13 
 
Note: The CR < 0.1, acceptable by Saaty (1980); and the CR< 0.05 for 3 by 3 matrices, and the CR< 0.08 for 4 by 4 matrices, acceptable by Saaty (1994), respectively. 
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Appendix 16 Changing priorities of variables based on pair-wise comparisons using AHP; An 
example for mapping the exposure component: a) the final study exposure, and b) the alternative 
adjusted exposure. 
 

 
Simultaneously, relative weights of the variables used in aggregation, in order to represent 

exposure that were obtained; These are summarised as below. 
a) 6 layers, 3 sub-components- final study exposure 
 
Criteria weights-6 layers, 3 sub-components 
0.3560 (k7_sal2010_re) 
0.2474 (kg7_fmba_re1) 
0.1187 (k7dvd_sal_re) 
0.1121 (shorebu1km1re) 
0.1099 (k7dem15_re2) 
0.0560 (k7_htr2010_re) 
 
Criteria weights-4layers, 2 sub-components 
0.4218 (k7_sal2010_re) 
0.3030 (kg7_fmba_re1) 
0.1406 (k7dvd_sal_re) 
0.1346 (k7dem15_re2) 
CR = 0.0035 
Therefore,  
0.3889 (k7_sal2010_re) 
0.2752 (Flood depth in 2000) 
0.1296 (k7dvd_sal_re) 
0.1223 (kgi7_dem15_re) 
0.0560 (shorebu1km1re) 
0.0280 (k7_htr2010_re) 

b) 6 layers- changing priorities of variables-exposure 
 
Criteria weights-6layers _re1 
0.2507    (k7_sal2010_re) 
0.1958  (kg7_fmba_re1) 
0.1564  (k7dvd_sal_re) 
0.1607  (k7_htr2010_re)  
0.1389  (shorebu1km1re) 
0.0975  (k7dem15_re2) 
CR = 0 
Criteria weights-4layers 
0.3492  (k7_sal2010_re) 
0.2724  (kg7_fmba_re1) 
0.2374  (k7dvd_sal_re) 
0.0975  (k7dem15_re2) 
CR = 0.0124 
Therefore, 
0.3000 (k7_sal2010_re) 
0.2341 (Flood depth in 2000) 
0.1969 (k7dvd_sal_re) 
0.1193 (kgi7_dem15_re) 
0.0695 (shorebu1km1re) 
0.0804 (k7_htr2010_re) 

a) b) 
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Appendix 17 Evaluation of scale-based input data in order to represent sensitivity for the study 
area: a) global population density; b) PD at district level; and c) PD within district level. 
 
a. At global input data 

 
Note: Figure a) shows the population density for the study derived from the global population density (gridded PD in 
2010, version 3- GPWv3), while Figure b) shows the sensitivity component derived from the aggregation of two 
layers the global PD and study landuse. 
 
b. At an entire district level. 

 
Note: Figure a) shows the study PD obtained at an entire district level, while Figure b) shows the study sensitivity 
component. 

a) b) 

a) b) 
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c. Within district level. 

 

 
Note: Figure a) shows the aggregation of three layers, comprising urban people density, rural people density obtained 
from the GIS database of MARD (undated), and study landuse by AHP, while Figure b) shows the mapping 
sensitivity component generated, respectively. 
 

The report files outlined as below can be automatically 
created where all the information of the AHP procedure 
are stored [for 5.7a] 
 
[Criteria & LayerSource (clsfd.)] 
k7ds10ag_re k7ds10ag_re 
k7_lulc_re k7_lulc_re 
 
 
[Preference Matrix] 
 k7ds10ag_re k7_lulc_re 
k7ds10ag_re 1 1.2857 
k7_lulc_re                  0.7778 1 
 
 
[*****AHP results*****] 
[Eigenvalues] 
2 
0 
 
 
[Eigenvector of largest Eigenvalue] 
0.7893 
0.6139 
 
 
[criteria weights] 
0.5625 (k7ds10ag_re) 
0.4375 (k7_lulc_re) 
 
 
[consistency ratio CR] 
0 
(Revision of preference values is recommended if CR > 0.1) 

The report files outlined as below can be automatically 
created where all the information of the AHP procedure 
are stored [for 5.7c] 
 
[Criteria & LayerSource (clsfd.)] 
k7_lulc_re k7_lulc_re 
k7_dc1_rurdre k7_dc1_rurdre 
k7_dc1_urdre k7_dc1_urdre 
 
[Preference Matrix] 
 k7_lulc_re            k7_dc1_rurdre          k7_dc1_urdre 
k7_lulc_re                  1       0.5  0.2273 
k7_dc1_rurdre 2       1  0.25 
k7_dc1_urdre 4.4       4  1 
 
[*****AHP results*****] 
[Eigenvalues] 
3.0399 
-0.0199 
-0.0199 
 
[Eigenvector of largest Eigenvalue] 
0.1754 
0.2873 
0.9416 
 
[criteria weights] 
0.1249 (k7_lulc_re) 
0.2046 (k7_dc1_rurdre) 
0.6705 (k7_dc1_urdre) 
 
[consistency ratio CR] 
0.0384 

+ 

+ 

.6705 

.2046 

.1249 

a) b) 
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Appendix 18 Exposure and sensitivity within district level were used in order to represent potential 
impacts for the study area. 
 

 

 
Note: See in detail for sensitivity within district level in Appendix 5.7c. 
 

The report files outlined as below can be automatically created 
where all the information of the AHP procedure are stored  
 
[Criteria & LayerSource (clsfd.)] 
k7_ex61tes_re k7_ex61tes_re 
k7_sen3ahp_re k7_sen3ahp_re 
 
[Preference Matrix] 
 k7_ex61tes_re k7_sen3ahp_re 
k7_ex61tes_re 1 1.8 
k7_sen3ahp_re 0.5556 1 
 
[*****AHP results*****] 
[Eigenvalues] 
2 
0 
 
[Eigenvector of largest Eigenvalue] 
0.8741 
0.4857 
 
[criteria weights] 
0.6428            (k7_ex61tes_re) 
0.3572           (k7_sen3ahp_re) 
 
[consistency ratio CR] 
0 
(Revision of preference values is recommended if CR > 0.1) 

+ .6428 

.3572 
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Appendix 19 Mapping of the adaptive capacity component for the study area. 
 
Appendix 19a.1 Mapping of education capability for the study area. 
 

 

 

 

a)  

c) 

 

b) 

d) 
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Figure a + b + c + d → Figure e by AHP  
The report files outlined as below can be automatically 
created where all the information of the AHP procedure 
are stored  
 
[Criteria & LayerSource (clsfd.)] 
k7_puptea_re1 k7_puptea_re1 
k7_pupsch_re1 k7_pupsch_re1 
k7_kidtea_re1 k7_kidtea_re1 
k7_kidsch_re1 k7_kidsch_re1 
 
[Preference Matrix] 
        k7_puptea_re1  k7_pupsch_re1       k7_kidtea_re1       k7_kidsch_re1 
k7_puptea_re1   1             0.7778           2                   1 
k7_pupsch_re1   1.2857    1                          1.8                   1.2857 
k7_kidtea_re1     0.5          0.5556           1                   0.7143 
k7_kidsch_re1     1             0.7778           1.4                   1 
 
[*****AHP results*****] 
[Eigenvalues] 
4.016 
-0.008 
-0.008 
0 
 
[Eigenvector of largest Eigenvalue] 
0.5302 
0.6208 
0.3166 
0.4829 
 
[criteria weights] 
0.2718  (k7_puptea_re1) 
0.3183 (k7_pupsch_re1) 
0.1623 (k7_kidtea_re1) 
0.2476 (k7_kidsch_re1) 
 
[consistency ratio CR] 
0.0059 
(Revision of preference values is recommended if CR > 0.1) 

e) 
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Appendix 19a.2 Mapping of health services capability for the study area. 
 

 

a) b) 
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Figure a + b → Figure c by AHP  
The report files outlined as below can be automatically 
created where all the information of the AHP procedure 
are stored  
 
[Criteria & LayerSource (clsfd.)] 
k7_heasta_re1 k7_heasta_re1 
k7_heaest_re1 k7_heaest_re1 
 
[Preference Matrix] 
    k7_heasta_re1 k7_heaest_re1 
k7_heasta_re1    1 0.5556 
k7_heaest_re1 1.8 1 
 
[*****AHP results*****] 
[Eigenvalues] 
2 
0 
 
[Eigenvector of largest Eigenvalue] 
0.4857 
0.8741 
 
[criteria weights] 
0.3572 (k7_heasta_re1) 
0.6428 (k7_heaest_re1) 
 
[consistency ratio CR] 
0 
(Revision of preference values is recommended if CR > 0.1) 

c) 
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Appendix 19a.3 Mapping of socioeconomic sub-component for the study area. 
 

 

 

a) 
 

 

b) 

c) d) 
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Figure a + b + c + d → Figure e by AHP  
The report files outlined as below can be automatically 
created where all the information of the AHP procedure are 
stored  
 
[Criteria & LayerSource (clsfd.)] 
k7_inc_re1 k7_inc_re1 
k7_povert_re1 k7_povert_re1 
k7_ahp4edu_re k7_ahp4edu_re 
k7_ahp2hea_re k7_ahp2hea_re 
 
[Preference Matrix] 
              k7_inc_re1   k7_povert_re1    k7_ahp4edu_re    k7_ahp2hea_re 
k7_inc_re1 1        2                 1               1.125 
k7_povert_re1 0.5        1                 0.56               0.63 
k7_ahp4edu_re     1       1.7857  1               1.1299 
k7_ahp2hea_re 0.8889          1.5873  0.885               1 
 
[*****AHP results*****] 
[Eigenvalues] 
4.0016 
-0.0008 
-0.0008 
0 
 
[Eigenvector of largest Eigenvalue] 
0.5802 
0.307 
0.5644 
0.5006 
 
[criteria weights] 
0.2972 (k7_inc_re1) 
0.1573 (k7_povert_re1) 
0.2891 (k7_ahp4edu_re) 
0.2564 (k7_ahp2hea_re) 
 
[consistency ratio CR] 
0.0006 
(Revision of preference values is recommended if CR > 0.1) 

e) 
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Appendix 19b Mapping of infrastructure sub-component for the study area. 
 

 

a) b) c) 
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Figure a + b + c  → Figure d by AHP  
The report files outlined as below can be automatically 
created where all the information of the AHP procedure 
are stored  
 
[Criteria & LayerSource (clsfd.)] 
k7_phone_re k7_phone_re 
k7_rd5000re1 k7_rd5000re1 
k7_solidho_re k7_solidho_re 
 
[Preference Matrix] 
   k7_phone_re k   7_rd5000re1 k7_solidho_re 
k7_phone_re   1          0.6667              0.56 
k7_rd5000re1   1.5          1                              0.78 
k7_solidho_re   1.7857            1.2821              1 
 
[*****AHP results*****] 
[Eigenvalues] 
3.0006 
-0.0003 
-0.0003 
 
[Eigenvector of largest Eigenvalue] 
0.3925 
0.5743 
0.7184 
 
[criteria weights] 
0.2329 (k7_phone_re) 
0.3408 (k7_rd5000re1) 
0.4263 (k7_solidho_re) 
 
[consistency ratio CR] 
0.0006 
(Revision of preference values is recommended if CR > 0.1) 

  
 

 

 

d) 
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Appendix 19c.1 Mapping of irrigation and drainage capability for the study area. 
 

 
 

d) 

   

b) c) 

e) 

a) 
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Figure a + b + c + d + e  → Figure f by AHP  
The report files outlined as below can be automatically created where all the information 
of the AHP procedure are stored  
 
[Criteria & LayerSource (clsfd.)] 
k7_canal_int k7_canal_int 
k7_rivers_int k7_rivers_int 
k7_sluice_int k7_sluice_int 
k7_riveem_int k7_riveem_int 
k7_seady_int k7_seady_int 
 
[Preference Matrix] 
            k7_canal_int     k7_rivers_int  k7_sluice_int   k7_riveem_int k7_seady_int 
k7_canal_int      1              2                   1.4999        2                  1.2857 
k7_rivers_int       0.5              1                   1.2857       1.5                  1 
k7_sluice_int      0.6667      0.7778          1        0.4444 0.3333 
k7_riveem_int   0.5              0.6667          2.25        1                  0.7778 
k7_seady_int     0.7778      1                   3.0003           1.2857     1 
 
[*****AHP results*****] 
[Eigenvalues] 
5.1817 
-0.0408 
-0.0408 
-0.0977 
-0.0024 
 
[Eigenvector of largest Eigenvalue] 
0.6163 
0.4048 
0.2531 
0.3686 
0.5063 
 
[criteria weights] 
0.2868 (k7_canal_int) 
0.1884 (k7_rivers_int) 
0.1178 (k7_sluice_int) 
0.1715 (k7_riveem_int) 
0.2356 (k7_seady_int) 
 
[consistency ratio CR] 
0.0406 
(Revision of preference values is recommended if CR > 0.1) 

f) 
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Appendix 19c.2 Mapping of electricity capability for the study area. 
 

 

a) b) 
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Figure a + b  → Figure c by AHP  
The report files outlined as below can be automatically 
created where all the information of the AHP procedure 
are stored  
 
[Criteria & LayerSource (clsfd.)] 
k7_elenet_re k7_elenet_re 
k7_sta_re k7_sta_re 
 
[Preference Matrix] 
       k7_elenet_re k7_sta_re 
k7_elenet_re 1 1.4999 
k7_sta_re   0.6667   1 
 
[*****AHP results*****] 
[Eigenvalues] 
2 
0 
 
[Eigenvector of largest Eigenvalue] 
0.832 
0.5547 
 
[criteria weights] 
0.6 (k7_elenet_re) 
0.4 (k7_sta_re) 
 
[consistency ratio CR] 
0 
(Revision of preference values is recommended if CR > 0.1) 
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Appendix 19c.3 Mapping of technological sub-component for the study area. 
 

 

a) b) 
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Figure a + b → Figure c by AHP  
The report files outlined as below can be automatically created 
where all the information of the AHP procedure are stored  
 
[Criteria & LayerSource (clsfd.)] 
k7_6irr_re k7_6irr_re 
k7_3elec_re k7_3elec_re 
 
[Preference Matrix] 
   k7_6irr_re k7_3elec_re 
k7_6irr_re 1    1.2857 
k7_3elec_re 0.7778    1 
 
[*****AHP results*****] 
[Eigenvalues] 
2 
0 
 
[Eigenvector of largest Eigenvalue] 
0.7893 
0.6139 
 
[criteria weights] 
0.5625 (k7_6irr_re) 
0.4375 (k7_3elec_re) 
 
[consistency ratio CR] 
0 
(Revision of preference values is recommended if CR > 0.1) 

c) 
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Appendix 19d Mapping of the adaptive capacity component for the study area. 
 

 
 
 

a) b) 
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Figure a + b + c→ Figure d by AHP  
The report files outlined as below can be automatically created 
where all the information of the AHP procedure are stored  
 
[Criteria & LayerSource (clsfd.)] 
k7_3infahp_re k7_3infahp_re 
k7_tech_re1 k7_tech_re1 
k7_socahp_re1 k7_socahp_re1 
 
[Preference Matrix] 
 k7_3infahp_re k7_tech_re1 k7_socahp_re1 
k7_3infahp_re   1      1                0.5555 
k7_tech_re1   1      1                0.6 
k7_socahp_re1        1.8002      1.6667               1 
 
[*****AHP results*****] 
[Eigenvalues] 
3.0007 
-0.0003 
-0.0003 
 
[Eigenvector of largest Eigenvalue] 
0.4415 
0.4529 
0.7746 
 
[criteria weights] 
0.2645 (k7_3infahp_re) 
0.2714 (k7_tech7_re1) 
0.4641 (k7_socahp_re1) 
 
[consistency ratio CR] 
0.0006 
(Revision of preference values is recommended if CR > 0.1) 

 

c) 



Coastal Vulnerability assessment of Kien Giang 
 

355 | P a g e  
  
 

 

d) 



Coastal Vulnerability assessment of Kien Giang 
 

356 | P a g e  
  
 

Appendix 20 Mapping of the final vulnerability for the study area. 
 

 
 

a) b) 
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Figure a + b → Figure c by AHP 
 
[Criteria & LayerSource (clsfd.)] 
k7_ex61tes_re k7_ex61tes_re 
k7_sen3ahp_re k7_sen3ahp_re 
 
[Preference Matrix] 
 k7_ex61tes_re       k7_sen3ahp_re 
k7_ex61tes_re       1           1.8 
k7_sen3ahp_re    0.5556 1 
 
[*****AHP results*****] 
[Eigenvalues] 
2 
0 
 
[Eigenvector of largest Eigenvalue] 
0.8741 
0.4857 
 
[criteria weights] 
0.6428  (k7_ex61tes_re) 
0.3572  (k7_sen3ahp_re) 
 
[consistency ratio CR] 
0 
(Revision of preference values is recommended if CR > 
0.1) 

 

e) 
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Figure a + b + d→ Figure e by AHP  
The report files outlined as below can be automatically created 
where all the information of the AHP procedure are stored  
 
[Criteria & LayerSource (clsfd.)] 
k7_e_mos_re k7_e_mos_re 
k7_sen_ahp_re k7_sen_ahp_re 
k7_a_ahp_re1 k7_a_ahp_re1 
 
[Preference Matrix] 
 k7_e_mos_re k7_sen_ahp_re k7_a_ahp_re1 
k7_e_mos_re 1         1.25                       2 
k7_sen_ahp_re 0.8         1                       1.5 
k7_a_ahp_re1 0.5         0.6667        1 
 
[*****AHP results*****] 
[Eigenvalues] 
3.0005 
-0.0002 
-0.0002 
 
[Eigenvector of largest Eigenvalue] 
0.7305 
0.5719 
0.3732 
 
[criteria weights] 
0.4359 (k7_e_mos_re) 
0.3413 (k7_sen_ahp_re) 
0.2227 (k7_a_ahp_re1) 
 
[consistency ratio CR] 
0.0005 
(Revision of preference values is recommended if CR > 0.1) 

Figure c + d→ Figure e by AHP  
The report files outlined as below can be automatically created 
where all the information of the AHP procedure are stored  
 
[Criteria & LayerSource (clsfd.)] 
k7_potsoci_re k7_potsoci_re 
k7_a_alg1_re3 k7_a_alg1_re3 
 
[Preference Matrix] 
 k7_potsoci_re k7_a_alg1_re3 
k7_potsoci_re 1 1.8 
k7_a_alg1_re3 0.5556 1 
 
[*****AHP results*****] 
[Eigenvalues] 
2 
0 
 
[Eigenvector of largest Eigenvalue] 
0.8741 
0.4857 
 
[criteria weights] 
0.6428 (k7_potsoci_re) 
0.3572 (k7_a_alg1_re3) 
 
[consistency ratio CR] 
0 
(Revision of preference values is recommended if CR > 0.1) 
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Appendix 21 A summary of relative weights of variables of adaptive capacity and aggregating of vulnerability for the study area that were 
simultaneously, obtained from the AHP tool. 
 

No. Component Sub-component Variable/Sub-variable Weight  CR Variable Sub-component Final References 
1 Exposure   0.4359     Appendix 20 
2 Sensitivity   0.3413     Appendix 20 
3 Adaptive capacity   0.2227     Appendix 20 
3.1  Socioeconomic  0.4641   0.1034 0.1034 Appendix 19d 
3.1.1   Income 0.2972  0.2972 0.1379 0.0307 Appendix 19a.3 
3.1.2   Poverty ratio 0.1573  0.1573 0.0730 0.0163 Appendix 19a.3 
3.1.3   Health services 0.2564   0.1190 0.0265 Appendix 19a.3 
   Inhabitants/a establishment 0.6428  0.1648 0.0765 0.0170 Appendix 19a.2 
   Inhabitants/a staff 0.3572  0.0916 0.0425 0.0095 Appendix 19a.2 
     0    Appendix 19a.2 
3.1.4   Education system 0.2891   0.1342 0.0299 Appendix 19a.3 
   Kids/a school 0.2476  0.0716 0.0332 0.0074 Appendix 19a.1 
   Kids/a teacher 0.1623  0.0469 0.0218 0.0048 Appendix 19a.1 
   Pupils/a school 0.3183  0.0920 0.0427 0.0095 Appendix 19a.1 
   Pupils/a teacher 0.2718  0.0786 0.0365 0.0081 Appendix 19a.1 
     0.0059    Appendix 19a.1 
     0.0006    Appendix 19a.3 
3.2  Infrastructure  0.2645   0.0589 0.0589 Appendix 19d 
3.2.1   Road density 0.3408   0.0901 0.0201 Appendix 19b 
3.2.2   % household having solid house 0.4263   0.1128 0.0251 Appendix 19b 
3.2.3   Inhabitants/ a fixed-line 

telephone subscriber 
0.2329   0.0616 0.0137 Appendix 19b 

     0.0006    Appendix 19b 
3.3  Technological  0.2714   0.0604 0.0604 Appendix 19d 
3.3.1   Irrigation & drainage capability 0.5625   0.1527 0.0340 Appendix 19c.3 
   Canal density 0.2868  0.1613 0.0438 0.0098 Appendix 19c.1 
   River density 0.1884  0.1060 0.0288 0.0064 Appendix 19c.1 
   Sluice gate density 0.1178  0.0663 0.0180 0.0040 Appendix 19c.1 
   River embankment density 0.1715  0.0965 0.0262 0.0058 Appendix 19c.1 
   Sea dyke density 0.2356  0.1325 0.0360 0.0080 Appendix 19c.1 
     0.0406    Appendix 19c.1 
3.3.2   Electricity network density 0.4375   0.1187 0.0264 Appendix 19c.3 
   Power line density 0.6  0.2625 0.0712 0.0159 Appendix 19c.2 
   Transformer density 0.4  0.1750 0.0475 0.0106 Appendix 19c.2 
     0    Appendix 19c.2 
     0    Appendix 19c.3 
     0.0006    Appendix 19d 
4 Vulnerability   1     Appendix 20 
          0.0005       Appendix 20 
Note: The CR < 0.1 (acceptable by Saaty (1980)) and the CR< 0.05 and 0.08 for 3 by 3 matrices and 4 by 4 matrices (acceptable by Saaty (1994)), respectively. 
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Appendix 22 Three variables within district level: a) irrigation and drainage capacity, b) electricity 
capacity, and c) road capacity were aggregated in order to represent the adaptive capacity. 
 

a) b)  

c) d) 
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Figure a + b + c → a map by AHP (input 
raster). 
 
 
[Criteria & LayerSource (clsfd.)] 
k7_6irr_re k7_6irr_re 
k7_3elec_re k7_3elec_re 
k7_rd5000re1 k7_rd5000re1 
 
[Preference Matrix] 
 k7_6irr_re k7_3elec_re
 k7_rd5000re1 
k7_6irr_re 1 1.2775 1.2 
k7_3elec_re 0.7828 1 1 
k7_rd5000re1 0.8333 1 1 
 
[*****AHP results*****] 
[Eigenvalues] 
3.0004 
-0.0002 
-0.0002 
 
[Eigenvector of largest Eigenvalue] 
0.6587 
0.5265 
0.5376 
 
[criteria weights] 
0.3824 (k7_6irr_re) 
0.3056 (k7_3elec_re) 
0.312 (k7_rd5000re1) 
 
[consistency ratio CR] 
0.0004 
(Revision of preference values is recommended if CR > 0.1) 

Figure a + c → a map by AHP (target 
raster).  
Mosaic was used to generate a map in 
Figure d 
 
[Criteria & LayerSource (clsfd.)] 
k7_6irr_re k7_6irr_re 
k7_ rd5000re1 k7_ rd5000re1 
 
[Preference Matrix] 
 k7_6irr_re k7_ rd5000re1 
k7_6irr_re 1 1.8 
k7_ rd5000re1 0.5556 1 
 
[*****AHP results*****] 
[Eigenvalues] 
2 
0 
 
[Eigenvector of largest Eigenvalue] 
0.8741 
0.4857 
 
[criteria weights] 
0.6428 (k7_6irr_re) 
0.3572 (k7_ rd5000re1) 
 
[consistency ratio CR] 
0 
(Revision of preference values is recommended if CR > 0.1) 
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Appendix 23 Three components obtained within district level: a) exposure, b) sensitivity, and c) adaptive capacity were aggregated in 
order to represent evaluating outcome of coastal vulnerability assessment. 

 

a) b) c) 
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Note: see in detail for representing exposure a) in Appendix 11d, sensitivity b) in Appendix 17c, and adaptive 
capacity c) in Appendix 22. 
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Appendix 24 The weighted overlay tool used in ArcGIS ModelBuilders. 
  

Appendix 24a.1 The weighted overlay tool used in ArcGIS ModelBuilders to generate the exposure component. 

 
Appendix 24a.2 The weighted overlay tool used in ArcGIS ModelBuilders to generate the sensitivity component. 
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Appendix 24a.3 The weighted overlay tool used in ArcGIS ModelBuilders to generate the adaptive capacity component. 

 
Appendix 24a.4 The weighted overlay tool used in ArcGIS ModelBuilders to generate the final vulnerability. 
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Appendix 24b Mapping of the vulnerability outcomes: the final vulnerability at an entire district 
a) obtained from AHP and b) obtained from the weighted overlay tool; the vulnerability within 
district level c) obtained from AHP and d) obtained from the weighted overlay tool. 
 

 

 
Note: When the weighted overlay in ModelBuilder was used (% influence), the relative weight of the layer 
exposure was 44%, those in sensitivity was 34%, and those in adaptive capacity was 22%, based on Equation 
6.6 in chapter 6: LayerV = 0.4359 * layerE + 0.3413 * layerS + 0.2227 * layerA (in which, V: vulnerability, E: 
exposure, S: sensitivity, and A: adaptive capacity). 
 
  

a) b) 

c)  d) 
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