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a significant effect on the many properties of materials. When the average or entire range of grain size is
reduced to less than 100 nm, the conventional plastic deformation mechanisms dominated by dislocation
processes become difficult and GBmediated deformation mechanisms become increasingly important. One of
the mechanisms that can play a profound role in the strength and plasticity of metallic polycrystalline
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Abstract: Grain boundary (GB) is the interface between different oriented crystals of the same material, 

and it can have a significant effect on the many properties of materials. When the average or entire range of 

grain size is reduced to less than 100 nm, the conventional plastic deformation mechanisms dominated by 

dislocation processes become difficult and GB mediated deformation mechanisms become increasingly 

important. One of the mechanisms that can play a profound role in the strength and plasticity of metallic 

polycrystalline materials is the heterogeneous nucleation and emission of dislocations from GB. In this 

study, we conducted molecular dynamics simulations to study the dislocation nucleation from copper 

bicrystal with a number of <1 1 0> tilt GBs that covered a wide range of misorientation angles (θ). We will 

show from this analysis that the mechanic behavior of GBs and the energy barrier of dislocation nucleation 

from GBs are closely related to the lattice crystallographic orientation, GB energy, and the intrinsic GB 

structures. An atomistic analysis of the nucleation mechanisms provided details of this nucleation and 

emission process that can help us to better understand the dislocation source in GB. 

Keywords: molecular dynamics; grain boundary; dislocation nucleation; tensile strength 

1. Introduction 

Grain boundary (GB) strengthening at low temperatures is a well known phenomenon in polycrystalline materials. One of 

the best known theories, described by the Hall-Petch equation, predicts an increase of flow stress with decreasing grain size, 

but as the grain sizes are reduced to nanometer scale and the percentage of GB atoms correspondingly increases, this 

traditional view of dislocation-driven plasticity in polycrystalline materials needs to be reconsidered
1
. Experimental 

measurements
2, 3

 have shown that various deviations from the Hall-Petch equations as grain sizes reached nanometer scale. 

A lot of prior research work conducted by experiments
4-7

 and computational simulations
8-13

 revealed that GBs and their 

underlying structure can play an important role in the bulk properties of polycrystalline materials, but below a certain 

critical grain size, in the order of 10 nm, lattice dislocation nucleation becomes limited and GB-mediated processes (e.g., 

GB sliding, GB migration and grain rotation) becomes the dominant deformation mechanisms
8, 10

. While the deformation 

mechanisms at larger scales have been studied for decades, an atomic level understanding of the GB accommodation 

mechanism is limited, so most of the recent scientific interest in nanocrystalline materials is associated with the atomic level 

mechanisms of plastic deformation in the GBs. 

As the grain size decreases, one of the mechanisms that can play a vital role in the mechanical behavior of 

nanocrystalline materials is the heterogeneous nucleation and emission of dislocations from the GBs. This deformation 

mechanism was obvious in many simulation works
14-19

, and it was also confirmed by in situ transmission electron 

microscopy (TEM) experiments
20, 21

 which showed GBs emitting partial dislocations that formed stacking faults and 

deformation twins in nanocrystalline Al and Cu. However, experiments at a nanoscale can be very time consuming and 

costly, and TEM requires samples with a thickness comparable to the grain size, which may induce the structure to relax and 

thus change the GB structure
1
, so they are very difficult to perform. Fortunately, molecular dynamics (MD) simulations with 

a carefully designed model system can be used to investigate GB structures and the dislocation nucleation mechanisms of 

nanocrystalline materials.  

MD simulations were used in previous researches to investigate the nucleation and propagation of dislocations in 

polycrystal and bicrystal configurations and the results have been fruitful
22, 23

. Atomistic studies have shown that differences 
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in the mechanical behavior and the underlying deformation mechanisms commonly result from variations in the grain 

boundary structure
24

. However, the atomic level details of how dislocation nucleation occurs at the grain boundary and what 

is the correlation of GB structures, GB properties, and the deformation mechanisms of GBs are still not understood very 

well. Moreover, a characterization of 900 GBs in pure annealed Ni performed by Randle
25

 showed that over half of the 

interfaces consisted of <1 1 0> tilt GBs; this indicated that the <1 1 0> tilt GBs are a preferred interface configuration and of 

importance for face-centered cubic (fcc) materials. We therefore concentrated on the dislocation nucleation from <1 1 0> tilt 

GBs in this study and investigated their underlying atomistic mechanisms. A simulation model of Cu bicrystal was used in 

this study because the GB geometry and structure can be specified precisely. The GBs that were investigated covered a wide 

range of misorientation angles (θ) around the <1 1 0> tilt axis. 

2. Methodology 

2.1 Simulation Model 

The simulations were performed with the parallel molecular dynamics (MD) code LAMMPS
26

. The embedded-atom 

method (EAM) potential developed by Mishin et al for Cu
27

 was used because it can fit a large set of experimental and 

first-principles data. In this study, a bicrystal model was created by constructing two separate grains (grain-A and grain-B in 

Fig.1-a) with different crystallographic orientation and joined them together along the Y axis. All the Cu bicrystal models 

used in this study have a symmetric tilt misorientation about [      ] in the direction of the Z axis. Periodic boundary 

conditions in the simulation models were applied in all directions (X, Y and Z axis). Specifically, the periodic boundary 

conditions were applied in the X and Z directions to simulate an infinite boundary plane between the two grains to eliminate 

the effect of a free surface. It must be noted that the periodic boundary condition in the Y direction introduced a second 

boundary plane into the model. A schematic of the bicrystal simulation model is shown in Fig.1(a), and a typical simulation 

model construction is shown in Fig.1(b). GBs with different rotation angles (θ) investigated in this study were listed in 

Table.1. Each bicrystal model was approximately 162Å×290Å×162Å (X×Y×Z), and the total number of atoms in each 

simulation model was approximately 6.5×10
5
. Previous work

17
 showed that this cell size is sufficient to avoid image effects 

from the periodic boundaries on the mechanisms associated with three dimensional dislocation nucleation. 

  

(a)                                   (b) 

Figure-1. (a) Schematic of the bicrystal model and the tension deformation applied onto the model. The grain boundary was created by a 

symmetric tilt rotation of grain-A and grain-B around the [      ] direction (z axis). (b) A typical simulation model constructed by LAMMPS and 

visualized in Atomeye. The atoms were colored according to their potential energy; blue atoms have a perfect fcc structure while the atoms with 

different colours defined the grain boundary plane.  

2.2 Simulation details 

The equilibrium GB structures were prepared using a combination of molecular statics and MD simulations, that is, a 

molecular statics calculation with a standard conjugate gradient method was used to determine the minimum energy 

configurations. A number of initial “starting positions” of grain-A and grain-B were tested to find the best GB structures
28-30

 

from the point of view of energy. It is worth noting that for each initial configuration, the size of the model should be 



3 

adjusted to construct identical atomic structures of the two boundary planes. This operation is necessary to ensure they have 

the same equilibrium structures after their energy has been minimized, otherwise different GB structures in a bicrystal 

model that have different energies will have a detrimental effect on further simulation results. After attaining minimum 

energy configuration, the simulation model was equilibrated using MD in the isobaric-isothermal (NPT) ensemble at a 

pressure of 0 bar and a temperature of 10 K for 20 ps. 

During dynamic loading, uniaxial tension at a constant rate of 5×10
8
/s was applied perpendicular to the boundary plane 

(along the Y direction), while pressure in the lateral directions was kept at zero. A high strain rate was inherent in the 

simulations for computational efficiency, and to have the desired amount of deformation within a given simulation time. An 

isobaric-isothermal (NPT) ensemble was used during the dynamic deformation. The simulation temperature was maintained 

at 10 K and an integration time step of 1 fs was used throughout the MD simulations. The fluctuating internal energy of the 

monitored atoms due to entropy was found to be very small (in the order of 0.0011eV) at this temperature
31

, and this low 

temperature environment actually facilitated our visualisation and analysis of the results. Our focus was on the nucleation 

mechanisms from the diversity of GBs presented in this study, so the influence of the strain rate and temperature on the 

results will not be discussed. The visualisation tools Atomeye
32

 and Ovito
33

 were used to illustrate the bicrystal models. The 

common neighbor analysis (CNA) technique
34

 was used to identify the structural defects and their evolution during the 

simulations. The dislocation extraction algorithm (DXA)
35, 36

 was used to compute Burgers vectors of the nucleated 

dislocations from the boundary plane. 

Table.1 Summary information of different [      ] symmetric tilt grain boundaries in Cu bicrystal 

GB plane 

∑ (h k l) 

Misorientation 

angel θ (°) 

GB energy 

γGB (mJ/m
2
) 

Tensile strength 

σ (GPa) 

Nucleation barrier  

γbarrier (mJ/m
3)

 

∑19{1 1 6} 26.5° 788 6.45 / 8.8*
 

2.23 

∑9{1 1 4} 38.9° 684 8.94 / 9.41 4.13 

∑139{3 3 11} 42.2° 643 7.83 / 10.14 3.12 

∑11{1 1 3} 50.5° 319 9.55 / 10.1 4.85 

∑33{2 2 5} 58.9° 581 7.97 / 11.16 2.8 

∑3{1 1 2} 70.5° 591 9.47 / 12.41 4.7 

∑17{2 2 3} 86.6° 660 9.86 / 14.36 3.35 

∑17{3 3 4} 93.4° 644 11.57 / 14.88 5.05 

∑3{1 1 1} 109.5° 26 17 / 17 — 

∑171{11 11 10} 114.5° 296 1.6 / 13.9 0.1 

∑11{3 3 2} 129.5° 535 2.57 / 13.48 0.45 

∑291{11 11 7} 131.5° 810 2.86 / 12.77 0.33 

∑9{2 2 1} 141.1° 833 4.07 / 11.78 0.75 

∑19{3 3 1} 153.5° 856 3.87 / 8.82 0.79 

∑73{6 6 1} 166.6° 681 3.32 / 6.59 0.65 

* The maximum tensile stress of single crystal are listed for comparison. 

2.3 Energy calculation 

For calculating the GB energy and measure the energy barrier for dislocation nucleation from a GB, a control box was 

placed along the entire grain boundary
31

 (see in Fig.1-b). The energy associated with the GB ( 
  

) is calculated by equation 

(1), where        is the potential energy of the control box within the bicrystal model after an energy minimization 

procedure,       is the potential energy of a single atom in the perfect Cu lattice (-3.54eV), N is the total number of atoms 

contained in the model, and A is the area of the GB plane (A=Lx*Lz). The energy of dislocation nucleation barrier is 

calculated by equation (2), where        is the energy of the control box after the system was equilibrated at 10 K. For 

each atom i within the control box, the real-time energy during dynamic tension       
  was measured at a certain interval 
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timestep. V is the volume of the control box (V=A*Lbox_y), where Lbox_y is the height of the control box. 

 
  

 
              

 
  (1) 

 
       

 
       

  
        

 
  (2) 

The size of the control box was fully considered in this work. For example, Fig.2 gives the calculated results of ∑9(1 1 4) 

GB and ∑19(3 3 1) GB by using different size control boxes, and where Lbox_y = 30 Å, 60 Å and 200 Å. The results showed 

the same trend and the peak values showed a very small deviation. So the size of the control box had a very small part in the 

simulation results and would not affect our conclusions. In this work, the value of Lbox_y will be set as 60 Å for the 

calculation, and the results are listed in Table.1. 

     

Figure-2. The energy barrier of dislocation nucleation from (a) ∑9(1 1 4) GB and (b) ∑19(3 3 1) GB calculated by Eq.(2). Different size of 

control box with Lbox_y= 30 Å, 60 Å and 200 Å were tested. 

3. Results and discussions 

3.1 GB structure and energy 

The main purpose of this study is to explain how GBs deform at the atomic level, and to achieve this we first obtained their 

equilibrium structure. The GBs investigated in this study are listed in Table.1, and a detailed view of the Cu <1 1 0> tilt GB 

structures with misorientation angles 0°<θ<180° are show Fig.3 and Fig.4. Due to the symmetry of the fcc lattice, the 

misorientation angles from 0° to 180°covered all the distinct boundary structures of <1 1 0> tilt GBs. Snapshots of the 

atomic configuration at the GB area were taken using a molecular statics calculation by 0 K energy minimization procedure. 

The viewing direction was along the [      ] crystallographic direction (Z axis) and the positions of the atoms were 

projected onto the X-Y plane for clarity. The structural units proposed by Rittner and Seidman
28

 were used to illustrate the 

boundary structures. Atoms were shaded by their consecutive (0 0 2) atomic plane in order to identify the GB structural 

units.  

Most boundary structures can generally be characterized by the structure unit model, as outlined by the solid line in Fig.3 

and Fig.4, even though the GB structures were not symmetrical about the boundary plane. Of all the <1 1 0> tilt GBs, three 

boundary structures were found to be special; ∑11(1 1 3) θ=50.5° GB, ∑3(1 1 1) θ=109.5° GB and ∑9(2 2 1) θ=141.1° GB, 

which was composed entirely of  ,    and   structural units respectively. These were considered to be the preferred 

structural unit model to represent GBs because other bicrystal boundaries with non-preferred misorientations consisted of 

two or more different types of preferred structural units. For example, the ∑9(1 1 4) GB in Fig.3(a) contains two   and one 

  structural units per boundary period, the ∑11(3 3 2) GB in Fig.4(b) contains one   and one   structural units per 

boundary period. It is worth noting that three boundaries in Fig.3(d)-(f) show a dissociated GB structure which was caused 

by the asymmetric dissociation of secondary GB dislocations with Burgers vector of the Shockley partial type
28

. This 

structure lowers the energy of the atomic arrangement in the boundary plane but also creates an extra stacking fault area 

inside the grain. To accommodate the intrinsic stacking fault facets, the   units were tilt downwards relative to the positive 

X-axis, while the   unit lies at the termination of an intrinsic stacking fault that extended from the bicrystal interface. 

Fig.4 lists six GB structures within a misorientation range of θ>109.5°, all of which contain the   structural units. 
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Specifically, the GBs with θ<141.1° contain a combination of   and   units, while the GBs with θ>141.1° contain a 

combination of   and   units. Notice that the    and    units marked in Fig.4(f) contain topologically identical atoms as 

  and   units, but they only differ in their direction. The <1 1 0> tilt GB structures presented here agree with the 

structures reported in the previous work
28,37

. Some of the GB structures obtained in this study using a molecular statics 

calculation for Cu are comparable with the images from a high resolution transmission electron microscopy (HRTEM) 

observation on other fcc metals (Al
38, 39

, Ni
40, 41

 and Au
42). 

 

Figure-3. The equilibrium structures of the Cu <1 1 0> tilt GB structures with misorientation angles θ<109.5° obtained by the energy 

minimization procedure and subsequent MD relaxation at 10 K. The structures are viewed along the [1    0] tilt axis. Atoms on consecutive (0 0 

2) planes are shown as black and white. The GB normal and period vectors are given for grain-A and grain-B on the left hand side of each 

structure. The structural units at each boundary plane are outlined by the solid line. 

 

Figure-4. The equilibrium structures of the Cu <1 1 0> tilt GB structures with misorientation angles θ>109.5° obtained by the energy 

minimization procedure and subsequent MD relaxation at 10 K. 



6 

The relationship of GB energy as a function of GB misorientation is plotted in Fig.5, and indicates that this curve 

contains local minimums and cusps corresponding to the two special GBs, ∑11(1 1 3) GB and ∑3(1 1 1) GB, which are all 

composed entirely of the preferred structural units. This means that at a rotation of 0° and 180°, the atoms are in perfect 

lattice configuration. At a rotation of 50.5°, the defect structure at the boundary plane is simple and therefore it corresponds 

to a local minimum energy. A 109.5° tilt rotation about the <1 1 0> axis has the lowest energy of any GB, and it corresponds 

to a very simple defect structure known as the coherent twin boundary. 

 

Figure-5. The energy of Cu <1 1 0> tilt GBs shown as a function of the misorientation angle at 0 K after energy minimization procedure. 

3.2 Tensile response 

After the equilibrium structure of GBs achieved, the simulation models were deformed under a uniaxial tensile loading at 

10 K. The stress-strain curves for the Cu bicrystal with different GBs are shown in Fig.6. The curves are separated as (a) 

and (b) corresponding to the GB structures with a misorientation angle where θ<109.5° and θ>109.5°. The results showed a 

strong anisotropic of elastic modulus where the elastic stiffness of the bicrystal models increases as the misorientation angle 

increases within the range of θ<109.5°. This trend was opposite within the range of θ>109.5°. Moreover, the maximum 

tensile stress arrived at different strain rate for each GB and there was a big difference in the values; the calculated values 

are listed in Table.1. 

The maximum tensile stress was plotted as a function of the GB misorientation angle and is shown in Fig.6(c). We also 

considered the role of lattice orientation on the maximum tensile stress, and have presented the calculations of single 

crystals with various orientation angles as a comparison. Here, the peak stress of Cu <1 1 0> single crystals generally 

increased as misorientation angle below 109.5° increased, but then it gradually decreased as the misorientation angle 

increased above 109.5°. With the Cu bicrystals, the general trend of their peak stress was in accordance with Cu single 

crystals below 109.5°, although the overall values were lower than the single crystals and seemed to scatter more. The lower 

stress of the Cu bicrystal was due to the existence of GBs where the atoms have a higher energy than the lattice atoms and 

make the dislocation easier to nucleate. It was also interesting to find that the peak stress value of the bicrystals appeared to 

drop suddenly when the misorientation angle was greater than 109.5°, and the trend of peak stress within the range of 

θ>109.5° deviated to the case of single crystals. This unique mechanical behavior of Cu bicrystals when θ>109.5° can be 

attributed to their intrinsic GB structures with   structural units
37, 43, 44

, how the   units played a role as the deformation 

mechanism will be presented in the following discussion. Moreover, it was considered that the highest tensile strength of 

∑3(1 1 1) GB resulted from its simple boundary structure and lowest boundary energy. 
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Figure-6. Stress-strain curves of Cu <1 1 0> tilt GBs with misorientation angles (a) θ<109.5° and (b) θ>109.5° at 10 K. (c) Maximum tensile 

stress as a function of misorientation angle. The values of single crystals are plotted for comparison. The simulation results from Spearot et al42 

are also listed for comparison. 

3.3 Dislocation nucleation from GB with θ<109.5° 

During the early stage of loading, the system responds elastically and the lattices are stretched without dislocations 

formed. As the strain increases, a visual inspection of the MD simulation results indicated that the maximum tensile stress 

of Cu bicrystal models corresponded to the nucleation of dislocations from GBs. Fig.7(a)-(d) shows snapshots of four GBs 

with θ<109.5° at the beginning of dislocation nucleation from the boundary plane at 10 K. The images are colored 

according to the common neighbor analysis (CNA) parameter
34

. Only those atoms in defective arrangements are shown, the 

atoms with a perfect fcc environment were removed. The yellow atoms organized the GB plane and the dislocation core and 

the blue atoms represented the stacking fault. The corresponding energy barrier calculations for dislocations to nucleate 

from the GBs are shown in Fig.8(a)-(d). 
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Figure-7. Dislocation nucleation from Cu bicrystal with (a) ∑9(1 1 4) θ=38.9° GB (b) ∑139(3 3 11) θ=42.2° GB (c) ∑3(1 1 2) θ=70.5° GB and 

(d) ∑17(2 2 3) θ=86.6° GB under uniaxial tension at 10 K. Atoms with perfect fcc structures were removed to facilitate viewing the defective 

structures. The yellow atoms organized the GB plane and the dislocation core, and the blue atoms represented the stacking fault. 

         

         

Figure-8. The calculated energy barrier for dislocations to nucleate from different GBs. (a) ∑9(1 1 4) GB, ∑139(3 311) GB, ∑3(1 1 2) GB, and 

∑17(2 2 3)GB. 

With the ∑9(1 1 4) GB, partial dislocations were nucleated from the GB plane nearly simultaneously on both the primary 

and secondary slip systems, as shown with arrows in Fig.7(a). Some atoms on the GB plane became chaotic before they 

reached their maximum tensile stress, and eventually, the collective motion of the disordered atoms nucleated partial 

dislocation loops along the active slip planes within grain-B after reaching the peak stress at ε=9.7%. The nucleated 
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dislocation loops had a V-shaped structure with an edge and screw dislocation character, where the exterior of the 

dislocation loop was the partial dislocation core that bound an intrinsic stacking fault. An examination of the V-shaped 

dislocation loops indicated that they were nucleated on the (      ) and (      ) slip plane, which are the secondary slip 

systems with a Schmid factor           =          =0.419 (see in Table.S1 for the calculation results of Schmid factor). The 

two intrinsic stacking faults were bounded by leading               and             Shockley partial dislocations, and they 

intersected at a             stair-rod dislocation. Meanwhile, a set of extrinsic partial dislocations were nucleated from the 

boundary plane into both grain-A and grain-B after the peak stress. This slip occurred on the (      ) and (     ) planes 

respectively, which are the primary slip plane according to Schmid factor analysis with           
   =         

   =0.471. The 

nucleation of extrinsic partial dislocations resulted from the deformation of   structural units. This process will be fully 

illustrated in the following introduction of ∑11(1 1 3) GB, which is composed entirely of   structural units. A further 

increase of the tensile strain caused dislocation interactions as the dislocation loops propagated throughout the crystal. As 

with ∑9(1 1 4) GB, a number of V-shaped structural dislocations nucleated from ∑139(3 3 11) GB and began to propagate 

onto the (      ) and (      ) slip planes once the maximum tensile stress at ε=8.3% had been reached, also the embryo of 

partial dislocations was evidenced on the (      ) and (     ) planes, as shown in Fig.7(b). 

The dislocation nucleation process of ∑11(1 1 3) GB is presented in Fig.9. Recall that the ∑11(1 1 3) GB had a simple 

boundary structure consisting of entirely   structural units, and the boundary energy was local minimum (the first cusp in 

Fig.5). The special boundary properties resulted in its different nucleation mechanisms. In Fig.9(a) at ε=9.85%, dislocations 

nucleated on the (      ) and (     ) plane from GB when the maximum tensile stress had been reached, and then they 

propagated symmetrically in grain-A and grain-B. They are the primary slip systems with           
   =         

   =0.429. 

Subsequently, the V-shaped partial dislocation loops began to nucleate in perfect lattice and slipped along the (      ) and 

(      ) plane at ε=10%, as shown in Fig.9(b). The atoms that organized the ∑11(1 1 3) GB were stable due to their 

comparative low boundary energy, so it was not as easy as the other cases where the V-shaped partial dislocation loops can 

nucleate from the boundary plane by shuffling local atoms. However, the intrinsic free volume of the   structural unit 

provided another path for the dislocations nucleating from the boundary along the secondary slip systems. This was seen at 

the sites of ‘a’ and ‘b’ in Fig.9(a), where an extrinsic stacking fault and a twin fault was generated after the dislocations 

nucleated, and more specifically, the distance of the twinning fault can become broad as the tensile strain increases, as the 

twin fault shows at ‘b’ in Fig.9(b). 

 

Figure-9. Dislocation nucleation from Cu bicrystal with ∑11(1 1 3) θ=50.5° GB under uniaxial tension at 10 K. In Fig.(a) and (b), atoms with 

perfect fcc structures are removed and atoms of different colors represent the same as described in Fig.7. In Fig.(c), the dark blue atoms have the 

perfect fcc structure, atoms colored with red organize the GB plane and the dislocation core, the light blue atoms represent the twin fault. 
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The nucleation process of an extrinsic stacking fault or a twin fault from ∑11(1 1 3) GB is illustrated in Fig.9(c). On the 

whole, the uniaxial tensile strain caused the bicrystal to elongate in a Y direction and shortened the size of bicrystal in the X 

and Z directions. A careful examination of the images indicated that the bicrystal diminished in size in the X direction as a 

number of   structural units shrunk while driving the dislocation nucleation. Specifically, the first   unit shrank as a  

result of atom 1 translating in the negative X direction, which caused the atoms on plane ‘a’ to slip towards the GB and the 

atoms on plane ‘b’ to slip out of the GB; this resulted in the first partial dislocation nucleation with an intrinsic stacking 

fault behind. Similarly, the translation of atom 2 caused the second partial dislocation nucleation by a relative shifting of 

atoms on plane ‘b’ and plane ‘c’. Notice that the slip direction caused by atom 2 on plane ‘b’ was opposite to that caused by 

atom 1, which drove the atoms on plane ‘b’ to turn back to the perfect fcc position and generated an extrinsic stacking fault, 

as shown in Fig.9(c)-(i). This mechanism of extrinsic stacking fault nucleation from GB through two partial dislocations 

emitted in adjacent compact planes was also evidenced in Fig.7(a) for ∑9(1 1 4) GB. However, unlike ∑9(1 1 4) GB, the 

consecutive shrinkage of   units along the boundary plane provided continuous nucleation sources for the consequent 

partial dislocations, and led to a broadening of the twinning region. As Fig.9(c)-(ii) and (iii) shows, the translation of atom 3 

and atom 4 in the negative X direction resulted in the twin-boundary broadening to four and five (1 1 1) lattice spacing. 

The GBs with a dissociated facet structures in the range of 50.5°<θ<109.5° evolved before the dislocation nucleation 

event. Fig.7(c) and (d) show the ∑3(1 1 2) GB and ∑17(2 2 3) GB cases. The length of the dissociated intrinsic stacking 

fault decreased as the tensile deformation increased until it was accommodated entirely by the boundary plane. 

Subsequently, the V-shaped dislocation loops nucleated on the (      ) and (      ) slip plane, as with the cases of θ<50.5°. 

Notice that, according to Schmid factor analysis and the dislocation extraction algorithm (DXA)
35, 36

, the (      ) and (      ) 

slip plane are now the primary slip systems, and the Burgers vector of the two leading Shockley partial dislocations are 

              and            respectively. Spearot et al.
17

 previously investigated three Cu [      ] tilt GBs with dissociated 

facet structures (θ=53.1°, 53.1° and 59°). By comparing their findings and our simulation results, we conclude that as the 

misorientation angle of the GB is increased from 50.5° to 109.5°, the spacing between intrinsic stacking fault facets 

decrease gradually, which causes the nucleation mechanisms change from one that is dominated by dislocation nucleation 

on secondary slip systems (i.e. slip on (      ) and (     ) planes) to that which is a mixture of dislocation nucleation on 

both primary and secondary slip systems, and finally change to one that is dominated by dislocation nucleation on primary 

slip systems (i.e. slip on (      ) and (      ) planes). 

3.4 Dislocation nucleation with θ=109.5° and θ=114.5° GBs 

The maximum tensile stress of ∑3(1 1 1) GB was calculated as 17 GPa, which is the same as the maximum tensile stress 

of the corresponding single crystal with an orientation angle θ=109.5°. Recall that the ∑3(1 1 1) coherent twin boundary had 

a very simple boundary structure and the lowest boundary energy of all the <1 1 0> tilt GBs. This simple boundary structure 

has no excess free volume for local atoms to rearrange themselves at the boundary plane, and therefore it is hard to serve as 

a source of dislocation when the maximum tensile stress has been reached. Lattice dislocations nucleated homogeneously 

and their propagation intra-grains are visible in the bicrystal model, as shown in Fig.10(a). This is the same deformation 

mechanism as a single crystal, so the calculated tensile strength is identical. In Fig.10(b), the dislocation loops were 

nucleated on three active slip planes (      ), (      ) and (      ) at a very similar strain, both of which were the favored slip 

systems with the maximum Schmid factor           
   =           

   =           
   =0.314. No dislocation appeared to nucleate from 

the boundary plane during the process of tension deformation. Actually, the ∑3(1 1 1) GB is the only case in our study of 

the <1 1 0> tilt GBs that did not emit dislocations. 
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Figure-10. (a)-(b) Dislocation nucleation from Cu bicrystal with ∑3(1 1 1) θ=109.5° GB under uniaxial tension at 10 K. (c)-(d) Dislocation 

nucleation from Cu bicrystal with ∑171(11 11 10) θ=114.5° GB under uniaxial tension at 10 K. Atoms with perfect fcc structures are removed 

and atoms of different colors represent the same as described in Fig.7. 

Compared to the ∑3(1 1 1) coherent twin boundary, there was only a small deviation in lattice misorientation across the 

∑171(11 11 10) θ=114.5° GB. This kind of GB structure can be defined as a vicinal twin boundary
45

 where the 5° 

misorientation is accommodated by a number of distorted   structural units and dissociated   structural units to provide a 

symmetrical structure. Following the work of Rittner and Merkle
28

, the distorted   units can be described as cores of 

alternating a/3<1 1 1> twin dislocations, or disconnections, while the dissociated   units can be represented as a/6 <1 1 2> 

Shockley partial dislocations. The a/3 <1 1 1> disconnections were observed in previous experimental work by HRTEM in 

some fcc metals
42, 46, 47

. The ∑171(11 11 10) GB disconnection and its dissociated partial dislocations are indicated by the 

arrows in Fig.10(c), and a detailed view can be seen in Fig.4(a). It is worth noting that, unlike the structure of GBs with 

50.5°<θ<109.5°, the dissociated facet in ∑171(11 11 10) GB was along the primary slip plane in grain-A and Grain-B, and 

therefore when subjected to the uniaxial tensile deformation, the pre-nucleated Shockley partial dislocations can propagate 

rapidly with the increasing length of intrinsic stacking fault behind at ε=1.4%, as shown in Fig.10(d). Since the partial 

dislocations have already nucleated in the equilibrium boundary structure, only a low stress can drive it to emit, which can 

explain the sharp decrease in the peak stress from the ∑3(1 1 1) coherent twin boundary to the ∑171(11 11 10) vicinal twin 

boundary. 

3.5 Dislocation nucleation from GB with θ>114.5° 

As was introduced previously, all the GBs with a misorientation angle of θ>109.5° contained the   structural units. 

Sansoz and Molinari
48, 49

 correlated the   structural unit with the incidence of atomic shuffling during shear deformation 

and proposed that the free volume inherent to this structural feature triggered the atomic shuffling event, while Spearot et 

al.
37, 50

 correlated the mechanical behavior of Cu <1 1 0> GBs with the intrinsic large free volume of the   structural unit 

and its evolution during the dislocation nucleation. How the   units acted as the source of dislocation nucleation in 

different <1 1 0> GBs with θ>114.5° has been investigated in this study. 

Again, a visual inspection of the MD simulation results indicated that the maximum tensile stress corresponded to the 

nucleation of partial dislocations from GBs in the range of θ>109.5°. Fig.11 shows the images of dislocation nucleation 

from the ∑11(3 3 2) GB, ∑9(2 2 1) GB, ∑19(3 3 1) GB, and ∑73(6 6 1) GB at an early stage after they had reached their 

maximum tensile stress, and the corresponding energy barrier calculations for dislocations to nucleate from the GBs are 

shown in Fig.12(a)-(d). Fig.11 shows that the Shockley partial dislocations have nucleated and propagated along (     ) and 
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(      ) plane, after originating from the collapsed   units that were connected to the boundary by a stacking fault. They are 

the primary slip systems according to the Schmid analysis. Notice here that the nucleation of Shockley partial dislocations 

were not nucleated collectively in all the   units from the boundary plane and only certain nucleated dislocations 

propagated away from the plane. Interestingly, the collapsed   units evolved into   structural units shown in Fig.11(a), (b) 

and (d), Where in Fig.11(c), the collapsed   units did not evolve into the   units like the other three GBs, which indicated 

there was a different deformation mechanism. To reduce the article body, description of the deformation process was 

provided in the supplementary document. Fig.S1 shows a detailed view of the transformation of the   structural units in 

different GBs during the dislocation nucleation process where one structural period of each GB was extracted for analysis. 

 

Figure-11. Dislocation nucleation and propagation from (a) ∑11(3 3 2) GB, (b) ∑9(2 2 1) GB, (c) ∑19(3 3 1) GB and (d) ∑73(6 6 1) GB under a 

uniaxial tension at 10 K. Atoms with perfect fcc structures are removed and atoms of different colors represent the same as described in Fig.7. 

         

         

Figure-12. The calculated energy barrier for dislocations to nucleate from different GBs. (a) ∑11(3 3 2) GB, ∑9(2 2 1) GB, ∑19(3 3 1) GB, and 
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∑73(6 6 1)GB. 

4. Remarks and conclusions 

In every case of this study, the maximum tensile stress of the bicrystal models corresponded to the heterogeneous 

nucleation of partial dislocations from GBs, except for the ∑3(1 1 1) θ=109.5° coherent twin boundary due to its simple and 

stable boundary structure and extremely low boundary energy. Within the misorientation range of θ<109.5°, the tensile 

strength of bicrystals showed a consistent trend with the value of single crystals, which implied that lattice crystallographic 

geometry played a dominant role on the GB mechanical behavior. The incipient plastic deformation of bicrystal models was 

evidenced by a number of V-shaped partial dislocation loops nucleated from GB plane, as well as the nucleation of extrinsic 

stacking fault or twin fault. The maximum tensile stress of GBs with θ>109.5° was much lower than the value of single 

crystals and showed a different trend. The simulation results indicated that the intrinsic GB structure, instead of having a 

lattice orientation, became the predominant factor that determined the mechanical behavior of GBs in this range. 

The maximum tensile stress of each GB was plotted in Fig.13 as a function of GB energy. The energy barrier of 

dislocation nucleation from different GBs against their maximum tensile stress was plotted in Fig.14. Since the ∑3(1 1 1) 

GB (coherent twin boundary) has a very simple structure and a stable configuration, the dislocations were nucleated in the 

matrix lattice without any dislocation nucleation from the GB plane during the simulation, which prevented the result of 

energy barrier calculation in Fig.14. There is generally an inverse relationship between the GB tensile strength and GB 

energy, while the energy barriers associated with dislocation nucleation for GBs showed a positive relationship to the tensile 

strength. These results indicated that the lower energy GBs with more stable boundary structures required higher tensile 

stress to nucleate dislocations during the onset of plastic deformation, and therefore the nucleation barrier was 

correspondingly higher. This was the case for GBs with θ≤109.5°. In reverse, for the less stable GBs (θ>109.5°) with a 

higher boundary energy, a lower tensile stress can overcome the energy barrier to activate the dislocation nucleation from 

GBs. However, GB energy alone cannot determine the GB tensile strength and its nucleation barrier. For example, the 

energy of ∑11(1 1 3) θ=50.5° GB corresponds to the local energy cusp in Fig.3, but its tensile strength (9.55 GPa) and the 

nucleation barrier (4.85 mJ/m
3
) were not the local maximum, and in addition, there appears to be no explicit relationship 

between GB energy and the maximum tensile stress in the two circled areas shown in Fig.13. 

Based on results of this investigation, the geometry of the bicrystal system or the orientation of the applied loading played 

an important role in the process of dislocation nucleation because the single crystal calculations showed a consistent trend 

with the results of bicrystal GBs in the range of θ<109.5° shown in Fig.6(c). But it failed to explain the abrupt drop in 

tensile stress in the range of θ>109.5°, where the GB structure was determined to play a dominant role. The intrinsic large 

free volume (  structural units) involved in the boundary plane of GBs with θ>109.5° resulted in a high boundary energy 

and provided enough space for the GB atoms to be rearranged during tension deformation to facilitate the dislocation 

nucleation and accommodate the local stress. In addition, the impact of GB structure on dislocation nucleation was also 

evidenced by GBs with   structural units. For example, the consecutive shrinkage of   units along the ∑11(3 3 2) GB 

provided a nucleation source for an extrinsic stacking fault and a twin fault. Moreover, a very special case was found for the 

∑171(11 11 10) GB (vicinal twin boundary). It had the second lowest boundary energy (296mJ/m
2
) of all the GBs 

investigated in this study, but its tensile strength (1.6 GPa) and nucleation barrier (0.1mJ/m
3
 ) was the lowest. This 

contradicted the general trend shown in Fig.13, where the lower boundary energy caused higher nucleation stress. As 

mentioned previously, this was mainly due to the dissociated dislocation from the boundary plane in the equilibrium 

structure of ∑171(11 11 10) GB which made the nucleation process become very easy. This result further emphasizes the 

important role that GB structures play in the mechanical property of materials.  



14 

 

Figure-13. Maximum tensile stress of GBs plotted as a function of GB energy. 

 

Figure-14. Energy barrier of dislocation nucleation from GB plotted as a function of maximum tensile stress. 

In conclusion, molecular dynamics simulations were conducted on Cu bicrystals with different <1 1 0> tilt GBs to study 

their structures, energy, mechanical property, and the dislocation nucleation mechanisms under tensile loading. In this study, 

some of the GB properties were quantified, these included GB energy, GB tensile strength, and the dislocation nucleation 

barrier on GB. We presented the atomistic mechanisms of the dislocation nucleation from various GBs and investigated 

their correlation with GB properties. The results of this study can help us to better understand the dislocation source in GB, 

and provide a theoretical basis for grain boundary engineering (GBE) to design the GB character distribution to attain 

certain bulk polycrystalline properties. 
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