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Abstract

Household surveys collect information about a household and data items re-

lating to one or more people within the household. Developing an efficient

strategy for dealing with missing data is essential in the current climate of

falling response rates. People within households are more likely to share

characteristics than a random group of people and this homogeneity can be

used when forming strategies for dealing with nonresponse. Amongst single

value imputation methods, linear models and donor models are commonly

used, but generally ignore relationships within households. These strategies

make use of auxiliary variables available for nonrespondents to replace the

missing value with a single value, for example a mean or donor value. Im-

putation strategies for missing items at person level will be the focus of this

thesis. The goal is to make use of correlation structures within households

to form improved imputed values for missing data.

Imputation models are developed and assessed using the hierarchical

iii



iv

structure of people within households. They are investigated for both con-

tinuous and binary missing response variables. Linear mixed imputation

models, generalized linear mixed imputation models and donor imputation

methods (random, within class and nearest neighbour) are investigated and

compared to existing methods which do not exploit this hierarchical struc-

ture. The imputation methods are evaluated using data from two large-scale

household surveys, the Household, Income and Labour Dynamics in Aus-

tralia Survey (HILDA), and the British Household Panel Survey (BHPS), on

a range of criteria relevant to household surveys.

For continuous variables a proposed household nearest neighbour method

results in improved imputed values over other donor methods, and the suc-

cess of the linear mixed model increases with the level of clustering. For

binary variables the household nearest neighbour method and generalized

linear mixed models both lead to improvements over standard donor and

generalized linear methods.

The household imputation methods are most beneficial for improving pre-

dictive accuracy and reproducing within-household clustering in the imputed

dataset. They are of some benefit for variance estimation but did not achieve

much improvement over single-level methods for bias reduction. The level of

improvement often depends on the assumed nonresponse mechanism, with

the linear mixed model more beneficial than the household donor method
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under informative nonresponse and higher levels of clustering. Otherwise,

the donor household method was generally at least as good as the multilevel

model and is less complex to implement.
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Chapter 1

Introduction

1.1 Background

Household surveys are an important source of statistical information in Aus-

tralia and most nations. The Australian Bureau of Statistics (ABS) runs an

extensive program of household surveys through its Population and Social

Statistics Program. The current household survey program (Australian Bu-

reau of Statistics, 2013) collects information on social topics such as labour

force participation, health, family, housing, education, income, expenditure,

and crime, and information on population groups such as older people, in-

digenous peoples, children and people with disabilities. Household surveys

collect information about a household and data items relating to one or more

people within the household. The structure of household survey data can

1



2 CHAPTER 1. INTRODUCTION

be described using a hierarchy with several levels; for example a four-level

hierarchy is formed when information is available describing the area, the

households selected within the area, the person or people from within the

household, and different time periods at which the survey may have been re-

peated. Measures about the group to which an individual belongs are known

as contextual variables.

Hierarchical data arise in surveys for various reasons. The focus of a

survey may be the contextual variables themselves, for example an income

survey may be particularly interested in measuring household income. Es-

timating household income requires collection of data on income from each

person in the household. Data may also take a hierarchical form when the

survey frame is created using a listing of groupings of people. Sample se-

lection is then usually carried out sequentially at the different levels, for

example sampling areas, then households then people. This is known as mul-

tistage sampling. Forming person-level population lists for household surveys

is problematic and expensive and multistage sampling reduces this onerous

task to listing all areas, the dwellings within selected areas and people within

the selected dwellings. Sampling from clusters of people also generally leads

to considerable cost savings not just in forming the survey frame but also

in reducing travel costs where face-to-face interviews are used. In household

surveys contextual variables exist at some or all of these levels. Another
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reason hierarchical data arises is when clustering is of specific interest in the

survey, for example the differences in crime rates between areas or change

in labour force status of a person over time (longitudinal analysis). People

within households and within areas are more likely to share characteristics

than a random group of people. A disadvantage of multistage designs is the

increased variance of estimates introduced due to this homogeneity, providing

less information than a random sample from the entire population. However,

within-cluster homogeneity is potentially beneficial when forming strategies

for dealing with nonresponse.

Nonresponse in household surveys can occur at any level of the hierarchy

- missing entire households, missing people within households, and missing

data items. Longitudinal surveys may also have data missing for some time

periods, however this will not be considered further, as this thesis focuses only

on data collected at a single point time period. Nonresponse can occur as

a result of non-contact, refusal or other reasons, such as language problems.

A distinction is useful between unit nonresponse and item nonresponse. For

single-level surveys nonresponding people are unit nonresponse, while nonre-

sponse to individual data items is item nonresponse. In household surveys,

unit nonresponse can be household level (when an entire household is nonre-

sponding) or person-level (when people within the household are missing). If

the household or person has partially responded this results in either house-
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hold or person-level item nonresponse. In practice when there is a large

amount of item nonresponse for a particular household or person, all of the

information may be discarded and the person or household treated as unit

nonresponse. If a household is nonresponding it will usually be excluded from

the analysis dataset, and weighting methods used to compensate for the non-

response. If a person is nonresponding within a responding household they

may or may not be included on the unit record file. This has implications

for calculating household totals such as household income. Person-level item

nonresponse also creates problems for estimating household totals, and this

is the level of nonresponse which is the focus of this thesis.

Missing data are regularly dealt with through weighting or imputation.

Weighting strategies are more commonly used for dealing with unit nonre-

sponse (household or person level), where no records exist on the analysis

dataset. Weighting involves assigning each responding unit on the file one or

more weights, where the weights of responding units are designed to compen-

sate for nonrespondents and account for the use of unequal probabilities of

selection in the original sample selection process. A simple weighting strat-

egy might involve calculating weights for respondents to reflect the original

sample selection probabilities, and may also involve adjusting these initial

weights to meet independent population benchmark counts.

Missing data are undesirable as they can lead to bias and increased vari-
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ance of point estimators (Haziza, 2009), as well as difficulty in applying

standard analysis techniques, which often rely on complete data. Developing

an efficient strategy for dealing with missing data is essential in the current

climate of falling response rates. Strong evidence was found of increasing dif-

ficulty to make contact with households in six major U.S. household surveys

(Atrostic et al., 2001), which in 1990 had initial household nonresponse rates

ranging from 4.3% to 16.3% but by 1999 had worsened to between 7.5% and

28.0%. Income questions in particular have much higher item nonresponse

(typically 20-40%) than non-income items (around 1-4%) (Yan, Curtin, and

Jans, 2010). In the Australian context, the Household Income and Labour

Dynamics of Australia Survey (HILDA) has less than 2% nonresponse for

most data items (Watson, 2007), however, much higher nonresponse occurred

for questions concerning income wealth and expenditure. When income com-

ponents were summed for this survey, between 9% and 15% of persons had

missing total income in the first five waves. For households this rose to be-

tween 22% and 29%. Imputation is a typical post-survey strategy for dealing

with missing data. An imputation model is formed to predict the unknown

value based on other known data (Groves and Couper, 1998) to ensure that

the resulting inference has good properties (e.g. Rubin, 1996).

Imputation strategies are generally used for item nonresponse. A single

value may be imputed, or more than one value to create multiple imputed
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values. For an end-user of an analysis dataset a single value impute can be

misleading, as the imputed value may appear to have the same certainty as

respondent values. Multiple imputation strategies make more explicit the

variability associated with the imputed value, and provide a means to esti-

mate this variability. Multiple Imputation (MI) may be considered ‘proper’

or fractional. Proper MI involves specification of a prior distribution for the

missing data values and repeated drawing of the imputed values from the

posterior distribution of the missing values. Fractional imputation refers to

repetitions of the imputation process which are combined in a way which

depends on the process used to draw the imputed values. Both methods

create more than one impute, hence multiple complete datasets can be anal-

ysed. The resulting estimators are summarised to get a mean estimate over

all imputed values, and an associated variance which incorporates both the

sampling and imputation variance (e.g. Rubin, 1996).

Amongst single value imputation methods, linear models and donor mod-

els are the most frequently employed. Mean imputation involves calculating

the mean of the variable of interest over all respondents, then replacing miss-

ing values of the variables with this average. Mean imputation can also

be carried out within classes defined by available auxiliary variables (Lit-

tle, 1986b, Haziza and Beaumont, 2007) or can be derived from a regression

model. Donor methods are obtained through a draw from the set of respon-



1.1. BACKGROUND 7

dents, which has the advantage of resulting in a continuous or binary impute

depending on which is being imputed. The method of selecting a donor

may be as simple as assigning a random respondent’s value to a nonrespon-

dent or may make use of auxiliary variables for which data are available on

both respondent and nonrespondents to form donor classes (e.g. Kalton and

Kasprzyk, 1982).

Imputation methods can be either deterministic or stochastic in nature.

For example mean imputation is considered deterministic in nature as, given

the sample data, the resulting impute is fixed. In contrast a random donor

method is an example of a stochastic method. Donor methods can also be

deterministic if there is no random mechanism in the selection of donors.

Another stochastic imputation method is to take one or more draws from a

fitted distribution conditional on the data.

Bankier (1999) combined editing and imputation principles in defining

the imputation methodology used for the 1996 Canadian Census. Donor

households were identified to create realistic imputed values within house-

holds, and these were selected to minimise the number of violated edit rules.

This thesis will consider the imputation process separately from the editing

strategy, and focus on predictive and estimation accuracy gains when imput-

ing individual variables in the household setting, rather than the number of

edit rules met.
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While it is routine to consider whether an imputation strategy preserves

univariate and multivariate population distributions (David et al. 1986 and

Marker, Judkins, and Wingless 2002), in a household survey setting there

are additional considerations. An important evaluation criteria specific to

household surveys is the ICC. Preserving relationships with the household

may be of particular importance in a household survey, for example a survey

collecting data on income may aim to improve understanding of the varying

income levels of people within a household. If there are strong correlations

or other associations between individuals within a household there may be

additional benefit in predictive accuracy in using the known values from re-

spondents to impute nonrespondents in the same household. Clark and Steel

(2002) found within-household unadjusted intra-class correlations (ICC) in

the range of 0.03 (for whether a full-time student) to 0.86 (for English as

a second language) with correlations typically between 0.1 and 0.3. Taking

within-household correlation into account would be expected to improve both

accuracy of the imputed value, and preservation of within-household ICC. If

household structure is ignored in imputation then not only is potentially

valuable information being disregarded, but the resulting imputed values

may distort within-household patterns. Often household survey objectives

include understanding relationships within households, and household-level

attributes such as aggregates of person-level items. Therefore imputation
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should not only accurately reproduce univariate and multivariate relation-

ships but also within-household correlations.

Naturally, the end use of the dataset should be considered when choosing

an imputation method. If the only aim is to estimate population means or

totals, then intra-household correlation can safely be ignored in the imputa-

tion model, as only first order moments need be correctly specified. If the

variances of estimators of means or totals are to be estimated, then the impu-

tation model must also correctly specify the second moments of the variables

requiring imputation (Haziza and Rao, 2010), although it is probably suffi-

cient to correctly specify variances but not covariances. If within-household

relationships, for example income variation within household, or even mean

household income, will be considered by some analysts, then imputation

should preserve these relationships.

1.2 Purpose of research

This thesis will deal specifically with imputation strategies for missing item

level data. The aim is to make use of correlation structures in the data

hierarchy, such as within households, to form improved imputed values for

missing data.

The goal of imputation is to reduce nonresponse bias in survey estimates
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and to allow analysis by complete-data methods. The purpose of this thesis

is to investigate whether incorporating the multilevel structure of household

survey data into the imputation model improves the quality of the resulting

imputed values, for example by reducing bias and variance of estimates.

In the household survey setting there is also an added dimension to the

quality of the imputation method: preserving clustering within households.

This will be particularly important when the imputed data are used for

analysis of household attributes, or within household relationships, which

are of importance in economic and social policy development.

The first model required when developing an approach to missing data

is a nonresponse model. This model can be defined at household level (e.g.

Groves and Couper, 1998), person level (e.g. Ezzati-Rice and Khare, 1994)

or item level (e.g. Little, 1982), or a combination of these (e.g. Durrant and

Steele, 2009, Wun et al., 2007). Its purpose is to describe the mechanism

driving the nonresponse. The performance of any imputation method de-

pends heavily on the mechanisms that led to the missing values (Little and

Rubin, 1987, p.39). The model is required to understand what variables are

correlated with response status, so that appropriate assumptions are made

when forming an imputation model.

After the nonresponse model has been determined the imputation model

can be developed. When developing the imputation model the ultimate use of
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the data, or the analyst’s model, must be considered (Schafer, 1997, p.143).

This includes whether analysis will be univariate or multivariate, whether

interactions will be modelled, and whether analysis will be carried out at

person or household level. Household survey unit record data files are in-

creasingly being used by large numbers of users who use a range of statistical

analysis methods and so the focus of this thesis will be on imputation for gen-

eral purposes, such as unit record files, and will use the hierarchical structure

formed by households in developing the imputation model. A set of criteria

suitable to household surveys will be used to assess the effects on estimates

of proposed imputation models, including means, proportions, and variances,

as well as intra-class correlations.

The estimation model, or analyst’s model, is used to to combine the

observed and imputed data to form survey estimates (Schafer, 1997 and

Rubin, 1976). The appropriate choice of variance estimation to account for

imputation variance is also part of the estimation process (Rao, 1996).

When evaluating imputation methods using simulated data a fourth model

is required, the simulation model, for the values of the variable of interest.

Both responding and nonresponding data can be simulated using a model.

When nonresponse is simulated, factors such as the level of nonresponse,

nonresponse mechanism and intra-household correlation can be modelled.

Alternatively the survey respondents can be treated as the full dataset and
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nonresponse simulated by applying the nonresponse process to the respon-

dent dataset. This thesis will use real data to assess the imputation model,

but also simulate higher, artificial levels of clustering to asses the ability of

the imputation method in a variety of situations. Several nonresponse mech-

anisms will be applied at person and household level to allow evaluation of

imputation methods for household data under different assumptions for the

cause of nonresponse.

Mixed models are in established use for the analysis of multilevel data

(Goldstein, 1995, Raudenbush and Bryk, 1992 and Raudenbush and Bryk,

1992), but are only more recently being considered for imputation of missing

values in multilevel settings (Yucel, 2008, Yucel, 2008, Carpenter, Goldstein,

and Kenward, 2011 and Carpenter, Goldstein, and Kenward, 2011). Im-

putation using mixed models has been applied, and evaluated, in datasets

with reasonably large cluster sizes, for example Yucel (2008) considered im-

putation of children with special health care needs within states. In house-

hold surveys cluster sizes are typically very small (averaging 2-3 people per

household) and ICC’s may be stronger, so the use of a more complex model

might be of more benefit. In Australia the distribution of household sizes is

approximately as follows: 33.2% one person households, 48.8% two person

households, 12.0% three person households, and 6.0% households of size 4 or

more (Clark and Steel, 2007). While these methods will be of no benefit for
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imputing item nonresponse for a cross-sectional survey in the 33.2% of one

person households, the remaining 66.8% of households potentially have one

or more respondents to draw on.

These are the fundamental questions to be addressed in this thesis: whether

there is benefit in using an imputation strategy using household attributes,

and in which situations (for example level of clustering or nonresponse mech-

anisms) is pursuing an imputation strategy using household information

worthwhile?

1.3 Scope of research

The focus of this thesis is on missing item level survey data in cross-sectional

household surveys. Imputation methods will be developed and assessed mak-

ing use of the hierarchical structure formed by people within households.

Area-level effects are a potentially useful extension as an additional level of

hierarchy considered, but will not be covered. Generally speaking a higher

level of ICC would be expected within households than in geographic areas,

so the former is the focus of this thesis. The imputation methods will assume

an all persons per household sample design.

Imputation methods will allow for missing data in the response variable,

and will be investigated for both continuous and binary variables. Linear
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mixed imputation models, generalized linear mixed imputation models and

donor imputation methods (random, within class and nearest neighbour) will

be investigated and compared. These methods will make use of information

about respondents within the household in different ways in forming the

imputed values for the missing data. Characteristics such as age and sex

will be used as auxiliary variables as they are generally collected on the

household form and are therefore widely available for all people in responding

households. As this thesis includes comparisons across different imputation

methods, a simple and consistent set of auxiliary variables will be chosen and

applied across all models.

Producing accurate imputed values and population estimates will be cen-

tral to the development of hierarchical imputation methods in this thesis.

Methods for estimating variance will not be the focus but will be addressed

in part using multiple imputation.

Item nonresponse can be considered missing completely at random (MCAR),

missing at random (MAR) - that is dependent on some variable(s) other than

the response variable, or missing not at random (MNAR) - dependent on the

response variable. These terms will be further defined in Section 2.3.2. All

theoretical results will be based on the assumption that data are MAR how-

ever the proposed imputation methods will be assessed via simulation studies

under a range of assumptions about the mechanism for nonresponse, includ-
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ing MCAR, MAR and MNAR. The nonresponse mechanism will be varied

at both household and person-level.

1.4 Thesis structure

In Chapter 2 notation will be defined, followed by a review of existing litera-

ture on multilevel models, missing data frameworks and imputation methods,

and their relevance to household surveys. The current literature for impu-

tation of missing hierarchical data will be detailed, particularly item level

missingness. This chapter will also include details on classifying missing

data, methods of describing the missing data pattern, imputation methods,

and model development.

In Chapter 3 linear mixed models for imputation will be considered for

continuous variables. Single-level linear models are commonly used in im-

putation of hierarchical data, and the linear model will be extended to the

mixed model to account for clustering present in household survey data.

Model development and estimation will take place under the assumption of

a continuous response variable with missing values, and a set of partially or

completely observed covariates. An integral part of this thesis is the evalua-

tion of various aspects of imputation methods including mean squared error,

bias, reproduction of unit variances, and intra-household correlations. Sim-
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ulated scenarios will include differing levels of within-household clustering,

and various nonresponse mechanisms. The imputation methods will be ap-

plied to missing data in a simulated dataset based on real survey data, and in

an application to estimating the proportion of people earning on, or below,

the Federal Minimum Wage. Lastly, mean imputed values will be derived

under a linear model and linear mixed model and the results compared in

the household survey context.

The methods of Chapter 3 will be extended in Chapter 4 to include a

stochastic component in the imputation process. Both single and multiple

imputed values will be produced under the linear mixed imputation model.

The stochastic component should address any issues with bias which may

arise from the use of deterministic imputed values based on linear mixed

models. The application to Federal Minimum Wage will be re-visited as will

the consideration of imputing on the log-scale. Both Chapters 3 and 4 will

use data from the HILDA survey.

Chapter 5 will investigate the use of generalized linear mixed models

for imputation of missing binary data in household surveys. Generalized

linear mixed models with logit and probit link functions will be compared to

generalized linear models to determine whether, and when, random effects

are beneficial. The comparison will include single stochastic and multiple

imputed values, and the models will be applied to data from the British
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Household Panel Survey (BHPS).

Donor methods are sometimes preferred over linear imputed values as

the substituted data come from survey respondents, rather than a model,

and hence represent actual survey realisations. Chapter 6 will look at donor

methods dealing with both continuous and categorical missing data. Methods

of using household characteristics to identify donors will be addressed, and

existing donor imputation methods, such as random donors and within-class

donors, will be compared to new methods. These household donor methods

will be compared to the mixed models of Chapters 3-5 to assess their relative

performance for both continuous and binary data.

The thesis will conclude with a summary of overall conclusions and impli-

cations for developing imputation methods in the household survey context.

Directions for further research will then be identified.



18 CHAPTER 1. INTRODUCTION



Chapter 2

Literature Review

2.1 Notation

Generally speaking, matrices will be represented using bold upper-case (e.g.

A) and vectors will be bold lower-case (e.g. y). To represent a column of

a matrix the corresponding lower-case letter will be used in bold with the

appropriate subscript to identify the particular column (e.g. a1 for column 1

of A). An element of a matrix will be represented by the lower case letter in

standard font with the appropriate subscripts (e.g. a11). Elements of a vector

will be lower-case with the appropriate subscript to identify the element (e.g.

y1 for the 1st element of the vector y).

Assume a sample of m households is selected from a finite population U of

size M . The sample has households as primary sampling units and each in-

19
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scope person in the household is selected. In practice there may be an initial

stage of selection of areas, but this will be ignored to concentrate on peo-

ple within households where intra-class correlations are higher and of more

intrinsic interest. Let s denote the sample of households with at least one

respondent. Each household j = 1, ...,m ∈ s consists of persons i = 1, ..., Nj,

with n = ∑m
j=1 Nj. A set of p explanatory variables xij are assumed com-

pletely observed on each person in the sample and the outcome variable Yij is

observed only for responding people. The notation Y = (Yo,Yu) is used to

segregate the outcome variable in the sample into item-respondents Yo (ob-

served) of size no and item nonrespondents Yu (unobserved) of size nu where

n = no + nu. Also let X = (Xo,Xu) be the matrix of explanatory variables

representing the full respondents and partial respondents respectively.

Let Iij be a sample selection indicator such that Iij = 1 if person ij is

selected in the sample s (i.e. they are in a selected household j = 1, ...,m)

and 0 otherwise, and Rij indicate response status for outcome variable Y for

person ij such that Rij = 1 when Yij is observed and 0 otherwise. Let Y ∗ij

be the imputed value of Yij (when Rij = 0) and Y ∗ij = Yij when Rij = 1.

For simplicity, it is assumed that there is no unit nonresponse, although

this could easily be accommodated by defining the sample to consist of unit

respondents only. The main difference in practice between imputing for item

and unit nonresponse is that there are typically many more covariates that
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can be used in models for item nonrespondents.

Let P (.) denote a probability (or probability density function), and P (.|.)

be a conditional probability (or probability density function). p(I) denotes

the probabilities of selection for each person ij ∈ U and hence defines the

sampling mechanism. The probability distributions for I and R will be re-

ferred to as the inclusion mechanism and the response mechanism respec-

tively (as distinct from using the term models which will be used to describe

the probability distributions relating X and Y). P (I|XP,YP) is the sam-

pling mechanism (which is assumed not to depend on R), where XP and YP

are the population values of X and Y . P (R|X,Y, I) will denote the response

mechanism.

2.2 Multilevel models

Hierarchical models are generalisations of single-level models which allow pa-

rameters to vary at more than one level (Bryk and Raudenbush, 1992). In

addition to being referred to as hierarchical models they are also referred to

as multilevel models (e.g. Goldstein, (1995) and Feder, Nathan, and Pfeffer-

mann, (2000)), mixed models (e.g. Breslow and Clayton, 1993) and random

intercept or random coefficient models, depending on their specific form. The

terms multilevel and mixed models will be used through this thesis. This sec-
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tion details how multilevel models can be applied in a household survey data

setting. Household survey data has an inherent hierarchical structure. The

people selected in household surveys are not independent draws from an en-

tire population, but are correlated within households (Clark and Steel, 2002).

For this reason is important that statistical models looking at person-level

attributes do not consider the survey participants to be independent of each

other, but sharing common characteristics which can be used in modelling.

Multilevel models provide a framework under which the household and per-

son structure can be accounted for by estimating the variation in the response

variable attributable to each level in the model.

2.2.1 Specifying the multilevel model

Multilevel modelling is carried out to estimate parameters for data with a

hierarchical structure. This allows simultaneous modelling of the variation

in the response variable at more than one level.

The general form of a two-level multilevel linear model (Goldstein, 1995,

p17) with a single covariate, but allowing both the the intercept and slope

to vary across clusters is:

Yij = β0j + β1jxij + eij (2.1)
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where

β0j = β0 + u0j

β1j = β1 + u1j

and u0j, u1j are random variables with E(u0j) = E(u1j) = 0, var(u0j) =

σ2
u0, var(u1j) = σ2

u1, cov(u0j, u1j) = σu01 and var(eij) = σ2
e . The model can

be equivalently expressed with a fixed part (consistent across clusters) and

random part (allowed to vary across clusters) as follows:

Yij = β0 + β1xij + (β0j + β1jxij) + eij (2.2)

This model differs from single-level models as there is more than one residual

term, which effects the estimation procedure.

Multilevel models have been used in the analysis of clustered survey

data (Carle, 2009), longitudinal data (Haynes et al., 2011), and in partic-

ular household survey data. For example Chandola et al. (2003) separated

factors effecting social inequality in health at household and individual levels

using a hierarchical model with households as clusters.

A standard single-level linear model relating a person-level response vari-

able, Yij to a vector of person-level covariates xij and household-level covari-

ates Zj is

Yij = xTijβ0 + ZT
j β1 + eij (2.3)
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with eij ∼ N(0, σ2
e).

The error term eij is independent even within household, although household-

level covariates are reflected in Zj.

In its most simple form, a single household-level random effect uj is as-

sociated with each household:

Yij = xTijβ0 + ZT
j β1 + uj + eij (2.4)

with uj ∼ N(0, σ2
u) and eij ∼ N(0, σ2

e). This is referred to as a random

intercept model. Models can also be specified allowing slope parameters to

vary across households however this type of model will not be investigated

in this thesis. When only using person-level covariates, this model can be

simplified to:

Yij = xTijβ + uj + eij (2.5)

2.2.2 Variance partitioning coefficient and intra-class

correlation

The intra-class correlation coefficient, also known as the intra-unit or intra-

cluster correlation, is a measure of the homogeneity of a class or cluster

with respect to a variable of interest. There are several definitions of the

ICC, three of which will be discussed below. ICC has also been referred to
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as the variance partitioning coefficient (Goldstein, 1995), which is a more

general term and a more accurate description for the variance ratio in more

complicated models where a simple correlation interpretation is not possible.

The most simple form of the ICC arises from a variance components

model, which consists of random cluster level intercepts, but no fixed effects:

Yij = β0 + β1j + eij

eij ∼ N(0, σ2
e)

β1j ∼ N(0, σ2
u)

where Cov(β1j, eij) = 0. In this case the ICC, ρunadj, is defined as the pro-

portion of the total random variation in the response variable, due to the

variance of the random cluster level effect (e.g. Bryk and Raudenbush, 1992,

p.18):

ρunadj = σ2
u

σ2
u + σ2

e

= corr(Yij, Ykj) for i 6= k (2.6)

The ICC is estimated by fitting the variance components model, and replac-

ing the variance components in the ICC with their estimates from the model

(e.g. West, Welch, and Galecki, 2007). The ICC in this form is constrained

to be between 0 and 1 and takes high values when there is a large amount of

variation between clusters relative to the variation within clusters, resulting
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in a high level of homogeneity within clusters.

A second measure of intra-class correlation is the adjusted, or conditional,

ICC (e.g. Raudenbush and Bryk, 1992, p.66) which measuries within-class

variation after controlling for one or more covariates. The adjusted ICC (ρadj)

is estimated by fitting a model with a fixed effect in addition to a random

intercept, and using Equation 2.6 with the revised variance estimates. In

this case the ICC represents the residual variation, after considering the

contribution of the covariates, which exists within a cluster or household.

Another measure of intra-class correlation (Cochran, 1977, p.24) is a cor-

relation coefficient between units within a cluster, and therefore may take

both positive and negative values:

ρcochran = E[(Yij − ¯̄Y )(Ykj − ¯̄Y )]
E[(Yij − ¯̄Y )2]

= 2∑i

∑
i<k (Yij − ¯̄Y )(Ykj − ¯̄Y )

(M − 1)(NM − 1)S2 (2.7)

for clusters of equal size, where M is the cluster size, N is the total number

of clusters, S2 = ∑
i,j (yij − ¯̄Y )/(NM − 1) is the variance among all units

and ¯̄Y = ∑
yij/NM is the mean of the response variable per unit.

2.2.3 Modelling longitudinal data with multilevel mod-

els

Longitudinal or repeated measures data have a dependent residual structure,

as it is unreasonable to assume that the residual for a person at time 1 will



2.2. MULTILEVEL MODELS 27

be uncorrelated with their residual at time 2. This adds an extra layer of

complexity to the modelling process. This layer of complexity is sometimes

considered of particular interest in the survey (for example when interested

in measuring variation over time) and other times is a nuisance (for example

when estimating a marginal model using data from different time points).

However, the issue remains that there is a correlated data structure which

violates many standard statistical models used in non-longitudinal settings.

Many types of models have been proposed for longitudinal data. For exam-

ple, generalized linear models are used by Diggle et al. (2002) and Liang and

Zeger (1986), both employing Generalized Estimating Equations to estimate

the model parameters. Event history models are used to model longitudinal

data (Allison, 1984) as are time series models (for example Zeger and Liang,

1986). Multilevel models have the advantage of allowing different numbers

of observations observed at the lowest level, for example unobserved mea-

surements on some occasions (Laird and Ware, 1982). This type of model is

desirable when analysing unbalanced longitudinal survey data, such as survey

data subject to nonresponse (either unit or item nonresponse). The following

paragraphs will look specifically at multilevel models for accounting for the

time-dependence among observations.

Several authors have considered a two-level model accounting for a time-

dependency in longitudinal data pertaining to individuals, not allowing for
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household structure. Goldstein, Healy, and Rasbash (1994) consider using

a two-level model for repeated measures data, with successive observations

i at level 1, clustered within individuals j at level 2, and an autoregressive

term for the level 1 residuals:

Yij =
∑
k

Xijkβk +
p2∑
l=1

Z2lije2ij +
p1∑
m=1

Z1mije1mij (2.8)

where Z1 and Z2 are random coefficient vectors of length p1 and p2 ob-

served at levels 1 and 2 respectively, and level 1 residuals autocorrelated:

E(e1mij e1mij′) 6= 0. One of the models for the level one residuals proposed

in Goldstein, Healy, and Rasbash (1994) is a single-level AR(1) stationary

model:

et = ρet−1 + vt

var(et) = σ2
e

var(vt) = σ2
v

E(vt) = 0

which is fitted by firstly estimating ρ and σ2
e excluding the autoregressive

component, then forming an initial estimate for the parameters associated

with the time series model, and then iterating until convergence.

Three-level models for repeated measures within households over time

are addressed elsewhere, e.g. Feder, Nathan, and Pfeffermann (2000) discuss
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household panel surveys such as the U.S. Survey of Income and Prograamme

Participation which is designed for longitudinal social and economic analysis

of households and individuals, and surveys individuals every 4 months on

their work history, and the three levels are formed by repeated observations

(level 1) for people (level 2) within households (level 3).

Although these types of models will not be considered further in this

thesis, the expansion of imputation methods from two to three levels to

include area level effects or longitudinal measurement as well as household

effects is an area of potential further research.

2.2.4 Estimating model parameters

Several methods are available to estimate multilevel model parameters. These

include full information maximum likelihood methods such as iterative gen-

eralized least squares (IGLS) (Goldstein, 1986) or the Gauss-Newton scor-

ing method. Also restricted or residual maximum likelihood methods us-

ing restricted iterative generalized least squares (Goldstein, 1989), expecta-

tion maximisation (EM) (Dempster, Laird, and Rubin, 1977), Fisher Scoring

(Longford, 1987), and empirical Bayes estimation (Carlin and Louis, 1996)

can be used.

The process of estimation by IGLS was described in Goldstein (1986)
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and shown to be equivalent to maximum likelihood estimation under mul-

tivariate normality. This method generally starts with the ordinary least

squares estimates of the fixed effects and iterates between estimation of the

fixed coefficients and variance components. Maximum likelihood is known to

produce biased estimates of the variance components (Goldstein, 1986) by

ignoring the sampling variation of the fixed component, although the bias

is small for large samples. Therefore Goldstein (1989) proposed a restricted

IGLS and restricted maximum likelihood approach which corrected the bias

issues.

The Fisher scoring algorithm (Longford, 1987) was designed to carry out

maximum likelihood estimation, with the goal to converge quickly by avoid-

ing the transformation of large matrices. The algorithm was implemented in

the software VARCL.

The EM algorithm (Dempster, Laird, and Rubin, 1977) is used to esti-

mate unknown parameters of the underlying, theorised distribution of data

when some of the data are missing. The missingness problem is addressed by

iteratively solving complete-data problems until convergence is reached. Both

the model parameters and the non-responding data elements are considered

missing and are estimated using the iterative process until convergence of the

parameters to point estimates is achieved. The method can be considered

informally as follows. Firstly there is an initial estimate of the model param-
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eters. This allows the expectation of the missing data values to be found,

using the assumed parameters to replace the unknown parameters in the

model (the ‘E’ step). These expected values are used to create a new dataset

of observed and missing data, and hence a complete-data likelihood function,

which is maximised to find an improved estimate for the model parameters

(the ‘M’step). This parameter estimate is in turn used to re-estimate the

expectation of the missing data and the process continues until convergence

is achieved. The method was formalised and given its name in Dempster,

Laird, and Rubin (1977), however had been in use in more specific appli-

cations prior to this time. The EM algorithm was employed by Ecochard

and Clayton (1998) to estimate random effects for doubly crossed and nested

hierarchical data involving repeated insemination cycles in a French donor

program. The estimation of standard errors using in this approach was im-

proved on in Clayton and Rasbash (1999) who used the stochastic data aug-

mentation algorithm of Tanner and Wong (1987) to impute the missing data

(random effects) by sampling from the distribution of the missing data con-

ditional on the observed, and the current model parameters, then sampling

new parameter values from the complete distribution to be used in the next,

iterative, imputation step.



32 CHAPTER 2. LITERATURE REVIEW

2.3 Statistical inference in the presence of miss-

ing data

This section reviews how missing data is described and measured, and its

effect on statistical inference. This includes the missing data pattern, causes

of the missing data, and models for the nonresponse mechanism. Strategies

for dealing with missing data when making inference about the population

of interest are also discussed.

2.3.1 The missing data pattern

When dealing with a dataset with missing data, a natural first step is to

determine what data items have missing values, how much of each item is

missing and the relative importance of the items. This will direct the level

of time and resources put into dealing with the missing data. One way to

summarise this information is to describe the missing data pattern, that is

the pattern of missing and observed data over the full data matrix of interest.

The missing data pattern in a particular sample can be expressed by listing

the possible combinations of whether the variables of interest are missing or

observed, and the sample frequencies associated with each.

For example, given three variables of interest, y1, y2 and y3 the missing

data pattern can be written as:
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Missing Data

Pattern y1 y2 y3 n

1 observed observed observed nA

2 observed observed missing nB

3 observed missing observed nC

4 missing observed observed nD

5 observed missing missing nE

6 missing observed missing nF

7 missing missing observed nG

8 missing missing missing nH

where n is the count of observations in the sample with each particular miss-

ing data pattern.

The missing data pattern can be described as univariate, monotone or

arbitrary. Let y1, y2, ...yp be a set of variables of interest, where some or all

of the observations for each variable may be missing. A univariate missing

data pattern arises when there is missingness in only one variable. A mono-

tone data pattern arises when the data can be ordered such that if yk is

missing, then so are yk+1, yk+2, ..., which occurs for example in drop-out for

a longitudinal survey, provided dropouts do not later return to the survey.

All other missing data patterns are considered arbitrary.

In the case of three variables considered above, one example of a monotone

missing data pattern is when nB, nC , nE and nF are all 0 (Little and Rubin,

1987):
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Missing Data

Pattern y1 y2 y3 n

A observed observed observed nA

D missing observed observed nD

G missing missing observed nG

H missing missing missing nH

A monotone missing data pattern is useful for sequential imputation meth-

ods, as each variable can be imputed in sequence, starting with the variable

with the least missing observations and imputing the missing cases (imputing

the nH missing cases of variable y3 in the example above), then allowing the

imputed variable to be used in the imputation model for the next imputed

variable.

An arbitrary missing data pattern can make use of an initial imputa-

tion strategy to form a monotonic missing data pattern, then a sequential

imputation method is used. Or an alternative imputation strategy may be

developed, such as a multivariate imputation strategy which does not require

a monotone missing data pattern. In a multivariate imputation strategy each

missing data item is imputed using the values of all the observed data items.

One method of creating a monotone missing data pattern is to delete ob-

servations which do not follow the required missingness pattern as discussed

in Horton and Kleinman (2007), however this will mostly likely lead to an

introduction of nonresponse bias.
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2.3.2 The response mechanism

After the missing data pattern is assessed, a model for the response mecha-

nism can be developed. Groves and Couper (1995) consider nonresponse in

household interview surveys as arising from the following potential sources:

• Refusals (rf);

• Noncontacts (nc); or

• Other noninterviews (nio).

As the response rate and the nonresponse bias introduced by these groups

of nonrespondents may be different, they express the mean for a variable of

interest, y, in terms of each of these sources of nonresponse. For a sample

of n = r + m responding and missing cases, the respondent mean ȳr can be

expressed as a function of the full sample mean, yn, and terms combining

the response rate for each response source and the differences between the

respondent mean and the mean for each nonresponse source (Groves and

Couper, 1995, p.12):

ȳr = ȳn + mrf

n
(ȳr − ȳrf ) + mnc

n
(ȳr − ȳnc) + mnio

n
(ȳr − ȳnio) (2.9)

This expression makes explicit the bias introduced by each type of nonre-

spondent, and that its impact depends on the nonresponse rate for that

group.
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Item nonresponse is a similar phenomenon, where one or more questions

have nonresponse for a survey participant. Leeuw, Hox, and Huisman (2003)

differentiate between three types of item nonresponse, firstly when the par-

ticular question was not responded to by the person (e.g. refused, not known,

overlooked), secondly when the response was unusable (e.g. out of scope re-

sponse), and finally when the useable information was lost during the survey

process (e.g. data entry error). If the cause of the missingness is known, it

may help develop a model for the nonresponse mechanism.

The nonresponse mechanism is often considered as a second phase of

sampling, with the first phase consisting of the selected sample with known

probabilities of selection, and the second phase consisting of the responding

sample, with unknown probabilities of response. The probability function for

the missing data mechanism is given by f(R|Y), which must be modelled.

Two-phase estimation methods can then be used using both P (I|X, Y ) and

f(R|Y).

Imputation methods are developed based on either implicit or explicit as-

sumptions about the response mechanism. The missing data inference frame-

work of Rubin (1987a) describes the response mechanism in distinct classes:

missing at random (MAR), missing completely at random (MCAR) and not

missing at random (MNAR). For a single variable Yij with observed vari-

ables xij, when the missing data mechanism is MCAR, P (Rij|Yij, Iij,xij) =
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P (Rij|Iij), that is the response status is independent of both the observed

and unobserved data. Under MAR, P (Rij|Yij, Iij,xij) = P (Rij|Iij,xij) and

the response status is random after conditioning on the observed data. When

the missing data mechanism is MNAR, the nonresponse status is dependent

on the outcome variable in a way that can’t be conditioned away by known

variables. Imputation methods often assume the response mechanism is ei-

ther MCAR or MAR. The issue then is identifying variables x that make

this assumption true. The nonresponse mechanism is considered ignorable

when the data are MAR and the parameters in the data analysis are in-

depedent of the nonresponse model (Schafer, 1997). In a household survey

setting both the nonresponse model and the imputation model could rea-

sonably be expected to depend on information concerning the household or

other respondents within the household. Imputation methods allowing for

information about other respondents in the household are rare, however one

recent example is Hayes and Watson, 2009, p.19 which describes an appli-

cation where the respondent’s partner’s information was used in a nearest

neighbour regression imputation model. The simulation study which will be

described in Chapter 3 considers household-level factors in both the non-

response and imputation models and assesses their performance relative to

models without household information.
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2.3.3 Methods of dealing with missing data

A broad classification for methods of dealing with missing data (Rubin,

1987a) is:

• Procedures based on completely recorded units;

• Imputation-based procedures;

• Weighting procedures;

• Model-based procedures.

The simplest method of dealing with missing data is by excluding any

records with missing or partially missing data and performing analysis on

completely recorded units only. This method, known as the available case

method (Nordholt, 1998), can lead to significant data loss, as entire house-

holds may be excluded on the basis of a small amount of missing data, or

just one missing data item.

Another approach is by imputation-based procedures, and such methods

may be considered deterministic or stochastic. Deterministic methods always

produce the same impute given a set of characteristics and stochastic methods

have a random component. Deterministic methods often give the best results

in terms of prediction of individual missing values, but typically lead to
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imputed datasets with artificially low variability. Stochastic imputed values

are typically more realistic in terms of their distribution and variability.

When a single impute is derived and the value is treated as observed,

with standard variance estimation methods employed, the true variance can

be seriously underestimated (Rao, 1996). Multiple Imputation (MI) is one

way of accounting for the inflation in variance due to imputed values. Rubin

(1987a, p118-119) requires a set of conditions to be met for the multiple

imputed values to be considered ‘proper’ and the resulting inference to be

valid in a Bayesian framework. Proper imputation allows the additional

posterior variance due to the imputation method to be accounted for through

explicit formulae (Rubin, 1988). In the case of publicly released unit record

files, this approach requires the multiply imputed datasets to be available to

users. Another method of producing multiple imputed values is by repeated

imputation, that is repeatedly applying a stochastic imputation method such

as a hot deck (Durrant, 2005).

An alternative approach to dealing with nonresponse is by weighting.

Weighting is more typically used for dealing with unit nonresponse than item

nonresponse. One such method is to divide the sample into adjustment cells,

and to adjust the weight given to respondents by the inverse of the response

rate in that cell (Little and Rubin, 1987, p55). Current developments in

dealing with unit nonresponse in household surveys through weighting are
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discussed in Brick (2013). One of these recent developments is the use of

a multilevel logistic model of response propensity (Skinner and D’Arrigo,

2011). Inverse probability estimators based on this model were found to

reduce the bias due to nonresponse when clusters are large and the intra-

cluster correlation of both the survey variable and the response propensity

are sufficiently high. The method worked less well for clusters containing

less than 20 units but was only assessed down to clusters of size 5, so its

performance on household survey data with generally smaller cluster sizes is

not demonstrated.

2.4 Imputation methods

Imputation (Rubin, 1988, Little and Rubin, 1987) is a desirable approach

to dealing with missing data because it can avoid the loss of partially or

fully responding survey units (Little and Rubin, 1987, p.43), and results in a

complete dataset, allowing standard data analysis methods to be used. This

section describes imputation methods which may be applied to household

data, and some issues which arise when undertaking imputation. It is as-

sumed that a variable y contains missing values and there is available a set

of fully observed covariates xij.
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2.4.1 Selecting auxiliary variables to define the impu-

tation model

The imputation model should incorporate variables that are potentially re-

lated to the dependent variable, and also variables that are potentially related

to the missingness of the dependent variable (Schafer, 1997, p.143, Sarndal

and Lundstrom, 2005). Schafer (1997) also recommends that the imputation

model is general enough to preserve associations among variables that may

be used in subsequent analysis of the imputed dataset. The same rationale

applies in household surveys to the clustering of a variable within households.

In building an imputation model, the missingness of these auxiliary variables

must also be taken into account. Ideally there would be no nonresponse in

the auxiliary variables, but in practice this may sometimes occur. For item

nonresponse, where one or a small number of items are unknown, a rich set of

auxiliary variables may be available. For unit nonresponse, where a person in

a responding household is a nonrespondent, the choice of auxiliary variables

is more limited.

2.4.2 Linear imputation methods for household data

Linear regression models are regularly used for imputing missing continuous

items (e.g. Little and Rubin, 1987, p.44) under the assumption that the re-
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sponse mechanism is MAR. Even in household surveys where values of Y for

people in the same household are most likely correlated, the assumption of

independent errors is commonly made. A single-level population model for

continuous Y (ignoring the second level of the hierarchy) is Yij = XT
ijβ + eij

where eij are independent, identically distributed N (0, σ2
e) random variables.

The best linear unbiased predictor (BLUP) under this model using the ob-

served data, Y o is:

ŶLM,ij = xTijβ̂ (2.10)

where Y ∗ij = ŶLM,ij when Rij = 0 and Y ∗ij = Yij otherwise and where β̂ is the

OLS estimate of the regression coefficients based on those cases for which y

and x are observed. Equation (2.10) is a deterministic impute. A stochastic

impute could be derived by taking a draw from the conditional distribution

of the missing, given the observed data.

2.4.3 Donor imputation methods for household data

Hot deck methods impute an unobserved value using an observed value from

the same survey. For this reason the term hot deck has more accurately

been referred to as a real-donor impute (Laaksonen, 2002), however the term

hot deck has been used in this thesis to be consistent with the literature.

Imputation of the missing data item is carried out by careful selection of a
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responding donor, whether that be a household, an individual person or a

single data item. The donor is usually selected from within some category or

class or by forming a predictive model. A recent review of hot deck methods

(Andridge and Little, 2010) concluded that there was no consensus on the

best way to apply the hot deck impute.

There are many hot deck methods available such as random selection of

a donor within imputation classes, nearest neighbour imputation (Chen and

Shao, 2000) and predictive mean matching (e.g. Di Zio and Guarnera, 2009

and Singh and Folsom, 2001). Penalties for repeated use of a donor can be

introduced in order to maintain desirable properties of the distribution of the

imputation variable. Nearest neighbour imputation involves a donor being

selected by minimising a distance function related to one or more auxiliary

variables, which may include geographic indictors. In the simplest case one

auxiliary variable x is measured for each respondent (x1, y1), ..., (xr, yr) and

each nonrespondent xr+1, ..., xn. A missing yk is imputed by yl where l is the

nearest neighbour of k using a simple distance function, that is l satisfies |xl−

xk| = min1≤k≤r|xk − xl| (Chen and Shao, 2000). Predictive mean matching

(Little, 1986a and Landerman, Land, and Pieper, 1997) uses the regression

model to select a donor minimising the distances between predicted values

from the model.

Hot deck imputation (Sande, 1983) is a stochastic method for dealing
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with item nonresponse where the missing data item is replaced by a value

from a respondent in the same sample. Hot deck methods are widely used

in household surveys and have many useful properties including a lack of

distributional assumptions, applicability to categorical data, ease of imple-

mentation, and use of actual observed data in the imputed value (Durrant,

2005).

Random donor imputation

The most straightforward donor imputation strategy is a random hot deck

impute (e.g. Kalton and Kasprzyk, 1982). This method is carried out by im-

puting an item, y for a recipient, i, using the value from a randomly selected

responding person, k, the donor: y∗i = yk where Rk = 1 . This method is

stochastic and would be expected to do well for properties such as bias and

variability (when the missingness process in MCAR) reflecting the observed

response distribution. It can be used for both categorical and continuous

data, and is an attractive option compared to parametric methods when the

observed data are skewed or have other features that make an imputation

model more complex (Durrant, 2005). However, this is a single-level approach

and makes no use of auxiliary data, including household information.

Imputation of missing data items may be carried out by using values

from a previous survey, or using a closely related variable. These methods
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are referred to as cold deck imputation (Shao, 2000). Cold deck methods are

particularly relevant for longitudinal surveys where respondents are linked

across waves. Methods to impute using data from previous waves have been

investigated for example the Little and Su (1989) and random carry-over

method (Williams. and Bailey, 1996).

Class donor imputation

When information on covariates is available for both respondents and

nonrespondents this information can be used to reduce nonresponse bias.

For example Little and Rubin (1987) describe hot deck imputation within

adjustment cells where the sample is divided into distinct imputation cells,

within which response is assumed ignorable, and a missing value in that cell

is replaced by a respondent from the same cell. Since the hot deck imputed

values are actual values from the sample, the distribution of the imputed

values is not distorted like a mean impute (Little and Rubin, 1987, p.64).

Imputation classes offer an improvement on the random donor as aux-

iliary information can be incorporated into the selection of an appropriate

donor by identifying observed variables related to the imputation variables

(see also Kalton and Kasprzyk, 1982). Imputation classes are defined by ob-

served, usually categorial variables, or alternatively by grouping continuous

variables, to create pools of potential donors which match the person with
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item nonresponse on a set of observed variables. For example the value of

y from a randomly selected donor may be used to impute a nonrespondent

(the recipient) who is the same sex and age group as the donor. This method

also has a stochastic component and should improve predictive accuracy over

the random donor assuming an appropriate selection of variables to define

the imputation classes. This method also fails to account for any clustering

which may be present within households, with imputation classes generally

using only characteristics of the nonrespondent. Attributes of the house-

hold, or any responding household members are not typically used to define

imputation classes for item nonresponse at person level.

Nearest neighbour imputation

Nearest neighbour imputation is carried out by selecting a donor to min-

imise a measure of distance between the donor and the recipient. The mea-

sure of distance is defined using one or more auxiliary variables. Although it

is a deterministic method, the nearest neighbour impute was shown by Chen

and Shao (2000) to lead to low bias of estimated means, totals, quantiles and

distributions, and also good variance properties. While the sample mean

was shown to be asymptotically unbiased, the bias was of order r−1 where

r is the number of respondents. The nearest neighbour imputation method

can be implemented using a simple distance measure for a single auxiliary
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variable as follows. For missing yi the impute is derived by considering an

auxiliary variable xi and determining the nearest neighbour to person i. The

nearest neighbour is determined by considering the set of bivariate pairs

(y1, x1), ..., (yr, xr) where all values of x and y are assumed to be completely

observed. The donor value for missing y for person i is yk where k is the per-

son with min|xi − xk| : i, k ∈ R where R = {1, ..., r} is the set of responding

units. If x is continuous the imputed person is simply the responding person

with the closest value of x. When a categorical variable is used the method

may result in more than one potential donor with the minimum distance, and

a donor is selected from the potential set (e.g. by random selection). When

more than one auxiliary variable is used to identify a nearest neighbour the

distance measure must be multivariate. The Mahalanobis distance can be

used for this purpose: (xi − xj)T V̂i
−1(xi − xj) where V̂i is the estimated

variance-covariance matrix of xi.

2.4.4 Multiple imputed values

Unlike single imputation methods, multiple imputation replaces each miss-

ing value by two or more values to reflect uncertainty in the imputed value.

Multiple imputation has important advantages over single-value imputation

methods. The variance due to the unknown missing data values can be in-
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corporated into variance estimates for parameter estimates. Also the impute

itself may be less likely to be considered a known data value by end-users,

as its uncertainty is explicitly shown. Disadvantages of multiple imputation

include the extra time required to develop and apply an appropriate method,

the increased variables required on the datafile for the m imputed values, and

the added complexity introduced by requiring repeated analysis and combi-

nation of these analyses. This may be a considerable practical issue if the

processing time is long, or the time allowed for survey analysis is very short.

A set of m datasets can be created by replacing the missing values in the

dataset with each of the multiply imputed sets of data values. Rubin (1996)

describes how the resulting estimates from these datasets can be combined

for inference purposes. Suppose that a scalar quantity of inference, Q is

estimated using each complete dataset, resulting in estimates Q̂j from each

dataset j = 1, 2, ...,m. The overall estimate of Q is given by the average of

the m estimates:

Q̂ = 1
m

m∑
j=1

Q̂j (2.11)

Let Ûj be the estimated variance associated with the estimate Q̂j, es-

timated by treating imputed values as actual observations using complete

data methods. The within and between imputation variance must then be
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calculated:

Ū = 1
m

m∑
j=1

Ûj (2.12)

B̂ = 1
m− 1

m∑
j=1

(Q̂j − Q̂)2 (2.13)

These are then combined to determine the variance of the estimate over

multiple imputed values:

v̂ar(Q̂) = Ū +
(

1 + 1
m

)
B (2.14)

= 1
m

m∑
j=1

Ûj +
(

1 + 1
m

) 1
m− 1

m∑
j=1

(
Q̂j − Q̂

)2
(2.15)

The first term estimates the variance under complete response while the

second term estimates the variance due to imputation uncertainty.

The imputed values are stored in a separate dataset which has m columns

reflecting the repeated imputed values, and r rows where r is the number of

missing values in the survey dataset. Early literature suggested as little as

3-5 imputed values may be sufficient (Rubin, 1987a) however more recent lit-

erature (Bodner (2008), White, Royston, and Wood (2009)) which considers

not just efficiency, but also quantities such as p-values and confidence inter-

vals, recommends the number of imputations being similar to the percentage

of cases that are incomplete, e.g. 17% of cases have missing data on one

or more variables in the data analysis model would then require 20 imputed

values.
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Fractional imputation is a related method which was originally proposed

in Kalton and Kish (1984) and involved repeated hot deck imputed values

with fractional weights for each of the imputed values. The aim of fractional

imputation is to improve the efficiency of the point estimator. Repeated

imputation simplifies variance estimation and reduces the random compo-

nent of the variance arising from imputation. This method can preserve

the distribution of the variable being imputed, makes no distributional as-

sumptions and imputes actual observed values. Fractional imputation has

a major practical advantage in that the repeated imputations need not be

stored, just the imputation weights reflecting the number of times a donor

has been used for imputation. However, fractional imputed values are not

proper in the (Bayesian) sense of Rubin, and the theoretical justification

for their use in variance estimation is much less clear. Bjornstad (2007)

addresses non-Bayesian imputation, typically employed in national statisti-

cal institutes, and describes alternative ways of combining multiple imputed

values under certain response mechanisms and hot-deck type imputed values.

2.4.5 Multivariate imputation

The previous sections have addressed one or multiple imputed values for a

single variable requiring imputation. One approach to imputing multiple
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variables is imputation by chained equations (ICE) or multiple imputation

by chained equations (MICE) (Buuren and Groothuis-Oudshoorn, 2011). It

involves iteratively fitting a series of univariate models, rather than speci-

fying a full multivariate model. However, recent research such as Robbins,

Ghosh, and Habiger (2013) and Borgoni and Berrington (2013) has focussed

on developing a multivariate imputation strategy which simultaneously ad-

dresses missingness in more than one variable. Robbins, Ghosh, and Habiger

(2013) link imputation variables through a multivariate Gaussian distribu-

tion (after appropriate transformations) and use a regression approach used

to select flexible conditional models, termed iterative sequential regression.

Little and Schluchter (1985) address the issue of jointly imputing categorical

and continuous variables for either estimation or imputation using maxi-

mum likelihood estimation and the EM algorithm. Borgoni and Berrington

(2013) use a tree-based approach to multivariate imputation. Multivariate

imputation methods are useful for preserving relationships across variables

within a survey. However, the focus of this thesis is on household surveys,

and in particular on preserving the relationships of a single variable within

a household.
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2.4.6 Applying multilevel methods to imputation

Elbers, Lanjouw, and Lanjouw (2003) formulated a linear mixed model with

random effects for geographic clusters of households to impute household

expenditure for census data. A simulation study showed that the imputa-

tion performed best in large clusters of households but not so well for small

cluster sizes. Data was at the household level, so modelling of people within

households was not considered.

Multilevel MI has been implemented in the statistical package REAL-

COM (Carpenter, Goldstein, and Kenward, 2011) which allows multilevel

MI of continuous, ordinal and unordered categorical data, and allows miss-

ing data at level 1 or level 2. Examples of implementation has focussed on

students within classes and longitudinal data (Goldstein et al., 2009).

Multivariate, multilevel methods can address both within-household and

across variable relationships simultaneously. This area is just beginning to

be explored for example by Yucel (2008), who extends multilevel imputa-

tion models to multivariate applications with missing data at any level of

the hierarchy. This was further addressed in Yucel (2011) which developed

algorithms for multivariate multiple imputation using MCMC with flexible

covariance structure. Multivariate imputation models typically require a rich

set of covariates to ensure that the imputation model performs well across a
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large number of variables.

Imputation was considered in cluster sampling (Shao, 2007), using a lin-

ear mixed model with a cluster-level random intercept. The probability of

nonresponse was allowed to depend on the unobserved random intercepts, so

that response was non-ignorable, and it was assumed that there is at least

one respondent per cluster. Under this model, the respondent mean from the

same cluster was shown to be an unbiased impute for non-responding units.

This approach may be unstable when there are few respondents in some clus-

ters, as happens when clusters are households. An alternative also proposed

by Shao (2007) is to use the respondent mean for all clusters with the same

size and response rate as the cluster requiring an impute. A jack-knife vari-

ance estimator was recommended for imputation variance. In this thesis,

ignorable nonresponse conditional on covariates will be considered, which is

more restrictive than Shao (2007), although the impact of non-ignorable non-

response will also be considered in the simulation study. Both person-level

and household-level covariates will be able to used in imputation methods

considered, as will the effect of imputation on preserving relationships within

households. The methods of Shao (2007) would lead to the intra-household

correlation being too high in the imputed dataset, which may be a concern

in some household surveys.

Yuan and Little (2007) developed Bayesian multiple imputation methods
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for two-stage sampling with item nonresponse. A linear mixed model was

used for the variable of interest, Y , conditional on covariates, with a ran-

dom intercept for each cluster. This was supplemented by a similar two-level

random intercept model for response propensity, P (R = 1|X, Y ), denoted

Z. The possibility of ignorable nonresponse is discussed, but the key model

assumes non-ignorable nonresponse, because Y and Z are independent given

the random intercepts, and the random intercepts are also independent. They

also consider a general functional form of E[Y |z] which can be estimated by

spline or kernel regression. To avoid the consequent “curse of dimensionality”

when there are many covariates, they use the modelled response propensity

as a covariate in the model for Y , which can then include fewer other co-

variates. The main example used was the US National Health and Nutrition

Examination Survey, where clusters were counties, and units were people.

The methods of Yuan and Little (2007) may be less applicable to house-

holds as clusters, because the very small number of units per cluster (only 1, 2

adults in more than half of households) may mean that the parameters of the

two-level response propensity model can only be imprecisely estimated. In

addition, it is not clear that the additional complexity of a response propen-

sity model is necessary unless there are many potential covariates, because

response is still assumed to be ignorable. This thesis will focus on the case of

people within households, using a simpler model, but giving more attention
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to the preservation of within-household structures, which is only important

when households are clusters.

2.4.7 Imputation methods for longitudinal data

Like household survey data, longitudinal data has a natural hierarchy which

may be incorporated into an imputation model. Imputation models can then

incorporate potentially rich sources of auxiliary information on the item-

nonrespondent from previous (or future) waves. Methods such as carry for-

ward (or back) (Williams. and Bailey, 1996) or a multivariate model across

waves (Little and Su, 1989) make use of data from other waves for imputation

through a single-level modelling approach.

Pfeffermann (1988) developed augmented regression predictors by making

an adjustment to a single-level regression prediction to incorporate clustering.

This work was extended to consider nonresponse in a longitudinal setting by

Pfeffermann and Nathan (2001) using a combination of time series methods

and linear mixed models. Each time point had an individual two-level linear

mixed model which were connected by specifying a model for the household

and individual level residuals over time. A simulation study using data gen-

erated for households of size two or three with an assumed ICC of 0.4 across

four time points found some benefits in predictive accuracy in incorporating
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the household information but did not explore the benefits of these models

in regards to ability to reproduce ICC, and the results are based on artificial

data. An empirical study looked at imputing number of hours worked dur-

ing the week preceding the interview. The authors evaluated this method

on labour force data over four waves, for 567 people within 475 households.

To overcome problems with convergence in model estimation and negative

variance estimates under IGLS, model parameters were estimated using state

space methods. Due to most of the households in this study having only one

person, most of the advantage of the hierarchical modelling resulted from

the clustering of observations over time. The advantage of clustering within

households was thus unable to be explored using empirical data. The reasons

suggested were the fit of the model no longer being perfect, small household

sizes (most with just one person) and smaller sample size for parameter es-

timation.

2.5 Evaluating Imputation Methods

An important part of the imputation process is evaluation of the imputation

strategy. Ideally the analysis model is pre-determined and the imputation

method for the missing variable then can be evaluated by its ability to repro-

duce any complete data analysis. For example missing values can be gener-



2.5. EVALUATING IMPUTATION METHODS 57

ated in a complete dataset and alternative imputation strategies compared.

In Chambers (2001) this is termed preservation of analysis. Laaksonen (2005)

also described an ‘Integrated Modelling Approach to Imputation’ which in-

cludes a first step of selecting a training dataset and auxiliary variables for

evaluation, which is carried out prior to the construction of the imputation

model. A rigorous set of criteria were also developed in Chambers (2001)

as part of the EUREDIT project to evaluate new techniques for editing and

imputation. Five performance requirements for an imputation method are

described: predictive accuracy, ranking accuracy, distributional accuracy, es-

timation accuracy and imputation plausibility. The first of these two criteria

are described to be of less relevance when estimates are of population aggre-

gates, however for public release datasets and when the imputed data will

be used in prediction models these criteria are of key importance. Two of

Chambers’ criteria were used to evaluate the imputation models in this the-

sis; Predictive accuracy refers to the performance of the imputation model in

reproducing the true values; Estimation accuracy considers the performance

of the imputation methods in reproducing first and second order moments

of the distribution of the true values which should then lead to unbiased

estimates of parameters relating to the distribution of the true values.

Pfeffermann and Nathan (2001) generated nonresponse for households

of size two or three, under MCAR, MAR and MNAR models with 20%
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nonresponse. Each imputation method was applied to 100 simulated samples.

Relative Root Mean Square Error (RRMSE) and Relative Bias was used to

compare the predictive accuracy of imputed values with known values for

various imputation methods. The RRMSE of the imputed values over K

replicates of the non-response mechanism can be calculated as follows:

RRMSEav = 1
K

K∑
k=1

RRMSEk

= 1
K

K∑
k=1


√√√√√∑ijεSk

(
y∗ij,k − yij

)2

∑
ijεSk

(1−Rij,k)

/∑
ijεSk

(1−Rij,k) yij∑
ijεSk

(1−Rij,k)

 (2.16)

where Sk is the k-th replicate sample. Relative bias of the imputed values is

calculated for each replicate and averaged over the K replicates:

RBiasav = 1
K

K∑
k=1

RBiask = 1
K

K∑
k=1

∑
ijεSk

(
y∗ij,k − yij

)
∑
ijεSk

yij(1−Rij)
(2.17)

Note that (2.16) and (2.17) refer to the properties of a set of imputed values,

which is different from the usual usage where RRMSE and bias refer to

an estimator, and therefore the RRMSE given above is only calculated for

imputed values.



Chapter 3

Imputation of Continuous Data

using Deterministic Linear

Models and Linear Mixed

Models

3.1 Introduction

Mixed models are in established use for the analysis of multilevel data (Gold-

stein, 1995, Raudenbush and Bryk, 1992), but are only more recently being

considered for imputation of missing values in multilevel settings (Yucel,

59
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2008, Carpenter, Goldstein, and Kenward, 2011). Imputation using mixed

models has been applied, and evaluated, in datasets with reasonably large

cluster sizes, for example Yucel (2008) considered imputation of whether

mental health care was needed but not received, for children with special

health care needs, with individual children clustered within states. However,

variables of interest within geographic clusters may have weaker intra-cluster

correlations than variables measured in household surveys.

This chapter will focus on the use of linear multilevel imputation models

in household surveys where more than one person in the household is se-

lected. These surveys are of particular interest as they raise the possibility of

making use of one or more respondents within a household to impute its non-

respondents. Imputation methods will be considered for an outcome variable

of interest, making use of auxiliary variables available for both respondents

and nonrespondents in the household.

The aim is to investigate imputation in a 2-level linear mixed model

for people within households and compare to single-level approaches. The

simplest single-level model will contain only information about the item

nonrespondent, while another will incorporate information from an item-

respondent in the household as a covariate. The latter model is a simpler

alternative to a multilevel model while still incorporating information from

another member, or members, of the household, without explicitly modelling
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the household effect. The comparison will be carried out with varying lev-

els of ICC and under different nonresponse mechanisms to assess when the

mixed imputation model is most beneficial, for example: does the improve-

ment in imputed values from using a multilevel imputation model increase

as the ICC increases? Is a single-level model adequate when nonresponse

is Missing Completely At Random (MCAR)? Are there any benefits in us-

ing a multilevel imputation model over a single-level model incorporating

information about the household? Methods resulting in a single impute will

be considered for a continuous outcome variable to assess the relative merit

of multilevel compared to single-level imputation models in the household

setting.

Section 3.2 details the imputation models considered, using the methods

described in Section 2.5. Section 3.3 describes a simulation of imputation

under informative and non-informative missingness, and Section 3.4 contains

results. Section 3.5 will draw conclusions and discuss areas for further inves-

tigation.

3.2 Imputation methods

This section describes the BLUP of missing Yij under a single and multilevel

model given completely observed xij.
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3.2.1 Best Linear Unbiased Predictor for single and

multilevel linear model

When a variable of interest is likely to be correlated within households lin-

ear mixed models may be used, which incorporate this correlation. A mixed

model (Goldstein, 1995, West, Welch, and Galecki, 2007) treats regression

coefficients as random variables with a different realisation for each house-

hold.

The two-level linear mixed model with a single covariate xij is Yij =

β0 +β1xij+(u0j+u1jxij)+eij. The regression coefficients can be expressed as

β0j = β0+u0j and β1j = β1+u1j, where u0j and u1j are random variables with

var(u1j) = σ2
u1 and cov(u0j, u1j) = σu01, u0j ∼ N(0, σ2

u0), u1j ∼ N(0, σ2
u1),

cov(u0j, eij) = cov(u1j, eij) = 0.

Households only contain a small number of people (often just one), so

a special case, the random intercept model, is typically used otherwise the

additional parameters associated with random slopes are likely to lead to

convergence issues due to instability. This restricts the random component

to the intercept term only: Yij = β0+β1xij+u0j+eij where xij now represents

a vector of covariates. Henceforth u0j will be written as uj for simplicity, β

for the vector of regression coefficients associated with the fixed part of the

model, and uj and eij for household and person-level residuals respectively.
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Correlation of a continuous variable within households is measured by

the ICC, defined as the proportion of total variation due to clustering within

households, ICC = σ2
u/(σ2

u + σ2
e) (West, Welch, and Galecki, 2007, p.98).

This parameter is sometimes referred to as the “adjusted” ICC, because fixed

effects x are included in the model, so that the ICC refers to the residual

correlation after removing the effect of these variables. The unadjusted ICC

is defined similarly but is based on a model where the fixed effects consist of

an intercept only.

Under a linear mixed model, a BLUP can be derived for the fixed and

random effects and for the missing values Ym. The BLUP for predicting

missing Yij under this model can be shown to be the single-level regression

predictor, ŶLM,ij = (xTijxij)−1(xTijYij), (which has no across unit correlation)

plus a term incorporating the within-household covariance (for derivation see

Appendix A):

ŶLMM,ij = ŶLM,ij + C(Yij,yo)V−1
o {yo − xo(xTo V−1

o xo)−1(xTo V −1
o yo)} (3.1)

where C(yo, Yij) is a vector of covariances between the observed yo and the

missing value Yij, Vo is a block diagonal matrix with blocks Vo,j = σ2((1−

ρ)Ino,j
+ ρ1no,j

1Tno,j
) for j = 1, ...m, no,j is the number of item respondents in

household j, and 1nj
is a column vector of 1’s of length no,j.
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There is no covariance between people in different households, so this can

be simplified to:

ŶLMM,ij = ŶLM,ij + C(Yij,yo,j)V−1
o,j{yo,j − xo,j(xTo,jV−1

o,jxo,j)−1(xTo,jV −1
o,j yo,j)}

(3.2)

Barroso, Bussab, and Knott (1998) derived a general form of Equation (3.2),

Henderson (1975) used a similar model for prediction in animal breeding, and

Pfeffermann (1988) applied a variant of this model for simulated longitudi-

nal household survey data. This thesis specifically looks at cross-sectional

household survey data.

In a household survey with nonresponse, the V0j depend on the unknown

variance parameters σ2
u and σ2

e . The predictions resulting from substitut-

ing estimates for these variance parameters is known as the empirical BLUP

(Barroso, Bussab, and Knott, 1998). Several estimators of σ2
u and σ2

e are

available, including Maximum Likelihood, Restricted Estimation by Maxi-

mum Likelihood (Patterson and Thompson, 1971), and Minimum Variance

Quadratic Unbiased Estimation (Searle, Casella, and McCulloch, 1992). The

first two of these methods can be implemented using iterative techniques

while the latter provides a non-iterative alternative with reduced processing

time and not requiring normality (Wang, Xie, and Fisher, 2012).
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3.3 Simulation study

3.3.1 Imputation variable from HILDA

A simulation study was carried out by applying a set of imputation models

to a continuous variable from HILDA (Watson, 2008). HILDA is an annual

longitudinal survey which commenced in Australia in 2001. Hourly wage rate

was the variable selected from Wave 4 of HILDA (2004) for the simulation

study because income is a high priority for the survey and has high rates of

item nonresponse. Hourly wage rate was selected for the simulation study,

over other income variables such as total wages, as it was expected to be

,ore highly correlated within households. For example a negative within

household correlation (ρ = −0.04) was found for hours worked in two-adult

households (Gregg and Wadsworth, 1996) which may affect total wages. The

same study found education (ρ = 0.43) and in particular age (ρ = 0.91) are

highly correlated within households and these factors are likely to be reflected

in the hourly wage rate.

The sample was subset to people who were respondents to the data item

hourly wage rate. This consisted of 4,820 persons in 3,318 households. Non-

response could then be simulated and the various imputed values compared

to known values. As the imputation method is designed to make use of the

responses from one or more people within the household, the sample was
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restricted to households with two respondents to hourly wage rate. The

restriction to two-person households is made throughout the thesis. This

resulted in a sample of 2,392 persons from 1,199 households, representing

approximately 50% of the responding sample.

The unadjusted ICC for hourly wage rate in the sample was 0.194, which

is equivalent to 19.4% of the total variance being explained by the household

level for the mean model. This was estimated by fitting an intercept only

model. To assess the multilevel (ML) BLUP against the single level (SL)

BLUP under different levels of clustering, the pairing of some people within

households was artificially adjusted to create households where the hourly

wages were more similar. This was done by generating bivariate normal ran-

dom variables with unit variance and different levels of clustering, ρ, within

each household as follows: Yij = Zij
√

1− p2 + Zjp where Zij, Zj ∼ N(0, 1).

The constant p was empirically selected to achieve a moderate ICC and a high

ICC. Each value of Yij was converted to a rank using Rij = 1+floor(nΦ(Yij)).

The new hourly wage rate and covariate set were then taken from the equiv-

alently ranked value of hourly wage rate in the set of all hourly wage rates,

artificially placing people of more similar wage rate in the same household.

Three scenarios were selected, the true ICC of ρ = 19.4%, ρ = 50.0% and

ρ = 85.0%, and these were used to assess the imputation methods under

a low, moderate and high ICC. These will be referred to in the tables as
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ρ = 20%, ρ = 50% and ρ = 85% for ease of reference.

3.3.2 Simulating nonresponse

The fully observed component of the sample was used to generate K = 250

simulated samples with item nonresponse, to isolate the impact of the item

nonresponse mechanism and imputation method as distinct from population

or sample variation. Approximately half of households were designated to

have item nonresponse and one of the two people within each nonresponding

household was selected to be an item nonrespondent according to the differ-

ent response models described below. The resulting item response rate was

approximately 75% under each scenario. Five alternative models were used

to generate nonresponse. The first has data Missing Completely At Random

(MCAR), the second Missing at Random (MAR) and the other three Missing

Not At Random (MNAR). The auxiliary variables used to define the MAR

nonresponse mechanism are described below.

Let p1j and p2j be the probabilities of response for person 1 and person 2

in household j respectively. The following notation will be used to represent
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the probability of each possible household response pattern:

qj(0,0) = P(both person 1 and person 2 nonrespondent)

qj(1,0) = P(person 1 respondent and person 2 nonrespondent)

qj(0,1) = P(person 1 nonrespondent and person 2 respondent)

qj(1,1) = P(both person 1 and person 2 respondent)

The probabilities of each possible household response pattern are qj(0,0) =

0; qj(1,0) + qj(1,1) = p1j; qj(0,1) + qj(1,1) = p2j; and qj(1,1) = 1− qj(0,0) − qj(1,0) −

qj(0,1) which can be manipulated to give:

qj(0,0) = 0

qj(1,0) = 1− p2j

qj(0,1) = 1− p1j

qj(1,1) = 1− qj(1,0) − qj(0,1)

= p1j + p2j − 1

The probabilities will now be specified for each nonresponse scenario. In

all five scenarios, the average of pij was exactly or approximately 0.75, so

that approximately 75% of people were item respondents, leading to 50%

of households having full response and 50% of households having one item

nonrespondent. No households were simulated with no respondents, as the

focus is on imputing item nonresponse using a responding household member,
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so qj(0,0) will not be specified for all the models.

Each scenario below describes the mechanism for whether a household is

fully responding or has item nonresponse, and the mechanism for selecting

the nonresponding person in households that are not fully responding.

1. Households MCAR and persons MCAR: In partially responding house-

holds, one person was randomly chosen to be the full respondent, the other

to have item nonresponse. Partial response probabilities are pij = 0.75 for

all people, so that qj(1,0) = qj(0,1) = 0.25 and qj(1,1) = 0.5 for all households.

2. Households MCAR and persons MAR: A MAR nonresponse mechanism

was created by letting the odds ratio for item nonresponse be approximately

2.2 (exp(0.8)) for males and for those aged under 30. The probability of

response at person level was specified using a logistic model as follows:

pij = exp(β0 − 0.8X1,ij − 0.8X2,ij)
1 + exp(β0 − 0.8X1,ij − 0.8X2,ij)

where X1,ij and X2,ij are indicator variables for male and age < 30 respec-

tively. β0 was set such that approximately 75% of people respond to the

income questions, in this and subsequent models. The odds ratio of 2.2 re-

sults in approximately 33% probability of response for males under 30 years,

compared to an overall response rate of 75%. The probability of each house-
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hold response pattern was then:

qj(1,0) = 1− exp(β0 − 0.8X1,2j − 0.8X2,2j)
1 + exp(β0 − 0.8X1,2j − 0.8X2,2j)

qj(0,1) = 1− exp(β0 − 0.8X1,1j − 0.8X2,1j)
1 + exp(β0 − 0.8X1,1j − 0.8X2,1j)

qj(1,1) = exp(β0 − 0.8X1,1j − 0.8X2,1j)
1 + exp(β0 − 0.8X1,1j − 0.8X2,1j)

+ exp(β0 − 0.8X1,2j − 0.8X2,2j)
1 + exp(β0 − 0.8X1,2j − 0.8X2,2j)

− 1

3. Households MCAR and persons MNAR: The probability of being a re-

spondent was dependent on Yij, where an increase in hourly wage of one

dollar was associated with a 1% decrease in the odds of response. See for

example Lillard and Smith (1986) who found nonresponse propensity for

earnings depended on income level and was lower in the tails of the distribu-

tion, but most substantially so in high-earning income brackets. Hence the

nonresponse process is determined by:

pij = exp(β0 − 0.01Yij)
1 + exp(β0 − 0.01Yij)

The probabilities associated with each household response pattern under this

scenario were:

qj(1,0) = 1− exp(β0 − 0.01Y2j)
1 + exp(β0 − 0.01Y2j)

qj(0,1) = 1− exp(β0 − 0.01Y1j)
1 + exp(β0 − 0.01Y1j)

qj(1,1) = exp(β0 − 0.01Y1j)
1 + exp(β0 − 0.01Y1j)

+ exp(β0 − 0.01Y2j)
1 + exp(β0 − 0.01Y2j)

− 1
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4. Households MNAR and persons MCAR: Households are partially or fully

responding, with the probability of the household falling in the first category

decreasing by 1% with each dollar increase in average household hourly wage

rate. Within partially responding households, one person was randomly se-

lected to be an item respondent, the other had item nonresponse. For this

situation we used:

pij = exp(β0 − 0.01Ȳj)
1 + exp(β0 − 0.01Ȳj)

where Ȳj = (Y1j + Y2j)/2. The probabilities associated with each household

response pattern under this scenario were:

qj(1,0) = 1− exp(β0 − 0.01Ȳj)
1 + exp(β0 − 0.01Ȳj)

qj(0,1) = qj(1,0)

qj(1,1) = p1j + p2j − 1

= 2 exp(β0 − 0.01Ȳj)
1 + exp(β0 − 0.01Ȳj)

− 1

5. Households MNAR and persons MNAR: Finally, households and persons

were assigned to be partially or fully responding, both MNAR. The prob-

ability of the household falling in the first category decreased by 1% with

each dollar increase in average household hourly wage rate, and each persons

probability of response also decreased by 1% with each dollar increase in
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average hourly wage rate. This implies that person probabilities of response

depend on household mean income:

pij = exp(β0 − 0.01Ȳj − 0.01Yij)
1 + exp(β0 − 0.01Ȳj − 0.01Yij)

The probabilities associated with each household response pattern under this

last scenario were:

qj(0,0) = 0

qj(1,0) = 1− exp(β0 − 0.01Ȳj − 0.01Y2j)
1 + exp(β0 − 0.01Ȳj − 0.01Y2j)

qj(0,1) = 1− exp(β0 − 0.01Ȳj − 0.01Y1j)
1 + exp(β0 − 0.01Ȳj − 0.01Y1j)

qj(1,1) = exp(β0 − 0.01Ȳj − 0.01Y2j)
1 + exp(β0 − 0.01Ȳj − 0.01Y2j)

+ exp(β0 − 0.01Ȳj − 0.01Y1j)
1 + exp(β0 − 0.01Ȳj − 0.01Y1j)

− 1

3.3.3 Imputation methods

Four different imputation methods were compared in the simulation study

for imputing missing Yij given a set of respondents yo, which includes a

responding person Yi′j in the same household:

• Respondent Mean: Ŷij = mean of Y over all fully responding people

in the sample.

• Deterministic Single-level BLUP: empirical BLUP for single-level lin-

ear model, as in Equation (2.10) in Section 2.4.2 with age and sex as

covariates (notated ‘SL’ in tables).
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• Deterministic Single-level BLUP: empirical BLUP for single-level lin-

ear model, as in Equation (2.10) in Section 2.4.2 with age and sex, plus

co-householder response as covariates (notated ‘SL+’ in tables).

• Deterministic Multilevel BLUP: empirical BLUP for linear mixed model,

as in Equation (3.2) with age and sex as covariates (notated ‘ML’ in

tables).

The BLUP imputation models used age group by sex as explanatory vari-

ables as these would be readily available on most household survey forms,

and are unlikely to themselves be subject to high levels of nonresponse. They

are therefore likely to be available even for people in households with unit or

item nonresponse, where there may be a large number of other data items

with nonresponse. The age groups were 16-24, 25-29, 30-34, 35-39, 40-44,

45-49, 50-54, 55-59 and 60+. These same variables were used to define all

imputation classes and imputation models throughout the thesis to ensure

comparisons of imputation methods were not influenced by differences in

auxiliary variables. Additional variables such as education and employment

status would potentially make more rich imputation models, but could have

made the simulation study inconsistent across imputation methods, for ex-

ample if imputation classes for donor methods needed to be collapsed. Hence

a simple set of covariates were selected which could be applied consistently
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throughout the thesis.

Both the linear and linear mixed imputation methods were calculated

initially using untransformed data. The simulation was also carried out with

a log transform for hourly wage rate, and each of the evaluation criteria

calculated. A log transform of the outcome variable was performed prior to

imputation. A linear model on the log-transformed data results in predictions

based on the following model: log(Yij) = βTxij + eij where eij ∼ N(0, σ2).

Back-transformation to the original scale results in imputed values with ex-

pected values estimated by E[Ŷij] = exp(βTxij + s2

2 ) (the expected value of a

log-normal distribution is exp(µ+ σ2/2). Therefore the imputed values were

back-transformed to be on the original scale with a bias correction (David

et al., 1986, e.g.). Other methods of transformation could be investigated

however there is evidence (e.g. Hippel, 2013) that bias correction often leads

to poorer imputed values than using raw data. The log transformation was

applied to both the linear and linear mixed model imputed values, and these

results were compared with and without transformation. Finally the bias

correction was implemented as described above and a further set of imputed

values derived for comparison.

In Section 2.5 various criteria for evaluation of imputed values were re-

viewed. This included calculating the RRMSE and relative bias of the im-

puted values. In addition to these criteria the impact of the imputation
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method will be assessed for summary statistics such as the estimated popu-

lation mean and variance.

An additional criteria will be consideration of the household structure.

Correlation of a continuous variable within households is measured by the

ICC, defined as the proportion of total variation due to clustering within

households, ICC = σ2
u/(σ2

u + σ2
e) (West, Welch, and Galecki, 2007, p.98).

This parameter is sometimes referred to as the adjusted ICC, because fixed

effects x are included in the model, so that the ICC refers to the residual

correlation after removing the effect of these variables. The unadjusted ICC

is defined similarly but is based on a model where the fixed effects consist

of an intercept only. The ICC can be calculated to assess the impact of an

imputation method on within-household clustering:

ICCav = 1
K

K∑
k=1

σ̂2
u,k

σ̂2
u,k + σ̂2

e,k

(3.3)

Two final evaluation criteria look at the relative bias for estimating the

mean (or similarly for a proportion) and variance. The relative bias for the

estimated population mean is:

RBiasav( ˆ̄Y ) = 1
K

∑K
k=1 (ˆ̄yk − ȳ)∑K

k=1 ȳ
(3.4)

where ˆ̄yk is the sample mean in replicate k and ȳ is the sample mean in

the full sample with no nonresponse. The relative bias for the estimated
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population variance is:

RBiasav(var(y)) = 1
K

∑K
k=1 ( ˆvar(yk)− var(y))∑K

k=1 var(y)
(3.5)

where ˆvar(yk) is the sample variance in replicate k and var(y) is the sample

variance in the full sample with no nonresponse.

Another variable relevant for economic policy is the proportion of adults

on or below the Federal Minimum Wage (FMW). The impact of the impu-

tation strategy on this variable is investigated. The national minimum wage

for 2013/14 is $16.37 per hour (Ombudsman, 2013), with this figure revised

each year by a specialist Minimum Wage Panel of the Fair Work Commis-

sion. Employees aged under 21 may receive less than the FMW so households

with one or more people aged under 21 will be excluded in calculating this

quantity. The number of adults in the workforce on minimum wage and

their characteristics are used to form the context for debate on the impact

of policy changes such as setting the FMW, using data from surveys such as

HILDA and the ABS Survey of Income and Housing (Healy and Richardson,

2006). The susceptibility of this measure to the imputation method will be

assessed to understand the impact of the imputation method on income in

the lower tail of the distribution, rather than just the average. Other points

of the distribution function, or quantiles, could also be considered. This the-

sis only evaluates the proportion at or below the FMW as this is of particular
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substantive importance.

In 2004 (aligned with wave 4 of the HILDA survey as used in the simula-

tion study) the federal minimum wage for full-time adult employees was set

by the Australian Industrial Relations Commission at $467.40 per week, or

$12.30 per hour (Lee and Suardi, 2010). The proportion of adults earning un-

der $12.30 per hour was calculated on the full dataset, and then re-calculated

using the imputed hourly wage rate under each imputation method.

3.4 Results

3.4.1 Single-level and multilevel imputation compared

to respondent mean

Predictive accuracy: RRMSE of imputed values

Table 3.1 shows the predictive accuracy as measured by the RRMSE of

the imputed values, calculated as in Equation (2.16) in Section 2.5 for each

imputation method. The accuracy of the imputed values of hourly wage rate

has been assessed by comparing the imputed values of non-respondents to

the known, true values.

The RRMSE for a respondent mean impute ranges from 56.9% to 67.0%,

with larger errors when nonresponse is generated under the MNAR mecha-
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Table 3.1: Predictive accuracy (RRMSE % ) for imputing hourly wage rate
Deterministic BLUPs

NR model ρ(%) Respmean SL SL+ ML

hh
pers

MCAR
MCAR

20 57.0 55.7 55.0 54.9
50 56.9 55.1 48.8 49.7
85 58.2 56.7 31.0 36.2

hh
pers

MCAR
MAR

20 57.8 55.9 56.3 55.3
50 57.9 55.0 50.4 51.2
85 62.8 61.0 33.7 39.7

hh
pers

MCAR
MNAR

20 65.6 64.4 63.6 63.5
50 65.1 63.4 55.8 56.6
85 65.8 64.4 34.3 39.0

hh
pers

MNAR
MCAR

20 61.5 60.2 59.5 59.4
50 62.5 60.7 53.3 54.1
85 64.8 63.3 33.6 38.2

hh
pers

MNAR
MNAR

20 67.0 65.8 65.2 64.9
50 64.3 62.3 55.0 55.4
85 65.1 63.4 33.9 37.6

Maximum simulation standard error = 0.35

nisms. The deterministic SL BLUP has a small but statistically significant

improvement in predictive accuracy compared to respondent mean imputa-

tion, around 2-3% for MCAR and MNAR scenarios. The improvement in

RRMSE for the SL BLUP over the respondent mean is slightly greater at

3-5% when nonresponse is MAR. This is as expected since the imputation

model uses covariates of age group and sex, reflecting the MAR mechanism

where males and those under 30 had higher nonresponse. The SL+ and ML

BLUP imputed values resulted in no additional improvement over the SL

BLUP when ρ = 20%. When ρ = 50% there is a small improvement in
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RRMSE of around 10% for both methods compared to the SL BLUP, but for

the highest ρ the improvement in predictive error was much larger. RRMSE

decreased by 35-41% across the nonresponse scenarios and by slightly more

for SL+ than ML BLUP imputed values. This demonstrates a major im-

provement in the predictive accuracy of the imputed values for this nonre-

sponse scenario due to the use of household information in the imputation

model.

Predictive accuracy: relative bias of imputed values

Table 3.2: Predictive accuracy (relative bias %) for imputing hourly wage
rate

Deterministic BLUPs
NR model ρ(%) Respmean SL SL+ ML

hh
pers

MCAR
MCAR

20 0.2 0.3 0.2 0.3
50 0.3 0.2 0.2 0.1
85 0.2 0.1 0.0 0.0

hh
pers

MCAR
MAR

20 3.1 0.0 0.9 -0.1
50 3.6 0.7 -0.8 -0.2
85 2.0 0.1 -0.7 -1.4

hh
pers

MCAR
MNAR

20 -7.5 -7.0 -7.7 -6.5
50 -7.5 -7.1 -6.4 -5.3
85 -7.5 -7.2 -2.6 -2.6

hh
pers

MNAR
MCAR

20 -4.3 -4.0 -5.0 -3.2
50 -5.5 -5.2 -4.4 -3.1
85 -6.9 -6.6 -1.8 -1.7

hh
pers

MNAR
MNAR

20 -11.1 -10.4 -11.9 -9.2
50 -11.3 -10.6 -9.5 -7.2
85 -12.1 -11.4 -3.4 -3.1

Maximum simulation standard error = 0.38

Another measure of predictive accuracy is shown in Table 3.2, the relative
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bias of the imputed values. The imputed values of the non-respondents

have been compared to the true values of hourly wage rate to determine

whether the imputation method tends to over-estimate (positive bias) or

under-estimate (negative bias) the true values. Relative biases close to zero

are ideal. Under MCAR all of the imputation models have very good bias

properties. When the nonresponse was generated under a MAR model, the

resulting bias can be seen in the respondent mean impute where imputed

values are overestimated by between 2 and 3.6%. The SL, SL+ and ML

BLUPs all have small bias (absolute value of 1.4% or less) under MAR.

The further three scenarios where nonresponse is MNAR have high levels

of negative bias, that is, there is under-estimation of the missing values by

the imputed values. This follows intuitively from the MNAR mechanism as

higher wage rates are associated with a higher probability of nonresponse.

The deterministic SL BLUPs do not lead to much improvement over the

respondent mean. The relative bias of the imputed values does improve

under the ML BLUP, with 7-20% bias reduction when ρ = 20%, 25-40% when

ρ = 50%, and 64-74% when ρ = 85%. The improvements in bias achieved

by using the ML BLUP when nonresponse is MNAR were matched by SL+

when ρ = 85% but were poorer than the SL BLUP when ρ = 20%, with

mixed results when ρ = 50%. These bias reductions are intuitively sensible,

as when the nonresponse is dependent on the value of y, it is clear that the
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other household member would provide good predictive power, increasing as

the ICC increases.

Estimation accuracy - relative bias of estimated mean

The relative bias for the estimated mean of hourly wage rate was calcu-

lated as described in Equation (3.4) in Section 3.3.3. A positive relative bias

implies that over repeated simulations the mean is over-estimated under this

imputation method, and negative biases imply the imputation strategy tends

to under-estimate the mean hourly wage rate. The results for the relative

bias of the estimated mean reflect the findings relating to the relative bias of

the imputed values and are therefore omitted here. The results are included

for completeness in Table 7.1 of Appendix A.

Estimation accuracy - intra-cluster correlation

Table 3.3 shows the expected estimated intra-class correlation under each

imputation method. This criteria assesses how well the clustering of hourly

wage rate within households is retained. When the expected ICC is higher

than the true ρ this can be interpreted as the imputed values resulting in

hourly wage rates that are more similar within households than in the com-

plete data. Conversely, under-estimates of ρ arise when households have

people with hourly wage rates that differ more within households than the

complete data after imputation. Respondent mean imputation consistently

underestimates ρ under all nonresponse scenarios and ICC levels, varying



82 CHAPTER 3. DETERMINISTIC SL AND ML IMPUTATION

Table 3.3: Estimation accuracy for imputing hourly wage rate - estimated
intra-class correlation

Deterministic BLUPs
NR model ρ(%) Respmean SL SL+ ML

hh
pers

MCAR
MCAR

20 12.7 13.5 24.7 24.2
50 33.2 35.6 60.7 58.0
85 56.1 58.7 91.1 87.9

hh
pers

MCAR
MAR

20 14.3 16.4 25.2 25.0
50 36.4 39.6 64.1 62.1
85 56.5 59.8 91.1 87.9

hh
pers

MCAR
MNAR

20 11.4 12.4 26.5 26.2
50 25.9 29.1 61.9 58.7
85 39.6 43.5 92.8 89.0

hh
pers

MNAR
MCAR

20 10.5 11.6 26.8 26.5
50 24.6 27.9 62.2 59.1
85 39.0 43.0 92.9 89.2

hh
pers

MNAR
MNAR

20 9.7 10.8 28.5 28.8
50 19.6 23.6 63.0 60.0
85 29.4 34.3 94.2 90.6

Maximum simulation standard error = 0.43

between 25% and close to 65% underestimation of the true ICC. The de-

terministic SL BLUP is a small improvement but also underestimates the

ICC significantly, by between 15% and 60%. The ML BLUP results in over-

estimates of the ICC, but the values are much more accurate, with the ICC

overestimated by between 3% and 50% across the nonresponse mechanisms

and ICC levels. The reproduction of the true ICC by the ML approach im-

proves as ρ increases, and is particularly good when ρ = 85% where the ICC

is within 7% of the true value under all nonresponse scenarios. Similar results

are achieved by the SL+ impute, though the improvements are not quite as
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good, particularly when ρ is high where this method over-estimates the level

of clustering within households by more than the ML BLUP does.

Estimation accuracy - relative bias of estimated variance

Table 3.4: Estimation accuracy for imputing hourly wage rate - relative bias
(%) of estimated variance

Deterministic BLUPs
NR model ρ(%) Respmean SL SL+ ML

hh
pers

MCAR
MCAR

20 -25.0 -23.4 -22.5 -22.6
50 -25.0 -23.0 -17.7 -17.6
85 -25.1 -23.4 -6.9 -7.0

hh
pers

MCAR
MAR

20 -23.8 -21.6 -20.1 -20.7
50 -24.5 -21.9 -15.4 -15.2
85 -26.8 -24.8 -8.9 -8.0

hh
pers

MCAR
MNAR

20 -37.0 -35.6 -34.6 -34.6
50 -36.7 -34.9 -29.4 -29.4
85 -35.9 -34.3 -12.9 -14.4

hh
pers

MNAR
MCAR

20 -31.0 -29.5 -28.4 -28.3
50 -32.8 -30.9 -24.8 -24.8
85 -34.4 -32.8 -10.6 -12.1

hh
pers

MNAR
MNAR

20 -40.6 -39.2 -38.2 -38.0
50 -37.9 -36.2 -30.0 -30.0
85 -37.7 -36.2 -10.9 -12.8

Maximum simulation standard error = 0.52

The relative bias of the estimated variance (empirical, complete sample

variance) for hourly wage was assessed after each imputation method and

under the different nonresponse mechanisms, as shown in Table 3.4. As ex-

pected the respondent mean imputed values are underestimates of the vari-

ance, by 20-40% across the nonresponse and ICC scenarios. The variance is

underestimated by the largest magnitude under the MNAR scenarios. That
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is, the distribution of the true values is not being maintained by the impu-

tation method.

While still underestimating variance, both of the deterministic BLUP im-

puted values perform better than using a respondent mean, for all scenarios.

Of the three BLUPs, both imputed values incorporating household informa-

tion are superior to the SL BLUP, however the improvement depends on

the level of ρ. For low ρ there is no significant improvement over the SL

BLUP, however for moderate ρ the SL+ and ML BLUP estimate variance

with between 15-30% less bias than the SL BLUP imputed values across

the NR scenarios. When ρ is highest both household-based imputed values

are vastly better than the SL BLUP, with around 60-70% reduction in bias

compared to the SL BLUP. While the variance is still underestimated when

ρ = 85%, it is now by only 7-15% compared to around 25% for the SL BLUP.

A stochastic BLUP would introduce an additional source of variation

which may result in improved variance estimates. This will be considered in

Chapter 4.

3.4.2 Imputation using log transform

Imputed values were also calculated by using linear models and linear mixed

models for the log of hourly wage rate, both with and without bias correction,
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as described in Section 3.3.1.

Table 3.5 shows the predictive accuracy as measured by the RRMSE of

the respondent mean compared to the SL and ML BLUP imputed values,

after log transform and back-transformation, both with and without bias

correction (notated ‘BC’).

Table 3.5: Predictive accuracy (RRMSE % ) for imputing hourly wage rate
using log transform

BLUP BLUP log BLUP log BC
NR model ρ(%) SL ML SL ML SL ML

hh
pers

MCAR
MCAR

20 55.7 54.9 56.4 56.2 55.6 54.9
50 55.1 49.7 55.8 50.6 55.1 50.0
85 56.7 36.2 57.4 37.6 56.6 39.6

hh
pers

MCAR
MAR

20 55.9 55.3 56.4 56.4 55.7 55.4
50 55.0 51.2 55.6 51.2 55.0 51.2
85 61.0 39.7 61.7 42.2 60.9 43.7

hh
pers

MCAR
MNAR

20 64.4 63.5 65.8 65.7 64.4 63.1
50 63.4 56.6 64.9 59.1 63.5 56.5
85 64.4 39.0 65.9 42.9 64.5 42.2

hh
pers

MNAR
MCAR

20 60.2 59.4 61.4 61.2 60.2 59.0
50 60.7 54.1 62.1 56.1 60.8 54.0
85 63.3 38.2 64.8 41.7 63.4 41.7

hh
pers

MNAR
MNAR

20 65.8 64.9 67.5 67.5 65.9 64.4
50 62.3 55.4 64.2 58.1 62.4 55.0
85 63.4 37.6 65.5 41.4 63.6 40.6

The log transform on RRMSE results in slightly poorer RRMSE when

comparing the single-level imputed values with and without log transform,

and the multilevel imputed values with and without log transform. The bias

correction resulted in improved RRMSE, but not as low as the untransformed
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SL or ML BLUPs. Therefore there is no gain in the log transform in terms of

RRMSE, and without bias correction it leads to poorer imputed values than

the untransformed data.

The potential gains of the log transform and subsequent bias correction

are also assessed using relative bias as a measure of predictive accuracy in

Table 3.6.

Table 3.6: Predictive accuracy (relative bias % ) for imputing hourly wage
rate using log transform

BLUP BLUP log BLUP log BC
NR model ρ(%) SL ML SL ML SL ML

hh
pers

MCAR
MCAR

20 0·3 0·3 −9·1 −13·1 −0·3 4·9
50 0·2 0·1 −9·1 −11·2 −0·4 7·2
85 0·1 0·0 −9·5 −7·5 −0·5 12·2

hh
pers

MCAR
MAR

20 0·0 −0·1 −8·9 −13·0 0·0 6·2
50 0·7 −0·2 −8·3 −10·7 0·6 7·8
85 0·1 −1·4 −10·0 −8·5 −1·2 10·3

hh
pers

MCAR
MNAR

20 −7·0 −6·5 −15·2 −18·7 −7·4 −2·8
50 −7·1 −5·3 −15·2 −16·0 −7·4 0·2
85 −7·2 −2·6 −15·7 −10·1 −7·7 7·4

hh
pers

MNAR
MCAR

20 −4·0 −3·2 −12·7 −16·1 −4·4 0·5
50 −5·2 −3·1 −13·7 −14·2 −5·6 2·5
85 −6·6 −1·7 −15·2 −9·3 −7·1 8·4

hh
pers

MNAR
MNAR

20 −10·4 −9·2 −18·1 −21·1 −10·7 −6·4
50 −10·6 −7·2 −18·3 −17·9 −10·9 −2·7
85 −11·4 −3·1 −19·4 −10·6 −11·9 5·7

The log transformation introduces very large negative biases, more so

than what was present in the untransformed data, both for SL and ML

BLUPs. The bias correction works well at undoing this for the SL BLUP,
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with the results after transformation and bias correction closely matching the

bias levels for the untransformed data. The ML BLUP with a log transform

achieves mixed results, the bias correction generally over-estimating the im-

puted values. For the MCAR and MAR scenarios, the imputed values are

too high, with much larger relative bias than the untransformed ML BLUP.

Under MNAR the correction works well, but still resulting in mixed results,

particulary under MNAR scenarios with high ρ where the bias corrected data

over-shoots the true values.

The relative bias of the estimated mean after imputation was calculated

with the same imputation methods as described above. The results of this

analysis of the estimated mean after imputation reflected the problems above.

There was further negative bias when using log transformed compared to

raw data imputed values, which was corrected with the bias factor for the

SL model. The same mixed results were achieved when using the ML BLUP

with the bias correction. That is poorer bias under MCAR or MAR, or

MNAR with high ρ, and a bias improvement for the MNAR scenarios with

low or moderate ρ. The results are in Table 7.2, in Appendix B.

Table 3.7 shows the estimated intra-class correlation of hourly wage rate,

averaged over K = 250 replicates, for imputed values using the SL BLUP

and ML BLUP with and without the log transformation and with a bias

correction.



88 CHAPTER 3. DETERMINISTIC SL AND ML IMPUTATION

Table 3.7: Estimation accuracy for imputing hourly wage rate - estimated
intra-class correlation with log transform

BLUP BLUP log BLUP log BC
NR model ρ(%) SL ML SL ML SL ML

hh
pers

MCAR
MCAR

20 13·5 24·2 13·1 21·0 13·5 23·2
50 35·6 58·0 35·0 53·4 35·5 56·9
85 58·7 87·9 57·9 86·2 58·6 87·3

hh
pers

MCAR
MAR

20 16·4 25·0 17·0 23·9 16·3 23·8
50 39·6 62·1 39·1 57·3 39·5 60·4
85 59·8 87·9 59·2 86·5 59·8 87·5

hh
pers

MCAR
MNAR

20 12·4 26·2 11·4 20·4 12·3 24·0
50 29·1 58·7 27·4 51·2 28·9 56·9
85 43·5 89·0 41·0 85·4 43·1 88·4

hh
pers

MNAR
MCAR

20 11·6 26·5 10·3 19·5 11·5 23·7
50 27·9 59·1 26·0 50·9 27·7 56·9
85 43·0 89·2 40·4 85·7 42·5 88·7

hh
pers

MNAR
MNAR

20 10·8 28·8 8·9 18·6 10·7 23·9
50 23·6 60·0 20·7 49·0 23·3 56·7
85 34·3 90·6 30·5 86·0 33·6 90·1

The log transformation has only a small impact on the estimated ICC

when using a SL BLUP impute. The estimated ICC was slightly worse after

the log transform than on raw data, particularly across the three MNAR

nonresponse models when ρ = 85%. However, the log transform results

in excellent reproduction of intra-household clustering when using the ML

BLUP across all scenarios. The bias correction improves the SL BLUP im-

puted value’s estimation of ICC back to in line with the raw data, but it is a

backwards step for the ML BLUP where the estimated ICCs were too high.

Finally the variance is evaluated in Table 3.8, with the relative bias of the
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Table 3.8: Estimation accuracy for imputing hourly wage rate - relative bias
(%) of estimated variance with log transform

BLUP log BLUP log BC
NR model ρ(%) SL ML SL ML SL ML

hh
pers

MCAR
MCAR

20 −23·4 −22·6 −23·4 −22·3 −23·7 −22·5
50 −23·0 −17·6 −23·1 −19·1 −23·4 −17·4
85 −23·4 −7·0 −23·5 −10·6 −23·8 −3·8

hh
pers

MCAR
MAR

20 −21·6 −20·7 −21·4 −20·2 −21·8 −20·6
50 −21·9 −15·2 −21·9 −17·1 −22·3 −15·5
85 −24·8 −8·0 −24·7 −11·0 −25·1 −4·7

hh
pers

MCAR
MNAR

20 −35·6 −34·6 −35·6 −34·6 −35·8 −34·7
50 −34·9 −29·4 −35·1 −31·3 −35·2 −29·4
85 −34·3 −14·4 −34·4 −19·1 −34·6 −10·9

hh
pers

MNAR
MCAR

20 −29·5 −28·3 −29·5 −28·5 −29·7 −28·5
50 −30·9 −24·8 −31·1 −27·0 −31·2 −25·0
85 −32·8 −12·1 −33·0 −16·8 −33·2 −8·3

hh
pers

MNAR
MNAR

20 −39·2 −38·0 −39·3 −38·5 −39·5 −38·4
50 −36·2 −30·0 −36·3 −32·5 −36·5 −30·4
85 −36·2 −12·8 −36·4 −18·4 −36·6 −9·0

estimated variance shown for the raw data, after a log transform, and with

the log transform and a subsequent bias correction. For SL BLUP imputed

values there is not much to separate the methods in terms of variance, with

neither the transformation or bias correction having much of an affect. For

the ML BLUP imputed values this time the log transformation with bias

correction is an improvement on the untransformed data. The variance is

under-estimated by a lesser amount with the introduction of the log transform

with correction when ρ = 85% and otherwise similar to the original results

for the untransformed data.
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3.4.3 Proportion below Federal Minimum Wage

Table 3.9: Various estimates of the percentage of adults on or below FMW
BLUP BLUP log

NR model ρ(%) Actual Respmean SL ML SL ML

hh
pers

MCAR
MCAR

20 7.7 5.8 5.8 5.8 5.8 5.8
50 6.8 5.1 5.1 5.7 5.1 5.4
85 6.7 5.0 5.0 7.2 5.0 6.0

hh
pers

MCAR
MAR

20 7.7 5.8 5.8 5.8 5.8 5.8
50 6.8 5.0 5.0 6.0 5.0 5.3
85 6.7 4.8 4.8 7.5 4.8 6.2

hh
pers

MCAR
MNAR

20 7.7 6.0 6.0 6.0 6.0 6.0
50 6.8 5.3 5.3 5.7 5.3 5.5
85 6.7 5.1 5.1 7.0 5.1 6.1

hh
pers

MNAR
MCAR

20 7.7 5.9 5.9 5.9 5.9 5.9
50 6.8 5.2 5.2 5.7 5.2 5.5
85 6.7 5.1 5.1 7.0 5.1 6.1

hh
pers

MNAR
MNAR

20 7.7 6.1 6.1 6.1 6.1 6.1
50 6.8 5.4 5.4 5.8 5.4 5.6
85 6.7 5.3 5.3 6.9 5.3 6.1

Table 3.9 shows the expected values of the estimated proportion of people

on or below the FMW, using the various imputation methods. There are no

differences between the estimates based on the respondent mean impute and

SL BLUP imputed values, under any scenario. Both imputation methods

resulted in between 25% and 40% underestimation of the percentage of people

on or below the FMW, implying that these nonrespondents had their hourly

wage rate over-inflated by the imputation method. The ML BLUP gave

no improvement over either method under low ICC, but under moderate
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Figure 3.1: Simulation study - estimated percentage on or below Federal
Minimum wage
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ICC the ML BLUP resulted in substantial reductions in the relative bias

of the estimate. The percentage of people on or under the FMW was still

underestimated, but by a smaller amount. For example when household

nonresponse was MCAR and persons MAR the true percentage of people on

or below the FMW was 7.0% , which, under respondent mean imputation and

SL BLUP imputation, was under-estimated at 5.0%, but under the ML BLUP

was estimated to be 5.9%. The corresponding relative bias was reduced from

−36.9% to −15.5%.

The findings are also displayed in Figure 3.1, which shows the estimated

percentage of people below FMW when ρ = 20%, ρ = 50% and ρ = 85%

respectively. The percentage of people on or below FMW is underestimated

using all imputation methods, with the exception of the use of ML method

when ρ = 85%.

3.5 Summary of Chapter 3

The main question posed in this chapter was whether imputations using in-

formation about other people within a household do better than the more

standard use of a single-level model with only information about the non-

respondent themselves. The answer is yes, particularly when nonresponse

is informative both of households and within households. The improvement
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over the SL BLUP increases as ρ increases. Improvements in imputed values

were achieved whether the information was incorporated in a single model via

an additional covariate, or by the use of a two-level model, although overall

the ML BLUP achieved slightly better results.

The ML BLUP and SL BLUP with household respondent improved pre-

dictive accuracy as measured by RRMSE, with the improvement depending

on the ICC. Both imputation methods incorporating household information

resulted in a significant improvement in predictive accuracy compared to the

SL BLUP. While there was no reduction in RRMSE for low ρ, the SL BLUP

with household respondent and ML BLUP resulted in a reasonable improve-

ment in predictive accuracy for moderate ρ, and a large improvement for

high ρ, consistent in magnitude across each of the nonresponse scenarios.

The single-level model incorporating co-householder’s income had slightly

lower RRMSE than the two-level model. In relation to bias the household

imputation methods had no impact under MCAR or MAR where the bias is

already very low, but the ML BLUP reduced the bias of the imputed values

under each MNAR mechanism, underestimating income by a smaller amount

than the SL BLUP. The improvement seen in the ML BLUP again depended

on the ICC, with the largest improvements occurring with higher ρ. The

single-level model incorporating co-householder’s income was poorer than

the two-level model for relative bias, particularly under low and moderate
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levels of clustering.

The ML BLUP was the standout imputation method for reproducing

ICC. The SL BLUP under-estimated ICC significantly for all values of ρ.

While both household imputation methods induced too much clustering, the

ML BLUP did so by less, and achieved ICCs closer to the true values, partic-

ularly for high ρ. All three BLUPs under-estimated the variance by a similar

amount when ρ = 20%. For moderate ρ the ML BLUP and SL BLUP with

covariate estimated variance with less bias than the SL BLUP imputed val-

ues. When ρ is highest both household imputed values reduce bias in variance

estimation compared to the SL BLUP.

The simulation study included BLUPs based on linear models for log(Y ),

both with and without bias correction. The log transformation resulted in

bias issues for both SL and ML BLUP imputed values. These were mostly

addressed by the bias correction for the SL BLUP impute, but some bias

issues remained for the ML BLUP imputed values after back transformation

and bias correction. This was also seen in the slightly worse RRMSE for the

ML BLUP imputed values with the log transformation after bias correction,

with poorer accuracy when ρ = 85%.

Estimation of ICC was compared across the imputation methods after log

transformation compared to raw data. The SL BLUP with the log transform

including a bias correction was no improvement on the SL BLUP imputed val-
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ues with untransformed data. ML BLUP imputed values after log transform

were an improvement for estimation of ICC on the untransformed results.

The bias correction made the clustering further from the true values, but

was still an improvement on untransformed data, and much better than the

SL BLUP imputed values.

The log transformation had no impact on variance estimation for the SL

BLUP imputed values, however, for the ML BLUP imputed values, variance

estimation was slightly worse using the log transformed data, but slightly

better than untransformed data when the bias correction was applied.

In summary, based on the evaluation criteria considered above, the log

transformation is worth considering but should be used with caution. Im-

puted values based on log transformed data should not be used without bias

correction, and for the ML BLUP further investigation is needed to deter-

mine whether an improved bias correction is possible for multilevel data with

high levels of clustering.

This chapter included an evaluation of respondent mean, SL BLUP and

ML BLUP imputed values on a range of criteria relevant to household sur-

veys. The respondent mean and SL BLUP imputed values were shown to

substantially under-estimate clustering within households. The ML BLUP

and SL BLUP with co-householder are much better, although they tend to

impute too similar values within households, with the ML BLUP being the
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slightly better method. All imputation methods under-estimated variability,

however stochastic BLUP imputed values would be expected to better repro-

duce variability, and may also more accurately reproduce clustering. The use

of stochastic and multiple imputed values will be the topic of the following

chapter.



Chapter 4

Imputation of Continuous Data

using Stochastic Linear Models

and Linear Mixed Models

4.1 Introduction

Single imputation methods based on deterministic linear and linear mixed

models were found to do poorly in Chapter 3 in reproducing variation and

level of clustering within households. Intuitively a sample using a single de-

terministic impute based on a linear impute will contain less dispersion than

would have been seen had the survey participants provided responses. Each

of the deterministic linear imputation methods considered in Chapter 3 (re-

97
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spondent mean, both SL BLUPs and ML BLUP) underestimated population

variance for hourly wage. The bias of this variance was between 20% and

30% when using a respondent mean or SL BLUP impute, and between 5%

and 27% for ML BLUP, with the better variance estimates achieved when

ICC was highest. Both the respondent mean and SL BLUP impute also

resulted in underestimation of the ICC, however the household imputation

methods, the SL BLUP with co-householder income, and ML BLUP were

able to counter this and instead slightly over-corrected the within-household

correlation.

The findings of Chapter 3 with regard to variance and clustering point to

the use of stochastic rather than deterministic imputation methods. Stochas-

tic imputed values have a random mechanism potentially resulting in a dif-

ferent impute each time the imputation method is applied. This requires

specification of a distributional model for the variable of interest for use in

imputation. Random draws can then be generated from a fitted model based

on the available data.

Stochastic imputed values extend naturally to repeated imputation. The

mechanism used to derive a single impute may be repeated several times to

create a number of imputed values for each single missing data item. These

multiple imputed values, even if not proper in the Bayesian sense, can be

used to derive improved estimators of the variance of population quantities
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of parameters.

This chapter will explore the impact of using household imputation meth-

ods with a stochastic component, and whether this solves the issues relating

to clustering and variance of deterministic imputed values described in Chap-

ter 3. Section 4.2 will include a description of the theory for deriving one or

more stochastic imputed values under a single and multilevel linear model.

Multiple imputed values will be calculated and combined as described in

Section 2.4. The stochastic imputation methods are assessed in Section 4.3

using an extension of the simulation study in Chapter 3, imputing hourly

wage rate in the HILDA survey. This section examines the relative perfor-

mance of the different stochastic methods, as well as their advantages over

deterministic methods. The evaluation will include their relative performance

for calculating the percentage of people on or under the Federal Minimum

Wage (FMW).

4.2 Conditional Distribution of Missing Val-

ues

A stochastic impute can be calculated by assuming the vectors of the variable

of interest for all household respondents are independent multivariate nor-
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mally distributed random variables. Imputed values can then be drawn from

the conditional distribution of the missing values given the observed data,

substituting estimators for unknown parameters. We would like to draw from

the conditional distribution of the missing data Yij given the observed Yo.

Assume the missing Yi′j ∼ N and the vector of respondents Yo ∼ MVN

(multivariate normal).

Given two variables A and B where A

B

 ∼ MVN

 µA

µB,

 σ2
A ΣAB

ΣT
AB ΣBB




it is well known that the conditional distribution of A|B = b is also MVN

with:

E(A|B = b) = µA + ΣABΣ−1
BB(b− µB)

Cov(A|B = b) = σ2
A −ΣABΣ−1

BBΣT
AB

Under Model (3.1), the expectation of the missing data conditional on the

observed is therefore

E(Yi′j|Yo = yo) = E(Yi′j) + Cov(Yi′j,yo)V −1(yo)(yo − E(yo))

Now Cov(Yij, Yi′j) = ρ, and Cov(Yi′j, Yij′) = 0 forj 6= j′. Therefore

E(Yi′j|Yo = yo) = E(Yi′j) + Cov(Yi′j,yo,j)V −1(yo,j)(yo,j − E(yo,j))
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The variance matrix V (yo,j) is a square matrix of size nrj as follows:

V (yo,j) = σ2



1 ρ . . . ρ

ρ 1 . . . ρ

... ... . . . ...

ρ ρ . . . 1


The inverse of a matrix in this form (e.g. Healy, 2000, p40-41) of size n is

a b . . . b

b a . . . b

... ... . . . ...

b b . . . a


where

a = 1 + (n− 2)ρ
(1− ρ)(1 + (n− 1)ρ) and

b = −ρ
(1− ρ)(1 + (n− 1)ρ)

The inverse can also be written in matrix form as (a− b)I+ bJ where I is the

identity matrix of size n and J is a square matrix of 1’s. Let 1 be a vector

of 1’s of length nrj, I the identity matrix of size nrj and J be a nrj square
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matrix of 1’s. The expectation then becomes:

E (Yi′j|Yo = yo) = xTi′jβ + σ2ρ1Tσ−2
(

1
1− ρI− ρ

(1− ρ) (1 + (nrj − 1) ρ)J
)

× (yo,j − xo,jβ)

= xTi′jβ + ρ

1− ρ

(
1TI− ρ

(1 + (nrj − 1) ρ)1J
)

(yo,j − xo,jβ)

= xTi′jβ + ρ

1− ρ

(
1T − ρnrj

(1 + (nrj − 1) ρ)1T
)

(yo,j − xo,jβ)

= xTi′jβ + ρ

1− ρ

(
1T − ρnrj

(1 + (nrj − 1) ρ)1T
)

(yo,j − xo,jβ)

= xTi′jβ + ρ

1− ρ

(
1 + (nrj − 1) ρ− ρnrj

(1 + (nrj − 1) ρ) 1T
)

(yo,j − xo,jβ)

= xTi′jβ + ρ (1 + (nrj − 1) ρ)−1 1T (yo,j − xo,jβ)

where xo,j is the matrix of covariates for the respondents in household j.

When there is only one respondent in the household nrj = 1 the expectation
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simplifies to xTi′jβ + ρ
(
yi,j − xTi,jβ

)
. The variance is given by:

Var (Yi′j|Yo = yo) = σ2 − Cov (Yi′j,yo) V−1 (yo)Cov (yo, Yi′j)

= σ2 − Cov (Yi′j,yj) V−1 (yo,j)Cov (yo,j, Yi′j)

= σ2 −
(
σ2ρ1T

)
V−1 (yo,j)

(
σ2ρ1T

)T
= σ2

[
1− σ2ρ21TV−1 (yo,j)1

]
= σ2

[
1− σ2ρ21Tσ−2

(
1

1− ρI− ρ

(1− ρ) (1 + (nrj − 1) ρ)J
)

1
]

= σ2
[
1− ρ2

1− ρ

(
1T1− ρ

(1 + (nrj − 1) ρ)1TJ1
)]

= σ2
[
1− ρ2

1− ρ

(
nrj −

ρn2
rj

(1 + (nrj − 1) ρ)

)]

= σ2
[
1− nrjρ

2

1− ρ

(
1− ρnrj

(1 + (nrj − 1) ρ)

)]

= σ2
[
1− nrjρ

2

1− ρ

(
1 + (nrj − 1) ρ− ρnrj

(1 + (nrj − 1) ρ)

)]

= σ2
[
1− nrjρ2 (1 + (nrj − 1) ρ)−1

]

This can also be generalised to several missing Y and several observed Y

within a household. When there is only one respondent in the household

nrj = 1 and the variance simplifies to σ2 (1− ρ2).

For example, for two person households with one respondent, nrj = 1,

the SL BLUP has ρ = 0 and stochastic imputed values are drawn as follows:

Yi′j ∼ N
(
xi′jβ̂, σ̂2

)
. (4.1)
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For the ML BLUP a draw is taken from:

Yi′j ∼ N(xi′jβ̂ + ρ̂(Yij − xTijβ̂), (1− ρ̂2)σ̂2) (4.2)

For the single-level model β̂ and σ̂2 are the ordinary least squared estimators.

The multilevel model uses estimates for β̂, ρ and σ̂2 produced by IGLS using

the PROC MIXED procedure in SAS v9.2. Estimation of these parameters

implicitly assumes a MAR nonresponse mechanism.

The stochastic nature of these methods is expected to result in the im-

puted dataset having more realistic variances and intra-class correlations, po-

tentially at the expense of worse predictive accuracy at the individual level.

Either single or multiple stochastic imputed values are able to be drawn from

these distributions. When multiple imputed values are drawn the imputed

values are combined as described in Section 2.4.4.

4.3 Simulation study

The simulation study in Section 3.3 of the previous chapter using hourly

wage rate from HILDA (Watson, 2008) was extended by deriving stochastic

SL BLUP imputed values using (4.1) and stochastic ML BLUP imputed

values using (4.2). Five stochastic imputation methods were added to the

simulation study from Chapter 3 for imputing missing Yij:
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• Stochastic Single-level BLUP: single draw from the conditional distri-

bution of the missing, given the observed data, as in (4.1) with age by

sex as auxiliary variables (notated stochastic SL);

• Stochastic Single-level BLUP: single draw from the conditional distri-

bution of the missing, given the observed data, as in (4.1) with age

by sex as auxiliary variables and an additional covariate given by the

variable of interest for an item respondent from the same household

(notated stochastic SL+);

• Stochastic Multilevel BLUP: single draw from the conditional distri-

bution of the missing, given the observed data, as in (4.2) with age by

sex as auxiliary variables (notated stochastic ML);

• Multiply Imputed Single-level BLUP: multiple draws from the condi-

tional distribution of the missing, assuming the observed, as in (4.1)

with age by sex as auxiliary variables (notated MI SL);

• Multiply Imputed Multilevel BLUP: multiple draws from the condi-

tional distribution of the missing, assuming the observed, as in (4.2)

with age by sex as auxiliary variables (notated MI ML).

As in the previous chapter, the BLUP imputation models used age by

sex as explanatory variables as these are available on the household form,
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and therefore are likely to be available for people in responding households

regardless of whether the person themselves was a respondent or item re-

spondent.

As with the deterministic methods, the initial stochastic imputed values

were calculated using untransformed data. The log transformation was then

applied and the linear and linear mixed stochastic imputed values calculated

with and without this transformation.

As in Subsection 3.3.3, ICCs of ρ = 19.4%, ρ = 50.0% and ρ = 85.0%

were used to assess the imputation methods under low, moderate and high

ICC.

In consideration of the required number of imputed values, Rubin (1987b,

p114) described the efficiency of an estimate based on m imputed values as

approximately (1 + γ
m

)−1, where γ is the rate of missing information for the

quantity being estimated. The efficiencies for various values of γ and m

are shown below. The simulation study has been carried out with m = 30

imputed values, which has a high level of efficiency for across varying levels

of missing information.
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Table 4.1: Efficiency for various rates of missing information and number of
multiple imputed values

γ

m 0.1 0.25 0.5 0.7 0.9
2 95 89 80 74 69
3 97 92 86 81 77
5 98 95 91 88 85
10 99 98 95 93 92
30 100 99 98 98 97
50 100 100 99 99 98

4.4 Results

This section contains the results of a comparison of the BLUP under single

and multilevel linear imputation models using stochastic methods compared

to the deterministic methods evaluated in Chapter 3 . Respondent mean

imputed values were used as a point of comparison. The simulation study

was also carried out with a log transform for hourly wage rate. A log trans-

form of the outcome was performed prior to imputation, and the imputed

values back-transformed to be on the original scale with a bias correction as

described in Section 3.3.1. This correction was applied to address the bias

issues found in the deterministic imputed values, which were in part resolved

by the correction.

Predictive Accuracy was assessed at an individual level by calculating the

RRMSE of prediction as in (2.16), and the relative bias as in (2.17), averaged

over the 250 replicates. Estimation accuracy was assessed for means, vari-
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ance and intra-household correlation (ICC) under the different nonresponse

models for each imputation method, each averaged over 250 replicates. When

multiple stochastic imputed values were calculated, they were combined by

averaging over the m = 30 imputed values in each of the 250 replicates.

4.4.1 Single stochastic linear and linear mixed imputed

values compared to deterministic imputed values

Table 4.2: RRMSE (%) - imputation using single stochastic BLUPs compared
to deterministic BLUPs

Deterministic Stochastic Stochastic log
NR model ρ(%) Respmean SL SL+ ML SL SL+ ML SL ML

hh
pers

MCAR
MCAR

20 57.0 55.7 55.0 54.9 78.9 77.6 77.7 75.7 76.7
50 56.9 55.1 48.8 49.7 78.2 69.0 70.3 75.3 70.2
85 58.2 56.7 31.0 36.2 80.3 43.7 50.7 76.9 54.2

hh
pers

MCAR
MAR

20 57.8 55.9 56.2 55.3 80.2 81.8 81.4 76.1 80.2
50 57.9 55.0 50.4 51.2 79.5 70.8 72.1 75.9 71.0
85 62.8 61.0 33.7 39.7 83.2 45.0 52.2 79.7 55.6

hh
pers

MCAR
MNAR

20 65.6 64.4 63.6 63.5 80.5 77.4 77.3 78.7 78.0
50 65.1 63.4 55.8 56.6 79.6 67.6 68.6 78.0 70.9
85 65.8 64.4 34.3 39.0 81.4 41.8 47.7 79.0 53.7

hh
pers

MNAR
MCAR

20 61.5 60.2 59.5 59.4 79.4 74.9 74.9 76.8 76.4
50 62.5 60.7 53.3 54.1 78.7 65.9 67.0 76.6 70.0
85 64.8 63.3 33.6 38.2 80.8 41.2 47.0 78.3 53.6

hh
pers

MNAR
MNAR

20 67.0 65.8 65.2 64.9 79.9 74.8 74.6 78.2 76.8
50 64.3 62.3 55.0 55.4 77.6 63.8 64.4 75.6 68.1
85 65.1 63.4 33.9 37.6 79.0 39.1 43.7 76.4 51.4

maximum simulation standard error = 0.35

Table 4.2 shows the RRMSE under the five nonresponse mechanisms de-
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scribed in Section 3.3.2 and for three values of ρ. The three deterministic

SL and ML BLUPs of Chapter 3 are presented alongside the results for the

stochastic SL and ML BLUPs. The results of a log transform on the SL and

ML BLUP are also presented.

The stochastic BLUPs result in a higher RRMSE than the deterministic

methods a a result of the random component in the method. Both imputa-

tion methods which incorporate the household information (SL+ and ML)

demonstrate improvements over the SL BLUP. The improvement is small

when ρ = 20%, and mostly occurs when nonresponse is informative. The

improvement in accuracy increases with ρ, resulting in 9-18% reduction in

RRMSE in both the SL+ and ML imputation methods for moderate ρ and

37-45% for the highest ICC level with ML BLUP, and slightly more for SL+

(46-51%). This is consistent with the comparison of deterministic BLUPs.

After the log transformation improvement in RRMSE by introducing a ML

impute is of a similar magnitude to that seen without the log transform.

The relative bias of the imputed values are shown in Table 3.2. The

introduction of a stochastic component in the imputed values had almost no

impact on bias. However, there were bias problems when the log transform

was employed under MCAR and MAR nonresponse models. The bias in the

imputed values is also reflected in the bias of the estimated mean (Table 7.1

of Appendix B). The untransformed BLUPs have much better bias properties
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Table 4.3: Relative bias (%) - imputation using single stochastic BLUPs
compared to deterministic BLUPs

Deterministic Stochastic Stochastic log
NR model ρ(%) Respmean SL SL+ ML SL SL+ ML SL ML

hh
pers

MCAR
MCAR

20 0.2 0.3 0.2 0.3 0.5 0.4 0.3 9.4 14.6
50 0.3 0.2 0.2 0.1 0.4 0.3 0.1 9.3 15.0
85 0.2 0.1 0.0 0.0 0.3 0.2 0.0 9.4 16.2

hh
pers

MCAR
MAR

20 3.1 0.0 0.9 -0.1 -0.1 0.7 0.1 9.7 17.1
50 3.6 0.7 -0.8 -0.2 0.6 -0.9 0.0 10.2 15.4
85 2.0 0.1 -0.7 -1.4 0.1 -0.6 -1.2 8.5 13.9

hh
pers

MCAR
MNAR

20 -7.5 -7.0 -7.7 -6.5 -7.1 -7.7 -6.5 1.2 5.5
50 -7.5 -7.1 -6.4 -5.3 -7.2 -6.5 -5.3 1.1 7.0
85 -7.5 -7.2 -2.6 -2.6 -7.3 -2.6 -2.6 1.0 10.9

hh
pers

MNAR
MCAR

20 -4.3 -4.0 -5.0 -3.2 -3.8 -4.8 -3.0 4.7 9.3
50 -5.5 -5.2 -4.4 -3.1 -5.1 -4.3 -3.0 3.3 9.6
85 -6.9 -6.6 -1.8 -1.7 -6.5 -1.7 -1.6 1.8 12.1

hh
pers

MNAR
MNAR

20 -11.1 -10.4 -11.9 -9.2 -10.3 -11.8 -9.1 -2.5 1.1
50 -11.3 -10.6 -9.5 -7.2 -10.4 -9.4 -7.1 -2.7 3.7
85 -12.1 -11.4 -3.4 -3.1 -11.3 -3.4 -3.1 -3.6 8.9

maximum simulation standard error = 0.28

in both the MCAR and MAR scenarios. Under a log transform the mean is

over-estimated by both the SL and ML log-transformed BLUP in all but the

last MNAR scenario.

Table 4.4 shows the estimated intra-class correlation after imputation.

The stochastic SL BLUP is poorer than the deterministic method, under-

estimating the ICC even further. However, both stochastic household impu-

tation methods impute the clustering levels remarkably well. Unlike the de-

terministic methods, they only induce a slight over-clustering, and only under
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Table 4.4: Expected value of estimated ICC (%) - imputation using sing
stochastic BLUPs compared to deterministic BLUPs

Deterministic Stochastic Stochastic log
NR model ρ(%) Respmean SL SL+ ML SL SL+ ML SL ML

hh
pers

MCAR
MCAR

20 12.7 13.5 24.7 24.2 10.4 19.2 18.9 10.6 18.7
50 33.2 35.6 60.7 58.0 27.4 50.0 47.3 28.3 47.3
85 56.1 58.7 91.1 87.9 45.0 84.9 79.9 46.7 79.3

hh
pers

MCAR
MAR

20 14.3 16.4 25.2 25.0 12.8 19.3 19.2 12.3 17.8
50 36.4 39.6 64.1 62.1 30.3 52.9 51.0 31.4 50.9
85 56.5 59.8 91.1 87.9 46.5 85.4 81.1 48.3 81.1

hh
pers

MCAR
MNAR

20 11.4 12.4 26.5 26.2 9.5 21.2 21.0 10.1 19.5
50 25.9 29.1 61.9 58.7 22.1 52.5 49.6 23.1 47.3
85 39.6 43.5 92.8 89.0 33.1 88.1 83.0 34.9 80.6

hh
pers

MNAR
MCAR

20 10.5 11.6 26.8 26.5 9.0 21.9 21.6 9.8 19.7
50 24.6 27.9 62.2 59.1 21.3 53.3 50.3 22.5 48.0
85 39.0 43.0 92.9 89.2 32.8 88.4 83.3 34.5 80.9

hh
pers

MNAR
MNAR

20 9.7 10.8 28.5 28.8 8.3 23.8 24.1 9.4 20.3
50 19.6 23.6 63.0 60.0 18.2 55.5 52.6 19.9 48.5
85 29.4 34.3 94.2 90.6 26.2 90.8 86.3 28.6 82.7

maximum simulation standard error = 0.43

informative nonresponse. Of the two stochastic household imputed values,

the SL+ imputed values are slightly more accurate for ICC and MCAR and

MAR, while the ML BLUP is the better of the two under the informative

response mechanisms more typically associated with income nonresponse.

After the log transformation the improvement in the ICC by introducing the

ML BLUP is similar in magnitude to that seen on untransformed data.

The relative bias of the variance estimate for hourly wage rate is assessed

in Table 4.5. To revisit the findings of Chapter 3, none of the deterministic
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Table 4.5: Relative bias (%)of estimated variance - imputation using single
stochastic BLUPs compared to deterministic BLUPs

Deterministic Stochastic Stochastic log
NR model ρ(%) Respmean SL SL+ ML SL SL+ ML SL ML

hh
pers

MCAR
MCAR

20 -25.0 -23.4 -22.5 -22.6 0.2 0.3 0.3 -3.7 -0.7
50 -25.0 -23.0 -17.8 -17.6 0.2 0.3 1.0 -3.3 1.7
85 -25.1 -23.4 -6.9 -7.0 0.2 0.0 2.1 -4.0 7.2

hh
pers

MCAR
MAR

20 -23.8 -21.6 -20.1 -20.7 1.9 4.9 4.3 -2.9 2.9
50 -24.5 -21.9 -15.4 -15.2 1.7 -2.3 3.2 -2.8 2.3
85 -26.8 -24.8 -8.9 -8.0 -3.4 -2.9 -0.4 -7.4 4.2

hh
pers

MCAR
MNAR

20 -37.0 -35.6 -34.6 -34.6 -15.7 -18.0 -18.0 -17.2 -15.5
50 -36.7 -34.9 -29.4 -29.4 -15.2 -17.0 -16.5 -16.5 -12.0
85 -35.9 -34.3 -12.9 -14.4 -14.0 -8.3 -8.2 -16.3 -0.2

hh
pers

MNAR
MCAR

20 -31.0 -29.5 -28.4 -28.3 -7.8 -11.6 -11.5 -10.6 -8.9
50 -32.8 -30.9 -24.8 -24.8 -10.1 -12.3 -11.8 -12.2 -7.2
85 -34.4 -32.8 -10.6 -12.1 -12.3 -6.0 -6.0 -14.8 2.6

hh
pers

MNAR
MNAR

20 -40.6 -39.2 -38.2 -38.0 -20.6 -25.8 -25.7 -21.6 -21.0
50 -37.9 -36.2 -30.0 -30.0 -16.8 -20.5 -20.2 -18.2 -13.8
85 -37.7 -36.2 -10.9 -12.8 -16.5 -7.6 -8.5 -18.8 1.7

maximum simulation standard error = 0.52

BLUP imputed values resulted in accurate variance estimates, however there

was some improvement from the use of household data in SL+ and ML for

the highest level of ρ. Table 4.5 show that the stochastic BLUPs introduce

an additional source of variation in the imputed values which results in much

better variance estimates. Under MCAR, both of the SL BLUPs and the ML

stochastic BLUP estimate the variance quite accurately. Under MNAR non-

response mechanisms the stochastic BLUPs are again an improvement over

the deterministic BLUPs. The household imputed values are slightly poorer
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than the stochastic SL BLUP imputed values for low or moderate ρ, result-

ing in slightly higher bias in the variance. But when ρ = 85% the variance

estimates using the household imputation methods are getting the variance

about right, although still resulting in an underestimate of variance (at most

8.5%). The main benefit from the log transform is seen in the variance es-

timates under MNAR, where the stochastic ML BLUP with log transform

results in some improvement in variance estimates under moderate levels of

clustering, and large improvements under the highest level of clustering.

4.4.2 Multiple imputed values compared to single stochas-

tic imputed values

This section includes a performance comparison of the single stochastic im-

puted values with multiple imputed values based on the single and multilevel

models. Both raw and log transformed results are presented. Table 4.6 shows

the predictive accuracy for imputed values as measured by RRMSE.

The use of multiple imputed values has resulted in improved accuracy,

with the average over the m = 30 imputed values resulting in more precise

imputed values. As with the stochastic and deterministic imputed values,

the benefit from using ML rather than SL is greatest under high levels of

clustering. MI results in similar accuracy levels for single-level imputed values
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Table 4.6: RRMSE (%) - MI compared to single stochastic imputation using
SL and ML BLUPs

Single Stochastic MI MI log
NR model ρ(%) SL ML SL ML SL ML

hh
pers

MCAR
MCAR

20 78.9 77.7 56.7 55.8 57.2 57.5
50 78.2 70.3 56.0 56.5 56.6 52.6
85 80.3 50.7 57.6 36.7 58.2 41.9

hh
pers

MCAR
MAR

20 80.2 81.4 56.8 56.4 57.4 58.7
50 79.5 72.1 56.0 52.1 56.8 53.9
85 83.2 52.2 61.9 40.2 62.2 45.7

hh
pers

MCAR
MNAR

20 80.5 77.3 65.0 63.9 64.6 63.8
50 79.6 68.6 64.0 57.0 63.6 57.4
85 81.4 47.7 65.0 39.4 64.6 43.5

hh
pers

MNAR
MCAR

20 79.4 74.9 61.0 60.0 60.9 60.4
50 78.7 67.0 61.4 54.6 61.2 55.4
85 80.8 47.0 63.9 38.5 63.6 43.2

hh
pers

MNAR
MNAR

20 79.9 74.6 66.4 65.2 65.6 64.6
50 77.6 64.4 62.8 55.7 62.0 55.4
85 79.0 43.7 64.0 37.8 63.1 41.8

maximum simulation standard error = 0.34

regardless of whether transformed data are used, and this is also reflected in

the multilevel imputed values when ρ = 20% or 50%. Under the highest level

of clustering however, the ML MI imputed values are slightly more accurate

when using raw rather than log transformed data.

Table 4.7 shows the relative bias of the imputed values under both single

and multiple imputed values. There is no major changes to the bias resulting

from multiple rather than single imputed values. The previous issues with

bias resulting from the ML BLUP under a log transform still exist under MI.

The results for relative bias of the estimated mean reflect the findings for the
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Table 4.7: Relative bias (%) - MI compared to single stochastic imputation
using SL and ML BLUPs

Single Stochastic MI MI log
NR model ρ(%) SL ML SL ML SL ML

hh
pers

MCAR
MCAR

20 0.5 0.3 0.3 3.1 9.4 14.6
50 0.4 0.1 0.2 0.1 9.3 15.1
85 0.3 -0.0 1.9 0.0 9.3 16.3

hh
pers

MCAR
MAR

20 -0.1 0.1 0.1 0.1 9.8 16.9
50 0.6 -0.0 0.7 -0.1 10.3 15.3
85 0.1 -1.2 1.0 -1.3 8.5 13.8

hh
pers

MCAR
MNAR

20 -7.1 -6.5 -7.0 -6.5 1.3 5.5
50 -7.2 -5.3 -7.1 -5.3 1.2 7.1
85 -7.3 -2.6 -7.2 -2.6 1.1 10.9

hh
pers

MNAR
MCAR

20 -3.8 -3.0 -4.0 -3.2 4.6 9.1
50 -5.1 -3.0 -5.2 -3.1 3.2 9.6
85 -6.5 -1.6 -6.6 -1.7 1.8 12.0

hh
pers

MNAR
MNAR

20 -10.3 -9.1 -10.4 -9.2 -2.6 1.1
50 -10.4 -7.1 -10.5 -7.1 -2.7 3.7
85 -11.3 -3.1 -11.4 -3.1 -3.7 9.0

maximum simulation standard error = 0.22

bias of the imputed values (Table 7.3 in Appendix B).

The introduction of multiple imputed values leads to a large improvement

in estimation of ICC under a single-level BLUP, and a small improvement

for the ML BLUP, as shown in Table 4.8. The best imputation method

for ICC is ML MI method, which reproduces the ICC well across all non-

response mechanisms and levels of clustering, even under MNAR. MI on its

own without the ML component is unable to achieve this, underestimating

the ICC across all scenarios. The MI imputed values under a log transform

give similar results for ICC as on the raw data, whether based on a SL or
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Table 4.8: Expected value of estimated ICC - MI compared to single stochas-
tic imputation using SL and ML BLUPs

Single Stochastic MI MI log
NR model ρ(%) SL ML SL ML SL ML

hh
pers

MCAR
MCAR

20 10.4 18.9 17.0 19.5 17.1 19.4
50 27.4 47.3 35.3 46.4 35.7 46.4
85 45.0 79.9 61.9 81.1 62.8 80.8

hh
pers

MCAR
MAR

20 12.8 19.2 17.7 19.6 17.5 19.2
50 30.3 51.0 37.0 48.5 37.6 48.5
85 46.5 81.1 62.7 81.7 63.7 81.6

hh
pers

MCAR
MNAR

20 9.5 21.0 16.8 20.1 16.9 19.6
50 22.1 49.6 32.5 47.7 33.0 46.5
85 33.1 83.0 55.2 82.8 56.3 81.4

hh
pers

MNAR
MCAR

20 9.0 21.6 16.5 20.2 16.8 19.7
50 21.3 50.3 32.0 48.1 32.7 46.8
85 32.8 83.3 55.4 83.0 56.2 81.6

hh
pers

MNAR
MNAR

20 8.3 24.1 16.4 20.9 16.7 19.8
50 18.2 52.6 30.1 49.3 31.1 47.0
85 26.2 86.3 51.4 84.6 52.7 82.6

ML model.

The ratios between the MI estimate of imputation variance to the actual

imputation variance, varMI/vartrue, are shown in Table 4.9. MI generally

results in under-estimation of the imputation variance. While the ML multi-

ple imputed values have previously been shown to result in an improvement

to RRMSE and ICC over SL models, the imputation variance estimates are

poorer under ML than SL. This effect is seen for both the untransformed

and transformed data and is worst under informative nonresponse and the

highest levels of clustering where the imputation variance under MI is around
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Table 4.9: Ratio of imputation variance under MI to true imputation variance
under SL BLUP and ML BLUP methods

MI MI log
NR model ρ(%) SL BLUP ML BLUP SL BLUP ML BLUP

hh
pers

MCAR
MCAR

20 69.2 70.7 52.8 45.2
50 89.6 79.0 68.5 47.6
85 114.0 88.0 84.9 45.5

hh
pers

MCAR
MAR

20 57.7 62.1 50.6 46.6
50 64.8 53.1 54.2 39.7
85 63.1 32.5 66.7 31.9

hh
pers

MCAR
MNAR

20 50.6 41.4 42.4 34.0
50 66.7 45.6 55.4 42.8
85 96.8 42.6 78.4 35.6

hh
pers

MNAR
MCAR

20 58.3 43.3 44.8 35.2
50 69.5 44.2 57.0 43.4
85 90.2 42.3 74.3 36.3

hh
pers

MNAR
MNAR

20 55.6 34.4 46.0 36.3
50 65.2 31.4 52.6 37.4
85 106.0 30.1 83.6 35.3

30−45% of the true imputation variance. This could potentially be addressed

by an increase in the number of multiple imputed values, although 30 is al-

ready a relatively large number for multiple imputation. It is worth noting

that unless MI is used, the imputation variance would usually be ignored

altogether, so even an imperfect measure is better than nothing. Also, the

total variance is made up of both sampling variance and imputation variance.

MI is designed to help with the latter, but sampling variance would usually

be at least as important in most surveys. Hence the biases shown in Table

4.9 would be small compared to the total variance.
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4.4.3 Proportion of people on or below Federal Mini-

mum Wage using deterministic and single stochas-

tic imputation methods

Table 4.10: Various estimates of the percentage of adults on or below FMW
- stochastic methods

Deterministic Stochastic Stochastic log
NR model ρ(%) Actual SL ML SL ML SL ML

hh
pers

MCAR
MCAR

20 7.7 5.8 5.8 11.0 11.0 8.3 7.9
50 6.8 5.1 5.7 10.2 10.1 7.5 7.1
85 6.7 5.0 7.2 10.2 9.7 7.4 6.8

hh
pers

MCAR
MAR

20 7.7 5.8 5.8 11.0 11.2 8.4 8.1
50 6.8 5.0 6.0 10.2 10.1 7.5 7.2
85 6.7 4.8 7.5 9.7 9.4 7.3 6.9

hh
pers

MCAR
MNAR

20 7.7 6.0 6.0 11.0 10.5 8.6 8.1
50 6.8 5.3 5.7 10.2 9.4 7.8 7.3
85 6.7 5.1 7.0 10.3 9.0 7.7 6.9

hh
pers

MNAR
MCAR

20 7.7 5.9 5.9 11.1 10.4 8.4 7.9
50 6.8 5.2 5.7 10.2 9.3 7.7 7.2
85 6.7 5.1 7.0 10.2 8.9 7.6 6.9

hh
pers

MNAR
MNAR

20 7.7 6.1 6.1 11.0 9.9 8.7 8.1
50 6.8 5.4 5.8 10.3 8.8 7.9 7.2
85 6.7 5.3 6.9 10.5 8.4 7.8 6.9

Table 4.10 shows that the stochastic imputed values result in quite dif-

ferent estimates for the proportion of people on or below FMW than the

deterministic methods. Deterministic imputed values were previously shown

to underestimate the percentage of adults on or below FMW, that is not im-

puting enough nonrespondents to lower incomes, but the stochastic imputed

values over-estimate the true percentage, imputing far too many values in the
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Figure 4.1: Simulation study - estimated percentage on or below Federal
Minimum wage with stochastic imputed values
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lower tail. In this specific example the log transform works well for both SL

and ML imputed values, with the stochastic imputed values after log trans-

form closely reproducing the true percentage of people on or below FMW.

The ML BLUP stochastic imputed values with the log transformed data

resulted in the best estimate of this proportion. However, this particular es-

timate is one of many that could be considered, and the ML BLUP was found

to have bias issues with the log transformation, even after bias correction,

which is cause for being cautious with this as an imputation method.

These results are also displayed in Figure 4.1, which shows the estimated

percentage on or below federal minimum wage when ρ = 20%, ρ = 50% and

ρ = 85% respectively, for three of the nonresponse mechanisms.

4.5 Summary of Chapter 4

This chapter considered whether deficiencies in the deterministic ML impu-

tation method, in particular over-estimation of ICC and under-estimation

of variance, could be addressed by the use of a single stochastic or multiple

imputed values.

The SL BLUP imputed values were poor for both ICC and variance es-

timation when either a single stochastic impute or multiple imputed values

were used.
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The stochastic ML BLUP was the standout imputation method for repro-

ducing ICC. While the SL stochastic BLUP impute was very poor, with ICC

underestimated by more than the deterministic SL BLUP, the stochastic ML

BLUP reproduced the true ρ consistently well across all NR models and ICC

levels.

The variance estimates under stochastic ML imputation were much im-

proved under MNAR but there was still under-estimation of variance. This

particular problem was not resolved by the introduction of multiple imputed

values. The stochastic ML BLUP had significantly improved variance when

ρ was high.

The application of stochastic imputation methods when estimating the

proportion of people on or below federal minimum wage showed that the log-

transformed multilevel stochastic imputed values do well in the lower tail of

the income distribution, doing better than the deterministic and stochastic

imputed values, particularly when using the multilevel model.
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Chapter 5

Imputation of Binary Data

using Generalized Linear

Models and Generalized Linear

Mixed Models

5.1 Introduction

In the previous two chapters imputation methods have been investigated

for continuous variables using BLUPs under both a linear and linear mixed

model. Household surveys generally contain a large number of data items

123
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which are categorical or binary in nature, such as marital status, language,

education, employment and disability. The proportion of people with income

below FMW and the presence of important health condition such as diabetes

and health risk factors such as smoking are also examples of key binary vari-

ables. In these cases the previous models based on a continuous distribution

are not applicable.

The focus of this chapter is the development of new methods appropriate

for dealing with missing data for binary variables in a household survey.

Imputation models will be developed based on logistic and probit models

with and without a random household intercept. The proposed imputation

methods will be assessed against existing imputation methods by a simulation

study using the British Household Panel Survey (BHPS). Both the single and

multilevel logit and probit models are used to generate a single stochastic

impute, and then multiple imputed values. Evaluation of the imputation

methods is carried out by assessing various qualities of these imputed values

across several potential nonresponse mechanisms over a set of replicates.

Section 5.2 has a description of how imputed values are derived under the

logit and probit models using both Generalized Linear Models (GLMs) and

Generalized Linear Mixed Models (GLMMs). In Section 5.3 the simulation

study using two binary variables from the BHPS is described. The results and

findings are detailed in Section 5.4. The chapter concludes with a summary
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of the value of introducing the household structure into an imputation model

for binary variables.

5.2 Imputation methods

5.2.1 Generalized Linear and Generalized Linear Mixed

Model with logit link function

The first imputation method makes use of the logit link function. Using

a Generalized Linear Model (GLM), Yij is assumed to have a binary dis-

tribution with the logit function used to link the linear predictor xijβ and

Yij:

P (Yij = 1) = f(xTijβ) =
exp(xTijβ)

1 + exp(xTijβ) (5.1)

Similarly when using a Generalized Linear Mixed Model (GLMM), Yij is

assumed to have a binary distribution, but now the logit function is used to

link the linear predictor xijβ, the random household effect uj and Yij:

P (Yij = 1|uj) = g(xTijβ + uj) =
exp(xTijβ + uj)

1 + exp(xTijβ + uj)
(5.2)

where uj ∼ N(0, σ2
u).

The derivation of imputed values under (5.1) is straightforward. The logit

model is first fit to the respondents’ data. We then estimate P (Yij = 1) by



126 CHAPTER 5. BINARY SL AND ML IMPUTATION

replacing β by β̂. and use this probability to generate Bernoulli random

variables, resulting in binary imputed values. The underlying assumption

of this model is that nonresponse in either MCAR or MAR, therefore there

may be nonresponse bias unaccounted for when nonresponse is generated

under the MNAR assumption. The mixed model of (5.2) is more complex

for derivation of imputed values as it includes the unknown random household

effect.

To generate imputed values under (5.2), suppose persons 1, ..., nrj in

household j respond, and person nrj+1 is a nonrespondent. The best im-

pute for missing Ynrj+1,j is E[Ynrj+1,j|Y1j, ..., Ynrj ,j], which although this is

not binary, can be used to generate a Bernoulli random variable as a binary

impute. This is not straightforward to calculate as it requires integration

over the values of uj, and also depends on β and σ2
u. The empirical Bayes

estimator can be calculated by substituting estimates for β and σ2
u. To avoid

numerical integration over the uj, a stochastic method can be used:

E[Ynrj+1,j|Y1,j, ..., Ynrj+1,j] = E[g(xnrj+1,j
β + uj)|Y1j, ..., Ynrj,j

] (5.3)

= Eu∗ [g(xnrj+1,j
β + u∗j)] (5.4)

where u∗j are drawn from the the distribution of uj conditional on the observed

values Y1j, ..., Ynrj,j
.
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Firstly model (5.2) is fitted to fully responding households, resulting in

estimates for the unknown parameters σ2
u and β. This model was fit using

maximum likelihood with quadrature approximation in SAS PROC GLIM-

MIX. A set of K∗ independent values for each household j containing nonre-

spondents, u∗jk : k = 1, ..., K∗, are then generated from N(0, σ̂2
u). These can

then be used to generate Y ∗ijk using:

P (Y ∗ijk = 1|u∗jk, Y1j) = g(xTijβ̂ + u∗jk) (5.5)

for i = 1, ..., nrj where Y1j is a respondent value in household j.

The probability in (5.5) cannot be used to create an impute because u∗jk

are generated from the estimated marginal distribution of uj (uj ∼ N(0, σ̂2
u)),

but we require draws from the distribution of uj given Y1j, ..., Ynrj. To achieve

this a reduced set of K∗∗ replicates are now defined by only retaining u∗jk from

replicates where the generated values of Y ∗ijk are equivalent to the observed

values Yij. By this device, the reduced set of random effects, which is writ-

ten as u∗jk : k = 1, ..., K∗∗, are draws from the distribution of uj given the

observed data. For example, in the special case of two people per household

with one respondent, u∗jk is retained when Y ∗1jk = Y1j. This reduced set of

household random effects is notated using u∗jk : k = 1, ..., K∗∗.

Multiple imputed values for nonrespondent Ynrj+1,j can be generated us-
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ing:

P (Y ∗∗nrj+1,jk
= 1|u∗∗jk) = g(xnrj+1,jk

β̂ + u∗∗jk) (5.6)

To choose a single impute just one of these imputed values could be used,

or the mean of a set of imputed values (although this in general would not

be 0 or 1):

Ŷnrj+1,j = 1
K∗∗

K∗∗∑
k=1

Y ∗∗nrj+1,jk
(5.7)

5.2.2 Generalized Linear and Generalized Linear Mixed

Model with probit link function

The second imputation method using a probit model will be derived for first

a GLM then a GLMM.

Let Zij = xTijβ+ εij be an underlying, unobserved response variable with

εij ∼ N(0, 1) such that:

Yij =


1, if Zij ≥ 0

0, if Zij < 0
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Zj = (Z1j, ..., Znj ,j) are independent multivariate normal random variables:

E[Zij] = xTijβ

V ar(Zij) = 1

Cov(Zij, Zi′j) = 0

Then

P (Yij = 1) = P (Zij ≥ 0)

= P (xTijβ + εij ≥ 0)

= P (εij < xTijβ) (by symmetry)

= Φ(xTijβ)

where Φ is the cumulative distribution function for the standard normal

distribution.

The probit model can be fit to the responding data to generate imputed

values for missing Yij. As in Section (5.2.1) a Bernoulli random variable can

be used to generate binary values if required.

Correspondingly the GLMM is specified by defining an underlying, un-
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observed response variable Zij = xTijβ + uj + εij such that:

Yij =


1, if Zij ≥ 0

0, if Zij < 0 .

with uj ∼ N(0, σ2
u) and εij ∼ N(0, 1). Zj = (Z1j, ..., Znj ,j) are independent

multivariate normal random variables with:

E[Zij] = µij = xTijβ

V ar(Zij) = 1

Cov(Zij, Zi′j) = ρ (i 6= i′).

As in Section (5.2.1) an impute under this model requires a draw from

Y2j given Y1j, in the case of households of size 2 with one nonrespondent

(without loss of generality person 1 is assumed the respondent).

If Z2j is known then Y2j follows, therefore draws are first generated from

the distribution of Z2j given Y1j, or equivalently, Z2j given sign(Z1j).

The distribution of Z2j conditional on Z1j comes from the known prop-

erties of the multivariate normal distribution (also see Section 4.2):

Z2j|Z1j ∼ N(µ2j + ρ(Z1j − µ1j), 1− ρ2) (5.8)

The first step is to fit the GLMM probit model to data from responding
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households, resulting in estimates for the unknown parameters σ2
u, β and ρ.

To generate Z2j also requires Z1j. Now Z1j ∼ N(x1jβ, 1), but Y1j is

known so can be used when generating Z1j. Let Z∗1j be draws from the

distribution of Z1j|Y1j. When Y1j = 1 then Z1j > 0, and conversely when

Y1j = 0 then Z1j < 0. Therefore the distribution of Z1j|Y1j is truncated

normal:

Z1j ∼ TrN(x1jβ, 1) for 0 < Z1j conditional on Y1j = 1 and (5.9)

Z1j ∼ TrN(x1jβ, 1) for 0 > Z1j conditional on Y1j = 0 (5.10)

A truncated normal distribution results from a normally distributed ran-

dom variable which is bounded below, above, or both. Formally, if Z ∼

N(µ, σ2) and Z is constrained to take a value between a and b, then Z con-

ditional on a < Z < b has the truncated normal distribution with pdf:

f(Z;µ; a, b) =
1
σ
φ(Z−µ

σ
)

Φ( b−µ
σ

)− Φ(a−µ
σ

)
(5.11)

where φ represents the standard normal density function and Φ represents

the corresponding cumulative distribution function.

Values for Z∗1j, are therefore generated by taking random draws from the

truncated normal distributions above using the respondents value Y1j and

x1j and the estimate for β from responding households.
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Following this a value for Z2j, Z∗2j can be drawn for nonrespondents, using

(5.8), Z1j and ρ̂. To convert these to binary values, Y ∗2j = 1 when Z∗2j > 0 and

Y ∗2j = 0 when Z∗2j < 0. It is also possible to generate a continuous impute for

Y2j by taking the mean over multiple binary imputed values, Y ∗2j = ∑K
k=1 Y

∗
2jk.

However, in some cases a binary impute is preferable to be consistent with

the respondent data.

Because of the difficulty of generating stochastic imputed values for bi-

nary variables some practitioners use naive methods, such as assuming the

response variable is normally distributed and employing a rounding method.

The pitfalls of this approach are demonstrated in Horton, Lipsitz, and Parzen

(2003). These pitfalls are avoided using the methods above, which generate

binary imputed values, therefore avoiding the need for rounding.

5.3 Simulation study

The simulation study for binary data will make use of a longitudinal sur-

vey, the British Household Panel Survey (BHPS), which has been running

since 1991. The survey is run by the Economic and Social Research Council

(ESRC) UK Longitudinal Studies Centre with the Institute for Social and

Economic Research (ISER) at the University of Essex. The BHPS is a multi-

purpose study which is household based, where all adult members aged 16
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and older are interviewed, from a panel of 5,500 households resulting in ap-

proximately 10,300 individual respondents in wave 1 (Taylor et al., 2010). It

includes questions from a range of topics to improve understanding of social

and economic factors at person and household level in Britain. A single wave

of data, from the 15th wave was chosen for the simulation study. This wave

consisted of a sample of 8,703 households containing 15,627 individuals, col-

lected between September 2005 and May 2006. As in the previous simulation

study the simulation was restricted to households with two respondents.

5.3.1 Imputation variables from BHPS

Two variables were elected from this study to represent different prevalence

rates and levels of clustering. The first variable was voting intention, derived

using the variable Party which would vote for tomorrow. This question was

asked of surveys participants who supported a particular political party or

were closer to one party than the other. A binary variable was created repre-

senting whether the person would vote labour which had overall prevalance

25% in those that responded and identified a party. There were 542 peo-

ple from 271 households of size two where both persons responded to this

question with a valid response (those who identified ‘none’ were excluded).

The second variable chosen was labour force status, derived using the
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Table 5.1: BHPS simulation variables
Variable No. hh No. pers p̂ p̂same

vote labour 271 542 0.25 0.80
employed 4,031 8,062 0.61 0.73

variable Current economic activity. A binary variable was created represent-

ing those currently employed/ self-employed versus unemployed, students,

retired and other categories. The prevalence was approximately 61%. There

were 8,062 people from 4,031 households of size two where both persons re-

sponded. The proportion of people with the same response in a household

was also considered and there was moderate disagreement within-household

as shown in Table 5.1 under the column titled p̂same.

5.3.2 Simulating nonresponse

The simulation of nonresponse in the BHPS closely followed the method used

for the simulation from the HILDA survey described in Sections 3.3.2 and 4.3.

The fully observed component of the sample was used to generate K = 250

simulated samples with item nonresponse, to isolate the impact of the item

nonresponse mechanism and imputation method as distinct from population

or sample variation. Approximately half of households were designated to

have item nonresponse and one of the two people within each nonresponding

household was selected to be a item nonrespondent according to the differ-
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ent response models described below. The resulting item response rate was

approximately 75% under each scenario. Five alternative models were used

to generate nonresponse. The first has data Missing Completely At Random

(MCAR), the second Missing at Random (MAR) and the others Not Missing

At Random (MNAR). These nonresponse mechanisms are described below.

They are similar to chapters 3 and 4 with small modifications accounting for

the binary nature of the variables and the specific variables chosen.

As in chapters 3 and 4, p1j and p2j are the probabilities of response for

person 1 and person 2 in household j respectively. The probabilities will now

specified for each nonresponse scenario.

Households MCAR and persons MCAR: Same as model employed in Chap-

ters 3 and 4 as described in Section 3.3.2.

Households MCAR and persons MAR: Same as model employed in Chapters

3 and 4 as described in Section 3.3.2.

Households MCAR and persons MNAR: The probability of being a respon-

dent was dependent on Yij, with labour voters having an odds ratio of 0.2:

pij = exp(β0 − 0.2Yij)
1 + exp(β0 − 0.2Yij)

Households MNAR and persons MCAR: Households are partially or fully

responding, with the odds of the household falling in the first category de-
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creasing by approximately 10% when there is a single labour voter, and

approximately 20% with two labour voters. Within partially responding

households, one person was randomly an item respondent, the other had

item nonresponse.

pij = exp(β0 − 0.2Ȳj)
1 + exp(β0 − 0.2Ȳj)

where Ȳj = (Y1j + Y2j)/2.

Households MNAR and persons MNAR: Lastly, households and persons were

assigned to be partially or fully responding, both MNAR. The probability

of the household falling in the first category decreased by 10% with each

additional labour voter in the household, and each persons probability of

response also decreased by 20% if they voted labour. This implies that

person probabilities of response depended on how many vote labour in the

household:

pij = exp(β0 − 0.2Ȳj − 0.2Yij)
1 + exp(β0 − 0.2Ȳj − 0.2Yij))

In all five scenarios, β0 was calculated such that the average of pij was

exactly or approximately 0.75, so that approximately 75% of people were

item respondents, leading to 50% of households having full response and

50% of households having one item nonrespondent. The probability of each
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possible household response was calculated as in Section 3.3.2

5.4 Results

The analysis is carried out on each binary response variable, whether em-

ployed, and voting intention of labour.

5.4.1 Single imputation methods

The RRMSE and Relative Bias resulting from each imputation method are

shown below in Table 5.2, for the two response variables Y1 (labour), and

Y2 (employed). The imputation methods compared in this section are single

stochastic imputation methods, firstly using a generalized linear model with

logit link (single-level) and then a generalized linear mixed model with logit

link (multilevel model). The latter two columns show these same imputation

methods under the imputation model using a probit link.

The RRMSE values are higher than seen for the continuous variable in the

previous two chapters, which naturally follows from imputing a 0/1 variable.

The residuals are always either 0, 1 or -1, which imputes large errors relative

to the prevalence.

Under both logit and probit models there was a significant improvement

in the accuracy of the imputed values of voting intention of labour when
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Table 5.2: RRMSE (%) - single imputation methods for Y1 - labour and Y2
- employed

NR model logit probit
hh pers SL ML SL ML

vote labour
MCAR MCAR 242·2 218·0 242·5 217·8
MCAR MAR 232·6 206·7 229·9 207·4
MCAR MNAR 219·0 198·8 220·0 199·5
MNAR MCAR 224·5 202·6 223·8 203·6
MNAR MNAR 205·9 186·4 203·4 188·4

employed
MCAR MCAR 103·0 101·1 104·4 101·4
MCAR MAR 96·2 94·4 96·7 94·9
MCAR MNAR 97·1 95·4 98·5 95·7
MNAR MCAR 98·8 97·2 100·3 97·5
MNAR MNAR 93·4 92·3 95·6 92·6

using the GLMM compared to the GLM. The multilevel imputed values

averaged about 10% lower RRMSE than the single-level BLUP across all

nonresponse mechanisms. For employment status, and under both logit and

probit models, there is a much smaller reduction in RRMSE when using the

GLMM compared to the GLM. For this variable the multilevel imputed values

averaged about 2% smaller RRMSE than the single-level imputed values.

While there were gains in predictive accuracy in the imputed values aris-

ing under a generalized linear mixed model over a generalized linear model,

there is no improvement made in the relative bias of the imputed values. The

following table, Table 5.3 shows the relative biases of the imputed values for

voting intention of labour and whether employed.
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Table 5.3: Relative Bias (%) - single imputation methods for Y1 - voting
preference labour and Y2 - employed

NR model logit probit
hh pers SL ML SL ML

vote labour
MCAR MCAR 0·9 0·5 1·4 2·6
MCAR MAR 2·2 −0·8 −4·8 −0·6
MCAR MNAR −12·9 −11·9 −15·3 −9·9
MNAR MCAR −9·7 −6·7 −14·0 −7·6
MNAR MNAR −20·3 −19·2 −29·4 −18·9

employed
MCAR MCAR 0·0 −0·3 −1·2 −0·6
MCAR MAR −0·4 −0·5 −0·3 −1·2
MCAR MNAR −6·2 −7·2 −8·8 −7·6
MNAR MCAR −4·2 −5·2 −7·3 −5·5
MNAR MNAR −9·6 −11·3 −14·4 −11·7

For voting preference of labour, the multilevel logit imputed values have

less relative bias than the single-level logit imputed values. Under a probit

model this is generally also the case, except when nonresponse is MCAR.

The multilevel logit model results in slightly larger bias than the single-level

model across all nonresponse mechanism for whether employed, but there

were gains when using the probit ML model over the single-level. Overall

the multilevel imputed values are not resulting in any large gains for bias.

The next evaluation criteria assessed how well the imputation methods

retained clustering. Table 5.4 shows the percentages of household members

where the binary variable was the same for both households.

The mixed binary imputation models are advantageous when looking at
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Table 5.4: Households with same voting intention of labour (%) and same
employment status (%) - single imputation methods

NR model logit probit
hh pers true SL ML SL ML

vote labour
MCAR MCAR 79·3 71·0 79·0 71·0 79·1
MCAR MAR 79·3 71·0 80·3 71·4 80·1
MCAR MNAR 79·3 71·1 79·1 71·4 79·0
MNAR MCAR 79·3 71·2 79·2 71·2 78·9
MNAR MNAR 79·3 71·3 79·1 71·8 79·0

employed
MCAR MCAR 72·2 66·2 70·3 65·7 70·5
MCAR MAR 72·2 66·7 70·5 66·6 70·9
MCAR MNAR 72·2 65·8 69·9 65·3 70·1
MNAR MCAR 72·2 66·0 70·0 65·4 70·1
MNAR MNAR 72·2 65·7 69·5 64·8 69·5

the percentage of households where the people in the household responded

in the same way. The proportion matching is underestimated by around

10% under SL imputation models, but is estimated very accurately when

using ML imputed values. For intention to vote labour, the relationship

within households is maintained under the multilevel model, with both the

probit and logit models, while the single-level imputed values result in too

much difference between people within households. For employment status,

the generalized linear mixed model imputed values which under-estimated

clustering but were much closer to the true clustering than the generalized

linear model imputed values.

The relative bias of the estimated population proportions are shown in
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Table 5.5. The results reflect the findings for individual imputed values.

Table 5.5: Relative Bias of population proportion (%) - single imputation
methods for Y1 - voting preference labour

NR model logit probit
hh pers SL ML SL ML

vote labour
MCAR MCAR −0·2 −0·3 −0·2 0·2
MCAR MAR 0·2 −0·6 −1·7 −0·6
MCAR MNAR −3·9 −3·7 −4·8 −3·1
MNAR MCAR −3·1 −2·2 −3·9 −2·4
MNAR MNAR −6·4 −6·1 −9·3 −5·8

employed
MCAR MCAR 0·0 −0·1 −0·3 −0·2
MCAR MAR −0·1 −0·1 −0·1 −0·3
MCAR MNAR −1·6 −1·9 −2·3 −2·0
MNAR MCAR −1·1 −1·3 −1·9 −1·4
MNAR MNAR −2·6 −3·1 −3·9 −3·2

5.4.2 Multiple imputation methods

Predictive accuracy as measured by RRMSE and relative bias for each multi-

ple imputation method is shown below. Table 5.6 shows RRMSEs for single

stochastic and multiple imputed values.

Multilevel multiple imputed values result in improved RRMSE compared

to single imputed values under both the logit and probit models and for

both dependent variables. Multiple imputation results in 25-30% improve-

ment in RRMSE compared to single imputation, and this is consistent for

both logit and probit models and across all nonresponse mechanisms. The
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Table 5.6: Relative Root Mean Square Error (%) - single and multiple im-
putation methods for Y1 (labour) and Y2 (employed)

NR model logit probit
hh pers SL ML SL MI ML MI SL ML SL MI ML MI

vote labour
MCAR MCAR 242·2 218·0 174·2 157·1 242·5 217·8 174·6 157·0
MCAR MAR 232·6 206·7 166·5 153·0 229·9 207·4 167·2 152·7
MCAR MNAR 219·0 198·8 161·3 145·5 220·0 199·5 162·6 145·7
MNAR MCAR 224·5 202·6 164·8 148·0 223·8 203·6 165·4 147·9
MNAR MNAR 205·9 186·4 154·3 138·8 203·4 188·4 155·8 139·0

employed
MCAR MCAR 103·0 101·1 73·2 71·4 104·4 101·4 73·9 71·6
MCAR MAR 96·2 94·4 69·4 67·8 96·7 94·9 69·8 68·1
MCAR MNAR 97·1 95·4 68·3 66·8 98·5 95·7 69·3 67·0
MNAR MCAR 98·8 97·2 69·9 68·3 100·3 97·5 70·8 68·5
MNAR MNAR 93·4 92·3 65·6 64·4 95·6 92·6 67·1 64·6

improvements from a generalized linear mixed imputation model rather than

a generalized linear imputation model found for single imputed values also

hold for multiple imputed values, that is an additional 10% accuracy im-

provement for voting intention and around 2% for employment status. The

major reason for the lower RRMSEs under multiple imputation is likely that

the impute is effectively averaged over many stochastic imputed values, hence

non-integer imputed values are permitted.

The relative bias of imputed values was then calculated under each of

the multiple imputation methods and is show in Table 5.7 for the two study

variables.

The biases of imputed values under multiple imputation reflect the results
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Table 5.7: Relative Bias (%) - single and multiple imputation methods for
Y1 (labour) and Y2 (employed)

NR model logit probit
hh pers SL ML SL MI ML MI SL ML SL MI ML MI

vote labour
MCAR MCAR 0·9 0·5 2·0 1·0 1·4 2·6 2·5 1·0
MCAR MAR 2·2 −0·8 1·4 −0·1 −4·8 −0·6 −3·2 −0·2
MCAR MNAR −12·9 −11·9 −12·3 −12·0 −15·3 −9·9 −15·8 −11·9
MNAR MCAR −9·7 −6·7 −8·6 −8·4 −14·0 −7·6 −13·5 −8·2
MNAR MNAR −20·3 −19·2 −20·5 −19·8 −29·4 −18·9 −28·7 −20·1

employed
MCAR MCAR 0·0 −0·3 −0·1 −0·4 −1·2 −0·6 −1·6 −0·8
MCAR MAR −0·4 −0·5 −0·4 −0·7 −0·3 −1·2 −0·3 −1·5
MCAR MNAR −6·2 −7·2 −6·2 −7·2 −8·8 −7·6 −8·8 −7·5
MNAR MCAR −4·2 −5·2 −4·1 −5·2 −7·3 −5·5 −7·4 −5·6
MNAR MNAR −9·6 −11·3 −9·6 −11·4 −14·4 −11·7 −14·3 −11·8

under single imputation. There is no additional gain from using MI rather

than single imputed values.

The percentage of households with the same voting intention, and the

same employment status is shown in Table 5.8 for each multiple imputation

method.

The results show that the multiple imputed values retain the appropri-

ate level of clustering as seen in the single imputed values for both response

variables and under both probit and logit imputation models. Introducing

multiple imputed values under a single-level model did not improve the es-

timates of the proportion of people with the same response. This was only

achieved with the introduction of the multilevel imputation model.



144 CHAPTER 5. BINARY SL AND ML IMPUTATION

Table 5.8: Households with same response (%) for Y1 (labour) and Y2 (em-
ployed) - single and multiple imputation methods

NR model logit probit
hh pers true SL ML SL MI ML MI SL ML SL MI ML MI

vote labour
MCAR MCAR 79·3 71·0 79·0 71·0 79·2 71·0 79·1 71·0 79·2
MCAR MAR 79·3 71·0 80·3 71·2 80·7 71·4 80·1 71·4 80·5
MCAR MNAR 79·3 71·1 79·1 71·3 79·5 71·4 79·0 71·4 79·3
MNAR MCAR 79·3 71·2 79·2 71·0 79·3 71·2 78·9 71·2 79·2
MNAR MNAR 79·3 71·3 79·1 71·2 79·4 71·8 79·0 71·7 79·2

employed
MCAR MCAR 72·2 66·2 70·3 66·1 70·4 65·7 70·5 65·7 70·6
MCAR MAR 72·2 66·7 70·5 66·7 70·5 66·6 70·9 66·6 70·9
MCAR MNAR 72·2 65·8 69·9 65·8 70·0 65·3 70·1 65·3 70·2
MNAR MCAR 72·2 66·0 70·0 66·0 70·1 65·4 70·1 65·4 70·2
MNAR MNAR 72·2 65·7 69·5 65·6 69·5 64·8 69·5 64·9 69·7

Lastly the relative bias for the estimate of population proportion is shown

for both response variables in Table 5.9. As with the bias of the imputed

values, there is again no major improvements in bias for the estimated popula-

tion proportions from the introduction of multiple rather than single imputed

values.

5.4.3 Multiple Imputation variance

The results for ratio between variance under MI and true variance for labour

voting preference and whether employed are shown in Table 5.10.

The ratio between imputation variance and true variance excludes the
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Table 5.9: Relative Bias of population proportion (%) - single and multiple
imputation methods for Y1 (labour) and Y2 (employed)

NR model logit probit
hh pers SL ML SL MI ML MI SL ML SL MI ML MI

vote labour
MCAR MCAR −0·2 −0·3 0·0 −0·2 −0·2 0·2 −0·1 −0·3
MCAR MAR 0·2 −0·6 −0·1 −0·4 −1·7 −0·6 −1·3 −0·4
MCAR MNAR −3·9 −3·7 −3·8 −3·7 −4·8 −3·1 −4·8 −3·7
MNAR MCAR −3·1 −2·2 −2·7 −2·6 −3·9 −2·4 −4·2 −2·6
MNAR MNAR −6·4 −6·1 −6·4 −6·2 −9·3 −5·8 −9·0 −6·3

employed
MCAR MCAR 0·0 −0·1 0·0 −0·1 −0·3 −0·2 −0·3 −0·2
MCAR MAR −0·1 −0·1 −0·1 −0·2 −0·1 −0·3 −0·1 −0·4
MCAR MNAR −1·6 −1·9 −1·6 −1·9 −2·3 −2·0 −2·3 −2·0
MNAR MCAR −1·1 −1·3 −1·1 −1·4 −1·9 −1·4 −1·9 −1·5
MNAR MNAR −2·6 −3·1 −2·6 −3·1 −3·9 −3·2 −3·9 −3·2

component of variance due to sampling. It is measuring the ability of MI

to reproduce the variance due to imputation excluding sampling variability.

For both response variables MI results in under-estimation of the variance,

across all nonresponse mechanisms. The magnitude is not overly large, and

would likely be dominated by the variation due to sampling. The ratio of

imputation variance to true variance was fairly high, between 75% and 95%

for both the SL and ML logit methods and the ML probit method. The SL

probit imputed values were lower, between 50% and 75%.
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Table 5.10: Ratio of imputation variance to true variance for population
proportion (%) - for Y1 (labour) and Y2 (employed)

NR model logit probit
hh pers SL MI ML MI SL MI ML MI

vote labour
MCAR MCAR 89·4 78·2 52·7 80·5
MCAR MAR 85·3 70·7 53·4 72·9
MCAR MNAR 92·5 76·1 55·7 79·5
MNAR MCAR 91·2 81·6 54·3 83·4
MNAR MNAR 86·4 73·3 51·1 70·7

employed
MCAR MCAR 86·0 71·1 61·9 71·7
MCAR MAR 95·3 77·5 72·1 82·9
MCAR MNAR 92·1 80·0 72·6 81·3
MNAR MCAR 92·6 79·5 71·2 81·5
MNAR MNAR 93·7 80·7 75·2 81·8

5.5 Summary of Chapter 5

This chapter looked at several methods for imputing missing binary variables

for household surveys. Imputed values generated under a generalized linear

mixed model were compared to a generalized linear model using both a logit

and probit link function. Single and multiple imputed values derived under

these models were compared for two binary variables using a simulation from

the BHPS dataset. These were assessed using a set of evaluation criteria

appropriate for binary variables.

For single imputation methods there was around 10% improvement in

accuracy when using a GLMM compared to the GLM impute. A further 25-
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30% improvement in accuracy occurred by introduction of multiple imputed

values. The use of mixed models had little improvement on the biases of the

population proportion estimates.

With regards to clustering, the multilevel single imputation methods were

clearly superior to their single-level counterparts, closely reproducing the

proportion of households with the same value for both voting intention and

employment status. For this reason there was no additional gain from the

introduction of multiple imputed values. MI variance estimates were reason-

ably accurate when use with multilevel models having biases between -2.9%

and 5%.
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Chapter 6

Imputation of Continuous or

Binary Data using Donor

Methods

6.1 Introduction

The previous three chapters addressed imputation from a linear and gener-

alized linear model perspective, for both continuous and binary variables.

Single and multiple imputation methods were considered as well as imputa-

tion using mixed models. Imputation methods based on linear models have

known weaknesses, particularly their poor results in reproducing variation

due to the model predictions focussing on a mean. Multiple imputation im-

149
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proves on variance estimation but still has limitations, such as distributional

assumptions. For example the response distribution, or its transformation,

is normal. A widely used alternative is to use donor methods, which are

not constrained by concept of imputing a mean value. Advantages include

imputing draws from the observed response distribution creating potentially

more plausible imputed values, the potential to impute many variables simul-

taneously without need for a multivariate model, and being able to handle

a mixture of variable types (e.g. continuous, positive continuous, binary,

discrete, ordinal) without a need to create an explicit model. While donor

methods are associated with improved variance estimation properties, their

ability to reproduce within-household clustering is unclear.

The goal of this chapter is to conduct a comprehensive investigation of

donor methods to determine which are most appropriate in the household

survey setting. New methods are proposed which make use of information on

household respondents. These have been evaluated side-by-side with existing

methods to determine relative strengths and weaknesses.

Donor methods create an impute from a random draw from the set of

respondents, resulting in a continuous or binary impute as required. The

method of selecting a donor may be as simple as a random hot deck, which

replaces the missing value for a nonrespondent, the recipient, by a respon-

dents variable (e.g. Kalton and Kasprzyk, 1982), or as with linear models,
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make use of auxiliary variables for which data is available on both respon-

dent and nonrespondents. Within-class donor imputation uses categorical

variables to create imputation classes from which a donor is drawn. For

categorical auxiliary variables this is straightforward. Continuous auxiliary

variables may be formed into categories. An alternative for continuous vari-

ables is a donor method such as nearest neighbour (Chen and Shao, 2000)

which finds a donor with minimum distance from the recipients continuous

auxiliary variable. This approach may also be carried out within imputation

classes formed by other auxiliary variables.

One constraint of traditional donor methods is they often focus on the

attributes of the individual without accounting for information about other

responding members of the household. Bankier (1999) describes a household

multivariate donor imputation method used for a small number of variables

(age, sex, marital status, common-law status and relationship) in the 1996

Canadian Census. This method, known as NIM (New Imputation Method-

ology) is a combined editing and imputation strategy based on the principle

of minimum change (Fellegi and Holt, 1976). A set of variables are imputed

using a donor that ensures a record meets all edit rules, while also making

the smallest number of changes to responding values. The donor imputation

was carried out at household level, that is, a nearest neighbour household

was identified in the same geographic area as the recipient household, which
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was selected to impute all missing or invalid variables under the minimum

change principle for all people within a household.

This chapter will develop a nearest neighbour imputation approach, using

information from any respondents in a partially responding household to

define distance measures.

Section 6.2 describes existing and proposed donor imputation strategies.

Section 6.3 describes the simulation study, where the nonresponse mecha-

nisms and outcome variables are unchanged from Chapters 3, 4 and 5 to

allow comparison with the donor methods of this chapter. Section 6.4 con-

cludes by contrasting the performance of the proposed donor methods with

the findings from Chapters 3, 4 and 5, to compare the benefits of household-

based donor imputation approaches to the use of linear mixed models and

generalized linear mixed models.

6.2 Donor imputation methods

There are a wide variety of existing donor imputation methods. Two fun-

damental methods which are routinely used, random donor and class donor,

are described in Section 2.4.3. These methods will be used a point of com-

parison for the proposed household data imputation methods, using only the

information about the nonrespondent and ignoring the household structure.
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6.2.1 Proposed imputation methods

Nearest Significant Other (notated NSO)

The nearest neighbour method described in Section 2.4.3 can be adapted

for household survey data by considering the auxiliary variable, xij, to be

the value of y for a responding person in the household, ie xij = yi′j. The

responding person in the context of a two-person household will be called

the ’significant other’ and therefore the method can be thought of as look-

ing for nearest significant others as the criteria for searching for a donor for

the nonrespondent. The nearest neighbour (donor) household, l is the fully

responding household containing a person with the closest value of ykl to

the respondent yi′j in the recipient household. The variable of interest for

the other person in this household, yk′l, is then imputed for the nonrespon-

dent. This method, when using a variable which is not strictly continuous,

may result in multiple closest donors, from which a random donor would be

selected.

This approach can also be applied to binary variable imputation. There

would usually be a large set of equally nearest neighbours for binary variables

which all have the required binary value and therefore are equidistant from

the co-householder. Rather than just selecting a random donor from this

pool, one or more additional covariates, such as age and sex, can be used
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in addition to the response variable of the respondent, to select a nearest

neighbour. This requires the use of a multivariate distance measure, such

as the Mahalanobis distance as described in Section 2.4.3. Let xij be the

covariate vector for person i in household j, which includes the response

variable for the significant other in the household, yi′j as one of the x’s,

and attributes of the respondent, and potentially nonrespondent as other x

variables. The distance function to minimise to select the nearest neighbour

is therefore: (xij−xkl)T V̂ij
−1(xij−xkl) where V̂ij is the estimated variance-

covariance matrix of xij. The donor value for yij is then the y value associated

with the respondent for which the distance function for the covariate vector

is minimised.

In households containing three or more people, where there is one nonre-

spondent, the set of response values for the household can be used to define

the covariate vector used to find the nearest neighbour. For a non-responding

person ij the covariate vector xij is (y1j, ..., ynrj ,j) where nrj is the number

of respondents in the household. A multivariate measure can be used in an

analagous way to above to calculate the distance measure between sets of

respondents in different households of the same size. This covariate vector

can also be extended to incorporate information about the non-responding

person. For more than one nonrespondent in a household, a donor household

can still be identified using this method by defining a single covariate vector
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for the set of nonrespondents consisting of auxiliary information about the

nonrespondents and the variable of interest for respondents (and potentially

other variables) in the household in a single vector.

This method will be evaluated in the case of two person households where

there is either one or zero nonrespondent.

Nearest Significant Other with residual (notated NSO resid)

Another way to incorporate additional covariates is as follows. A linear

model y = βTx results in residuals rij = yij − β̂
T
xij. For a nonresponding

person ij the nearest neighbour to their significant other (the responding

person in their household), i′j, would be identified as the closest residual to

ri′j, say person k′ in a fully responding household l. The other person (k)

in this household (l) has their residual used when imputing for yij over its

predicted value: ŷij = rkl + β̂Txij.

Household respondent (notated hh resp) This method is deterministic and

results in a single impute, ŷij = yi′j, the significant other (respondent) in

the household. While this method will impute unrealistically similar people

within households, it will provide a useful point of comparison to the other

donor methods.
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6.2.2 Application of donor imputation methods in sim-

ulation study

The covariates chosen for the nearest significant other impute were age and

sex, of both respondent and nonrespondent, in addition to the response of

the co-householder. These were chosen to be consistent with the linear and

generalized linear models in earlier chapters to provide a fair comparison.

The imputed values will hopefully come from the distribution of Y2j|x1j, x2j, y1j,

which will give more realistic within-household dependencies, particularly

when there are complex relationships between (Y1j,x1j) and (Y2j,x2j). For

example, if very high income earners tend to live with low earners, while

moderate income earners are associated with similar earners (and the ICC

isn’t high because of the reverse correlations on the extremes) this method

should do very well, because the low income associated with the partner of

a high income earner will be imputed for a nonresponding low hourly wage

rate earner. But a nonresponding middle hourly wage rate will be imputed

with a similar hourly wage rate.

The nearest neighbour with co-householder residual for imputing hourly

wage, with age and sex as independent variables, can be conceptualised as

follows; If the responding person in a household with a nonrespondent earns

above average hourly wage for their age group and sex, another household will
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be identified with both persons responding, where one of those people earn

above the hourly wage rate of their age by sex peer group by approximately

the same amount. The residual for the other person from this household will

be used, for example they may also earn above their peer hourly wage rate,

and this residual will be applied to the nonrespondent to vary their model

prediction.

6.3 Results

The results below are divided into four parts. Firstly the proposed donor

imputation strategies for household survey data (other respondent in house-

hold, nearest significant other, and nearest significant other residual) were

compared to standard donor imputation strategies (random donor and ran-

dom within-class donor) for continuous variables. The evaluation criteria of

Chapter 3 are used, that is RRMSE and relative bias of the imputed values,

resulting ICC, and bias of estimated mean and variance. The same impu-

tation methods are then compared for binary data, using evaluation criteria

RRMSE and relative bias of imputed values, and percentage responding the

same within households. The second last section relates the household donor

strategies back to the results from Chapters 3 and 4 to assess the advantages

and disadvantages of household donor methods compared to deterministic
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and stochastic linear and linear mixed models for continuous variables. Fi-

nally, household donor strategies are compared to stochastic generalized lin-

ear mixed model imputed values for the binary variables Y1 - voting intention

labour and Y2 - employed.

6.3.1 Nearest Significant Other compared to other donor

imputed values for continuous variables

Table 6.1 shows the predictive accuracy measured by RRMSE for imputing

the other person in the household, and the two nearest neighbour house-

hold imputed values, compared to random donor methods and within-class

donors using age by sex to define classes. Imputing the respondent from the

household (hh resp) results in the lowest RRMSEs, the accuracy results best

when the ICC is highest, when people within households are most similar.

Aside from this simplistic impute, the nearest neighbour household methods

are more accurate than the donor and class donor imputed values, partic-

ulary when there is stronger clustering within households, i.e. ρ = 50% or

85%. The nearest significant other method results in the best RRMSE over-

all. This method resulted in similar RRMSEs to the nearest significant other

method based on the model residuals when ρ = 20% or 50%, but was more

accurate when ρ = 85%.
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Table 6.1: RRMSE (%) - imputation using nearest significant other methods
compared to other donor methods

NR model ρ(%) random donor class donor hh resp NSO NSO resid

hh
pers

MCAR
MCAR

20 79.1 77.8 72.7 78.0 77.7
50 82.6 76.7 57.1 69.1 69.6
85 85.4 84.1 32.1 45.2 49.0

hh
pers

MCAR
MAR

20 81.3 77.8 70.0 79.2 78.7
50 85.1 76.6 59.4 70.9 71.7
85 88.1 88.1 33.7 47.8 52.4

hh
pers

MCAR
MNAR

20 81.5 79.9 77.3 78.5 77.5
50 83.5 78.8 61.2 69.7 70.2
85 85.1 84.2 34.7 48.0 51.6

hh
pers

MNAR
MCAR

20 80.2 78.6 78.8 76.7 75.2
50 82.7 77.7 61.9 68.4 68.4
85 85.2 84.0 34.9 47.6 51.2

hh
pers

MNAR
MNAR

20 80.9 79.5 80.3 76.8 75.2
50 80.9 76.6 63.0 66.9 66.5
85 83.1 81.9 35.7 48.2 50.9

Predictive accuracy is also assessed by the relative bias of imputed values

under household and standard donor imputation methods, shown in Table

6.2. The donor and class donor methods have low relative bias under the

MCAR and MAR nonresponse mechanisms, ranging from −1.4% to 5.1%

but the bias increases under the MNAR scenarios, with relative bias between

−4.5% and −12.0%. All three household imputation methods are an im-

provement over donor and class donor imputed values when nonresponse is

entirely MCAR, with an overall lower level of bias. When households are

MCAR but persons are MAR, the household imputation methods are simi-

lar in bias to the standard donor methods. Under the MNAR scenarios the
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Table 6.2: Relative Bias (%) - imputation using nearest significant other
methods compared to other donor methods

NR model ρ(%) random donor class donor hh resp NSO NSO resid

hh
pers

MCAR
MCAR

20 -1.4 0.4 0.2 0.0 0.4
50 1.3 0.3 0.1 0.2 0.0
85 2.0 2.4 0.1 -0.1 -0.4

hh
pers

MCAR
MAR

20 1.5 1.2 -4.5 3.2 -1.1
50 5.1 0.7 1.1 3.1 -0.1
85 3.9 1.8 -0.2 -0.3 -1.4

hh
pers

MCAR
MNAR

20 -8.6 -6.8 -4.4 -8.3 -7.7
50 -6.7 -6.7 -2.8 -7.1 -7.0
85 -6.2 -5.3 -0.9 -4.1 -4.5

hh
pers

MNAR
MCAR

20 -5.6 -3.7 0.3 -5.4 -5.0
50 -4.9 -5.0 0.1 -5.1 -5.2
85 -5.5 -4.5 0.1 -3.4 -3.7

hh
pers

MNAR
MNAR

20 -12.0 -10.1 -4.2 -13.0 -12.3
50 -10.8 -10.4 -2.0 -11.4 -11.1
85 -10.9 -9.7 -0.2 -7.3 -7.6

other household respondent impute is excellent for relative bias, less than 5%

across all scenarios and ICC levels. The other two household donor imputed

values give a small gain in bias under the highest ρ but are no improvement

under low or moderate ρ.

The relative bias of the mean estimate using the various donor methods is

tabulated in Appendix D, Table 7.5. It reflects the findings in relation to the

relative bias of the imputed values, that is the household respondent donor is

the superior imputation method, and the other household donor imputation

methods are an improvement under the highest ICC, but not much different

to the donor and class donor methods under low and moderate ρ. In all cases
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the relative bias of the mean estimate was less than 5%.

Donor methods are now compared to the stochastic BLUP imputed values

for retaining within-household clustering, shown in Table 6.3.

Table 6.3: Expected value of estimated ICC - imputation using nearest sig-
nificant other methods compared to other donor methods

NR model ρ(%) random donor class donor hh resp NSO NSO resid

hh
pers

MCAR
MCAR

20 10.1 10.4 59.6 19.3 18.7
50 24.2 27.7 75.0 50.5 49.0
85 40.6 43.1 92.5 83.7 80.6

hh
pers

MCAR
MAR

20 11.4 13.2 51.8 18.6 20.4
50 26.5 31.2 75.5 53.8 52.8
85 42.0 44.3 92.5 84.0 81.1

hh
pers

MCAR
MNAR

20 9.3 9.7 66.7 18.5 18.0
50 18.7 22.4 80.9 46.5 44.9
85 29.0 32.1 94.8 78.8 75.7

hh
pers

MNAR
MCAR

20 8.3 9.1 69.7 17.4 17.0
50 18.0 21.5 81.9 46.2 44.6
85 28.2 31.7 94.9 78.6 75.5

hh
pers

MNAR
MNAR

20 7.7 8.9 75.0 16.5 16.2
50 14.6 17.9 86.1 40.1 39.2
85 21.5 25.5 96.4 70.9 68.2

With only 25% nonresponse, both the donor and class donor imputed

values result in a weakening of the ICC by around 50% under low ICC, but

by as much as 75% under the highest ICC. This means that the households

will not be representing the true clustering present in the sample.

The limitations of the household respondent impute are clear under this

criteria, resulting in imputed values which are too similar to the respondent

in the household, and resulting in households which are too similar, with
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ICCs too high in all scenarios.

The nearest significant other and residual methods are excellent for repro-

ducing clustering. In particular, the nearest significant other method results

in the most accurate estimates of ICC. This method estimates the ICC to

within 3.5% under all levels of ρ with MCAR nonresponse, and within 7.6%

when nonresponse is MAR. The nearest significant other method is also quite

reasonable for MNAR scenarios. When nonresponse for households is MCAR

and persons MNAR ICCs are within 7.5% of the true values, within approx-

imately 15% when households are MNAR and persons MCAR, and within

20% when both households and persons are MNAR. These are substantial

gains over standard donor imputation methods.

Lastly, the variance performance is assessed in Table 6.4 which measures

estimation accuracy in terms of the relative bias of the variance estimate

using both household and standard donor methods.

Under MNAR scenarios the variance is almost always underestimated,

which is expected as the MNAR mechanism was specified in such a way that

individuals with high incomes are less likely to respond.

For example under the nearest neighbour household residual method, if a

high income earner is a nonrespondent, their residual is not available in the

pool of donor residuals. Having a pool of donor residuals which excludes a

large number of high residuals will result in a smaller distribution of residuals
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Table 6.4: Relative Bias (%) of Estimated Variance - imputation using near-
est significant other methods compared to other donor methods

NR model ρ(%) random donor class donor hh resp NSO NSO resid

hh
pers

MCAR
MCAR

20 -1.8 -0.9 0.2 -0.4 0.9
50 2.4 -1.5 0.1 -0.3 1.2
85 3.5 4.9 0.1 -1.4 0.7

hh
pers

MCAR
MAR

20 -0.1 -0.4 -4.5 -0.6 1.6
50 3.6 -1.8 -0.7 0.9 4.2
85 -0.9 2.4 -2.5 -4.4 -1.1

hh
pers

MCAR
MNAR

20 -16.9 -16.3 -10.7 -18.3 -17.7
50 -13.4 -15.9 -7.8 -17.7 -16.4
85 -11.4 -9.6 -7.4 -14.4 -12.6

hh
pers

MNAR
MCAR

20 -9.2 -8.5 -2.3 -11.4 -11.2
50 -8.3 -11.0 0.6 -12.9 -12.2
85 -9.3 -7.6 0.0 -12.5 -10.6

hh
pers

MNAR
MNAR

20 -21.5 -20.9 -9.4 -26.0 -25.8
50 -15.5 -17.8 -0.6 -23.4 -22.3
85 -13.7 -12.0 2.4 -21.2 -19.6

overall, and hence a lower variance in the resulting imputed values using

these residuals. This is likely the cause for example of the 18.3% and 26.0%

underestimates of variance when p = 20%, for the two scenarios with persons

MNAR.

6.3.2 Nearest Significant Other compared to donor im-

puted values for binary variables

This section includes the results from comparing existing donor imputation

methods with proposed donor imputation methods making use of household
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characteristics. The existing donor methods are a random donor and random

class donor. The proposed method uses the multivariate Mahalanobis dis-

tance measure to calculate a nearest neighbour based on the age and sex of

both household members and the outcome variable for the responding person

in the household. This is also contrasted with the multivariate Mahalanobis

distance based solely on the known characteristics of the nonrespondent, in

this instance their age and sex. These methods are evaluated on a reduced

set of criteria (RRMSE, Relative Bias and percentage of households with the

same response) for both binary variables, labour and employed.

Firstly, to assess predictive accuracy the RRMSE and Relative Bias are

shown, for each the standard donor imputation methods (random donor and

random class donor), then for the nearest neighbour and nearest significant

other methods.

Tables 6.5 shows the RRMSE for the response variables Y1 (labour) and Y2

(employed). The nearest neighbour person donor impute for Y1 (whether vote

labour) is only slightly better for RRMSE than the random donor or class

donor methods. However, when this method is extended to incorporate the

household attributes, where age group and sex of both household members

are matching, there is an improvement in accuracy. RRMSE is reduced by

between 13 and 16% across all nonresponse mechanisms. The accuracy for

imputed values of Y2 (employed) had slightly different results. The age group
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Table 6.5: Relative Root Mean Square Error (%) - donor imputation methods
for Y1 - voting intention labour and Y2 - employed

hh pers random donor class donor NN NSO
vote labour

MCAR MCAR 234·5 245·0 242·3 208·0
MCAR MAR 231·4 233·1 228·0 196·4
MCAR MNAR 223·0 220·3 219·8 189·8
MNAR MCAR 227·7 226·9 225·3 194·3
MNAR MNAR 208·1 207·6 206·3 178·5

employed
MCAR MCAR 112·2 94·2 89·1 85·5
MCAR MAR 106·6 87·5 83·0 79·5
MCAR MNAR 105·5 88·3 84·4 80·7
MNAR MCAR 107·4 90·2 85·9 82·3
MNAR MNAR 101·6 84·9 81·8 78·4

by sex class donor resulted in more accurate imputed values than the random

donor by 16− 18%. This may mean that the variables age group and sex are

more useful predictors of whether employed than of voting intention being

labour. As with voting intention, both of the nearest neighbour imputed

values resulted in further accuracy improvements.

Table 6.6 shows the relative bias of the imputed values for the outcome

variables voting intention and employed under the various donor imputation

methods.

For voting intention of labour both the random donor and class donor

have similar levels of relative bias in the imputed values, with poorer results

under the MNAR scenarios, particularly when persons are MNAR. The near-
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Table 6.6: Relative Bias (%) - donor imputation methods for Y1 - voting
intention labour and Y2 - employed

hh pers random donor class donor NN NSO
vote labour

MCAR MCAR 1·9 3·2 −8·7 −2·5
MCAR MAR −6·1 2·2 −9·3 −3·1
MCAR MNAR −11·4 −10·6 −23·3 −12·8
MNAR MCAR −7·9 −8·6 −20·7 −9·5
MNAR MNAR −20·6 −21·5 −30·0 −19·7

employed
hh pers random donor class donor NN NSO

MCAR MCAR −0·2 0·0 −6·9 −0·8
MCAR MAR −6·3 0·2 −5·9 −0·6
MCAR MNAR −7·3 −5·3 −10·9 −5·6
MNAR MCAR −5·1 −3·4 −9·5 −4·1
MNAR MNAR −11·7 −7·9 −13·6 −8·5

est neighbour person donor impute has even poorer bias, while the nearest

neighbour household impute is similar to the random and class donor im-

puted values. For the variable employed, there is again an improvement in

accuracy for the class donor method over the random donor. The bias issues

still exist for the nearest neighbour donor methods, though the size of the

bias isn’t as high as for voting intention.

The clustering is assessed in Table 6.7 by looking at the percentage of

households with the same voting intention or employed status.

The nearest neighbour person donor imputed values resulted in lower

clustering than what was actually present within households. The estimates

were poorer for the nearest neighbour person impute than either donor or
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Table 6.7: Households with same voting intention of labour (%) or same
employment status (%)- donor imputation methods

hh pers actual random donor class donor NN NSO
vote labour

MCAR MCAR 79·3 70·9 70·7 63·6 80·0
MCAR MAR 79·3 71·2 71·0 67·8 80·0
MCAR MNAR 79·3 70·8 71·1 62·9 83·8
MNAR MCAR 79·3 70·6 70·6 63·4 80·0
MNAR MNAR 79·3 71·0 71·1 62·9 80·0

employed
MCAR MCAR 72·2 62·4 67·3 63·6 72·0
MCAR MAR 72·2 62·4 67·3 67·8 72·0
MCAR MNAR 72·2 62·3 67·2 62·9 71·9
MNAR MCAR 72·2 62·3 67·2 63·4 71·9
MNAR MNAR 72·2 62·3 67·2 62·9 71·7

class donor methods. This was corrected by use of the nearest neighbour

household donor imputed values, where the clustering after imputation is

very close to the true values.

Clustering for employment status is also reproduced well by the nearest

neighbour household donor imputed values, and poorly by the other methods,

which underestimate the proportion of households with the same employment

status.

The donor imputation methods for binary variables were then assessed

for estimation accuracy, with the results for the relative bias of the popula-

tion proportion shown in Table 7.6 of Appendix D. The results reflected the

evaluation of the relative bias for individual imputed values. The bias in the



168 CHAPTER 6. DONOR IMPUTATION

proportions is poorer for the nearest neighbour person donor imputed values

but this is corrected when the household attributes are included in defining

the nearest neighbour.

6.3.3 Comparison of donor methods with linear meth-

ods for continuous variables

The stochastic BLUPs are now contrasted to donor imputation methods.

Predictive accuracy - RRMSE and Relative Bias

Table 6.8 shows the predictive accuracy measured by RRMSE for the

stochastic single-level and multilevel BLUP imputed values compared to

donor methods for imputing hourly wage rate. Age by sex are used as co-

variates or classes in all models.

Comparing the best of the donor methods (nearest significant other) with

the better of the linear methods (stochastic ML BLUP), the accuracy of both

sets of imputed values is of a similar level across all scenarios. For the MCAR

and MAR scenarios with ρ = 85% the nearest significant other method is

slightly better than the ML BLUP, but for the MNAR mechanisms the ML

BLUP is slightly more accurate than the nearest significant other method.

Predictive accuracy is also assessed by comparing the relative bias of

imputed values under donor methods and BLUP imputation methods, shown
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Table 6.8: Predictive accuracy (RRMSE % ) for imputing hourly wage rate
using linear models compared to donor methods

NR model ρ(%) class donor NSO NSO resid SL BLUP ML BLUP

hh
pers

MCAR
MCAR

20 77.8 78.0 77.7 78.9 77.7
50 76.7 69.1 69.6 78.2 70.3
85 84.1 45.2 49.0 80.3 50.7

hh
pers

MCAR
MAR

20 77.8 79.2 78.7 80.2 81.4
50 76.6 70.9 71.7 79.5 72.1
85 88.1 47.8 52.4 83.2 52.2

hh
pers

MCAR
MNAR

20 79.9 78.5 77.5 80.5 77.3
50 78.8 69.7 70.2 79.6 68.6
85 84.2 48.0 51.6 81.4 47.7

hh
pers

MNAR
MCAR

20 78.6 76.7 75.2 79.6 74.9
50 77.7 68.4 68.4 78.7 67.0
85 84.0 47.6 51.2 80.8 47.0

hh
pers

MNAR
MNAR

20 79.5 76.8 75.7 79.9 74.6
50 76.6 66.9 66.5 77.6 64.4
85 81.9 48.2 50.9 79.0 43.7

in Table 6.9.

When comparing the relative bias of imputed values under the nearest

significant other method to the ML BLUP, the ML BLUP is slightly better,

particularly under the MNAR scenarios where the linear mixed model better

accounts for missing higher hourly wage rates than the donor methods. The

biggest improvement over donor methods is seen when the ICC is highest

and nonresponse is MNAR for both persons and households. Here there are

bias issues for donor methods and the SL BLUP. The relative bias ranges

between −7.3% and −11.3% when the ICC is 85% for the other imputation

methods. In contrast, the bias is only −3.1% for the ML BLUP.
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Table 6.9: Predictive accuracy (Relative Bias % ) for imputing hourly wage
rate using linear models compared to donor methods

NR model ρ(%) class donor NSO NSO resid SL BLUP ML BLUP

hh
pers

MCAR
MCAR

20 0.4 0.0 0.4 0.5 0.3
50 0.3 0.2 0.0 0.4 0.1
85 2.4 -0.1 -0.4 0.3 0.0

hh
pers

MCAR
MAR

20 1.2 3.2 -1.1 -0.1 0.1
50 0.7 3.1 -0.1 0.6 0.0
85 1.8 -0.3 -1.4 0.1 -1.2

hh
pers

MCAR
MNAR

20 -6.8 -8.3 -7.7 -7.1 -6.5
50 -6.7 -7.1 -7.0 -7.2 -5.3
85 -5.3 -4.1 -4.5 -7.3 -2.6

hh
pers

MNAR
MCAR

20 3.7 -5.4 -5.0 -3.8 -3.0
50 -5.0 -5.1 -5.2 -5.1 -3.0
85 -4.5 -3.4 -3.7 -6.5 -1.6

hh
pers

MNAR
MNAR

20 -10.1 -13.0 -12.3 -10.3 -9.1
50 -10.4 -11.4 -11.1 -10.4 -7.1
85 -9.7 -7.3 -7.6 -11.3 -3.1

Estimation accuracy - Relative Bias of mean

Table 7.7 in Appendix B contains shows the relative bias of the mean

estimate using donor and linear imputation methods. The bias for estimating

the mean was less than 4% across all nonresponse mechanisms and levels of

clustering. Overall the ML BLUP is slightly better than both the donor

methods and the SL BLUP for estimation of the mean, particularly when

person nonresponse is generated MNAR, however there is not a high level of

bias to be concerned with.

Estimated intra-class correlation

Donor methods are now compared to the BLUP imputed values for re-
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taining within-household clustering, shown in Table 6.10.

Table 6.10: Estimation accuracy for imputing hourly wage rate - Estimated
intra-class correlation using linear methods compared to donor methods

NR model ρ(%) class donor NSO NSO resid SL BLUP ML BLUP

hh
pers

MCAR
MCAR

20 10.4 19.3 18.7 10.4 18.9
50 27.7 50.5 49.0 27.4 47.3
85 43.1 83.7 80.6 45.0 79.9

hh
pers

MCAR
MAR

20 13.2 18.6 20.4 12.8 19.2
50 31.2 53.8 52.8 30.3 51.0
85 44.3 84.0 81.1 46.5 81.1

hh
pers

MCAR
MNAR

20 9.7 18.5 18.0 9.5 21.0
50 22.4 46.5 44.9 22.1 49.6
85 32.1 78.8 75.7 33.1 83.0

hh
pers

MNAR
MCAR

20 9.1 17.4 17.0 9.0 21.6
50 21.5 46.2 44.6 21.3 50.3
85 31.7 78.6 75.5 32.8 83.3

hh
pers

MNAR
MNAR

20 8.9 16.5 16.2 8.3 24.1
50 17.9 40.1 39.2 18.2 52.6
85 25.5 70.9 68.2 26.2 86.3

Under MCAR and MAR nonresponse there is no clear best performer

for ICC out of the best donor method (nearest neighbour household) and

linear method (ML BLUP). When nonresponse is MNAR the multilevel linear

imputed values outperform the nearest neighbour household donor method

for reproducing clustering. Both the nearest neighbour household and linear

mixed imputation method perform very well relative to the class donor and

single-level BLUP, but the ML BLUP more closely retains within-household

clustering across all levels of ICC under each MNAR scenario.

Relative Bias of Estimated variance
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Finally, the performance in preserving variance is assessed in Table 6.11.

Table 6.11: Estimation accuracy for imputing hourly wage rate - Relative
Bias (%) of Estimated Variance using linear models compared to donor meth-
ods

NR model ρ(%) class donor NSO NSO resid SL BLUP ML BLUP

hh
pers

MCAR
MCAR

20 -0.9 -0.4 0.9 0.2 0.3
50 -1.5 -0.3 1.2 0.2 1.0
85 4.9 -1.4 0.7 0.2 2.1

hh
pers

MCAR
MAR

20 -0.4 -0.6 1.6 1.9 4.3
50 -1.8 0.9 4.2 1.7 3.2
85 2.4 -4.4 -1.1 -3.4 -0.4

hh
pers

MCAR
MNAR

20 -16.3 -18.3 -17.7 -15.7 -18.0
50 -15.9 -17.7 -16.4 -15.2 -16.5
85 -9.6 -14.4 -12.6 -14.0 -8.2

hh
pers

MNAR
MCAR

20 -8.5 -11.4 -11.2 -7.8 -11.5
50 -11.0 -12.9 -12.2 -10.1 -11.8
85 -7.6 -12.5 -10.6 -12.3 -6.0

hh
pers

MNAR
MNAR

20 -20.9 -26.0 -25.8 -20.6 -25.7
50 -17.8 -23.4 -22.3 -16.8 -20.2
85 -12.0 -21.2 -19.6 -16.5 -8.5

On this criteria the household donor methods and ML BLUP are similar

under MCAR and MAR, with not much separating the accuracy of the vari-

ance estimates. When nonresponse is MNAR, the ML BLUP is the superior

method, but only under the highest levels of clustering.

In summary, across the evaluation criteria, the nearest neighbour donor

method and ML BLUP are the best of the donor and linear imputation

methods, with the ML BLUP slightly better under MNAR, and the nearest

neighbour donor slightly better under MCAR and MAR nonresponse.
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Percentage of people on or below Federal Minimum Wage for linear and donor

methods

The application of imputation to the percentage of people on or below

the FMW was re-visited, with the results from linear and donor methods

shown in Tables 6.12 and 6.13.

Table 6.12: Percentage of adults on or below FMW - linear methods

stochastic stochastic, log determistic
NR model ρ(%) Actual SL BLUP ML BLUP SL BLUP ML BLUP SL BLUP ML BLUP

hh
pers

MCAR
MCAR

20 7.7 11.0 11.0 8.3 7.9 5.8 5.8
50 6.8 10.2 10.1 7.5 7.1 5.1 5.6
85 6.7 10.2 9.7 7.4 6.8 5.0 7.0

hh
pers

MCAR
MAR

20 7.7 11.0 11.2 8.4 8.1 5.8 5.8
50 6.8 10.2 10.1 7.5 7.2 5.0 5.9
85 6.7 9.7 9.4 7.3 6.9 4.8 7.4

hh
pers

MCAR
MNAR

20 7.7 11.0 10.5 8.6 8.1 6.0 6.0
50 6.8 10.2 9.4 7.8 7.3 5.3 5.7
85 6.7 10.3 9.0 7.7 6.9 5.1 6.9

hh
pers

MNAR
MCAR

20 7.7 11.1 10.4 8.4 7.9 5.9 5.9
50 6.8 10.2 9.3 7.7 7.2 5.2 5.6
85 6.7 10.2 8.9 7.6 6.9 5.1 6.9

hh
pers

MNAR
MNAR

20 7.7 11.0 9.9 8.7 8.1 6.1 6.1
50 6.8 10.3 8.8 7.9 7.2 5.4 5.7
85 6.7 10.4 8.4 7.8 6.9 5.3 6.8

The household respondent was the best imputation method for repro-

ducing the percentage on or below FMW, followed by the nearest neighbour

household method and stochastic ML BLUP under a log-transform. The

household respondent reproduced the percentage on or below FMW with at
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Table 6.13: Application - Percentage of adults on or below FMW - donor
methods

NR model ρ(%) Actual hh resp donor class donor NSO NSO resid

hh
pers

MCAR
MCAR

20 7.7 7.7 8.2 8.0 8.1 8.5
50 6.8 6.8 7.4 7.1 7.2 8.2
85 6.7 6.6 7.3 7.1 6.8 8.2

hh
pers

MCAR
MAR

20 7.7 7.7 8.0 8.2 7.7 9.3
50 6.8 6.6 7.1 7.2 6.8 8.6
85 6.7 6.4 6.7 7.1 6.4 8.4

hh
pers

MCAR
MNAR

20 7.7 7.9 8.5 8.3 8.4 8.7
50 6.8 6.9 7.7 7.4 7.3 8.3
85 6.7 6.6 7.5 7.3 6.8 8.2

hh
pers

MNAR
MCAR

20 7.7 7.7 8.4 8.1 8.3 8.6
50 6.8 6.8 7.7 7.4 7.3 8.3
85 6.7 6.6 7.5 7.3 6.8 8.2

hh
pers

MNAR
MNAR

20 7.7 7.9 8.7 8.4 8.7 8.9
50 6.8 6.9 7.9 7.5 7.4 8.3
85 6.7 6.6 7.8 7.6 6.8 8.0

most 2.5% relative bias over all nonresponse models and levels of ICC.

Figure 6.1 shows the estimated percentage on or below FMW for deter-

ministic and stochastic BLUPs and donor methods.

6.3.4 Comparison of donor methods and stochastic gen-

eralized linear mixed methods for binary vari-

ables

This last subsection of results is a comparison of the evaluation criteria on

donor and linear methods for binary variables. The RRMSE, Relative Bias
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Figure 6.1: Simulation study - estimated percentage on or below Federal
Minimum Wage with stochastic and donor imputed values
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and proportion of households with the same response are put side-by-side for

the household donor methods and linear mixed imputation methods using

a single stochastic impute under both a probit and logit model, for both

variables voting intention and employment status.

Table 6.14: Relative Root Mean Square Error (%) using linear models com-
pared to donor methods for Y1 - labour and Y2 - employed

NR model donor logit BLUPs probit BLUPs
hh pers NN NSO SL ML SL ML

vote labour
MCAR MCAR 242·3 208·0 242·2 218·0 242·5 217·8
MCAR MAR 228·0 196·4 232·6 206·7 229·9 207·4
MCAR MNAR 219·8 189·8 219·0 198·8 220·0 199·5
MNAR MCAR 225·3 194·3 224·5 202·6 223·8 203·6
MNAR MNAR 206·3 178·5 205·9 186·4 203·4 188·4

employed
MCAR MCAR 89·1 85·5 103·0 101·1 104·4 101·4
MCAR MAR 83·0 79·5 96·2 94·4 96·7 94·9
MCAR MNAR 84·4 80·7 97·1 95·4 98·5 95·7
MNAR MCAR 85·9 82·3 98·8 97·2 100·3 97·5
MNAR MNAR 81·8 78·4 93·4 92·3 95·6 92·6

Table 6.14 shows that the nearest neighbour household donor method

results in the most accurate imputed values, an improvement over either the

logit or probit multilevel imputation methods. This holds for both response

variables and across all nonresponse mechanisms.

Table 6.15 shows the relative bias of the imputed values for donor imputed

values compared to the GLM and GLMM imputed values. The nearest neigh-

bour household donor and multilevel logit model are similar for relative bias
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Table 6.15: Relative Bias of imputed values (%) using linear models compared
to donor methods for Y1 - labour and Y2 - employed

NR model donor logit BLUPs probit BLUPs
hh pers NN NSO SL ML SL ML

vote labour
MCAR MCAR −8·7 −2·5 0·9 0·5 1·4 2·6
MCAR MAR −9·3 −3·1 2·2 −0·8 −4·8 −0·6
MCAR MNAR −23·3 −12·8 −12·9 −11·9 −15·3 −9·9
MNAR MCAR −20·7 −9·5 −9·7 −6·7 −14·0 −7·6
MNAR MNAR −30·0 −19·7 −20·3 −19·2 −29·4 −18·9

employed
MCAR MCAR −6·9 −0·8 0·0 −0·3 −1·2 −0·6
MCAR MAR −5·9 −0·6 −0·4 −0·5 −0·3 −1·2
MCAR MNAR −10·9 −5·6 −6·2 −7·2 −8·8 −7·6
MNAR MCAR −9·5 −4·1 −4·2 −5·2 −7·3 −5·5
MNAR MNAR −13·6 −8·5 −9·6 −11·3 −14·4 −11·7

when assessing voting intentions, but the donor method is slightly better for

employment status.

The relative bias of the estimates of proportion are shown in Table 6.16.

The nearest neighbour household donor method results in similar relative

bias to the ML logit or probit methods.

Lastly, the proportion of households with the same value in each house-

hold are compared for each of the variables voting intention and employment

status across the donor and generalized linear mixed models approaches in

Table 6.17.

The true percentage of households with the same voting intention of

labour is 79.3%, and this is underestimated when using the nearest neigh-



178 CHAPTER 6. DONOR IMPUTATION

Table 6.16: Relative Bias of proportion (%) for Y1 - vote labour and Y2 -
employed using generalized linear and donor imputation methods

NR model donor logit BLUPs probit BLUPs
hh pers NN NSO SL ML SL ML

vote labour
MCAR MCAR −2·2 −1·0 −0·2 −0·3 −0·2 0·2
MCAR MAR −2·9 −0·9 0·2 −0·6 −1·7 −0·6
MCAR MNAR −6·2 −3·9 −3·9 −3·7 −4·8 −3·1
MNAR MCAR −5·4 −2·9 −3·1 −2·2 −3·9 −2·4
MNAR MNAR −8·7 −6·2 −6·4 −6·1 −9·3 −5·8

employed
MCAR MCAR −1·3 −0·2 0·0 −0·1 −0·3 −0·2
MCAR MAR −1·6 −0·2 −0·1 −0·1 −0·1 −0·3
MCAR MNAR −2·6 −1·5 −1·6 −1·9 −2·3 −2·0
MNAR MCAR −2·2 −1·1 −1·1 −1·3 −1·9 −1·4
MNAR MNAR −3·6 −2·3 −2·6 −3·1 −3·9 −3·2

bour person donor imputation method, but is quite well reproduced under the

nearest neighbour household imputed values. While the nearest neighbour

household method results in a slight over-clustering for MAR, it is generally

close to the true proportion of matches across all nonresponse models, and

represents clustering much better than the nearest neighbour person impute

which is as much as 16.4 percentage points from the true percentage of house-

holds with the same voting intention. Under a logit and probit model the

ML imputed values are marginally better than the nearest neighbour house-

hold imputed values. However, there is not much to separate these three

alternative imputation methods.

The proportion of household with the same employment status was also
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Table 6.17: Households with same voting intention of labour (%) and employ-
ment status (%) - using generalized linear and donor imputation methods

NR model donor logit BLUPs probit BLUPs
hh pers actual NN NSO SL ML SL ML

vote labour
MCAR MCAR 79·3 63·6 80·0 71·0 79·0 71·0 79·1
MCAR MAR 79·3 67·8 83·8 71·0 80·3 71·4 80·1
MCAR MNAR 79·3 62·9 80·1 71·1 79·1 71·4 79·0
MNAR MCAR 79·3 63·4 80·0 71·2 79·2 71·2 78·9
MNAR MNAR 79·3 62·9 80·0 71·3 79·1 71·8 79·0

employed
MCAR MCAR 72·2 63·6 72·0 66·2 70·3 65·7 70·5
MCAR MAR 72·2 67·8 72·0 66·7 70·5 66·6 70·9
MCAR MNAR 72·2 62·9 71·9 65·8 69·9 65·3 70·1
MNAR MCAR 72·2 63·4 71·9 66·0 70·0 65·4 70·1
MNAR MNAR 72·2 62·9 71·7 65·7 69·5 64·8 69·5

assessed under each of the imputation methods. The true value is 72.2%

of households with the same status, and again the nearest neighbour per-

son donor imputed values failed to reproduce this level of clustering, but the

nearest neighbour household method was much improved and reproduced the

estimate within 0.5 percentage points across each nonresponse mechanism.

The SL logit and probit imputed values were consistent with the previous

variable in their under-estimation of clustering. While the ML imputed val-

ues were an improvement on the SL imputed values, they didn’t preserve

clustering as well as the nearest neighbour household approach.
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6.4 Summary of Chapter 6

This chapter contained a thorough examination of both new and existing

donor methods in the household survey setting. These methods were con-

trasted to the linear and generalized linear model imputation methods dis-

cussed in Chapters 3 through to 5. The results of this chapter therefore

provide an overall assessment of how well donor and model-based imputed

values perform for both continuous and binary variables in the household

setting under different assumptions about nonresponse and varying levels of

within-household clustering.

The proposed donor methods which made use of household characteristics

showed promising results, with some substantial gains over standard donor

methods demonstrated.

Imputing the response variable from the responding person in the house-

hold resulted in low RRMSE and bias and good preservation of variance for

both continuous and binary variables, and performed well for identifying the

proportion of people at or under the Federal Minimum Wage. However, this

approach was particularly poor at preserving ICC. The major drawback is

that it clearly creates unrealistic imputed values, with households with a

nonrespondent ending up with a perfect correlation of the response variable,

distorting the sample ICC.
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Both household donor methods were clearly better than donor and class

donor imputed values for continuous variables, particularly when the ICC

was large. There were improvements to RRMSE, bias, and preservation of

ICC. The nearest significant other impute did better than the residual-based

variant on this method across all evaluation criteria. In terms of variance

estimation, the donor methods all displayed low levels of bias under the

MCAR and MAR scenarios, and only the household respondent method made

any improvements to the substantial under-estimation of variance under the

MNAR nonresponse mechanisms, where it performed remarkably well.

When binary variables were investigated, the findings were consistent

across all criteria and nonresponse mechanisms. The nearest neighbour

household imputation method resulted in superior imputed values for binary

variables compared to other household donor imputation methods as well as

the generalized linear model imputed values under logit or probit models.

This method also resulted in the most accurate imputed values, with smaller

RRMSE than all other methods for both binary variables. When estimat-

ing population proportions, the nearest neighbour household donor method

resulted in smaller relative bias than the ML multiple probit imputed val-

ues, and was also slightly better than the ML logit multiple imputed values.

The results for clustering also pointed to this being the superior method,

with similar results to the ML multiple imputed values under the probit or
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logit models for one binary variable but superior to them for reproducing the

proportion of households with the same value for the other binary response

variable.



Chapter 7

Conclusions

7.1 Summary of findings

Household surveys data are an example of hierarchically structured data,

characterised by small cluster sizes, and data items with varying levels of

intra-household correlation. This thesis explored several methods for imput-

ing missing item-level data by exploiting the household structure in different

ways. These included deterministic imputed values based on a SL BLUP

and a ML BLUP, a single-level impute incorporating information about a re-

spondent in the household, stochastic BLUPs and multiple imputation. For

binary variables GLM and GLMM imputed values were derived, using single

or multiple stochastic imputed values. Various donor imputation methods

were developed incorporating household information, and assessed against

183
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the linear and generalised linear model imputed values.

While some authors have investigated the use of mixed models in imputa-

tion, and some specialist statistical software packages are beginning to offer

this capability, there was no strong existing evidence on whether, and when,

the additional resources dedicated to the development of these more complex

models in household survey data was worthwhile. This thesis therefore con-

sidered new and existing imputation methods for their performance under a

range of missing data mechanisms (MCAR, MAR, MNAR) and with varying

levels of intra-household correlation.

These imputation methods were assessed across a range of criteria rel-

evant to household surveys, including standard accuracy measures such as

RRMSE and bias for imputation of the values for individuals, and relative

bias for means, but also distributional attributes such as variance estimates

and intra-household correlation. Simulation studies using Australian and

British data provided examples of the potential gains achievable using each

of these methods in a household survey setting.

Deterministic BLUPs

The performance of the ML BLUP compared to a SL BLUP depended on

the level of clustering and the nonresponse mechanism. Improvements in ac-

curacy were seen across all nonresponse mechanisms, and reductions in bias
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achieved by the ML BLUP over the SL BLUP under information nonresponse

mechanisms. The SL BLUP under estimated ICC significantly for all levels of

clustering, and this was improved by the ML BLUP, though it tended to im-

pute values that were too similar within households. While gains were made

in some areas when using the ML BLUP compared to SL BLUP imputed

values, the deterministic imputed values resulted in underestimation of vari-

ance. They are therefore not ideal in household surveys, where distributions

and relationships between household members are of importance. Stochastic

imputation methods were proposed and assessed against the deterministic

imputed values to resolve these deficiencies.

Stochastic BLUPs and MI

A stochastic element was introduced to the SL BLUP and ML BLUP

imputed values, and both a single and multiple imputed values were derived,

under the same nonresponse and clustering scenarios as for the deterministic

imputed values. As with the deterministic imputed values, the stochastic ML

BLUP resulted in improvements in accuracy and bias which increased with

the size of the ICC. Both the stochastic SL BLUP and ML BLUP resulted in

improved variance estimates compared to their deterministic versions. How-

ever, there was still under-estimation of variance, and this was not generally

resolved by the introduction of multiple imputation. With regards to ICC the
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stochastic ML BLUP performed very strongly, resulting in accurate repre-

sentations of within-household clustering across all nonresponse mechanisms

and ICC levels, not achieved by the stochastic SL BLUP.

Binary imputed values

Imputation methods for binary variables were developed using both a

GLM and a GLMM. Single stochastic imputed values, and multiple imputed

values were compared on two binary variables with different levels of within-

household clustering. The GLMM resulted in small but consistent accuracy

improvements over the GLM imputed values. A further improvement was

achieved with multiple rather than single stochastic imputed values. The

GLMM resulted in little improvement for the bias of estimates of population

proportions, but showed substantial gains for estimating the proportion of

households with the same value of the imputation variable within a house-

hold. As these estimates were quite accurate there was no additional gain

found from the introduction of multiple imputed values.

Donor methods

Several donor methods were proposed making use of household informa-

tion, imputing the response from another person in the household, a nearest

neighbour household imputation method (nearest significant other) and a

nearest significant other impute based on the model residual. Imputing the
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response from another person in the household led to improvements in accu-

racy and bias as well as good variance estimates, but resulted in unrealistic

imputed values with perfect intra-household correlation distorting the sample

ICC. The nearest significant other donor impute was the best of the donor

methods, with some good gains over standard donor methods when assessed

on accuracy, bias and preservation of ICC. These findings were consistent for

continuous and binary variables.

Overall, the multilevel stochastic BLUP, multilevel stochastic BLUP with

multiple imputed values, and nearest significant other method result in im-

provements over existing imputation methods, but when compared to each

other were similar, with varying performances across the different evaluation

criteria. The improvements over standard methods are greatest when the

ICC is large, and when nonresponse is informative. The main benefit com-

pared to non-household approaches is in the preservation of intra-household

dependencies, both for binary and continuous variables.

7.2 Further research

In Chapters 3 and 4 imputed values were derived under a log transformation,

which is commonly applied when analysing skewed data such as income.

A higher level of bias was found in imputed values derived under both a
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linear and linear mixed model. The bias corrections applied were able to

deal with this issue for single-level imputed values (under non-informative

response), but not for multilevel imputed values. Imputed values based on

log transformed data should therefore not be used without bias correction,

and further investigation would be useful into the cause of, and potential

solutions for, bias issues with multilevel imputation using a log transform.

The proposed and existing household imputation methods were assessed

in this thesis using a range of nonresponse mechanisms- MCAR, MAR and

MNAR, with nonresponse being informative at person-level, or household-

level, or both. An alternative would be to model the nonresponse mechanism

using a multilevel model, and assess the performance of these imputation

methods under further scenarios.

Another area for further research is to build on this work by considering

the additional layer of hierarchy present in longitudinal household surveys.

In this case an imputation model could build in correlations over time as well

as within households. Alternatively, or in addition, geographic regions can

be incorporated into a three or more level hierarchy.



Appendix A - Matrix algebra

for derivation of BLUP in

Chapter 3

Matrix Algebra for BLUPs

Let yij be the response variable of interest for person i in household j.

y = (y11, y21, ..., yij, ..., ynmm)T is the response vector of length n (n=no+nu)

and X be the associated matrix of fixed effects and Z be the matrix of random

effects.

yij[1x1] = Xij[1xp]β[px1] + zij[1xq]uj[qx1] + eij[1x1]

or yj[njx1] = Xj[njxp]β[px1] + zj[njxq]uj[qx1] + ej[njx1]

uj ∼ N(0,D)

ej ∼ N(0,Ω1,j)

cov(uj, ej) = 0

189
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In matrix notation:

Y[nx1] = X[nxp]β[px1] + Z[nxqm]u[qmx1] + e[nx1]

u ∼ N(0,Ω2)

e ∼ N(0,Ω1)

cov(u, e) = 0

Where Z is a block diagonal matrix, with the zj matrices on the diagonal, u

is a vector formed by stacking the uj vectors vertically.

• yo is the observed component of y, an (no x 1) vector with associated

(no x p1) matrix of covariates Xo.

• yu is the unobserved component of y, an (nu x 1) vector with associated

(nu x p1) matrix of observed covariates Xu.

The linear predictor for yu is ŷu = WTyo where W is an (no x nu)

matrix of weights. The BLUP for yu given Xu is found by calculating W to

minimise the prediction variance var(ŷu − yu) (best) with E(ŷu − yu) = 0

(unbiased).

Let E(y) = Xβ, var(yo) = Ωo be the (. x .) covariance matrix for yo

and var(yu) = Ωu be the (. x .) covariance matrix for yu.
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As an unbiased predictor E(ŷu − yu) = 0, therefore:

E(WTyo − yu) = 0

WTE(yo)− E(yu) = 0

WTXoβ −Xuβ = 0

(WTXo −Xu)β = 0

For this to be true for any β, (WTXo −Xu) = 0.

To find the BLUP for yu the prediction variance is minimised:

var(ŷu − yu) = var(WTyo − yu)

= var(WTyo) + var(yu)− 2WT cov(yo,yu)

= WTΩoW + Ωu − 2WT cov(yo,yu)

= WT (ΩoW− 2cov(yo,yu)) + Ωu

To find W the prediction variance is minimised subject to (WTXo −
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Xu) = 0 by the method of Lagrange multipliers (reference required?):

L(W,λ) = var(ŷu − yu) + (WTXo −Xu)λ

= WT (ΩoW− 2cov(yo,yu)) + Ωu + (WTXo −Xu)λ

∂L

∂W
= 0

2ΩoW− 2cov(yo,yu) + Xoλ = 0

2ΩoW− 2cov(yo,yu)− 2Xoλ
∗ = 0 where λ∗ = −λ2

−ΩoW + cov(yo,yu) + Xoλ
∗ = 0

ΩoW = cov(yo,yu) + Xoλ
∗

W = Ωo
−1(Xoλ

∗ + cov(yo,yu))

Now Xu = WTXo as ∂L
∂λ

= 0 and therefore XT
u = XT

o W. Substituting the
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above expression for W will give an expression for λ∗:

XT
u = XT

o Ω−1
o (Xoλ

∗ + cov(yo,yu))

XT
u = XT

o Ω−1
o Xoλ

∗ + XT
o Ω−1

o cov(yo,yu)

(XT
o Ω−1

o Xo)λ∗ = XT
u −XT

o Ω−1
o cov(yo,yu)

λ∗ = (XT
o Ω−1

o Xo)−1(XT
u −XT

o Ω−1
o cov(yo,yu))

The weights W forming the BLUP for missing yu are then given by:

W = Ω−1
o {Xo(Xo

TΩ−1
o Xo)−1(Xu

T −Xo
TΩ−1

o cov(yo,yu)) + cov(yo,yu)}

and hence the BLUP for yu is given by:

ŷu = WTyo

= {Ω−1
o (Xo(XT

o Ω−1
o Xo)−1(XT

u −XT
o Ω−1

o cov(yo,yu)) + cov(yo,yu))}Tyo

= {Ω−1
o Xo(XT

o Ω−1
o Xo)−1XT

u + Ω−1
o [I−Xo(Xo

TΩ−1
o Xo)−1Xo

TΩ−1
o ]cov(yo,yu)}Tyo

This text presents the Best Linear Unbiased Predictor (BLUP) for im-

puting missing data in a single variable of interest under firstly a single-level
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model, then a multilevel model.

The Best Linear Unbiased Predictor (BLUP) for missing observations in

variable of interest y will be derived firstly using a single-level model. This

model may be applied to missing household-level data, or to missing person-

level data (which has the effect of ignoring the household structure).

Let y = (y1, y2, ..., yi, ..., yn)T be a vector of length n (n=no+nu) and X

be the associated (n x p1) matrix of fully observed covariates.

• yo is the observed component of y, an (no x 1) vector with associated

(no x p1) matrix of covariates Xo.

• yu is the unobserved component of y, an (nu x 1) vector with associated

(nu x p1) matrix of known covariates Xu.

The linear predictor for yu is ŷu = WTyo where W is an (no x nu) matrix of

weights. The BLUP for yu given Xu is found by calculating W to minimise

the prediction variance var(ŷu−yu) (best) with E(ŷu−yu) = 0 (unbiased).

Let E(y) = Xβ, var(yo) = Vo be a (n0 x n0) covariance matrix and

var(yu) = Vu be a (nu x nu) covariance matrix .
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As an unbiased predictor E(ŷu − yu) = 0, therefore:

E(WTyo − yu) = 0

WTE(yo)− E(yu) = 0

WTXoβ −Xuβ = 0

(WTXo −Xu)β = 0

For this to be true for any β, (WTXo −Xu) = 0.

To find the BLUP for yu the prediction variance is minimised:

var(ŷu − yu) = var(WTyo − yu)

= var(WTyo) + var(yu)− 2WT cov(yo,yu)

= WTVoW + Vu − 2WT cov(yo,yu)

= WT (VoW− 2cov(yo,yu)) + Vu

To find W the prediction variance is minimised subject to (WTXo−Xu) = 0
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by the method of Lagrange multipliers (reference required?):

L(W,λ) = var(ŷu − yu) + (WTXo −Xu)λ

= WT (VoW− 2cov(yo,yu)) + Vu + (WTXo −Xu)λ

∂L

∂W
= 0

2VoW− 2cov(yo,yu) + Xoλ = 0

2VoW− 2cov(yo,yu)− 2Xoλ
∗ = 0 where λ∗ = −λ2

−VoW + cov(yo,yu) + Xoλ
∗ = 0

VoW = cov(yo,yu) + Xoλ
∗

W = Vo
−1(Xoλ

∗ + cov(yo,yu))

Now Xu = WTXo as ∂L
∂λ

= 0 and therefore XT
u = XT

o W. Substituting the
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above expression for W will give an expression for λ∗:

XT
u = XT

o V−1
o (Xoλ

∗ + cov(yo,yu))

XT
u = XT

o V−1
o Xoλ

∗ + XT
o V−1

o cov(yo,yu)

(XT
o V−1

o Xo)λ∗ = XT
u −XT

o V−1
o cov(yo,yu)

λ∗ = (XT
o V−1

o Xo)−1(XT
u −XT

o V−1
o cov(yo,yu))

The weights W forming the BLUP for missing yu are then given by:

W = V−1
o {Xo(Xo

TV−1
o Xo)−1(Xu

T −Xo
TV−1

o cov(yo,yu)) + cov(yo,yu)}

and hence the BLUP for yu is given by:

ŷu = WTyo

= {V−1
o (Xo(XT

o V−1
o Xo)−1(XT

u −XT
o V−1

o cov(yo,yu)) + cov(yo,yu))}Tyo

= {V−1
o Xo(XT

o V−1
o Xo)−1XT

u + V−1
o [I−Xo(Xo

TV−1
o Xo)−1Xo

TV−1
o ]cov(yo,yu)}Tyo

If Vo = σ2I then this simplifies to W = Xo(XT
o Xo)−1XT

u and hence

ŷu = WTyo = Xu(XT
o Xo)−1(XT

o yo), which is the ordinary least squares



198 CHAPTER 7. CONCLUSIONS

estimator.

Variance Models

The preceding derivation was non-specific about the form of Vo, the vari-

ance matrix for the observed response vector yo, and as the BLUP includes

the term Vo, it must be specified before the BLUP weights can be calculated.

Below are alternative models for the variance structure.

Alternative variance structures for a person-level single response variable

yi for person i in household j, ignoring the household clustering:

Model V ar(yi) C(yi, yi′)

1 σ2 0
Under this model there is no within-household correlation for the variable

of interest, hence Vo = σ2I and cov(yo,yu) = 0.

Hence the BLUP for yu simplifies to:

ŷu = {V−1
o Xo(Xo

TV−1
o Xo)−1Xu

T + V−1
o [I−Xo(Xo

TV−1
o Xo)−1Xo

TV−1
o ]

cov(yo,yu)}Tyo

= {(σ2I)−1Xo(Xo
T (σ2I)−1Xo)−1Xu

T

+(σ2I)−1[I−Xo(Xo
T (σ2I)−1Xo)−1Xo

T (σ2I)−1]0}Tyo

= {Xo(Xo
TXo)−1Xu

T}Tyo



Appendix B - additional tables

from Chapter 3

Table 7.1: Estimation accuracy for imputing Hourly Wage Rate - Relative
Bias (%) of Estimated Mean

Deterministic BLUPs
NR model ρ(%) Respmean SL SL+ ML

hh
pers

MCAR
MCAR

20 0.0 0.1 0.0 0.1
50 0.1 0.0 0.0 0.0
85 0.1 0.0 0.0 0.0

hh
pers

MCAR
MAR

20 0.7 0.0 0.2 0.0
50 0.9 0.2 -0.2 -0.1
85 0.5 0.0 -0.2 -0.3

hh
pers

MCAR
MNAR

20 -2.0 -1.9 -2.1 -1.7
50 -2.0 -1.9 -1.7 -1.4
85 -2.0 -1.9 -0.7 -0.7

hh
pers

MNAR
MCAR

20 -1.1 -1.0 -1.3 -0.8
50 -1.5 -1.4 -1.2 -0.8
85 -1.8 -1.8 -0.5 -0.5

hh
pers

MNAR
MNAR

20 -3.0 -2.9 -3.3 -2.5
50 -3.1 -2.9 -2.6 -2.0
85 -3.4 -3.2 -0.9 -0.9
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Table 7.2: Estimation accuracy for imputing hourly wage rate - relative bias
(%) of estimated mean using log transform

BLUP BLUP log BLUP log BC
NR model ρ(%) SL ML SL ML SL ML

hh
pers

MCAR
MCAR

20 0·1 0·1 −2·3 −3·3 −0·1 1·2
50 0·0 0·0 −2·3 −2·8 −0·1 1·8
85 0·0 0·0 −2·4 −1·9 −0·1 3·0

hh
pers

MCAR
MAR

20 0·0 0·0 −2·1 −3·1 0·0 1·5
50 0·2 −0·1 −2·0 −2·6 0·1 1·9
85 0·0 −0·3 −2·3 −2·0 −0·3 2·4

hh
pers

MCAR
MNAR

20 −1·9 −1·7 −4·1 −5·0 −2·0 −0·8
50 −1·9 −1·4 −4·1 −1·3 −2·0 0·0
85 −1·9 −0·7 −4·2 −2·7 −2·1 2·0

hh
pers

MNAR
MCAR

20 −1·0 −0·8 −3·3 −4·2 −1·2 0·1
50 −1·4 −0·8 −3·6 −3·7 −1·5 0·6
85 −1·8 −0·5 −4·0 −2·5 −1·9 2·2

hh
pers

MNAR
MNAR

20 −2·9 −2·5 −5·0 −5·8 −2·9 −1·8
50 −2·9 −2·0 −5·0 −4·9 −3·0 −0·8
85 −3·2 −0·9 −5·4 −3·0 −3·3 1·6
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for Chapter 4

Table 7.3: Rel. Bias (%) of estimated mean - MI compared to single impu-
tation using SL and ML BLUPs

Single Stochastic MI MI log
NR model ρ(%) SL ML SL ML SL ML

hh
pers

MCAR
MCAR

20 0.1 0.1 -0.5 -0.3 1.8 3.1
50 0.1 0.0 0.0 0.0 2.2 3.7
85 0.1 -0.0 -0.1 -0.1 2.0 3.7

hh
pers

MCAR
MAR

20 -0.0 0.0 0.8 0.7 3.0 4.8
50 0.1 -0.0 0.1 0.0 2.5 3.8
85 0.0 -0.3 0.1 -0.3 2.0 3.2

hh
pers

MCAR
MNAR

20 -1.9 -1.7 -1.9 -1.6 0.4 1.8
50 -1.9 -1.4 -1.9 -1.3 0.3 2.0
85 -1.9 -0.7 -1.8 -0.6 0.4 3.1

hh
pers

MNAR
MCAR

20 -1.0 -0.8 -0.8 -0.6 1.3 2.4
50 -1.3 -0.8 -1.5 -0.9 0.7 2.1
85 -1.7 -0.4 -1.8 -0.6 0.4 3.1

hh
pers

MNAR
MNAR

20 -2.8 -2.5 -3.1 -2.9 -1.1 -0.4
50 -2.9 -2.0 -2.9 -2.1 -0.7 1.1
85 -3.1 -0.9 -3.0 -0.9 -0.9 2.2
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Table 7.4: Rel. bias (%) of estimated mean- imputation using stochastic
BLUPs compared to deterministic BLUPs

Deterministic Stochastic Stochastic log
NR model ρ(%) Respmean SL SL+ ML SL SL+ ML SL ML

hh
pers

MCAR
MCAR

20 0.0 0.1 0.0 0.1 0.1 0.1 0.1 2.4 3.6
50 0.1 0.0 0.0 0.0 0.1 0.1 0.0 2.3 3.7
85 0.1 0.0 0.0 0.0 0.1 0.0 0.0 2.4 4.1

hh
pers

MCAR
MAR

20 0.7 0.0 0.2 0.0 0.0 0.2 0.0 2.3 4.0
50 0.9 0.2 -0.2 -0.1 0.1 -0.2 0.0 2.5 3.7
85 0.5 0.0 -0.2 -0.3 0.0 -0.2 -0.3 2.0 3.2

hh
pers

MCAR
MNAR

20 -2.0 -1.9 -2.1 -1.7 -1.9 -2.1 -1.7 0.3 1.4
50 -2.0 -1.9 -1.7 -1.4 -1.9 -1.7 -1.4 0.3 1.9
85 -2.0 -1.9 -0.7 -0.7 -1.9 -0.7 -0.7 0.3 2.9

hh
pers

MNAR
MCAR

20 -1.1 -1.0 -1.3 -0.8 -1.0 -1.3 -0.8 1.2 2.4
50 -1.5 -1.4 -1.2 -0.8 -1.3 -1.1 -0.8 0.8 2.5
85 -1.8 -1.8 -0.5 -0.5 -1.7 -0.5 -0.4 0.5 3.2

hh
pers

MNAR
MNAR

20 -3.0 -2.9 -3.3 -2.5 -2.8 -3.2 -2.5 -0.7 0.3
50 -3.1 -2.9 -2.6 -2.0 -2.9 -2.6 -2.0 -0.7 1.0
85 -3.4 -3.2 -0.9 -0.9 -3.1 -0.9 -0.9 -1.0 2.5

maximum simulation standard error = 0.06
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Table 7.5: Rel. Bias (%) of estimated mean - imputation using NN hh
compared to donor methods

NR model ρ(%) donor class donor hh resp NN hh NN hh resid

hh
pers

MCAR
MCAR

20 -0.4 0.1 0.0 0.0 0.1
50 0.3 0.1 0.0 0.0 0.0
85 0.5 0.6 0.0 0.0 -0.1

hh
pers

MCAR
MAR

20 0.3 0.3 -1.1 0.8 -0.3
50 1.2 0.2 0.3 0.7 0.0
85 0.9 0.4 -0.0 -0.1 -0.3

hh
pers

MCAR
MNAR

20 -2.3 -1.8 -1.2 -2.2 -2.1
50 -1.8 -1.8 -0.8 -1.9 -1.9
85 -1.7 -1.4 -0.2 -1.1 -1.2

hh
pers

MNAR
MCAR

20 -1.5 -1.0 0.1 -1.4 -1.3
50 -1.3 -1.3 0.0 -1.3 -1.4
85 -1.5 -1.2 0.0 -0.9 -1.0

hh
pers

MNAR
MNAR

20 -3.3 -2.8 -1.2 -3.6 -3.4
50 -3.0 -2.9 -0.6 -3.1 -3.1
85 -3.0 -2.7 -0.1 -2.0 -2.1
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Table 7.6: Relative Bias of population proportion (%) - donor imputation
methods for Y1 - voting preference labour and Y2 - employed

hh pers random donor class donor NN pers NN hh
vote labour

MCAR MCAR 0·0 0·3 −2·2 −1·0
MCAR MAR −2·0 0·2 −2·9 −0·9
MCAR MNAR −3·5 −3·4 −6·2 −3·9
MNAR MCAR −2·5 −2·7 −5·4 −2·9
MNAR MNAR −6·5 −6·8 −8·7 −6·2

employed
MCAR MCAR −0·1 0·0 −1·3 −0·2
MCAR MAR −1·7 0·0 −1·6 −0·2
MCAR MNAR −1·9 −1·3 −2·6 −1·5
MNAR MCAR −1·3 −0·9 −2·2 −1·1
MNAR MNAR −3·2 −2·2 −3·6 −2·3

Table 7.7: Estimation accuracy for imputing Hourly Wage Rate - Rel. Bias
(%) of estimated mean using linear models compared to donor methods

NR model ρ(%) class donor NN hh NN hh resid SL BLUP ML BLUP

hh
pers

MCAR
MCAR

20 0.1 0.0 0.1 0.1 0.1
50 0.1 0.0 0.0 0.1 0.0
85 0.6 0.0 -0.1 0.1 0.0

hh
pers

MCAR
MAR

20 0.3 0.8 -0.3 0.0 0.0
50 0.2 0.7 0.0 0.1 0.0
85 0.4 -0.1 -0.3 0.0 -0.3

hh
pers

MCAR
MNAR

20 -1.8 -2.2 -2.1 -1.9 -1.7
50 -1.8 -1.9 -1.9 -1.9 -1.4
85 -1.4 -1.1 -1.2 -1.9 -0.7

hh
pers

MNAR
MCAR

20 -1.0 -1.4 -1.3 -1.0 -0.8
50 -1.3 -1.3 -1.4 -1.3 -0.8
85 -1.2 -0.9 -1.0 -1.7 -0.4

hh
pers

MNAR
MNAR

20 -2.8 -3.6 -3.4 -2.8 -2.5
50 -2.9 -3.1 -3.1 -2.9 -2.0
85 -2.7 -2.0 -2.1 -3.1 -0.9
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