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Prediction of activity type in preschool children using machine learning
techniques

Abstract
Objectives Recent research has shown that machine learning techniques can accurately predict activity
classes from accelerometer data in adolescents and adults. The purpose of this study is to develop and test
machine learning models for predicting activity type in preschool-aged children. Design Participants
completed 12 standardised activity trials (TV, reading, tablet game, quiet play, art, treasure hunt, cleaning up,
active game, obstacle course, bicycle riding) over two laboratory visits. Methods Eleven children aged 3-6
years (mean age = 4.8 ± 0.87; 55% girls) completed the activity trials while wearing an ActiGraph GT3X+
accelerometer on the right hip. Activities were categorised into five activity classes: sedentary activities, light
activities, moderate to vigorous activities, walking, and running. A standard feed-forward Artificial Neural
Network and a Deep Learning Ensemble Network were trained on features in the accelerometer data used in
previous investigations (10th, 25th, 50th, 75th and 90th percentiles and the lag-one autocorrelation). Results
Overall recognition accuracy for the standard feed forward Artificial Neural Network was 69.7%. Recognition
accuracy for sedentary activities, light activities and games, moderate-to-vigorous activities, walking, and
running was 82%, 79%, 64%, 36% and 46%, respectively. In comparison, overall recognition accuracy for the
Deep Learning Ensemble Network was 82.6%. For sedentary activities, light activities and games, moderate-
to-vigorous activities, walking, and running recognition accuracy was 84%, 91%, 79%, 73% and 73%,
respectively. Conclusions Ensemble machine learning approaches such as Deep Learning Ensemble Network
can accurately predict activity type from accelerometer data in preschool children.
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Abstract 

Objectives: Recent research has shown that machine learning techniques can accurately predict 

activity classes from accelerometer data in adolescents and adults. The purpose of this study is to 

develop and test machine learning models for predicting activity type in preschool-aged children. 

Design: Participants completed 12 standardised activity trials (TV, reading, tablet game, quiet play, 

art, treasure hunt, cleaning up, active game, obstacle course, bicycle riding) over two laboratory visits.  

Methods: Eleven children aged 3-6 years (mean age = 4.8 ± 0.87; 55% girls) completed the activity 

trials while wearing an ActiGraph GT3X+ accelerometer on the right hip. Activities were categorised 

into five activity classes: sedentary activities, light activities, moderate to vigorous activities, walking, 

and running. A standard feed-forward Artificial Neural Network (ANN) and a Deep Learning 

Ensemble Network (DLEN) were trained on features in the accelerometer data used in previous 

investigations (10th, 25th, 50th, 75th and 90th percentiles and the lag-one autocorrelation).   

Results: Overall recognition accuracy for the standard feed forward ANN was 69.7%. Recognition 

accuracy for sedentary activities, light activities and games, moderate-to-vigorous activities, walking, 

and running was 82%, 79%, 64%, 36% and 46%, respectively. In comparison, overall recognition 
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accuracy for the DLEN was 82.6%. For sedentary activities, light activities and games, moderate-to-

vigorous activities, walking, and running recognition accuracy was 84%, 91%, 79%, 73% and 73%, 

respectively. 

Conclusion: Ensemble machine learning approaches such as DLEN can accurately predict activity 

type from accelerometer data in preschool children. 

 

Keywords: Physical activity; Pattern recognition; Accelerometry; Neural networks; Exercise; 

Validity.  
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Introduction 

Due to the limitations of self-reports and pedometers, as well as the intermittent activity patterns 

of children, accelerometry has become the ’best-practice methodology’ for assessing physical activity 

(PA) and sedentary behaviour in pre-schoolers, school-aged children and adolescents1,2. To interpret 

accelerometry count data, researchers have typically used cut-points developed from regression or 

receiver operating characteristic curve analyses to estimate time spent in sedentary behaviour, and 

light, moderate and vigorous intensity PA. However, conventional regression-based approaches are 

limited in their ability to accurately predict energy expenditure across a wide range of activities3,4,5, 

because the relationship between accelerometer counts and energy expenditure (EE) differs according 

to the type of activity performed. Not surprisingly, cut-point methods exhibit 28%-45% 

misclassification of PA intensity in children and adolescents3,5,6. As accelerometry use is widespread, 

this level of misclassification has significant implications for understanding and promoting PA among 

children and adolescents internationally.  

Innovative data processing methodologies such as those utilising machine learning approaches, 

provide PA researchers with the potential to substantially improve the accuracy of PA measurement. 

Machine learning is an area of research concerned with the design and development of algorithms that 

allow computers to “learn” from data. The ability to recognise complex patterns and make intelligent 

decisions based on data is the main focus of machine learning research. An important class of 

machine learning algorithms is Artificial Neural Networks (ANN). ANNs are typically applied to 

applications where the complexity of the data or the task makes the design of alternative approaches 

impractical. 

To date, just two studies have employed ANNs to predict activity type in children and 

adolescents.  Trost and colleagues6 developed and tested an ANN to classify PA type from second-by-

second hip-worn ActiGraph data in 5 to 15 year-olds. Participants completed 12 activity trials that 

were categorised into 5 activity types: sedentary, walking, running, light intensity house-hold 

activities or games, and moderate-to-vigorous games or sports. Mean accuracy for activity type 

ranged from 81.3% to 88.4%. De Vries et al. trained an ANN to predict 9-12 year old children’s PA 
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type from accelerometers worn on the hip and ankle7. The overall classification accuracy across the 

seven activity types evaluated ranged from 57.2% (GT1M/ankle placement) to 76.8% (GT3X/hip 

placement). 

Although the aforementioned studies indicate that machine learning approaches are feasible and 

offer enhanced accuracy for accelerometry-based assessments of PA in school-aged children and 

adolescents, the validity of neural networks developed in preschool-aged children has not been 

investigated. Due to developmental, biomechanical, and behavioural factors, such as differences in 

motor proficiency8, and PA types and patterns1,9, models developed in older children might not be 

generalizable to young children. To our knowledge, machine learning based accelerometry data 

modeling approaches are yet to be evaluated in pre-school children. Furthermore, previous models 

developed in school-aged children and adolescents have been trained and tested using conventional 

feed-forward ANNs with a single hidden layer, also known as Multi-Layer Perceptron Networks 

(MLP). Therefore, this study aimed to examine and compare the accuracy of MLP as well as more 

advanced models, such as a deep-learning-inspired neural network, for predicting PA type in 

preschool children.  

Methods 

Eleven children aged 3-6 years (mean age = 4.8 ± 0.87; 55% girls; mean BMI = 15.9 ± 1.0 

kg/m2, 9.1% overweight10) were recruited to participate in the study via University staff email lists 

and word-of-mouth. Parent consent was obtained prior to participation. The study was approved by 

the University of Wollongong Human Research Ethics Committee. 

Participants completed 12 structured activity trials (see Supplementary Table for a description of 

each activity) over two laboratory visits scheduled within a 3-wk period. Participants undertook the 

following six trials at visit 1: watching TV (TV), sitting on floor being read to (reading), standing 

making a collage on a wall (art), walking (walking), playing an active game against an instructor 

(active game), and completing an obstacle course (obstacle course). The remaining six trials were 

completed at visit 2: sitting on a chair playing a computer tablet game (tablet), sitting on floor playing 
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quietly with toys (quiet play), treasure hunt (treasure hunt), cleaning up toys (clean-up), bicycle riding 

(bicycle), and running (running). Each trial was completed for 4-5 min. These 12 activities were then 

grouped into five activity classes: sedentary activities (TV, reading, tablet, and quiet play), light 

activities and games (art, treasure hunt, and clean-up), moderate to vigorous activities (active game, 

obstacle course, and bicycle), walking, and running. 

Participants were fitted with an ActiGraph GT3X+ (ActiGraph, Pensacola, FL) on the mid-

axillary line at the iliac crest. The GT3X+ records time varying accelerations ranging in magnitude 

from ±6g. The acceleration output is digitised by a 12-bit analog-to-digital converter at a user-

specified rate (30-100 Hz). A sampling frequency of 100 Hz was used in this study.  

For each activity trial, 1s count data between minutes 2 and 4 was used for analyses. Since each 

of the eleven participants performed 12 different activity trials, there were a total of 120s *11 subjects 

*12 trials = 15,840 instances of data available for the experiments. The 120s segment was divided into 

non-overlapping time windows. Window sizes of 10s, 15s, 20s, 30s, and 60s were evaluated 

(Parameters in bold font indicate the optimal configuration). For each window, features were 

extracted from those data instances. For ease of comparisons we utilised the same features used by 

Trost and colleagues6. These included the 10th, 25th, 50th, 75th and 90th percentiles and the lag-one 

autocorrelation values.   

Three different ANNs were evaluated in this study: the standard feed-forward Multi-Layer 

Perceptron Network (MLP), the Self-Organizing Map (SOM), and the Deep Learning Ensemble 

Network (DLEN). The MLP is a supervised learning model and commonly consists of three layers: 

input, hidden and output layers11. Neurons in those layers are fully connected by a set of adjustable 

parameters called “weights”. These weights are updated by a learning function which requires an 

input (training) set consisting of numeric features and associated target values. Consequently, the 

number of neurons in the input and output layer must match the dimension of input samples and the 

dimension of class labels respectively. The dimension of the hidden layer can be adjusted freely. The 

schematic of the MLP is shown in Figure 1(a). 
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< insert Figure 1 here > 

 

The SOM is an unsupervised learning model that is popularly applied to tasks requiring dimension 

reduction or clustering12. The SOM is computationally very efficient which makes it particularly 

useful for data mining12.  Figure 1(b) depicts the schematic of the SOM. Both MLP and SOM take in 

inputs in the form of vectors. If those vectors are long in size, it refers to the high dimensional 

input/data space. The SOM can project its input vectors to a 2-dimensional grid referred to as the 

“activation map”, such that each input vector is then represented by a 2-dimensional vector or low 

dimensional data.  

Because the MLP tends to perform poorly when dealing with limited number of samples and high 

dimensional input space, it makes sense to combine the SOM with MLP since they have 

complementary properties. The SOM has advantages over the MLP in that the algorithm is trained 

unsupervised. The resulting model is much less sensitive to “noise” or variability in the data. The 

MLP on the other hand is trained supervised, and has good generalisation properties. Therefore, 

adopting concepts from Deep Learning13, we evaluated the performance of the ensemble model 

DLEN consisting of a SOM as a first layer, followed by an MLP as a second layer. Both layers were 

trained on the same set of data with the second layer receiving the output of the first layer as an 

additional input.  

The MLP and SOM models were implemented in plain C programming language. The SOM's 

parameters including the learning rate was selected from 0.6, 0.8, 1.0, 1.2 and the radius in 12, 15, 20, 

25. The SOM activation map sizes tried were 19x17, 20x19, 23x20 and 25x22. A number of MLP 

configurations were decided by assigning the size of the hidden layer to 3, 8, 13, 17 or 25 and the 

learning rate to 0.001, 0.01 or 0.5. For each validation round, the MLP and SOM were evaluated 10 

times using different random initial conditions. The trained models providing the best performance on 
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the training set was selected to produce the result for the test set. Both the MLP and SOM were 

trained for 10,000 iterations. 

The leave-one-subject-out cross validation approach was used for model assessment. Thus, the 

model was trained on all input samples except for the data of one participant as the test set. After 

training, the model was then tested on the left-out data. The experiment was repeated until each 

participant was considered exactly once for testing. For comparison purposes the MLP results served 

as the baseline. The confusion matrix and overall accuracy (ACC) were reported.  

Results 

Table 1 presents confusion matrices for the three ANNs with window sizes of 10s, 30s, and 60s. 

The average recognition accuracy for 60s windows for the MLP, SOM, and DLEN was 69.7%, 

53.8%, and 82.6%, respectively. With 10 s windows, recognition accuracy decreased marginally to 

60.6%, 51.5%, and 72.0%, respectively. The performance improvement of the DLEN was largely 

derived from an increase in the ability to predict walking and running. In particular, relative to MLP, 

the accuracy of the DLEN improved from 45.5% to 72.7% for running, and from 36.4% to 72.7% for 

walking. Similar improvements in walking recognition were observed when compared to the SOM; 

however the SOM failed to recognise any running windows. The confusion matrices show that the 

MLP and SOM commonly confused walking and running with more generic classes such as light 

activities and games and moderate activities.  

 

< Insert Table 1 here > 

 

Accelerometry data is available from an earlier study evaluating the accuracy of a standard MLP 

in 5–15 year-old school-aged children and adolescents (n = 100) 6. As in the current study, activity 

trials were categorised into five activity classes; sedentary activities, light house-hold activities or 

games, moderate-to-vigorous games and sports, walking, and running. We hypothesised that the MLP 



Hagenbuchner M, et al. Prediction of activity type in preschool children using machine learning 
techniques. J Sci Med Sport (2014), http://dx.doi.org/10.1016/j.jsams.2014.06.003 

Page | 8 
 

model would provide similar recognition accuracy to that reported by Trost et al.6 and that the DLEN 

would provide higher recognition accuracy than the standard MLP or SOM. The results are 

summarised in Table 2. In agreement with the results of Trost et al.6 recognition accuracy for the MLP 

was 88.4%.  Recognition accuracy for the SOM and DLEN was higher than that observed for 

preschool children at 75.1% and 89.7%.   

< Insert Table 2 here > 

Discussion 

To our knowledge, this is the first study to develop, test and compare neural networks to classify 

activity type from accelerometer data in preschool-aged children. The findings indicate that a standard 

feed-forward MLP using the feature set described by Staudenmayer and colleagues14 and tested in 

children and adolescents by Trost et al.6 exhibited fair to poor recognition accuracy (69.7%) for 

classifying PA type in young children. However, through the application of a deep-learning-inspired 

ensemble network, substantial improvements in recognition accuracy were achieved (82.6%). The 

recognition of walking and running increased most substantially from 36.4% and 45.5% to 72.7% in 

both cases. When the DLEN was tested in a sample of school-aged children and adolescents, 

recognition of PA type from processed 1Hz accelerometer data (89.7%) was higher than for young 

children, although minimal gains were achieved relative to MLP (88.4%).  

When compared to MLP, DLEN provided substantially improved recognition accuracy in 

preschool-aged children. Improvements were most prominent for walking (+36%), running (+27%), 

moderate-to-vigorous activities (+15%), and light activities and games (+12%). The SOM as a pre-

training module in DLEN brings about two benefits. The first benefit is that SOM reduces 

dimensionality of the problem by reducing the number of potential solutions13, assisting the MLP to 

find an optimal solution during the training procedure. The second benefit is that SOM is flexible in 

the mapping size13, which can assist in identifying distinctions between the activity classes by 

“stretching out” the data, allowing it to handle potential heterogeneity in the classes.  
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Overall recognition accuracy for the standard feed-forward MLP was lower among preschool-

aged children than previously found among school-aged children and adolescents (88.4%).6 Trost and 

colleagues found that recognition accuracy for sedentary activities and walking exceeded 90%, 

whereas running trials were correctly recognised 79% of the time6. Among preschool-aged children, 

the MLP correctly recognised sedentary activities 82% of the time, however, recognition accuracy for 

walking and running were considerably lower at 36% and 46%, respectively. For walking, 9%, 27%, 

and 27% of 60s windows were misclassified as sedentary, light activities and games, and running, 

respectively. Likewise, 27% and 27% of running trial windows were misclassified as light activities 

and games and walking, respectively. One explanation for these contrasting findings is that there may 

have been more variability in the data for preschool children, possibly because the “hybrid classes”, 

such as light activities and games, may have been more heterogeneous (e.g., treasure hunt and clean-

up may have included some walking and running) compared to the data for children and adolescents. 

Two of the activities in Trost et al.’s6 light-intensity household activities or games category (floor 

sweep and laundry task) had significant periods of walking, just as the moderate-to-vigorous intensity 

games and sports trial of basketball included significant periods of walking and running. Thus, both 

the present study and the study by Trost and colleagues included heterogeneous activity classes that 

were distinct from continuous walking or running in isolation. Nevertheless, because preschool 

children performed different types of activities and exhibited greater variability in performing them, 

we believe the greater improvement in performance provided by DLEN over the standard MLP in 

preschoolers was a function of DLEN’s ability to handle learning problems with limited number of 

samples and to accommodate more complex movement patterns. Likewise, the larger sample size for 

children and adolescents may have contributed to the higher recognition accuracy for MLP in that age 

group, because this provided the model with a greater number of correct solutions for each activity 

class during training.  

Closer inspection of the misclassifications which occurred between the sedentary and moderate-

to-vigorous PA classes revealed that these misclassifications only occurred for tablet and quiet play, 

during which two participants exhibited a significant degree of body movement. Similarly, instances 
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of bicycle riding (three cases), active game (two cases) and obstacle course (one case) were 

misclassified as sedentary. The hip remains largely inactive during cycling, possibly explaining these 

misclassifications. The other cases were misclassified because the participants had a rest period 

during the trial (i.e. stopping and standing still).  

Model accuracy was optimised using 60s windows, however, shorter windows may be 

required to characterise the pulsatile and sporadic nature of preschoolers’ free-living PA.1 

Importantly, other than for walking, reducing the window size to 10s had a limited impact on 

the DLEN’s accuracy. As walking was consistently misclassified as running, the accuracy for 

a single "active locomotion" (walk and run combined) category, which is justified given that 

recommendations for preschoolers focus on total (light, moderate and vigorous) PA15, would 

be 72.7%, 77.3%, and 81.2% for windows of 10s, 30s, and 60s, respectively, based on these 

findings. Thus, the DLEN using a 10s window may be a viable option for field-based studies.   

This study had a number of strengths. It is the first to evaluate machine learning approaches to 

accelerometry data analysis in preschool-aged children. The activity protocol adhered to best practice 

recommendations16; it included a wide variety of common developmentally-appropriate activities 

ranging in intensity from sedentary to vigorous, and including both ambulatory and free-living tasks. 

An innovative modelling approach that has not yet been explored in PA research, involving a deep-

learning-inspired ensemble neural network, was examined. This alternative model was compared to a 

standard ANN that has shown promising results in adults14, and children and youth6. Further, the 

capability of DLEN for recognising PA type was confirmed when tested in a large sample of school-

aged children. The experiments have shown that the use of a more suitable classifier can improve the 

accuracy more substantially than would be obtainable from an increased sample size; DLEN 

improved accuracy from 69.7% to 82.6% whereas a 10-fold sample size increase improved the 

performance from 82.6% to just 89.7%. 

Some limitations should also be considered when interpreting the findings. Although the number 

of available data points was sufficient to evaluate and compare different machine learning models, the 
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relatively small number of preschool-aged participants might influence the generalisability of the 

findings. Likewise, the activity trials were completed in a controlled laboratory environment that 

might not reflect the free-living behaviours of young children. Similarly, the inclusion of frequency 

domain features could potentially improve the discrimination between pattern classes. Therefore, 

larger studies using simulated or entirely free-living activity protocols are required to test the accuracy 

of machine learning approaches against the criterion measure of direct observation for activity type 

recognition in preschool children. To accommodate the intermittent activity patterns of young 

children, future studies should use high frequency raw acceleration signal and extract features over 

shorter time windows (< 5s).  

Conclusion 

Neural networks can be used to predict activity type using a single waist-mounted accelerometer 

in preschool-aged children. Compared to a standard feed-forward MLP, a deep-learning-inspired 

ensemble neural network provided enhanced accuracy among preschool children, and comparable 

accuracy in school-aged children. These results contribute to an emerging body of evidence 

supporting the application of pattern recognition approaches to accelerometry data analysis in children 

and youth.  

Practical Implications 

 Neural networks can be used to accurately predict activity type from waist-mounted 

accelerometry data in preschool-aged children. 

 Compared to the accuracy of a standard feed-forward ANN (MLP) for recognising activity 

type, a deep-learning-inspired ensemble neural network provided the best accuracy among 

preschool children. 

 The standard MLP and DLEN provided comparable accuracy for predicting activity type in 

school-aged children and adolescents. 
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 Improved accuracy for measuring physical activity in preschool children can assist in 

understanding and promoting physical activity in young children, and can contribute to 

addressing important questions such as: i) how much and which types of activity are 

important for health?, ii) how active are preschool children?, iii) what are the key 

determinants of physical activity, and iv) which strategies are most effective for promoting 

physical activity in young children?  
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Table 1: Leave-one-out performance of ANN models among preschool children (n = 11).  

   ANN classification of Activity Type Total

ACC Activity Type Window 1 2 3 4 5 

S
O

M
 

1.Sedentary 10s 0.750[33] 0.068[3] 0.159[7] 0.000[0] 0.023[1]  

 30s 0.727[32] 0.159[7] 0.091[4] 0.000[0] 0.023[1]  

 60s 0.591[26] 0.318[14] 0.068[3] 0.023[1] 0.000[0]  

2.Light activities and 
games 

10s 0.091[3] 0.515[17] 0.182[6] 0.121[4] 0.091[3]  

30s 0.212[7] 0.515[17] 0.212[7] 0.061[2] 0.000[0]  

60s 0.000[0] 0.576[19] 0.303[10] 0.000[0] 0.121[4]  

3.Moderate-to-
vigorous activities 

10s 0.303[10] 0.091[3] 0.545[18] 0.000[0] 0.061[2]  

30s 0.212[7] 0.152[5] 0.636[21] 0.000[0] 0.000[0]  

60s 0.152[5] 0.152[5] 0.667[22] 0.030[1] 0.000[0]  

4.Walking 10s 0.182[2] 0.818[9] 0.000[0] 0.000[0] 0.000[0]  

 30s 0.091[1] 0.727[8] 0.000[0] 0.000[0] 0.182[2]  

 60s 0.091[1] 0.545[6] 0.000[0] 0.364[4] 0.000[0]  

5.Running 10s 0.091[1] 0.909[10] 0.000[0] 0.000[0] 0.000[0] 0.515 

 30s 0.182[2] 0.364[4] 0.182[2] 0.273[3] 0.000[0] 0.530 

 60s 0.000[0] 0.727[8] 0.273[3] 0.000[0] 0.000[0] 0.538

M
L

P
 

1.Sedentary 10s 0.750[33] 0.136[6] 0.068[3] 0.000[0] 0.045[2]  

 30s 0.750[33] 0.114[5] 0.068[3] 0.000[0] 0.068[3]  

 60s 0.818[36] 0.068[3] 0.068[3] 0.023[1] 0.023[1]  

2.Light activities and 
games 

10s 0.061[2] 0.788[26] 0.091[3] 0.000[0] 0.061[2]  

30s 0.000[0] 0.879[29] 0.030[1] 0.000[0] 0.091[3]  

60s 0.030[1] 0.788[26] 0.061[2] 0.091[3] 0.030[1]  

3.Moderate-to-
vigorous activities 

10s 0.182[6] 0.182[6] 0.606[20] 0.000[0] 0.030[1]  

30s 0.182[6] 0.182[6] 0.606[20] 0.000[0] 0.030[1]  

60s 0.212[7] 0.121[4] 0.636[21] 0.000[0] 0.030[1]  

4.Walking 10s 0.091[1] 0.727[8] 0.000[0] 0.000[0]  0.182[2]  

 30s 0.000[0] 0.727[8] 0.000[0] 0.000[0] 0.273[3]  

 60s 0.091[1] 0.273[3] 0.000[0] 0.364[4] 0.273[3]  

5.Running 10s 0.000[0] 0.727[8] 0.091[1] 0.091[1] 0.091[1] 0.606

 30s 0.000[0] 0.636[7] 0.091[1] 0.091[1] 0.182[2] 0.636 

 60s 0.000[0] 0.273[3] 0.000[0] 0.273[3] 0.455[5] 0.697 
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D
L

E
N

 
1.Sedentary 10s 0.750[33] 0.182[8] 0.068[3] 0.000[0] 0.000[0]  

 30s 0.795[35] 0.136[6] 0.068[3] 0.000[0] 0.000[0]  

 60s 0.841[37] 0.045[2] 0.091[4] 0.023[1] 0.000[0]  

2.Light activities and 
games 

10s 0.000[0] 0.818[27] 0.121[4] 0.030[1] 0.030[1]  

30s 0.000[0] 0.879[29] 0.061[2] 0.061[2] 0.000[0]  

60s 0.030[1] 0.909[30] 0.030[1] 0.030[1] 0.000[0]  

3.Moderate-to-
vigorous activities 

10s 0.121[4] 0.091[3] 0.727[24] 0.000[0] 0.061[2]  

30s 0.121[4] 0.061[2] 0.758[25] 0.000[0] 0.061[2]  

60s 0.182[6] 0.030[1] 0.788[26] 0.000[0] 0.000[0]  

4.Walking 10s 0.000[0] 0.182[2] 0.091[1] 0.364[4] 0.364[4]  

 30s 0.000[0] 0.091[1] 0.091[1] 0.364[4] 0.455[5]  

 60s 0.000[0] 0.182[2] 0.000[0] 0.727[8] 0.091[1]  

5.Running 10s 0.000[0] 0.273[3] 0.000[0] 0.091[1] 0.636[7] 0.720

 30s 0.000[0] 0.273[3] 0.000[0] 0.091[1] 0.636[7] 0.758

 60s 0.000[0] 0.182[2] 0.000[0] 0.091[1] 0.727[8] 0.826

Values in boldface indicate the proportion [absolute value] of time segments correctly classified. 

ANN: Artificial Neural Network; SOM: Self-Organizing Map; MLP: Multi-layer Perceptron network; 

DLEN: Deep Learning Ensemble Network. 
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Table 2: Performance of ANN models among school-aged children and adolescents (n = 100) using a 

60s window.  

  ANN classification of Activity Type Total

ACC Activity Type 1 2 3 4 5 

S
O

M
 

1.Sedentary 0.960[95] 0.040[4] 0.000[0] 0.000[0] 0.000[0]  

2.Light HH and games 0.242[24] 0.727[72] 0.020[2] 0.000[0] 0.010[1]  

3. Moderate-to-vigorous 0.045[3] 0.364[24] 0.561[37] 0.000[0] 0.030[2]  

4.Walking 0.010[1] 0.152[15] 0.141[14] 0.606[60] 0.091[9]  

5.Running 0.000[0] 0.030[1] 0.212[7] 0.121[4] 0.636[21] 0.719

M
L

P
 

1.Sedentary 0.939[93] 0.051[5] 0.000[0] 0.010[1] 0.000[0]  

2.Light HH and games 0.172[17] 0.808[80] 0.010[1] 0.010[1] 0.000[0]  

3.Moderate-to-vigorous 0.015[1] 0.061[4] 0.909[60] 0.015[1] 0.000[0]  

4.Walking 0.010[1] 0.000[0] 0.030[3] 0.929[91] 0.030[3]  

5.Running 0.000[0] 0.000[0] 0.091[3] 0.152[5] 0.758[25] 0.884

D
L

E
N

 

1.Sedentary 0.949[94] 0.051[5] 0.000[0] 0.000[0] 0.000[0]  

2.Light HH and games 0.172[17] 0.818[81] 0.010[1] 0.000[0] 0.000[0]  

3.Moderate-to-vigorous 0.015[1] 0.031[2] 0.939[62] 0.015[1] 0.000[0]  

4.Walking 0.010[1] 0.000[0] 0.051[5] 0.929[92] 0.010[1]  

5.Running 0.000[0] 0.000[0] 0.091[3] 0.121[4] 0.788[26] 0.897

Values in boldface indicate the proportion [absolute value] of time segments correctly classified. 

ANN: Artificial Neural Network; SOM: Self-Organizing Map; HH: house-hold; MLP: Multi-layer 

Perceptron network; DLEN: Deep Learning Ensemble Network. 
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Figure Legends 

 

Figure 1: (a) the schematic of an MLP. Shown is an MLP that takes the mappings of a SOM as 

additional input, which is referred to as the DLEN, and (b) the schematic of a two-dimensional SOM 

of size 3x3.   
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Supplementary Table: Activity Trials 

Activity Class Activity Trial Description 
Sedentary  Watching TV 

Tablet computer 
activity 
 
Reading 
 
Quiet play 

Sit in a comfortable chair watching TV. 
Sit in a chair at a table completing a 
developmentally-appropriate puzzle activity on a 
computer tablet. 
Sit on the floor on a cushion and listen to a story- 
book. 
Sit on the floor playing with 
toys/blocks/puzzles/dolls. 

Light activities 
and games 

Cleaning up toys Collect toys and equipment and return them to 
appropriate boxes. 

 Standing art 
 
Treasure hunt  

Create a collage on a whiteboard by sticking art 
materials onto contact paper. 
Walk through the activity room (20m x 10m) and 
search for and collect hidden sea creatures. 

Moderate-to- 
vigorous 
activities 

Bicycle riding 
 
 
Obstacle course 
 
 
Active game 

Ride a bicycle around the activity room (one lap = 
45m), with or without training wheels, as selected by 
parent/child.  
Move through an obstacle course involving jumping 
through hoops, crawling through a tunnel, hopping, 
climbing up foam stairs and jumping down. 
Clean up your backyard - Try to keep your playing 
area (4m x 3m) “clean” by throwing all bean-bags 
onto the instructors playing area. The instructor will 
do the same. Game ends when your playing area is 
clean (Based on child’s ability, instructor 
increases/decreases difficulty by playing 
faster/slower).  

Walking 
 
 
Running 

Walking 
 
 
Running 

Walk with instructor at a self-selected comfortable 
speed around the marked perimeter of the activity 
room (one lap = 45m) 
Run with instructor at a self-selected speed around 
the marked perimeter of the activity room (one lap = 
45m) 
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