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A class of rare antiferromagnetic metallic oxides: double perovskite
AMn(3)V(4)O(12) (A = Na+, Ca2+, and La3+) and the site-selective
doping effect

Abstract
We have investigated the structural, electronic, and magnetic properties of A-site-ordered double-
perovskitestructured oxides, AA'3B4O12 (A = Na, Ca, and La) with Mn and V at A' and B sites, respectively,
using firstprinciple calculations based on the density functional theory. Our calculation results show that the
antiferromagnetic phase is the ground state for all the compounds. By changing the A-site ions from Na+ to
Ca2+ and then to La3+, the transfer of charge between Mn and O ions was changed from 1.56 to 1.55 and then
to 1.50, and that between the V and O ions changed from 2.01 to 1.95 and then to 1.93, revealing the cause for
the unusual site-selective doping effect. Mn 3d electrons dominate the magnetic moment and are localized,
with an intense hybridization with O 2p orbitals, which indicates that the magnetic exchange interaction
between Mn ions is mediated through O and that the super exchange mechanism will take effect. These
materials have a large one-electron bandwidth W, and the ratio of the on-site Coulomb repulsion U to W is
less than the critical value (U/W)c, which leads to metallic behavior of AMn3V4O12. This is further evidenced
by the large number of free electrons contributed by V at the Fermi surface. These calculations, in
combination with the reported experimental data, prove that these double perovskites belong to the rare
antiferromagnetic metallic oxides.
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We have investigated the structural, electronic, and magnetic properties of A-site-ordered double perovskite-structured oxides

AA′
3B4O12 (A = Na, Ca, and La) with Mn and V at A′ and B site, respectively, using the first-principle calculation based on

the density functional theory. Our calculation results show that the antiferromagnetic (AFM) phase is the ground state for all

the compounds. By changing the A-site ions from Na+ to Ca2+ and then to La3+, the transfer of charge of Mn ions changed

from 1.56 to 1.55 and to 1.50 and ones of V ions changed from 2.01 to 1.95 and to 1.93, revealing the cause for the unusual

site-selective doping effect. Mn 3d electrons dominate magnetic moment and localized, with an intense hybridization with O 2p

orbital, which indicates that the magnetic exchange interaction between Mn atoms is mediated through O and super exchange

mechanism will take effect. These materials have large one-electron bandwidth W , and the radio of the on-site Coulomb repulsion

U to W is less than a critical value (U/W )c, which leads to metallic behavior of AMn3V4O12. This is further evidenced by the

large number of free electrons contributed by V at the Fermi surface. This calculation work, in combination with the reported

experimental data, proves that these studied double perovskites belong to the rare antiferromagnetic metallic oxides.

1 Introduction

The A-site-ordered double perovskites with the general chem-

ical formula AA′
3B4O12 (sometimes B site can accommodate

two different elements) have received extensive attention both

in theory and experiment owning to their special ordered struc-

tures and wide variety of intriguing physical properties1–5.

For instance, colossal magnetoresistance under weak magnetic

fields, giant dielectric constant over a wide temperature range,

and high temperature ferromagnetic transitions were found in

such perovskites. Furthermore, the double perovskite struc-

tures provide an excellent playground to delicately tune their

physical properties by accommodating substitution atoms at

many sites, A, A′, and B. These compounds crystallize with

a Im3̄ cubic lattice in which the A- and A′-site cations are at

the originally 12-fold-coordinated site in a simple ABO3 per-

ovskite. The BO octahedral in this structure is fairly rigid but

heavily tilted. The B-O-B angle deviates significantly away
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from 180◦, leading to the formation of square-planar coordi-

nated A′O4 units. The A′ sites are usually filled with transition-

metal Jahn-Teller active ions Cu2+ and Mn3+. For exam-

ple, ACuM3Mn4O12 (A = Ca, La, or Bi) were observed high-

temperature ferromagnetic transitions due to the couplings be-

tween the spins at A′-site Cu and B-site Mn above room tem-

perature6–8. LaCu3Fe4O12 and BiCu3Fe4O12 show intersite

charge transfer between the A-site Cu and B-site Fe ions, lead-

ing to paramagnetism-to-antiferromagnetism and accompanied

metal-to-insulator (semiconductor) isostructural phase transi-

tions9,10. In CaCu3B4O12
11, the CuO4 planes with Jahn-Teller

Cu2+ ions align perpendicular to each other. This special

alignment enable direct exchange interaction between the near-

est Cu2+ spins, which gives rise to ferromagnetic behavior in

CaCu3Ge4O12 and CaCu3Sn4O12. Whereas in CaCu3Ti4O12,

superexchange interaction exists due to the Cu(3d)-O(2p)-

Ti(3d) orbital hybridization, resulting in an antiferromagnetic

insulating state and making the observation of colossal dielec-

tric constant observation possible. In YMn3Al4O12
4, the half-

filled dr2−z2 and dxy orbitals of the nearest neighboring Mn

ions are directed toward each other. The overlap of those or-

bitals produces antiferromagnetic direct exchange interaction

between the Mn spins. Therefore, it is quite obvious that

charge transfer and orbit hybridization in AA′
3B4O12 com-

pounds are critical for showing rich physics ranging from

1



3 RESULTS AND DISCUSSION

metal/insulator, ferromagnetism(FM)/antiferromagnetism and

colossal magnetic resistance effect, to giant dielectric con-

stant. The understanding of the mechanism behind of these

rich physics will help for the rational development of materials

with superior properties.

Furthermore, antiferromagnetic metallic perovskite oxide is

very rare. The transition-metal oxides belong to two cate-

gories, viz. the Mott-Hubbard type and the charge-transfer

type12. The basis for such a classification depends on the

relative value of the on-site Coulomb repulsion (U) between

the d electrons and the one-electron bandwidth (W )13. In

the limit of large U , a system is Mott-Hubbard insulator and

the 3d orbit is single occupied sites. It can be described by

the antiferromagntic Heisenberg spin model. On the other

hand, in the opposite limit of large W , a system of uncor-

related half filled band becomes nonmagnetic metal. How-

ever, some perovskite transition-metal oxides have a strong hy-

bridization between the metal 3d and O 2p orbits. It leads to

an intermediate value of U/W . Examples include CaCrO3
13,

(La1−zNdz)1−xSrxMnO3
14, Pr0.5Sr0.5MnO3

15, etc., and such

a system has an antiferromagnetic metal ground state. Al-

though those materials are very useful for novel antiferromag-

netic spintronic devices, they are very rare.

Very recently, a site ordered double perovskite AMn3V4O12

(A = Na, Ca, La) were synthesized using high pressure-high

temperature method by Zhang et al.16 It has been shown ex-

perimentally that such a system has an antiferromagnetic/spin

glass metallic ground state accompanying with metallic behav-

ior. In this study, we proposed that such a perovskite structured

system with two positions can be played with in its structure,

in contrast to simple perovskite, as a platform for rare antifer-

romagnetic metallic oxides, and studied their mechanism using

first-principle density function theory (DFT).

2 Computational Details

In this work, the structure optimization was carried out in the

Kohn-Sham framework using the Vienna ab initio simulation

package (VASP)17–20, based on the projector augmented-wave

method21,22. The exchange-correlation energy was treated in

the local spin-density approximation (LSDA)23. The present

calculations do not include spin-orbit corrections. The Na

(2p63s1), Ca (2p63s2), La (5s25p65d16s2), Mn (3p63d54s2), V

(3p63d44s1), and O (2s22p4) were treated as valence electrons.

The plane wave cut-off energy was chosen to be 500 eV. The

k-points of 7×7×7 were generated using the Monkhorst-Pack

scheme24 in the Brillouin zone. Brillion zone integrations were

performed with a Gaussian broadening25 of 0.2 eV during all

relaxations. Structural optimizations with conjugate-gradient

algorithm were continued until the Hellmann-Feynman forces

on each ion to be less than 5 meV/Å. Experimentally estab-

lished structural data16 are used as input for the calculations.

In the LSDA+U framework26,27, the strong Coulomb repul-

sion between localized d states is treated by adding a Hubbard-

like term to the effective potential, leading to an improved de-

scription of correlation effects in transition-metal oxides. Since

there is no unique way of including a Hubbard term within DFT

framework, several different approaches exist, which all give

similar results. To investigate the electron correlation effect

on Mn and V 3d orbitals, we use the approach described by

Dudarev et. al.28 where only an effective Hubbard parameter

Ue f f = U − J enters the Hamiltonian, where U and J are the

Coulomb and exchange parameters, respectively. We applied

the UMn=2, 4 eV and UV = 2 eV. With these values of Hubbard

parameter, caculated magnetic moment agree with experimen-

tal data16.

3 Results and Discussion

The AMn3V4O12 was a cubic A-site-ordered with a space

group Im3̄ (No. 204)16, in which A, Mn, V, and O atoms were

placed at the 2a (0, 0, 0), 6b (0, 1/2, 1/2), 8c (1/4, 1/4, 1/4),

and 24g (x, y, 0) positions, respectively (shown as Figure 1 a).

Experimentally established structure data were used as input

for the calculations. The optimized structural parameters and

selected bond lengths and angles of AMVO are listed in Ta-

ble 1 along with experimental results for comparison. Both the

theory and experiment results show that the lattice parameter,

the Mn-Mn distance, the Mn-O distance, and the V-O distance

will increase when the A-site ions change from Na to Ca and

then to La due to the increased atomic size. The optimized

structural parameters are less than the experimental ones. The

underestimation of structural parameters for LDA comes from

the overbind effect29.

We calculated total energy with respect to the ground

state magnetic configuration of AMn3V4O12 using the LSDA

method. To explore the structural phase stability of AMVO,

we considered G-type antiferromagnetic (G-AFM), A-type an-

tiferromagnetic (A-AFM), and ferromagnetic (FM) orderings.

We found the G-AFM phase to be the ground state for NMVO.

For NaMn3V4O12 (NMVO), it is 47 meV/f.u. lower in en-

ergy than the A-AFM state and 35 meV/f.u. lower than FM

state. For CaMn3V4O12 (CMVO), it is 10 meV/f.u. lower than

the A-AFM state and 19 meV/f.u. lower than FM state. For

LaMn3V4O12 (LMVO), it is 20 meV/f.u. lower than A-AFM

state and 66 meV/f.u. lower than FM state.

Considering the electron correlation in the 3d transition-

metal Mn and V ions, we calculated the electronic and magnetic

properties of AMVO using the LSDA and LSDA+U method.

The effective Hubbard parameter of Mn is 0 (LSDA), 2, and 4

eV and the ones of V is 0 (LSDA) and 2 eV. Figure 2 represents

the total and site-decomposed density of states (DOS) in AFM

configuration for AMVO. In agreement with the experimental

results, it was found that the three compounds are metallic ev-

2



3 RESULTS AND DISCUSSION

Fig. 1 a) Crystal structure of A-site-ordered pervoskite AMn3V4O12

with Im3̄. The arrow indicates the spin direct. b) Mn atom 3d

sub-orbit diagram in compounds.

Table 1 Structural parameters and selected bond lengths and angles

of NMVO, CMVO, and LMVO optimized by VASP, including the

experimental (Exp.) structural parameters 16 as a reference.

NMVO CMVO LMVO

Theo. Exp. Theo. Exp. Theo. Exp.

a(Å) 7.2072 7.35514 7.2363 7.40704 7.30489 7.48485

Ox 0.3074 0.3023 0.3038 0.2944 0.3047 0.2947

Oy 0.1856 0.1917 0.1833 0.1936 0.1829 0.1957

Mn-O(Å) 1.928×4 2.032×4 1.943×4 2.092×4 1.955×4 2.124×4

2.658×4 2.695×4 2.696×4 2.733×4 2.721×4 2.753×4

3.169×4 3.169×4 3.176×4 3.147×4 3.213×4 3.170×4

V-O(Å) 1.906×6 1.925×6 1.908×6 1.927×6 1.926×6 1.944×6

V-O-V(deg) 141.9 145.6 142.2 147.98 141.8 148.6

Mn-O-Mn(deg) 102.4 101.4 101.3 99.4 101.5 99.6

idenced by large number of states around the Fermi surface.

Therefore these compounds belong to a very rare class of ma-

terials, metallic antiferromagnetic perovskite oxides. Although

the bands at Fermi surface are mainly composed of bands from

V, a very small portion of contribution from O and Mn are

also observed, which indicates a certain degree of orbit of hy-

bridization among orbits of these ions. For NMVO, the bands

(at about -2 eV), which are composed of Mn 3d and O 2p or-

bitals, suggest the Mn-O considerable covalent hybridization,

which indicates a superexchange mechanism for the antifer-

romagnetism. However, Mn-O squares do not share oxygen,

instead, they form O-Mn-O-O-Mn paths. The Mn-O-Mn su-

perexchange interaction do not seem to be responsible for the

antiferromagnetism of AMVO because one of the Mn-O bond

lengths (greater than 2.6 Å) in the Mn-O-Mn paths is too long to

mediate such interaction and because the Mn-O-Mn bond angle

(about 103◦) is far from the 180◦ expected to induce antiferro-

magnetic interaction according to the Kanamori-Goodenough

rule30–32. The orbit hybridization of V, O, and Mn orbit at the

Fermi surface indicates that B-site V ions may mediate the anti-

ferromagnetic interaction between the Mn spins through Mn-O-

V-O-Mn paths. This may be the origin of antiferromagnetism
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Fig. 2 The total and site-decomposed electronic DOS for AFM

configuration of NMVO, CMVO, and LMVO obtained by LSDA and

LDA+U calculation: total DOS (black), Mn (red), V (green), O

(blue). The vertical dot-dash line at zero indicates the Fermi energy

level.

in such metallic systems4.

The LSDA+U results still keep their metallic character. The

band gap between conductantion bands and valance bands en-

larged due to orbital shifting towards higher energy with the

increasing of U value. The band gap increases from 0.8 to 1.1

and then to 1.2 eV with UMn increasing from 0 to 4 eV and UV

increasing from 0 to 2 eV. Meanwhile, the calculated magnetic

moment at the Mn-site changes from 3.70 to 4.14 µB, from

3.75 to 4.21 µB, and from 3.76 to 4.24 µB with UMn increasing

from 0 to 4 eV for NMVO, CMVO, and LMVO, respectively.

However, the calculated magnetic moment at the V-site changes

from 0.01 to 0.99 µB, from 0.35 to 1.20 µB, and from 0.78 to

1.41 µB with UV increasing from 0 to 2 eV for NMVO, CMVO,

and LMVO, respectively. The qualitative change indicated that

the electronic repulsion of V 3d electron is much correlated

within AMVO.

The partial density of states (PDOS) of Mn1 in three com-

pounds, NMVO, CMVO, and LMVO are shown in Figure 3,

respectively. The doped electrons of the A′-site Mn ions are

mainly localized below the Fermi surface, in addition to a very

small portion of electrons at the Fermi surface, which means

that Mn ions are responsible for the magnetic moment in the

compounds. While the electrons of B-site V ions are mainly

located at the Femi surface, which means that they are delo-

calized and contribute to the conductivity. According to the

PDOS, energy level diagrams of A′-site Mn 3d orbits in the

three compounds are plotted, shown as Figure 1b. Mn 3dyz,

3dxz, 3dx2 , 3dy2 sub-orbits are occupied with electrons and lo-

cated around 2 eV below the Fermi level, while 3dxy located

3
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at the Fermi surface with partial occupation of electrons. This

indicates that Mn 3dxy electrons partially contribute to the con-

ductivity of the compounds in addition to the contribution to

the magnetic moment. It indicates that the Mn is at high spin

states in all the three compounds. The calculated magnetic mo-

ment are smaller than the expected magnetic moment value of

5 µB
33. Due to the partially occupation of 3dxy orbit and the

Mn-O considerable covalent hybridization, a small magnetic

moment presents at the oxygen sites. These values are 0.04,

0.04, and 0.03 for NMVO, CMVO, and LMVO, respectively.

This further proves that the Mn 3d, O 2p, V 3d O orbit hy-

bridization is the key to the antiferromagnetic ordering in these

compounds.

The V-O distances are 1.906, 1.908, 1.926 Åfor NMVO,

CMVO, and LMVO, respectively. These values are similar

to the average values of V-O distance of metallic perovskite-

type V oxides for SrVO3 (1.921 Å)34, MnVO3 (1.938 Å)33,

and CaVO3 (1.963 Å)35 and less than the average values of

V-O distance of insulated perovskite-type V oxides for ScVO3

(2.003Å)36, YVO3 (2.007 Å)37, and LaVO3 (2.042 Å)37. The

short V-O distance means the strong hybridization of V 3d and

O 2p orbitals, and it leads to a large one-electron bandwidth W .

In the intermediate value of U/W , the materials are metal.

We also use Bader’s “Atoms in molecules” theory38,39 to an-

alyze the valence states of Mn and V ions. Our calculation

found that the transfer of charge of Mn ions changed from 1.56

to 1.55 and 1.50, and ones of V ions changed from 2.01 to 1.95

and to 1.93 by changing the A-site ions from Na+ to Ca2+ and

to La3+. These results are consistent with the observed results

of the difference charge density, supporting the site-selective

doing effect in these compounds.

4 Conclusions

In summary, based on the first-principle calculations, we have

studied the structural, electronic, and magnetic properties of A-

site-ordered perovskite-structure oxides with Mn and V at A

and B sites, respectively. Total energy calculations reveal that

the AFM phase has a lower energy than the FM phase. By

changing the A-site ions from Na to Ca and from Ca to La, the

transfer of charge of Mn ions changed from 1.56 to 1.55 and

to 1.50, and ones of V ions changed from 2.01 to 1.95 and to

1.93. The hybridization of the A-site Mn 3d and O 2p orbital

below Fermi surface dominates the magnetic moment. The val-

ues of V-O distances are similar to the average values of V-O

distance of metallic perovskite-type V oxides. The short V-

O distance means the large one-electron bandwidth W . When

the radio U/W less than a critical value (U/W )c, the materials

are metallic. The mechanism for such unique metallic antifer-

romagnetic double perovskites oxide, Mn contribute magnetic

moment while V contribute metallic, is different from the pre-

vious reported compound, like CaCrO3, where Cr contributes

both magnetic moment and free electron at the Fermi level.

This understanding opens a new route to rational design of an-

tiferromagnetic metallic oxides which will have application in

novel spintronics devices. In addition, the flexible structure

with modifiable both A(A′) and B site provides an excellent

playground to play with by accommodating variable elements.
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