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Palmitic acid induces central leptin resistance and impairs hepatic glucose
and lipid metabolism in male mice

Abstract

The consumption of diets rich in saturated fat largely contributes to the development of obesity in modern
societies. A diet high in saturated fats can induce inflammation and impair leptin signaling in the
hypothalamus. However, the role of saturated fatty acids on hypothalamic leptin signaling, and hepatic
glucose and lipid metabolism remains largely undiscovered. In this study, we investigated the effects of
intracerebroventricular (icv) administration of a saturated fatty acid, palmitic acid (PA, C16:0), on central
leptin sensitivity, hypothalamic leptin signaling, inflammatory molecules and hepatic energy metabolism in
CS57BL/6 J male mice. We found that the icv administration of PA led to central leptin resistance, evidenced
by the inhibition of central leptin's suppression of food intake. Central leptin resistance was concomitant with
impaired hypothalamic leptin signaling (JAK2-STAT3, PKB/Akt-FOXO1) and a pro-inflammatory response
(TNF-a, IL1-B, IL-6 and pIkBa) in the mediobasal hypothalamus and paraventricular hypothalamic nuclei.
Furthermore, the pre-administration of icv PA blunted the effect of leptin-induced decreases in mRNA
expression related to gluconeogenesis (G6Pase and PEPCK), glucose transportation (GLUT2) and
lipogenesis (FAS and SCD1) in the liver of mice. Therefore, elevated central PA concentrations can induce
pro-inflammatory responses and leptin resistance, which are associated with disorders of energy homeostasis
in the liver as a result of diet-induced obesity.
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Abstract:

The consumption of diets rich in saturated fat largely contributes to the development of obesity in
modern societies. A diet high in saturated fats can induce inflammation and impair leptin signaling
in the hypothalamus. However, the role of saturated fatty acids on hypothalamic leptin signaling,
and hepatic glucose and lipid metabolism remains largely undiscovered. In this study, we
investigated the effects of intracerebroventricular (icv) administration of a saturated fatty acid,
palmitic acid (PA, C16:0), on central leptin sensitivity, hypothalamic leptin signaling, inflammatory
molecules, and hepatic energy metabolism in C57BL/6J male mice. We found that the icv
administration of PA led to central leptin resistance, evidenced by the inhibition of central leptin’s
suppression of food intake. Central leptin resistance was concomitant with impaired hypothalamic
leptin signaling (JAK2-STAT3, PKB/Akt-FOXO1), and a pro-inflammatory response (TNF-a, IL1-
B, IL-6, and plkBa) in the mediobasal hypothalamus and paraventricular hypothalamic nuclei.
Furthermore, the pre-administration of icv PA blunted the effect of leptin-induced decreases in
mRNA expression related to gluconeogenesis (G6Pase and PEPCK), glucose transportation
(GLUT?2), and lipogenesis (FAS and SCD1) in the liver of mice. Therefore, elevated central PA
concentrations can induce pro-inflammatory responses and leptin resistance, which are associated

with disorders of energy homeostasis in the liver as a result of diet-induced obesity.

Key words: Palmitic acid, leptin resistance, hypothalamus, inflammation, glucose metabolism, lipid

metabolism



Introduction:

The hypothalamus is capable of sensing nutritional status [1, 2], and as a result nutrients can
influence brain function [3]. Understanding the mechanisms by which specific nutrients, such as
fatty acids influence signaling within the brain regulating energy balance will help to prevent and

even treat obesity and other metabolic disorders.

Leptin is secreted by adipocytes, and its circulating levels reflect the amount of energy stored in fat.
This hormone acts centrally, particularly in the hypothalamus, to reduce food intake and body
weight [4]. Leptin can bind to the hypothalamic leptin receptor and activates the JAK2 (Janus
kinase-2)-STAT3 (signal transducer and activator of transcription-3) pathway that promotes
negative energy balance [5]. Besides the JAK2-STAT3 pathway, leptin also acts through the
serine/threonine protein kinase B (PKB)/Akt signaling pathway to induce forkhead box protein O1
(FOXOT1) phosphorylation and degradation, and decrease FOXO1 activity in the hypothalamus [6].
FOXO1 binds to STAT3 and prevents STAT3 from interacting with the POMC promoter complex,
and consequently, inhibits STAT3-mediated leptin action [7]. Phosphorylation of FOXO1 results in
FOXO1 release from the nucleus and allows pSTAT3 to bind to neuropeptide promoters,
stimulating the transcription of anorexigenic pro-opiomelanocortin (POMC) and inhibiting

orexigenic agouti-related protein (AgRP) expression [8].

Obesity results in resistance to the effect of leptin. For example, the administration of leptin to
obese subjects failed to decrease body weight and food intake [9]. Furthermore, an
intracerebroventricular (icv) injection of leptin failed to inhibit food intake and body weight in
chronic high-saturated-fat diet-induced obese mice [10, 11]. This suggests that resistance to leptin
in the central nervous system (CNS) compromises the ability of leptin to regulate food intake and
body weight in the presence of a diet high in saturated fat. However, the cause of obesity and leptin

resistance in most forms of human and rodent obesity is still poorly understood. It is known that



leptin binds to long-form LepRb on neurons in several regions in the hypothalamus, including the
mediobasal hypothalamus (MBH) and paraventricular hypothalamic nuclei (PVN), to regulate food
intake and energy homeostasis [12]. El-Haschimi et al. [13] showed that leptin failed to induce
STAT3 activation in hypothalamic extracts from obese mice induced by a high-fat diet, suggesting

hypothalamic leptin resistance.

Evidence suggests that the CNS is a critical target for leptin regulation of glucose and lipid
metabolism in the peripheral tissue, such as liver, muscle, and adipose tissue. For example, the icv
infusion of leptin increases glucose turnover and glucose uptake, but decreases hepatic glycogen
content without changing plasma glucose in wild-type mice [14]. Central treatment with leptin
decreased mRNA expression of the hepatic gluconeogenic enzymes, glucose 6-phosphatase
(G6Pase), and phosphoenolpyruvate carboxykinase (PEPCK) in streptozotocin-induced diabetic rats
[15]. In addition, chronic icv administration of leptin caused the down-regulation of genes encoding
stearoyl-CoA desaturase-1 (SCD1), acetyl-coenzyme A-carboxylase (ACC), and fatty acid synthase
(FAS) in the liver when compared with vehicle-infused pair-fed rats [16]. This suggests that leptin
acts in the brain to suppress liver lipogenic gene expression independent of feeding. Furthermore,
the attenuation of leptin-mediated Akt signaling in LepRb neurons causes decreased sympathetic

tone in the liver and increases hepatic steatosis [17].

Recent evidence shows that hypothalamic inflammation induced by dietary saturated fats is
implicated in the development of obesity and its associated leptin resistance [11]. Within one week
of consuming a high-fat diet, there is low-grade hypothalamic inflammation and an increase in pro-
inflammatory cytokines, evidenced by an increase in tumor necrosis factor alpha (TNF-a),
interleukin-1-beta (IL-1p), and interleukin 6 (IL-6) mRNA expression [18]. These cytokines activate
the nuclear factor-kB (NF-kB) inflammatory signaling pathway by phosphorylating and degrading

inhibitor kappa B alpha (IxkBa) [19]. Recent studies have also revealed that hypothalamic



inflammation plays an important role in mediating central leptin resistance and the interruption of
leptin signaling in the hypothalamus of rodents. Constitutive activation of NF-kB inflammatory
signaling in the hypothalamus of mice induced central leptin resistance and impaired leptin
signaling through pSTAT3 [20]. In contrast, a genetic or pharmacological blockade of hypothalamic

inflammatory signaling has improved leptin sensitivity and elevated pSTAT3 [20, 21].

Palmitic acid (PA, C16:0) is the most common saturated fatty acid in human diets [22], accounting
for approximately 65% of saturated fatty acids and 32% of total fatty acids in human serum [23].
Patients with metabolic syndrome have a significantly higher level of serum PA than controls [23],
and also have high levels of PA, but not myristic acid or stearic acid within erythrocytes [24]. The
central administration of PA significantly decreases the anorexigenic effect of leptin in mice [25].
In this study, we investigated hypothalamic leptin sensitivity, signaling, and inflammation in
response to PA administration, and further examined the effect of icv PA and leptin on glucose

levels and the expression of hepatic genes involved in glucose and lipid metabolism.

Materials and Methods:

Animals

Male C57BL/6J mice (10 weeks old, body weight: 22.74 + 3.22g) were obtained from the Animal
Resource Centre (Perth, WA, Australia) and housed in environmentally controlled conditions
(temperature 22 °C, 12 hour light/dark cycle). Mice were maintained on a normal lab chow diet
(LC, Vella Stock feeds, Doonside, NSW, Australia) throughout this study. All experimental
procedures were approved by the Animal Ethics Committee, University of Wollongong, Australia,
and complied with the Australian Code of Practice for the Care and Use of Animals for Scientific

Purposes.

Experiment Protocols



After 1 week of acclimatization, mice were anesthetized by isoflurane inhalation and placed in a
stereotactic device. An icv cannula was implanted into the right lateral brain ventricle (0.25 mm
posterior and 1.0 mm lateral relative to Bregma and 2.5 mm below the surface of the skull) as
described in our previous study [10]. The accuracy of cannula implantation into the lateral ventricle

was confirmed by examining the needle track in the brain sections of each animal (Fig S1).

Central leptin sensitivity test

Five days after the cannula implantation, a central leptin sensitivity test was performed as described
previously [11]. The mice were randomly divided into 2 groups (n=24) and received icv injections
of PA (25 pmol twice a day for 2.5 days, 5 injections in total) or vehicle [26]. At the end of day 2 of
the test, the mice were fasted overnight, and each group of mice was divided into two subgroups
(n=12) that received an icv injection of either leptin (0.5 pg in 2 pl) or vehicle (2 pl saline) one hour
after the last PA injection. Food intake and animal weights were then measured 24 hours after the
icv leptin or vehicle injection. As described previously [27], PA (P5585, Sigma-Aldrich, Australia)
was dissolved in 96% ethanol, dried using nitrogen gas and then dissolved in 40% hydroxypropyl-
b-cyclodextrin (HPB) (H107, Sigma-Aldrich) and stored at -20 °C. The working solution contained

25 pmol PA every injection.

Intraperitoneal glucose tolerance test (GTT)

After at least 3 day interval, the mice were repeated with PA and leptin as described for the leptin
sensitivity test with individual mice assigned to the same previous treatment or vehicle group.
Glucose tolerance tests were then performed 30 minutes after leptin injection. Blood glucose was
measured at 0, 30, 60, and 120 min after glucose administration (0.5 g/kg glucose, ip) using a

glucometer (Alameda, CA).

Tissue collection



Again, after at least 3 day interval, the mice were repeated with PA and leptin as described above.
Thirty minutes after leptin injection, the mice were sacrificed by CO, asphyxiation. The brain and
liver were immediately collected, snap frozen in liquid nitrogen, and stored at -80 °C for further
processing and analysis. In a cryostat at a temperature of -18 °C, 500 um frozen brain sections were
cut from Bregma -0.58 mm to -2.72 mm according to a standard mouse brain atlas [28]. The
mediobasal hypothalamus (MBH) and paraventricular nuclei (PVN) were dissected using a
Stoelting Brain Punch (#57401, 0.5 mm diameter, Wood Dale, Stoelting Co, USA) from frozen

coronal sections based on previously described coordinates [11, 28].

Western blot analysis

Western blotting was performed on protein extracts from frozen tissue as described in our previous
study [10]. The expression of specific proteins was determined using the following antibodies:
TNF-a (sc-8301), IL-1B (sc-7884), IL-6 (sc-7920), plkBa (sc-8404), and pJAK2 (sc-21870) from
Santa Cruz Biotechnology (City, State, Country), and pSTAT3 (Tyr705) (#9145), SOCS3 (#2932),
pAkt (#9271), and pFOXO1 (#9461) from Cell Signaling Technology (Beverly, MA, USA). Bands
corresponding to the proteins of interest were scanned and band density analysed using the
automatic imaging analysis system, Quantity One (Bio-Rad). All quantitative analyses were
normalized to B-actin, based on our previous studies [29]. Due to the small amount of tissue in the
MBH and PVN of the hypothalamus, we used a previously-described modified multi-strip western
blot, which allows the detection of multiple proteins with a smaller sample size than in a standard

western blot [11].

RNA isolation and RT-PCR
Total RNA from the liver was extracted using the Aurum total RNA mini kit (Bio-Rad
Laboratories, Hercules, CA) and reverse-transcribed to first-strand complementary DNA using the

high-capacity cDNA reverse transcription kit (AB Applied Biosystems, CA, USA) according to the



manufacturer’s instructions. Quantitative real-time PCR (qPCR) was performed in a 20 pl final
reaction volume using SYBR green I master on a Lightcycler 480 Real-time PCR System (F.
Hoffmann-La Roche Ltd, Switzerland). Amplification was carried out with 45 cycles of 95 °C for
10 seconds, 60 °C for 30 seconds, and 72 °C for 30 seconds. The mRNA expression levels were
normalized to GAPDH, which served as the internal control. Expression levels for each gene were
calculated using the comparative threshold cycle value (Ct) method, using the formula 2" (where
AACt =ACt sample - ACt reference) as described previously [30]. The primers used are listed in

supplementary table 2.

Statistics

Data were analysed using the statistical package SPSS 19.0 (SPSS, Chicago, IL, USA). The two-
tailed student’s t-test was used to compare hypothalamic cytokine expression between the PA and
vehicle groups. One-way analysis of variance (ANOVA) and the post hoc Tukey—Kramer honestly
significant difference (HSD) test were used to analyse hypothalamic leptin signaling molecules,
central leptin sensitivity, and mRNA expression of genes regulating hepatic glucose and lipid

metabolism. p <0.05 was regarded as statistically significant. Values are expressed as mean + SEM.

Results:

Palmitic acid can induce central leptin resistance

To directly address whether the saturated fatty acid PA impairs central leptin sensitivity in vivo, we
examined the anorexigenic effect and body weight change in response to the icv injection of leptin
(0.5 pg) after icv PA injections (25 pmol twice a day for 2.5 days). As shown in Figure 1, central
leptin administration in mice without PA treatment significantly suppressed food intake at 1 hour (-
57.27%, p<0.001), 4 hours (-57.55%, p<0.001), 16 hours (-45.19%, p<0.001) and 24 hours (-
58.23%, p<0.001), compared with the saline injection in the vehicle group (Fig. 1A). However, in

the PA pre-treated group, leptin did not suppress food intake compared to the saline injection (Fig.



1A), with only the 21.47% decrease in food intake at 24 hours approaching significance (p=0.03),
suggesting that PA induced central leptin resistance. Furthermore, 24 hours after administration
leptin significantly decreased body weight by 2.66 g in the vehicle group (p<0.001), but only 1.54 g

in the PA pre-treatment group, (p<0.05) (Fig. 1B).

Palmitic acid inhibits leptin signaling in the MBH and PVN

Hypothalamic leptin signaling regulates energy balance via the pJAK2-pSTAT3 and pAkt-pFOXO1
pathways [31, 32]. We examined the effects of the central administration of PA on the leptin
mediation of these two pathways in the MBH and PVN. In both MBH and PVN, central leptin
injection significantly increased the levels of pJAK2 (MBH: p<0.01, Fig. 2A; PVN: p<0.01, Fig.
2D), and pSTAT3 (MBH: p<0.01, Fig. 2B; PVN: p<0.05, Fig. 2E) in the vehicle group. However,
with PA pre-treatment, there were no differences in pJAK2 and pSTAT3 between the leptin icv
injection and the saline injection in the MBH and PVN, suggesting that the central administration of
PA blunted leptin-pJAK2-pSTAT3 signaling. Interestingly, the PA central administration increased
pSTATS3 in both the MBH and PVN (MBH: p<0.01, Fig. 2B; PVN: p<0.05, Fig. 2E). SOCS3 was
increased after leptin and PA icv injection in the PVN (p<0.05, Fig. 2F,) but not in the MBH
(p>0.05, Fig. 2C). Similarly, we found that leptin significantly increased pAkt and pFOXOI1 in the
MBH and PVN in vehicle mice but not in the mice pre-treated with PA (Fig. 3), suggesting that the

leptin-Akt-FOXO1 signaling pathway was also impaired.

Hypothalamic inflammatory response in response to palmitic acid administration

Previously it has been shown that a high-saturated fat diet induces hypothalamic inflammation [33].
To determine the impact of central treatment with PA on hypothalamic inflammation, the
expression of inflammatory molecules in the MBH and PVN of hypothalamus were examined. As
depicted in Figure 4, the central administration of PA significantly increased TNF-a and plkBa in

the MBH (both p<0.05, Fig. 4A). In the PVN, PA significantly induced an increase of TNF-o and



IL-1B compared with the vehicle group (both p<0.05, Fig. 4B). These results indicate that centrally

administered PA can induce a pro-inflammatory response in the MBH and PVN.

Palmitic acid can attenuate the effectiveness of the central leptin regulation on hepatic glucose
metabolism

A glucose tolerance test was performed after the central administration of PA and leptin. There
were no significant changes in blood glucose levels during the glucose tolerance test after icv
administration of leptin or PA. However, following PA treatment the icv injection of leptin
increased blood glucose levels after overnight fasting and at the 30 minute time point of the glucose
tolerance test (both p<0.05, Table 1). These results imply that the icv injection of PA impaired the

ability of central leptin to maintain normal blood glucose levels.

To investigate the action of central leptin in regulating glucose metabolism in the liver in response
to the icv PA pre-treatment, we measured the level of mRNA expression for the genes involved in
gluconeogenesis (G6Pase and PEPCK), glycolysis (glucokinase, GK), and glucose transportation
(glucose transporter 2, GLUT2) in the liver. As shown in Figure 5, the mRNA expression of
G6Pase (p<0.01, Fig. 5A) and PEPCK (p<0.01, Fig. 5B) decreased significantly after the central
leptin injection in the vehicle group. However in PA group, the effect of leptin in decreasing
Go6Pase and PEPCK mRNA expression was blunted. The central administration of leptin
significantly decreased GLUT2 mRNA expression (p<0.05) in the liver, however this effect was not
seen after pre-treatment with PA (Fig. 5C). Furthermore, the icv administration of PA decreased
baseline GLUT2 mRNA expression in the liver compared with the vehicle group (p<0.05, Fig. 5C).
There was no significant difference in GK mRNA expression in the liver between the groups (Fig.

5D).
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Palmitic acid attenuates the central leptin regulation of hepatic lipid and cholesterol
metabolism

To examine the effect of icv PA on the regulation of hepatic lipid metabolism in response to leptin,
we used quantitative RT-PCR to examine the mRNA expression of genes involved in hepatic
lipogenesis, lipid beta-oxidation, and cholesterol metabolism. In the vehicle group, icv leptin
significantly decreased the level of FAS and SCD1, indicating a reduced lipogenic effect in the liver
(Fig. 6A & 6B, both p<0.05). However, in the PA pre-treatment group, leptin did not decrease the
level of FAS and SCD1. There was no significant difference in ACC mRNA expression between

the groups.

Acyl-CoA oxidase (ACOX) and acetyl-CoA acetyltransferase 1 (ACAT1) are two markers of beta-
oxidation of lipids in the liver. Leptin administered icv did not alter ACOX mRNA expression;
however PA significantly increased basal ACOX mRNA expression compared with the vehicle
group (p<0.01, Fig. 6D). After pre-treatment with PA, leptin also significantly decreased ACOX
mRNA expression, while no decrease was observed in the vehicle group (p<0.01, Fig. 6D).
Furthermore, with PA pre-treatment but not in the vehicle group, leptin significantly decreased
ACAT1 mRNA expression (p<0.05, Fig. 6E), suggesting that PA impairs central leptin modulation

of beta-oxidation in the liver.

Moreover, we analysed the mRNA expression of key enzymes in cholesterol metabolism. The
expression of 3-hydroxy-3-methylglutaryl-coenzyme reductase (HMG-CoA reductase, the key
enzyme involved in the de novo synthesis of cholesterol) was down-regulated after central leptin
injection in the vehicle group (p<0.05, Fig. 6F), while this response was absent in the PA pre-
treated group. There was no significant difference in the mRNA expression of Apo lipoprotein Al

(APoAl, the main component of HDL and a key player in cholesterol efflux) between the groups.
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Palmitic acid can attenuate elevated hypothalamic tyrosine hydroxylase (TH) expression
stimulated by leptin

Hypothalamic TH mediates leptin-induced sympathetic activity and energy expenditure [34]. We
found that the icv injection of leptin significantly increased TH protein levels in the MBH and PVN
(MBH: p<0.05, Fig. 7A; PVN: p<0.05, Fig. 7B), while PA pre-treatment blunted these effects in

both the MBH and PVN.

Discussion:

A high-saturated-fat diet induces obesity-associated leptin resistance in humans and experimental
animals [11, 35-37], and PA is a major source of saturated fatty acids in our diet [22]. We have
shown that the elevation of central PA can reduce leptin sensitivity by suppressing food intake and
inhibiting body weight gain in mice. In this situation, central leptin is unable to activate its
downstream signaling molecules in the hypothalamus (e.g. JAK2-STAT3 and Akt/FOXOl1
pathways). Liver glucose and lipid metabolism (which are regulated by central leptin) are also

impaired due to pre-treatment with PA.

Defective leptin JAK2-STAT3 signaling in the hypothalamus is involved in the development of
central leptin resistance in high-saturated-fat diet-induced obesity in rodents [38]. In the current
study, we found that leptin JAK2-STAT3 signaling was impaired in the MBH and PVN after the
elevation of central PA. Miinzberg and colleagues showed that pSTAT3 immunoreactivity was
reduced in the MBH in chronic high-fat DIO mice following an intraperitoneal injection of leptin
[39]. Leptin receptor mRNA and immunoreactivity was observed in the PVN neurons [40, 41]. An
icv injection of leptin elevates c-Fos immunoreactivity in the PVN [42]. However, the reported
effects of leptin in the regulation of JAK2-STAT3 signaling in the PVN are not consistent.
Previously, it has been reported that icv leptin administration increases pSTAT3 immunoreactivity

in the PVN neurons of rats [43], and increases pSTAT3 protein in the PVN of mice [44]. However,

12



in the study of Miinzberg and colleagues, pSTAT3 immunoreactivity was not altered in the neurons
of PVN in mice following the leptin challenge [39]. In the current study, icv leptin increased
pSTAT3 and its upstream activator pJAK2 in the PVN in the control group, suggesting that leptin
regulates energy balance via the PVN. We also showed that this increase induced by leptin was
absent following pre-treatment with PA, indicating that PA can impair the leptin signaling pathway
in the PVN. A previous study has also reported that mice resistant to leptin during pregnancy have
defective leptin JAK2-STATS3 signaling in the PVN [45]. SOCS3 is a leptin-inducible inhibitor of
leptin JAK2-STATS3 signaling, and it has been suggested to mediate central leptin resistance in
obesity [46]. We have shown that SOCS3 was significantly increased in the PVN following icv
injection of PA, which may contribute to impaired leptin STAT3 signaling in the hypothalamus and

the development of central leptin resistance.

The hypothalamic Akt-FOXO1 signaling pathway plays a significant role in leptin activation in the
brain [31, 32]. For example, an icv injection of leptin activates hypothalamic Akt and improves
glucose tolerance in skeletal muscle [47]. Akt can phosphorylate and inactivate FOXOI1, a
transcriptional factor in the hypothalamus [32]. The over expression of FOXO!1 in the arcuate
nucleus (Arc) of MBH decreases leptin sensitivity and increases food intake and body weight in
mice; while conversely, an icv infusion of FOXOI-antisense oligonucleotide promotes negative
energy balance and increases insulin sensitivity in DIO rats [48]. Our study found that an icv
injection of leptin stimulates Akt-FOXO1 phosphorylation not only in the MBH, but also in the
PVN of the hypothalamus. Hypothalamic Akt-FOXO1 signaling is also downstream of central
insulin action. Previous studies show that an icv injection of PA inhibits the activation of pAkt
induced by insulin in the hypothalamus [49]. However, the effect of PA on the pAkt-pFOXO1
signaling pathway in response to leptin has not been studied. We found that leptin activation of Akt-
FOXOL1 signaling was impaired in the MBH and PVN following an icv injection of PA in mice.

Previously, leptin-stimulated activation of the hypothalamic PI3K-Akt signaling pathway was

13



impaired in high-saturated-fat DIO mice [50]. Thus our findings suggest that centrally administered
saturated fatty acids such as PA can directly attenuate leptin Akt-FOXO1 signaling in the
hypothalamus, which may contribute to central leptin resistance in obesity induced by a high-

saturated-fat diet.

Studies have shown that a high-saturated-fat diet increases TNF-a and IL-1§ mRNA expression in
the hypothalamus, which can lead to insulin and leptin resistance [18, 33]. The current study found
that central PA administration directly promotes inflammation, with increased levels of TNF-a, IL-
1B, and pIkBa observed in the MBH and the PVN. Smith and Nagura have shown that fatty acids
can readily enter the brain in a linear fashion over time, with 40% of C'*-labeled palmitate
incorporated within 45 seconds [51]. These studies and ours included, suggest that the over-
consumption of saturated fatty acids increases the level of saturated fatty acids in the brain, and
induces a hypothalamic inflammatory response. Hypothalamic inflammation leads to central leptin
resistance in high-fat diet-induced obesity in rodents [20]. Furthermore, the hypothalamic infusion
of palmitate induces hypothalamic inflammation and central insulin resistance [33]. Constitutive
activation of IKKp, upstream of IkBa, in the hypothalamus induces central leptin resistance and
impairs leptin signaling through pSTAT3 by increasing SOCS3 mRNA expression in mice [20].
Therefore, the activation of hypothalamic TNF-a, IL-1B, and plkBa may play a key role in high-
saturated-fat diet-induced obesity and central leptin resistance by impairing leptin-STAT3 and Akt

signaling in the MBH and PVN.

Hypothalamic leptin signaling regulates liver glucose and lipid metabolism [52, 53]. Our present
study showed that central leptin decreased liver PEPCK and G6Pase mRNA expression in normal
mice, indicating suppression of hepatic gluconeogenesis. A similar study previously demonstrated
that icv leptin injection can decrease hepatic G6Pase and PEPCK mRNA expression in rats with

STZ diabetes [15]. Hepatic GLUT2 transports glucose from the liver to the bloodstream [54], and

14



we further demonstrated that hepatic GLUT2 mRNA expression decreased after an icv leptin
injection. Therefore, both decreased hepatic gluconeogenesis and glucose transportation after the
icv leptin injection should result in reduced blood glucose levels. However, in the present study,
blood glucose did not change after the icv leptin injection. This may be due to the icv leptin
injection decreasing hepatic glycogen content, which was reduced by 30% in mice in a previous
study [14]. In the current study, PA pre-treatment also impaired the central action of leptin in
maintaining normal blood glucose during a glucose tolerance test, with increased blood glucose
levels observed at fasting and at 30 minutes of the glucose tolerance test following icv leptin. Obese
rats induced by a high-saturated-fat diet showed increased levels of G6Pase and PEPCK mRNA
expression in the liver [21]. The current study showed that PA pre-treatment abolished the effects of
leptin in supressing hepatic G6Pase, PEPCK, and GLUT2 mRNA expression. This suggests that PA
alters the action of central leptin in the maintenance of blood glucose homeostasis, by preventing

leptin from supressing gluconeogenesis and glucose transportation in the liver.

FAS and SCD1 are critical lipogenic enzymes in the liver [55, 56]. FAS catalyzes fatty acid
biosynthesis from malonyl-CoA to palmitic acid [57]. SCDI1 catalyzes the cellular synthesis of
monounsaturated long-chain fatty acids, particularly oleate (C18:1n-9) and palmitoleate (C16:1n-7),
which are the major components of membrane phospholipids, triglycerides, and cholesterol esters
[58]. In our current study, we found that icv leptin can significantly decrease the mRNA expression
of FAS and SCD1 in the liver of control mice, indicating that central leptin suppresses lipogenesis
in the liver. SCDI has recently become a target of interest for the reversal of hepatic steatosis and
insulin resistance [59]. Liver-specific knockout of SCD1 in mice can protect against diet-induced
obesity and hepatic steatosis [60]. Interestingly, our study found that PA can impair the inhibitory
effect of central leptin in the liver FAS and SCD1 mRNA expression, which may contribute hepatic

steatosis in obesity.
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Previously, Prieur et al. reported that an icv injection of leptin (1 pg twice a day for 2.5 days, for 5
times) not only decreased lipogenesis, but also activated beta-oxidation by increasing the mRNA
expression of genes, such as ACOX and ACAT1, in the liver of ob/ob mice [61]. Our present study
showed that icv leptin (0.5 pg) suppressed lipogenesis but did not increase ACOX and ACATI1
mRNA expression in the liver. These contrasting results for ACOX and ACAT1 may be due to the
differences between the doses or the animal models used in the studies. In addition, we found that
icv PA administration increased ACOX mRNA expression in the liver. This is in agreement with
a previous study showing that a low level of a saturated fatty acid (stearic acid) in the brain
was accompanied by decreased ACOX mRNA expression in the liver of aged mice [62].
However, the exact mechanism in the brain which regulates hepatic beta- oxidation requires further

study.

Tyrosine hydroxylase (TH) is a rate-limiting enzyme for the synthesis of catecholamines. In our
study, the icv leptin injection significantly increased TH protein levels in the MBH and PVN. A
previous study showed that microinjection of leptin into the ventromedial hypothalamus of rats
activates sympathetic tone by increasing catecholamine secretion [63]. Our study suggests that the
icv leptin injection not only activates TH in the MBH (including ventromedial hypothalamus), but
also in the PVN. It has also been shown that TH-positive neurons in the VMH and PVN directly
project to brainstem autonomic regions such as the nucleus tractus solitarius of the brain stem and
A1/C1 cell groups [64]. From there, the catecholamine-synthesizing neurons in the brainstem send
efferent signals to the spinal cord and exert autonomic control in many organs, including the liver,
to regulate sympathetic nervous system-mediated glucose and lipid metabolism. TH expression in
the MBH and PVN has been identified as a major candidate on account for the down-regulation of
sympathetic outflow in obese mice [34, 65]. James et al. showed that the attenuation of leptin-
mediated phosphatidylinositol 3-kinase signaling (PI3K, upstream of Akt) in the hypothalamus

decreases sympathetic tone in the liver of obese mice [17]. The present study found that PA
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decreased leptin-induced activation of TH in the MBH and PVN, suggesting that PA can impair the
function of leptin-activated sympathetic outflow, which may occur via altered leptin STAT3 and

PI3K-Akt signaling in the hypothalamus.

In summary, we have demonstrated that PA (as a major source of saturated fatty acids) plays a
causal role in central leptin resistance, increased food intake, and increased body weight gain. An
increased level of central PA can lead to hypothalamic inflammation and impaired hypothalamic
leptin JAK2-STAT3 and leptin Akt-FOXOI1 signaling pathways in the MBH and PVN. More
importantly, this can alter the central regulation of hepatic glucose and lipid metabolism. Therefore,
PA may play a key role in the alteration of hypothalamic regulation of peripheral energy

metabolism.
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Food intake at 1, 4, 16, and 24 hours (A), and body weight gain (B) at 24 hours was significantly decreased after icv

injection of leptin compared with saline injection in the vehicle mice, but not in the PA icv treated mice. **p<0.01 vs

vehicle + saline; “p<0.05 vs PA + saline.
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Fig. 2 lcv PA attenuates leptin JAK2-STAT3 signaling in the hypothalamus.
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Phospho-JAK?2 (A, D), phospho-STAT3 (pSTAT3) (B, E), and SOCS3 (C, F) protein expression in the MBH and PVN

of the hypothalamus was detected by western blot in mice treated with an icv injection of leptin or saline, after the icv

injection of PA and vehicle. *p<0.05, **p<0.01 vs vehicle + saline. MBH: mediobasal hypothalamus, PVN:

paraventricular nucleus.
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Fig. 3 Icv PA attenuates leptin Akt-FOXOL1 signaling in the hypothalamus.

Phospho-Akt (pAkt) (A, C) and phospho-FOXO1 (pFOXOI1) (B, D) protein expression in the MBH and PVN of

hypothalamus were detected by western blot in mice treated with an icv injection of leptin or saline, after the icv

injection of PA and vehicle. *p<0.05, vs vehicle + saline. MBH: mediobasal hypothalamus, PVN: paraventricular

nucleus.
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Fig. 4 Effects of icv PA on the inflammatory response in the hypothalamus.

TNF-q, IL-1B, IL-6, and pIkBa protein expression in the MBH (A) and PVN (B) of the hypothalamus were detected by

western blot in mice treated with an icv injection of PA and vehicle. *p<0.05, vs vehicle + saline. MBH: mediobasal

hypothalamus, PVN: paraventricular nucleus.
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Fig. 5 Effects of icv PA on mRNA expression of genes involved in gluconeogenesis, glucose transportation, and
glycolysis in the liver

The mRNA levels of G6Pase (A), PEPCK (B), GLUT2(C), and GK (D) in the liver were measured by quantitative real-
time PCR in mice treated with an icv injection of leptin or saline, after the icv injection of PA and vehicle. *p<0.05,

**p<0.01 vs. vehicle + saline.
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Fig. 6 Effects of icv PA on the mRNA expression of genes involved in lipogenesis, lipid beta-oxidation, and
cholesterol metabolism

The mRNA levels of FAS (A), SCD1(B), ACC (C), ACOX (D), ACAT1 (E), HMG-CoA reductase (F), and APoAl (G)
in the liver were measured by quantitative real-time PCR in mice treated with an icv injection of leptin or saline, after

the icv injection of PA and vehicle. *p<0.05, **p<0.01 vs vehicle + saline; “p<0.05, “p<0.01 vs PA + saline.
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Fig. 7 Effects of icv PA on the TH level in the hypothalamus in response to icv leptin
The level of TH protein expression in the MBH (A) and PVN (B) of the hypothalamus were detected by western blot in
mice treated with an icv injection of leptin or saline, after the icv injection of PA and vehicle. *p<0.05, vehicle + saline,

"p<0.10, >0.05 vs vehicle + saline. MBH: mediobasal hypothalamus, PVN: paraventricular nucleus.
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Table 1. Influence of icv PA on central leptin's effect on glucose tolerance test

Blood glucose level (mM)

Group 0 min 30 min 60 min 120 min

Veh+Saline 7.15£1.06 9.08+1.23 8 9540.93 7734+1.45
Veh+Leptin 7.22+1.50 10.72+2.41 9.00+2.41 7 44+1.71
PA+Saline 6.94+0.87 9.06+1.11 9.10+1.5 7 80+1.62
PA+Leptin 8.33+0.95%* 10.23+1.09* 9.28+0.59 7 8840.41

Blood glucose was measured at 0, 30, 60, and 120 min after glucose
administration (0.5 g/kg glucose, ip) using a glumeter.*p<0.05 vs PA + saline.
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SUPPLEMENTARY DATA

Fig S1

The accuracy of cannula implantation into the lateral
ventricle was confirmed by examining the needle track on
the brain sections of each animal (A). A pre-experimental
confirmation of the correct location of the injection was
also carried out using a Methylene Blue injection (B).



Supplementary Table 1. List of antibodies.

Species raised in;

Peptide Name of Antibody Manufacturer, catalog # monoclonal or Dilution
polyclonal

TNF-a TNFa Antibody (H-156) Santa Cruz Biotechnology, sc-8301 rabbit, polyclonal 1:200
IL-1P IL-1B Antibody (H-153) Santa Cruz Biotechnology, sc-7884 rabbit polyclonal 1:200
IL-6 IL-6 Antibody (H-183) Santa Cruz Biotechnology, sc-7920 rabbit polyclonal 1:200
p-IkBa Phospho-IkBa (Ser32) (14D4) Santa Cruz Biotechnology, sc-8404 rabbit, Monoclonal 1:1000
pJAK?2 pJAK2(Tyr1007/1008) Santa Cruz Biotechnology, sc-21870 Goat, Monoclonal 1:1000
p-STAT3 PSTAT3(Y705)(D3A7) Cell Signaling Technology, #9145S rabbit, Monoclonal 1:2000
SOCS3 SOCS3 (L210) Cell Signaling Technology, #2932S rabbit polyclonal 1:1000
pAkt pAkt (S473) Cell Signaling Technology, #9271S rabbit polyclonal 1:1000
pFOXO01 pFox01(S256) Cell Signaling Technology, #9461S rabbit polyclonal 1:1000




Supplementary able 2. The primers used in qPCR for neuropeptide mMRNA measurement

GENE Forward primer Reverse primer NCBI
reference

G6Pase CTGTGAGACCGGACCAGGA GACCATAACATAGTATACACCTGCTGC NM_008061.3
PEPCK CAGGATCGAAAGCAAGACAGT AAGTCCTCTTCCGACATCCAG NM_011044.2
GLUT2 ACCCTGTTCCTAACCGGG TGAACCAAGGGATTGGACC NM_031197.2
GK GTGGTGCTTTTGAGACCCGTT TTCAATGAAGGTGATTTCGCA NM_010292.4
FAS AGGGGTCGACCTGGTCCTCA GCCATGCCCAGAGGGTGGTT NM_007988.3
SCD1 CTTCTTGCGATACACTCTGG TGAATGTTCTTGTCGTAGGG NM_009127.4
:I(\j/lu%t_acsgA CACCTCTCCGTGGGTTAAAA GAAGAAGTAGGCCCCCAATC NM_008255.2
APOAI GTGGCTCTGGTCTTCCTGAC ACGGTTGAACCCAGAGTGTC NM_009692.3
ACAT1 CCGAGACAACTACCCAAGGA CACACACAGGACCAGGACAC NM_009230.3
ACOX ATGAATCCCGATCTGCGCAAGGAGC AAAGGCATGTAACCCGTAGCACTCC NM_015729.2
ACCa GAAGTCAGAGCCACGGCACA GGCAATCTCAGTTCAAGCCAGTC NM_133360.2
GAPDH TGAAGCAGGCATCTGAGGG CGAAGGTGGAAGAGTGGGAG NM_008084.2
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