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Comparison of the Abiotic Preferences of Macroinvertebrates in Tropical
River Basins

Abstract
We assessed and compared abiotic preferences of aquatic macroinvertebrates in three river basins located in
Ecuador, Ethiopia and Vietnam. Upon using logistic regression models we analyzed the relationship between
the probability of occurrence of five macroinvertebrate families, ranging from pollution tolerant to pollution
sensitive, (Chironomidae, Baetidae, Hydroptilidae, Libellulidae and Leptophlebiidae) and physical-chemical
water quality conditions. Within the investigated physical-chemical ranges, nine out of twenty-five interaction
effects were significant. Our analyses suggested river basin dependent associations between the
macroinvertebrate families and the corresponding physical-chemical conditions. It was found that pollution
tolerant families showed no clear abiotic preference and occurred at most sampling locations, i.e.
Chironomidae were present in 91%, 84% and 93% of the samples taken in Ecuador, Ethiopia and Vietnam.
Pollution sensitive families were strongly associated with dissolved oxygen and stream velocity, e.g.
Leptophlebiidae were only present in 48%, 2% and 18% of the samples in Ecuador, Ethiopia and Vietnam.
Despite some limitations in the study design, we concluded that associations between macroinvertebrates and
abiotic conditions can be river basin-specific and hence are not automatically transferable across river basins
in the tropics.
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Abstract

We assessed and compared abiotic preferences of aquatic macroinvertebrates in three river basins located in Ecuador,
Ethiopia and Vietnam. Upon using logistic regression models we analyzed the relationship between the probability of
occurrence of five macroinvertebrate families, ranging from pollution tolerant to pollution sensitive, (Chironomidae,
Baetidae, Hydroptilidae, Libellulidae and Leptophlebiidae) and physical-chemical water quality conditions. Within the
investigated physical-chemical ranges, nine out of twenty-five interaction effects were significant. Our analyses suggested
river basin dependent associations between the macroinvertebrate families and the corresponding physical-chemical
conditions. It was found that pollution tolerant families showed no clear abiotic preference and occurred at most sampling
locations, i.e. Chironomidae were present in 91%, 84% and 93% of the samples taken in Ecuador, Ethiopia and Vietnam.
Pollution sensitive families were strongly associated with dissolved oxygen and stream velocity, e.g. Leptophlebiidae were
only present in 48%, 2% and 18% of the samples in Ecuador, Ethiopia and Vietnam. Despite some limitations in the study
design, we concluded that associations between macroinvertebrates and abiotic conditions can be river basin-specific and
hence are not automatically transferable across river basins in the tropics.
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Introduction

Benthic macroinvertebrates have often been used for water

quality monitoring and assessment [1,2]. They are direct measures

of stream conditions, integrate human and natural stressors over a

long period of time and reflect the quality of their surroundings

[3]. Benthic macroinvertebrates can be used as bio-indicators since

different macroinvertebrate taxa have different tolerances to

pollution [4]. Therefore, benthic macroinvertebrates are suitable

for assessing the ecological state of aquatic ecosystems. Macroin-

vertebrate-based water quality assessment methods have increas-

ingly been applied in national monitoring campaigns (e.g., [5,6]).

In the United Kingdom, macroinvertebrate-based water quality

assessment has been applied since 1970 by means of the Chandler

Score [7]. In later years, the biological monitoring working party

(BMWP; [8]) was developed and accepted as a standard

international biotic index. In various regions biotic indices have

been applied using a derivate of the BMWP, including the Iberian

BMWP [9] and the South African Scoring System (SASS, [5]). In

tropical countries, water quality assessment has been primarily

performed based on physical-chemical water quality measure-

ments [10]. However, in recent years, macroinvertebrate-based

water quality assessments have also been conducted in tropical

countries [11].

Most macroinvertebrate-based water quality assessment meth-

ods have been developed in temperate climate regions where

relationships between environmental variables and the occurrence

of macroinvertebrate taxa are well documented. Due to the

infancy of the macroinvertebrate-based monitoring and assess-

ment in the tropics [12], the ecological water quality in tropical

countries was often assessed based on indices constructed for

temperate climate regions [13,14]. However, it has been shown
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that applying ecological indices and habitat suitability models from

temperate regions to the tropics can lead to uncertain ecological

valuations [15,16]. In this perspective, river basin scale habitat

suitability models have recently been developed for the tropics, e.g.

in Ecuador [17], Ethiopia [18,19] and Vietnam [20,21]. In spite of

this progress, limited knowledge is available about the habitat

preferences of macroinvertebrates in rivers in the tropics [22]. For

instance, it is poorly understood whether associations between

macroinvertebrate taxa and environmental conditions vary

between river basins and continents. As such, the question remains

whether the relations obtained between the macroinvertebrate

taxa and the physical-chemical water quality conditions are only

valid in the river basin where they have been developed.

Therefore, it is questioned whether the abiotic preferences of

macroinvertebrates and their responses to environmental pollution

are transferable across river basins.

The aim of this study was to assess if abiotic preferences of

aquatic macroinvertebrates differed between three river basins in

the tropics. We investigated associations between physical-

chemical variables and macroinvertebrate occurrences in one

Ecuadorian, one Ethiopian and one Vietnamese river basin. Five

representative macroinvertebrate taxa, ranging from pollution

tolerant to pollution sensitive were selected and their preferences

towards environmental conditions were compared using regres-

sion-based ecological models.

Materials and Methods

Data collection
Samples were taken in the Chaguana river basin (Ecuador),

Gilgel Gibe river basin (Ethiopia) and Cau river basin (Vietnam)

(Table 1; Figure S1–S3). In each survey physical-chemical water

samples and biological samples (macroinvertebrates) were col-

lected. Per river basin, samples were taken at multiple sampling

sites along a pollution gradient (Table 2). Details on sampling

locations are provided in Table 1 and Figure S1–S3. The number

of sampling sites varied for each river basin, but each sampling site

was visited twice in each year; once in the wet season and once in

the dry season. In total, 60, 104 and 306 samples were taken at 15,

29 and 47 sampling locations in the Vietnamese, Ecuadorian and

Ethiopian river basin, respectively (Table 2). Water samples were

analysed according to the ISO standards and only the environ-

mental conditions that were monitored in all three river basins

were selected for further analysis, being conductivity (mS.cm21),

dissolved oxygen concentration (mg.L21), pH (-), stream velocity

(m.s21) and water temperature (uC) (Table 2).

Benthic macroinvertebrates were sampled, identified and

quantified according to the method described in Gabriels et al.

[6] which is an internationally accepted kick-sampling procedure

for macroinvertebrate sampling. A conical net with a size of

20630 cm and a mesh size of 300–500 mm, attached to a stick,

was used. With the hand net, all accessible aquatic habitats within

a stretch of 10–20 m were sampled using the kick sampling

method. The sampling effort was equally divided over the different

habitats per sampling site. The organisms were identified to family

level and this resulted in binary presence-absence data. Subse-

quently, five macroinvertebrate families, present in the three river

basins and ranging from a pollution tolerant family towards a

pollution sensitive family based on the BMWP tolerance list, were

selected. The five target macroinvertebrate families that were

selected were Chironomidae (tolerance class 2 (TS2)), Baetidae

(TS4), Hydroptilidae (TS6), Libellulidae (TS8) and Leptophlebii-

dae (TS10). For a complete overview of the taxa encountered in

each river basin we refer to the related publications [17,18,20]. No

specific permission was needed for our sampling activities nor

locations since we were only interested in macroinvertebrates.

Sampling did not involve endangered or protected species.

Data exploration
Boxplots were used for data exploration. The first series of

boxplots visualized the seasonality of the physical-chemical

variables per river basin. The second series of boxplots summa-

rized for each macroinvertebrate family and per physical-chemical

variable and river basin the conditions under which the taxon was

present and absent. Boxplots were constructed with the R software

[23].

The univariate associations between explanatory variables were

assessed with pairwise Spearman’s rank correlations, which is often

used in ecology due to its nonparametric nature [24].

Logistic regression model
The occurrence of five macroinvertebrate families was related to

the physical-chemical water quality conditions using a regression-

based model and these relationships were compared between three

river basins situated in the tropics. Logistic regression models

(LRMs) were used to infer relationships between occurrences of

five aquatic macroinvertebrate families and environmental data.

LRMs have been frequently used to model the presence or

absence of a species in relation to environmental variables [25–

27]. Five logistic regression models (LRMs) were constructed, one

for each macroinvertebrate family. In a LRM, a binary response

variable (here family presence or absence) is modeled as a function

of explanatory variables (here environmental conditions). Since

multiple samples were collected on the same sampling site, the

responses were not mutually independent. Therefore the LRMs

were fitted with Generalized Estimating Equations (GEE, [28])

which account for the dependencies of the clustered sampling

scheme. All LRMs were fitted with an independent working

correlation matrix.

A hierarchical backward elimination model selection method

was carried out to build the LRM. The starting model included

five physical-chemical variables (conductivity, dissolved oxygen

concentration, pH, stream velocity and water temperature), season

and river basin (represented as country). In addition to the main

effects, two-way interactions between the physical-chemical

variables and the river basin as well as between season and river

basin were included (Table S1 and S2). First it was tested whether

the interactions were present at a 5% level of significance and

insignificant interactions were excluded from the model. A

significant interaction between a physical-chemical variable and

a river basin suggests that the effect of the physical-chemical

variable on the occurrence of the family under study differed

between river basins. Furthermore, all main effects were included

independent from their significance.

Residual plots and the extended Hosmer-Lemeshow test for

LRMs based on GEE [29] were used to assess the goodness-of-fit

of the LRM. None of the models showed lack-of-fit. Since the

Hosmer-Lemeshow test is insensitive to omitted quadratic terms,

quadratic effects of the physical-chemical variables were added to

the LRM. However, none of these effects were significant.

The outcome of the LRM per family was visualized as the

estimated probability that the family was present as a function of a

physical-chemical variable. The explanatory variables different

from the one on the x-axis, were set to their river basin specific

medians and the season to ‘‘dry’’. The river basin-specific observed

range of the corresponding physical-chemical variable were

plotted as horizontal boxplots below the response curves and

were subdivided between presence and absence points. The gray-

Abiotic Preferences of Aquatic Macroinvertebrates in the Tropics
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Table 1. Description of the study areas.

Ecuador Ethiopia Vietnam

River basin facts

Name of river basin Chaguana Gilgel Gibe Cau

Country Southwest of Ecuador South to West of Ethiopia North of Vietnam

Province El Oro Oromia Thai Nguyen

Tributary river Pagua river 58 Gibe river 61 Cau river 60

Source Occidental Andes 58 Ethiopian plateau62 Highland of Northern Vietnam60

Altitude 2900 m 58 1096–3259 m 63 275 m60

Surface area 320 km2 58 5371 km2 18 6030 km2 60

Climatic description

Average annual precipitation 930 mm 59 2000 mm 63 2063 mm 60

Air temperature range 19.9uC–31.4uC 59 8.3uC–29.1uC 64 10.0uC–39.0uC 60

Dry season May – November 59 October – April 63 October – May 60

Wet season December-April 59 May – September 63 June – September 60

58Dominguez-Granda, 2007, 59 Matamoros, 2004, 60 MONRE, 2006, 61 Demissie et al., 2013, 62 Uhlenbrook et al., 2010, 63 Broothaerts et al., 2012, 18 Ambelu et al., 2010, 64

Colombo and Maran, 2004.
doi:10.1371/journal.pone.0108898.t001

Table 2. Characteristics of biological and physical-chemical sampling.

Units Ecuador Ethiopia Vietnam

Number of samples 104 306 60

Number of sampling locations 29 47 15

Monitoring years 2005–2006 2006–2011 2009–2010

Seasons wet wet wet

dry dry dry

Physical-chemical variables

Stream velocity m/s 0.560.4 0.560.3 0.560.3

Water temperature uC 23.362.8 20.062.5 28.662.0

Conductivity mS/cm 1496152 108659 2356181

pH - 6.960.4 7.460.5 7.060.8

Dissolved oxygen mg/L 7.161.3 6.561.5 6.460.8

Macroinvertebrate sampling

Chironomidae

Number of samples: absent 9 49 4

Number of samples: present 95 257 56

Baetidae

Number of samples: absent 18 80 11

Number of samples: present 86 226 49

Hydroptilidae

Number of samples: absent 88 300 34

Number of samples: present 16 6 26

Libellulidae

Number of samples: absent 50 157 51

Number of samples: present 54 149 9

Leptophlebiidae

Number of samples: absent 54 300 49

Number of samples: present 50 6 11

Descriptive statistics of physical-chemical variables are given as mean values 6 standard deviations. Presence-absence records per family and river basin (represented as
country) are given as the amount of samples in which macroinvertebrate families were present or absent, respectively.
doi:10.1371/journal.pone.0108898.t002
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colored ends of the response curves indicate extrapolation outside

the observed range of the corresponding physical-chemical

variable.

For the data exploration, the effects of season and river basin on

the continuous physical-chemical variables were assessed using a

linear regression model fitted with GEE for accounting for the

clustered sampling scheme. Only few p-values were reported in the

main text to prevent information overload, all p-values were

summarized in Table 3 and 4. All statistical tests were performed

at the 5% significance level.

Results

Data exploration and correlation analysis
The observed range of physical-chemical water quality condi-

tions was not always equal between river basins. Seasonal effects

were observed for all physical-chemical variables and the seasonal

effect of conductivity and stream velocity was similar for the three

river basins (Table S1; Figure S4–S8). Dissolved oxygen (DO)

concentration and water temperature ranges differed between

river basins (Table 2; Figure S9–S33). The average stream velocity

was higher during the wet season compared to the dry season (p,

0.01; Table S1; Figure S4). The average conductivity in wet season

was lower than in dry season in the Ecuadorian river basin (p,

0.01) and the Ethiopian river basin (p,0.01). In the Vietnamese

river basin, however, this difference was not significant (p = 0.39;

Figure S6). The seasonal effect differed per river basin for water

temperature (Figure S5), pH (Figure S7) and DO concentration

(Figure S8). For instance, dry season DO concentrations tended to

exceed wet season conditions in the Ecuadorian river basin, but in

the Ethiopian river basin the opposite was observed (Table S1;

Figure S8). For both seasons there was no significant difference in

mean stream velocity between river basins (p = 0.32 and p = 0.78,

Table S2; Figure S4). For DO there was a significant difference

Table 3. P-values for river basin-based interaction effects.

Stream velocity Water temperature Conductivity pH Dissolved oxygen

Leptophlebiidae 0.008 0.256 0.033 0.038 0.121

Libellulidae 0.017 ,0.001 0.767 0.055 0.015

Hydroptilidae 0.905 0.692 0.015 0.420 0.262

Baetidae 0.126 0.003 0.113 0.924 0.582

Chironomidae 0.998 ,0.001 0.999 0.999 0.999

The effect of an explanatory variable was significantly different between the three river basins in case that the p-value for the interaction effect was lower than 0.05.
Significant relations are indicated in bold.
doi:10.1371/journal.pone.0108898.t003

Table 4. Estimates of the main effects for Chironomidae, Baetidae, Hydroptilidae, Libellulidae, Leptophlebiidae.

Seasonality Stream velocity Water temperature Conductivity pH Dissolved oxygen

Chironomidae

Ecuador 20.873 (0.265) 1.358 (0.016) 0.091 (0.455) 20.002 (0.316) 0.149 (0.697) 20.108 (0.290)

Ethiopia 20.313 (0.402) 1.358 (0.016) 20.078 (0.151) 20.002 (0.316) 0.149 (0.697) 20.108 (0.290)

Vietnam 35.838 (.0.999) 1.358 (0.016) 21.649 (,0.001) 20.002 (0.317) 0.149 (0.697) 20.108 (0.290)

Baetidae

Ecuador 0.869 (0.184) 1.289 (0.004) 0.031 (0.700) 20.002 (0.121) 0.554 (0.030) 20.065 (0.410)

Ethiopia 0.704 (0.019) 1.289 (0.004) 20.049 (0.407) 20.002 (0.121) 0.554 (0.030) 20.065 (0.410)

Vietnam 0.163 (0.804) 1.289 (0.004) 20.351 (0.133) 20.002 (0.121) 0.554 (0.030) 20.065 (0.410)

Hydroptilidae

Ecuador 20.126 (0.864) 0.829 (0.223) 20.062 (0.531) 20.003 (0.297) 0.963 (0.020) 0.179 (0.519)

Ethiopia 21.463 (0.203) 0.829 (0.223) 20.062 (0.531) 20.020 (0.042) 0.963 (0.020) 0.179 (0.519)

Vietnam 20.408 (0.438) 0.829 (0.223) 20.062 (0.531) 20.009 (0.031) 0.963 (0.020) 0.179 (0.519)

Libellulidae

Ecuador 21.788 (0.005) 2.488 (0.005) 0.387 (0.002) 20.0001 (0.961) 0.674 (0.006) 0.481 (0.023)

Ethiopia 0.192 (0.445) 20.279 (0.534) 20.094 (0.021) 20.0001 (0.961) 0.674 (0.006) 20.046 (0.619)

Vietnam 21.369 (0.268) 3.780 (0.021) 20.708 (,0.001) 20.0001 (0.961) 0.674 (0.006) 0.135 (0.815)

Leptophlebiidae

Ecuador 2.147 (0.006) 3.679 (0.003) 20.291 (0.048) 20.010 (0.072) 0.503 (0.356) 1.371 (0.002)

Ethiopia 1.385 (0.232) 0.694 (0.750) 20.291 (0.048) 20.024 (0.370) 20.223 (0.840) 1.371 (0.002)

Vietnam 1.426 (0.100) 21.703 (0.410) 20.291 (0.048) 0.002 (0.355) 1.943 (0.004) 1.371 (0.002)

Corresponding p-values are given between brackets; effects were tested at the 5% significance level. Significant relations are indicated in bold.
doi:10.1371/journal.pone.0108898.t004
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between river basins for the dry season (p,0.01), but not for the

wet season (p = 0.16). In contrast, the mean water temperature,

pH and conductivity were significantly different across river basins

for both seasons.

The prevalence values, known as the relative frequencies of

occurrence of taxa (here families, [30]), did not always approx-

imate 0.5, i.e. some families occurred rarely or ubiquitously

(Table 2). Furthermore, it was found that the range of preferred

physical-chemical conditions differed between families (Fig-

ure 1A–1E; Figure 2A–2E; Figure S9–S33). For less pollution

sensitive families such as Chironomidae (TS2) and Baetidae (TS4)

a wide range of suitable physical-chemical conditions has been

observed. More sensitive families such as Leptophlebiidae (TS10)

were only present within a more narrow range of stream velocity,

conductivity and DO concentration (Figure 1A–1E; Figure 2A–

2E; Figure S9–S33).

Based on the correlation analysis no variables were discarded

from the dataset as most correlations were ‘‘weak’’ since they were

smaller than 0.4 in absolute values [21,24]. Only conductivity and

water temperature (r = 0.41, p,0.01) and conductivity and DO

(r = 20.42, p,0.01) were moderately correlated (Table 5).

Logistic regression model
Chironomidae (TS2). For Chironomidae there was an

interaction effect between river basin and water temperature

(p,0.01), i.e. the effect of water temperature on the occurrence

differed between river basins (Table 3). Although increasing water

temperatures were associated with a lower probability that

Chironomidae were present in the Vietnamese river basin (p,

0.01), in the Ecuadorian river basin and in the Ethiopian river

basin this effect was not observed (p = 0.46 and p = 0.15, Table 4;

Figure S35). However, note that Chironomidae were absent in

only 4 out of 60 samples from the Vietnamese river basin (Figure

S35). We also found a positive association between the stream

velocity and the probability of occurrence of Chironomidae

(p = 0.02), i.e. a higher stream velocity was associated with a higher

probability that Chironomidae were present (Table 4; Figure 3A).

The effect of stream velocity was similar between river basins, i.e.

regardless the stream velocity, Chironomidae were always likely to

be present in the three river basins (probabilities between 0.8 and

1.0 in Figure 3A and S34). The latter is also reflected in the

boxplots, which indicate that absence data for Chironomidae is

low (4 out of 60 in Vietnam, 49 out of 306 in Ethiopia and 9 out of

104 in Ecuador; Figure 1A). Within the investigated physical-

chemical range, conductivity, pH, and DO concentrations were

not associated with the probability of occurrence of Chironomidae

(Figure 3B; Figure S36–S38).

Baetidae (TS4). The effect of water temperature on the

probability of occurrence of Baetidae differed between river basins

(p,0.01; Table 3). Indeed, when looking at the response curves

(Figure S40) it is clear that within the observed water temperature

ranges for each river basin, the slopes of the curves differ.

However, probabilities of occurrence always exceeded the value of

0.6 in any river basin regardless the water temperature data.

Moreover, within river basins no significant association was found

between the presence of Baetidae and water temperature

(Table 4). An increased stream velocity and pH was associated

with an increased probability of occurrence of Baetidae in all three

river basins (p = 0.01 and p = 0.03, respectively; Table 4; Figure

S39 and S42). Again, similar as for the Chironomidae, we found

that Baetidae were likely to be present in all the three river basins

(Figure 1B, S39 and S42). In the investigated range, no significant

association was found between the probability of occurrence of

Baetidae and DO concentration (p = 0.58, Figure S43) or

conductivity (p = 0.11, Figure S41).

Hydroptilidae (TS6). Associations between the DO concen-

tration, pH, stream velocity and water temperature relative to the

probability of occurrence of Hydroptilidae were similar across

river basins (Table 3). Only the effect of conductivity differed

between river basins (p = 0.02; Table 4), i.e. higher conductivities

were associated with a lower probability that Hydroptilidae were

present; this was observed for the Vietnamese river basin (p = 0.03)

and the Ethiopian river basin (p = 0.04; Table 4; Figure S46).

Furthermore, a more alkaline pH was associated with a higher

occurrence of Hydroptilidae (p = 0.02; Table 4; Figure S47). No

significant associations were found between water temperature

(p = 0.69; Figure S45), stream velocity (p = 0.90; Figure S44) and

DO concentration (p = 0.26; Figure S48) and the probability of

occurrence of Hydroptilidae (Table 4).

Libellulidae (TS8). The associations between water temper-

ature (p,0.01), stream velocity (p = 0.02) and DO concentration

(p = 0.02) and the probability of occurrence of Libellulidae differed

between river basins (Table 3). Whereas in the Ecuadorian river

basin, the probability that Libellulidae occurred increased with

increasing water temperatures (p,0.01), in the Ethiopian and

Vietnamese river basin inverse associations were observed

(p = 0.02 and p,0.01, respectively; Table 4; Figure S50). Con-

cerning stream velocity, Libellulidae were likely to occur at higher

stream velocities in the Ecuadorian and Vietnamese river basin

(p,0.01 and p = 0.02, respectively), but in the Ethiopian river

basin this was not observed (Table 4; Figure 4A and S49).

Increasing DO concentrations were associated with a higher

probability of occurrence of Libellulidae in the Ecuadorian river

basin (p = 0.02), but for the Vietnamese (p = 0.82) and Ethiopian

river basin (p = 0.62) this association was not significant (Figure 4B

and S53). The associations between conductivity and pH and the

probability of occurrence of Libellulidae were similar between

river basins (Table 4; Figure S51 and S52).

Leptophlebiidae (TS10). Associations between stream ve-

locity (Figure 1E, 5A and S54), pH (Figure S57) and conductivity

(Figure S56) and the probability of occurrence of Leptophlebiidae

were different amongst river basins (p = 0.01, p = 0.04 and

p = 0.03; Table 3). However, when interpreting the response

curves it was found that the prevalence of Leptophlebiidae was not

balanced in the Vietnamese and Ethiopian river basin (Table 2).

For streams situated in the Ecuadorian river basin Leptophlebiidae

were more likely to occur at higher stream velocities (p,0.01). In

the Vietnamese and Ethiopian river basin, however, these effects

were not observed (Table 4; Figure 5A and S54), probably due the

limited amount of presence data in these river basins. The

association between conductivity and the probability of occurrence

of Leptophlebiidae suggested the highest probability of occurrence

at lowest conductivities in the Vietnamese river basin (Figure S56).

For all three river basins, an increase in DO concentration was

positively associated with the occurrence of Leptophlebiidae (p,

0.01; Table 4; Figure 5B and S58). Associations between Lep-

tophlebiidae and water temperature were similar between the

three river basins (Figure S55).

Figure 1. Stream velocity data for which Chironomidae (A), Baetidae (B), Hydroptilidae (C), Libellulidae (D) and Leptophlebiidae (E)
are found to be present (denoted by P on the left axis) and absent (denoted by A on the left axis) in Ecuador (red), Ethiopia (green)
and Vietnam (blue). The sample sizes per boxplot are shown on the right axis.
doi:10.1371/journal.pone.0108898.g001
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Discussion

For pollution tolerant macroinvertebrate families (e.g. Chiron-

omidae (TS2)) only few significant associations between physical-

chemical conditions and the occurrence of the families were found

(Table 4) suggesting their occurrence at a wide range of physical-

chemical conditions. This was also reflected in the data

exploration as Chironomidae were present in 91%, 84% and

93% of the samples taken in the Ecuadorian, Ethiopian and

Vietnamese river basin, respectively (Table 2). Chironomidae are

known to be tolerant to disturbance, allowing them to occur in

impacted environments [32]. Due to their physiological adapta-

tions they have the ability to survive low oxygen conditions

(Figure 2A and 3B, [33,34]). Because of their pollution tolerant

nature, it was surprising to conclude that high stream velocities are

associated with an increased occurrence of Chironomidae

(Figure 1A, 3A and S34). However, in this study we only identified

macroinvertebrates to family level. Chironomidae are represented

by many species that show a different sensitivity to environmental

pollution [33], which might explain the weak association between

environmental variables and the occurrence of Chironomidae.

Baetidae, present in 83%, 74% and 82% of the samples taken in

the Ecuadorian, Ethiopian and Vietnamese river basin, respec-

tively (Table 2), were more sensitive to pollution compared to

Chironomidae. The habitat preference of Baetidae was mainly

determined by stream velocity and pH. Baetidae have often been

reported as one of the most acid-sensitive macroinvertebrate

families [35]. As taxa sensitivity to pollution increased, more

significant associations were found between environmental condi-

tions and the occurrence of macroinvertebrate families (Table 4).

For instance, a significant positive association between DO

concentrations and stream velocities and the occurrence of

Libellulidae (TS8) and Leptophlebiidae (TS10) was found

(Figure 4 and 5). DO concentration is a general indicator of

water quality [34,36] and also in other studies it was found that

DO concentrations play a crucial role when analyzing the

occurrence of macroinvertebrates (e.g., [37–39)]. In streams in

Malaysia, Rawi et al. [40] found that DO concentration and

stream velocity were crucial variables when explaining macroin-

vertebrate diversity. For other biological communities DO levels

are also important, e.g. most fish require a DO concentration of at

least 5 mg.L21 for optimal health [41].

Habitat suitability of macro-invertebrates probably depends on

more factors than those included in our statistical analysis. For

instance, additional to the variables that were included in our

analysis, Al-Shami et al. [42] also integrated geographical

variables such as longitude, latitude and altitude. Blanchette and

Pearson [43] related macroinvertebrate assemblages to chloro-

phyll, suspended solids, turbidity and nutrient data. Kasangaki

et al. [44] studied benthic macroinvertebrates in Uganda and used

DO concentration, conductivity, pH, turbidity and water temper-

ature together with some hydromorphological stream character-

istics. As such, physical-chemical variables used by Kasangaki et al.

[44] are similar to those included in our statistical analysis.

Conductivity can be seen as a general measure for disturbance as it

integrates pollution related variables like minerals and inorganic

pollutants [37]. For instance, Melo [45] concluded that stream size

data and conductivity explained most of the variability in the

macroinvertebrate community in a stream in the tropics. In

Colombia, Holguin-Gonzalez et al. [26] used DO concentration

and stream velocity to predict the presence of macroinvertebrates.

According to Flecker and Feifarek [46] hydrodynamics (including

stream velocity) play a crucial role in structuring tropic macroin-

vertebrate communities. Therefore, although only five physical-

chemical variables were used in the models, explanatory variables

embedded in the LRMs covered a wide spectrum of potential

impacts.

Seasonal changes of environmental variables were taken into

account [10,43]. Two samples in each year and at each sampling

location (in the wet and dry season) were collected for two

consecutive years for each river basin (Table S1; Figure S4–S8). By

including these, potential seasonal uncertainties were integrated in

our statistical analysis.

The outcome of the LRM per family was visualized as the

estimated probability that the family was present as a function of a

physical-chemical variable (e.g. Figure 3–5). Within the physical-

chemical ranges that were investigated and for the studied

macroinvertebrate families (see boxplots and colored zone of the

response curves), nine out of twenty-five interaction effects were

significant (Table 3). Hence, the corresponding variable-macroin-

vertebrate relationships were different between river basins and

suggested different habitat preferences for the investigated families.

For Libellulidae for instance, it was found that the effect of

dissolved oxygen was different between river basins (Table 3;

Figure 4B). Increasing DO concentrations were associated with a

higher probability that Libellulidae were present in Ecuadorian

river basin (p = 0.02), but in the Vietnamese and Ethiopian river

basin this relationship was not significant (p = 0.82 and p = 0.62).

In the Vietnamese and Ethiopian river basin, Libellulidae were

less responsive to shifts in DO concentrations as the probability of

Figure 2. Dissolved oxygen concentrations for which Chironomidae (A), Baetidae (B), Hydroptilidae (C), Libellulidae (D) and
Leptophlebiidae (E) are found to be present (denoted by P on the left axis) and absent (denoted by A on the left axis) in Ecuador
(red), Ethiopia (green) and Vietnam (blue). The sample sizes per boxplot are shown on the right axis.
doi:10.1371/journal.pone.0108898.g002

Table 5. Correlation coefficients of the physical-chemical variables.

Stream velocity Water temperature pH Conductivity Dissolved oxygen

Stream velocity /

Water temperature 20.14 (,0.001) /

pH 0.03 (0.571) 20.21 (,0.001) /

Conductivity 20.39 (,0.001) 0.41 (,0.001) 0.15 (0.001) /

Dissolved oxygen 0.28 (,0.001) 20.28 (,0.001) 0.23 (,0.001) 20.42 (,0.001) /

Corresponding p-values are given between brackets; effects were tested at the 5% significance level. Significant relations are indicated in bold.
doi:10.1371/journal.pone.0108898.t005
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occurrence hardly changed at varying DO concentrations

(Table 4, Figure 4B). In the Vietnamese river basin, this can be

explained by the relative few observed presences of some taxa, i.e.

Libellulidae were found in only nine out of sixty samples (Table 2).

In the Ethiopian river basin however, presence and absence data

were more equally represented. Concerning the association

between stream velocity and the occurrence of Libellulidae it

was found that Libellulidae favored high currents in the

Ecuadorian and Vietnamese river basin (p = 0.01 and p = 0.02,

respectively). In the Ethiopian river basin, this relationship was not

observed (Table 4; Figure 4A). However, a negative relationship

did not mean that Libellulidae were absent in the Ethiopian river

basin as there was still an estimated probability of 50% that

Libellulidae were present within the range of observations

(Figure 4A).

Figure 3. The probability of Chironomidae being present in relation to the stream velocity (A) and dissolved oxygen data (B)
measured in Ecuador (red, solid), Ethiopia (green, dashed) and Vietnam (blue, dotdashed). The gray-colored ends of the response curves
indicate extrapolation outside the observed physical-chemical range in the corresponding river basin.
doi:10.1371/journal.pone.0108898.g003
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The fact that river basin dependent associations were found is

not surprising. For instance, Bonada et al. [47] found that the

response of macroinvertebrates to pollution was different between

Mediterranean ecoregions. Also in the US, Zuellig and Schmidt

[48] found dissimilar regional benthic invertebrate community

compositions. Moreover, it was stated by Thorne and Williams

[13] that due to untreated domestic and urban effluents in

developing countries the relationship between individual physical-

chemical variables and macroinvertebrates present can be

extremely complex. Hence, this may lead to river basin specific

associations between abiotic conditions and the biological com-

munities.

Since the range of the observed physical-chemical conditions

were not always equal between river basins, in some cases

extrapolations outside the observed range were shown (Figure 4A).

For instance, water temperature measurements significantly

Figure 4. The probability of Libellulidae being present in relation to stream velocity (A) and dissolved oxygen data (B) measured in
Ecuador (red, solid), Ethiopia (green, dashed) and Vietnam (blue, dotdashed). The gray-colored ends of the response curves indicate
extrapolation outside the observed physical-chemical range in the corresponding river basin.
doi:10.1371/journal.pone.0108898.g004
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differed between the three river basins (Table S2). Hence, it was

found that the association between the occurrence of Libellulidae

and water temperature was significantly different between river

basins (Table 3). However, at the intersection of the three ranges,

the estimated probabilities were similar (Figure S50). Therefore,

major differences in the estimated probabilities across river basins

are likely to be attributed to difference in the range of the water

temperature between those basins.

No relation was found between the occurrence of Leptophle-

biidae and stream velocity in the Ethiopian and the Vietnamese

river basin. However, according to the data Leptophlebiidae

occurred in both river basins in upstream sampling sites with a

moderate to high stream velocity. The reason for the non-

significant relation is the prevalence of the present-points. In the

Vietnamese and Ethiopian river basin, Leptophlebiidae were only

present in 18% and 2% of the samples, respectively. Consequently,

Figure 5. The probability of Leptophlebiidae being present in relation to stream velocity (A) and dissolved oxygen data (B)
measured in Ecuador (red, solid), Ethiopia (green, dashed) and Vietnam (blue, dotdashed). The gray-colored ends of the response curves
indicate extrapolation outside the observed physical-chemical range in the corresponding river basin.
doi:10.1371/journal.pone.0108898.g005
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the occurrence of Leptophlebiidae seems statistically not associat-

ed with stream velocity. Therefore, due to unbalanced dataset

prevalence it is possible that not all models obtained represent true

ecological relations [30]. As such, LRMs’ outcomes should be

carefully interpreted, but for those families and river basins where

prevalence was in balance, the associations found, were ecolog-

ically relevant.

Presence and absence data are commonly used in macroinver-

tebrate research (e.g., [48–51]) as they provide a basic inventory to

explore the species’ ecology [52]. However, recently Howard et al.

[53] concluded that using abundance data instead of presence and

absence data could make models more informative since

abundance data provide additional insight with regard to the

population dynamics. Although it may result in a gain of

information [54], including abundance data will also increase

the variability of the response variable. In this perspective, Flecker

and Feifarek [46] concluded that the abundance of macroinver-

tebrate families differed seasonally between one and four orders of

magnitude. In this research the sample size (60–306) was relatively

limited compared to the number of sampling locations (15–47)

[55] and may not cover the entire seasonality in the macroinver-

tebrate abundance data. Therefore, it was more appropriate to

analyze presence-absence data, which are more robust against

seasonal changes. Moreover, logistic models have been frequently

applied (e.g., [24–26]) as they are well suited to provide predictions

of the probability of occurrence based on presence and absence

data [52].

As an alternative to the conventional taxonomic division of the

benthic invertebrates one can use functional traits to categorize

macroinvertebrate assemblages (e.g., [48,56]). Such a trait-based

approach is a promising alternative to taxonomy-based approach-

es for assessing the conditions of freshwater ecosystems [57].

However, trait-based studies have often a limited scope and

further testing is needed to establish their reliability [48], especially

in regions where knowledge on macroinvertebrates is poor.

Overall, LRMs based on GEE are a flexible way to model the

probability of occurrence of macroinvertebrates as a function of

environmental variables. We revealed similar as well as dissimilar

abiotic preferences of macroinvertebrates between the three river

basins, but these estimated probabilities are restricted to the

observed range of the predictor within each river basin. In

conclusion we found that associations between macroinvertebrates

and abiotic conditions can be river basin-specific.
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and Vietnam (blue, dotdashed). The gray-colored ends of the

response curves indicate extrapolation outside the observed

physical-chemical range in the corresponding river basin.

(DOCX)

Figure S44 The probability of Hydroptilidae being
present in relation to stream velocity measured in
Ecuador (red, solid), Ethiopia (green, dashed) and
Vietnam (blue, dotdashed). The gray-colored ends of the

response curves indicate extrapolation outside the observed

physical-chemical range in the corresponding river basin.

(DOCX)

Figure S45 The probability of Chironomidae being
present in relation to the Hydroptilidae measured in
Ecuador (red, solid), Ethiopia (green, dashed) and
Vietnam (blue, dotdashed). The gray-colored ends of the

response curves indicate extrapolation outside the observed

physical-chemical range in the corresponding river basin.

(DOCX)

Figure S46 The probability of Hydroptilidae being
present in relation to the conductivity measured in
Ecuador (red, solid), Ethiopia (green, dashed) and
Vietnam (blue, dotdashed). The gray-colored ends of the

response curves indicate extrapolation outside the observed

physical-chemical range in the corresponding river basin.

(DOCX)

Figure S47 The probability of Hydroptilidae being
present in relation to pH measured in Ecuador (red,
solid), Ethiopia (green, dashed) and Vietnam (blue,
dotdashed). The gray-colored ends of the response curves

indicate extrapolation outside the observed physical-chemical

range in the corresponding river basin.

(DOCX)

Figure S48 The probability of Hydroptilidae being
present in relation to dissolved oxygen (DO) concentra-
tion measured in Ecuador (red, solid), Ethiopia (green,
dashed) and Vietnam (blue, dotdashed). The gray-colored

ends of the response curves indicate extrapolation outside the

observed physical-chemical range in the corresponding river basin.

(DOCX)

Figure S49 The probability of Libellulidae being pres-
ent in relation to stream velocity measured in Ecuador
(red, solid), Ethiopia (green, dashed) and Vietnam (blue,
dotdashed). The gray-colored ends of the response curves

indicate extrapolation outside the observed physical-chemical

range in the corresponding river basin.

(DOCX)

Figure S50 The probability of Libellulidae being pres-
ent in relation to the water temperature measured in
Ecuador (red, solid), Ethiopia (green, dashed) and
Vietnam (blue, dotdashed). The gray-colored ends of the

response curves indicate extrapolation outside the observed

physical-chemical range in the corresponding river basin.

(DOCX)

Figure S51 The probability of Libellulidae being pres-
ent in relation to the conductivity measured in Ecuador
(red, solid), Ethiopia (green, dashed) and Vietnam (blue,
dotdashed). The gray-colored ends of the response curves

indicate extrapolation outside the observed physical-chemical

range in the corresponding river basin.

(DOCX)

Abiotic Preferences of Aquatic Macroinvertebrates in the Tropics

PLOS ONE | www.plosone.org 14 October 2014 | Volume 9 | Issue 10 | e108898



Figure S52 The probability of Libellulidae being pres-
ent in relation to pH measured in Ecuador (red, solid),
Ethiopia (green, dashed) and Vietnam (blue, dot-
dashed). The gray-colored ends of the response curves indicate

extrapolation outside the observed physical-chemical range in the

corresponding river basin.

(DOCX)

Figure S53 The probability of Libellulidae being pres-
ent in relation to dissolved oxygen (DO) concentration
measured in Ecuador (red, solid), Ethiopia (green,
dashed) and Vietnam (blue, dotdashed). The gray-colored

ends of the response curves indicate extrapolation outside the

observed physical-chemical range in the corresponding river basin.

(DOCX)

Figure S54 The probability of Leptophlebiidae being
present in relation to stream velocity measured in
Ecuador (red, solid), Ethiopia (green, dashed) and
Vietnam (blue, dotdashed). The gray-colored ends of the

response curves indicate extrapolation outside the observed

physical-chemical range in the corresponding river basin.

(DOCX)

Figure S55 The probability of Leptophlebiidae being
present in relation to the water temperature measured
in Ecuador (red, solid), Ethiopia (green, dashed) and
Vietnam (blue, dotdashed). The gray-colored ends of the

response curves indicate extrapolation outside the observed

physical-chemical range in the corresponding river basin.

(DOCX)

Figure S56 The probability of Leptophlebiidae being
present in relation to the conductivity measured in
Ecuador (red, solid), Ethiopia (green, dashed) and
Vietnam (blue, dotdashed). The gray-colored ends of the

response curves indicate extrapolation outside the observed

physical-chemical range in the corresponding river basin.

(DOCX)

Figure S57 The probability of Leptophlebiidae being
present in relation to pH measured in Ecuador (red,
solid), Ethiopia (green, dashed) and Vietnam (blue,
dotdashed). The gray-colored ends of the response curves

indicate extrapolation outside the observed physical-chemical

range in the corresponding river basin.

(DOCX)

Figure S58 The probability of Leptophlebiidae being
present in relation to dissolved oxygen (DO) concentra-
tion measured in Ecuador (red, solid), Ethiopia (green,
dashed) and Vietnam (blue, dotdashed). The gray-colored

ends of the response curves indicate extrapolation outside the

observed physical-chemical range in the corresponding river basin.

(DOCX)

Table S1 Seasonal differences per physical-chemical
variable and per country. A p-value less than 0.05

demonstrates a significant difference between seasons for the

mean physical-chemical variable that is considered for a specific

country. Significant relations are indicated in bold.

(DOCX)

Table S2 Country-wise differences per physical-chem-
ical variable and per season. A p-value less than 0.05

demonstrates a significant difference between countries for the

mean physical-chemical variable that is considered for a specific

season. Significant relations are indicated in bold.

(DOCX)

Acknowledgments

We would like to thank all people who contributed to the sampling

campaigns.

Author Contributions

Conceived and designed the experiments: PG LDG AA THH. Performed

the experiments: PB LDG STM AA THH. Analyzed the data: GE JDN

OT. Contributed reagents/materials/analysis tools: PG LDG AA THH.

Wrote the paper: GE JDN PB LDG STM AA THH PG OT.

References

1. Rosenberg DM, Resh VH (1993) Introduction to freshwater biomonitoring and

benthic macroinvertebrates. In: Rosenberg DM, Resh VH, editors. Freshwater

biomonitoring and benthic macroinvertebrates. Chapman and Hall, New York.

pp. 1–9.

2. Kerans BL, Karr JR (1994) A benthic index of biotic integrity (B-IBI) for rivers

of the Tennessee Valley. Ecol Appl 4: 768–785.

3. Cairns J, Pratt JR (1993) A history of biological monitoring using benthic

macroinvertebrates. In: Rosenberg DM, Resh VH, editors. Freshwater

Biomonitoring and Benthic Macroinvertebrates. Chapman and Hall, New

York. pp. 10–27.

4. Molozzi J, Feio MJO, Salas F, Marques JOC, Callisto M (2013) Development

and test of a statistical model for the ecological assessment of tropical reservoirs

based on benthic macroinvertebrates. Ecol Indic 23: 155–165.

5. Chutter FM (1994) The rapid biological assessment of stream and river quality

by means of the macroinvertebrate community in South Africa. In: Uys MC,

editor. Classification of rivers, and environmental health indicators. Proceedings

of a joint South African/Australian Workshop. Cape Town 7-11/2/1994.

Africa. Water Research Commission Report No. TT 63/94, Pretoria, South

Africa. pp. 217–234.

6. Gabriels W, Lock K, De Pauw N, Goethals PLM (2010) Multimetric

Macroinvertebrate Index Flanders (MMIF) for biological assessment of rivers

and lakes in Flanders (Belgium). Limnologica 40: 199–207.

7. Chandler JR (1970) A biological approach to water quality management. Wat

Pollut Control 69: 415–422.

8. Armitage PD, Moss D, Wright JF, Furse MT (1983) The performance of a new

biological water quality score system based on macroinvertebrates over a wide

range of unpolluted running-water sites. Water Res 17: 333–347.

9. Alba-Tercedor J, Sanchez-Ortega A (1988) Um metodo rapido y simple para

evaluar la calidade biologica de las aguas corrientes basado em el de Hellawell
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16. Tomanova S, Goitia E, Helešic J (2006) Trophic levels and functional feeding

groups of macroinvertebrates in neotropical streams. Hydrobiologia 556: 251–

264.

17. Dominguez-Granda L, Lock K, Goethals PLM (2011) Using multi-target

clustering trees as a tool to predict biological water quality indices based on

benthic macroinvertebrates and environmental parameters in the Chaguana

watershed (Ecuador). Ecol Inform 6: 303–308.

18. Ambelu A, Lock K, Goethals PLM (2010) Comparison of modelling techniques

to predict macroinvertebrate community composition in rivers of Ethiopia. Ecol

Inform 5: 147–152.

19. Mereta ST, Boets P, Ambelu-Bayih A, Malu A, Ephrem Z, et al. (2012) Analysis

of environmental factors determining the abundance and diversity of

Abiotic Preferences of Aquatic Macroinvertebrates in the Tropics

PLOS ONE | www.plosone.org 15 October 2014 | Volume 9 | Issue 10 | e108898



macroinvertebrate taxa in natural wetlands of Southwest Ethiopia. Ecol Inform

7: 52–61.
20. Hoang TH, Lock K, Mouton A, Goethals PLM (2010) Application of

classification trees and support vector machines to model the presence of

macroinvertebrates in rivers in Vietnam. Ecol Inform 5: 140–146.
21. Nguyen HH, Everaert G, Gabriels W, Hoang TH, Goethals PLM (2014) A

multimetric macroinvertebrate index for assessing the water quality of the Cau
river basin in Vietnam. Limnologica 45: 16–23.

22. Rı́os-Touma B, Encalada AC, Prat Fornells N (2011) Macroinvertebrate

Assemblages of an Andean High-Altitude Tropical Stream: The Importance of
Season and Flow. Int Rev Hydrobiol 96: 667–685.

23. R Core Team (2012) R: A language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

Available: http://www.R-project.org/.
24. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects

models and extensions in ecology with R. New York: Springer Science+Business

Media, LLC 2009. 292p.
25. Pearce JL, Ferrier S (2000) Evaluating the predictive performance of habitat

models developed using logistic regression. Ecol Model 133: 225–245.
26. Rushton SP, Ormerod SJ, Kerby G (2004) New paradigms for modelling species

distributions? J App Ecol 41: 193–200.

27. Holguin-Gonzalez JE, Everaert G, Boets P, Galvis A, Goethals PLM (2013)
Development and application of an integrated ecological modelling framework

to analyze the impact of wastewater discharges on the ecological water quality of
rivers. Environ Modell Softw 48: 27–36.

28. Liang KY, Zeger SL (1986) Longitudinal data analysis using generalized linear
models. Biometrika 73: 13–22.

29. Horton NJ, Bebchuk JD, Jones CL, Lipsitz SR, Catalano PJ, et al. (1999)

Goodness-of-fit for GEE: an example with mental health service utilization. Stat
Med 18: 213–222.

30. Mouton AM, De Baets B, Van Broekhoven E, Goethals PLM (2012) Prevalence-
adjusted optimisation of fuzzy models for species distribution. Ecol Model 220:

1776–1786.

31. Graham MH (2003) Confronting multicollinearity in ecological multiple
regression. Ecology 84: 2809–2815.

32. Mereta ST, Boets P, De Meester L, Goethals PLM (2013) Development of a
multimetric index based on benthic macroinvertebrates for the assessment of

natural wetlands in Southwest Ethiopia. Ecol Indic 29: 510–521.
33. Armitage PD, Cranston P, Pinder LC (1995) The Chironomidae: The biology

and Ecology of non-biting midges. London: Chapman and Hall. 572p.

34. Connolly NM, Crossland MR, Pearson RG (2004) Effect of low dissolved
oxygen on survival, emergence, and drift of tropical stream macroinvertebrates.

J N Am Benthol Soc 23: 251–270.
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