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ABSTRACT 

Well-defined core-shell nanoparticles (NPs) containing concave cubic Au cores and TiO2 shells 

(CA@T) were synthesized in colloidal suspension. These CA@T NPs exhibit Localized Surface 

Plasmon Resonance (LSPR) absorption in the NIR region, which provides a unique property for 

utilizing the low energy range of the solar spectrum. In order to evaluate the plasmonic 

enhancement effect, a variety of CA@T NPs were incorporated into working electrodes of dye-

sensitized solar cells (DSSCs). By adjusting the shell thickness of CA@T NPs, the plasmonic 

property can be tuned to achieve maximum photovoltaic improvement. Furthermore, the DSSC 

cells fabricated with the CA@T NPs exhibit a remarkably plasmonic assisted conversion 

efficiency enhancement (23.3%), compared to that (14.8%) of the reference cells assembled with 

spherical Au@TiO2 core-shell (SA@T) NPs under similar conditions. Various characterizations 

reveal that this performance improvement is attributed to the much stronger electromagnetic field 

generated at the hot spots of CA@T NPs, resulting in significantly higher light harvesting and 

more efficient charge separation. This study also provides new insights into maximizing the 

plasmonic enhancement, offering great potential in other applications including light-matter 

interaction, photocatalytic energy conversion and new-generation solar cells.  

KEYWORDS: concave cubic Au@TiO2 core-shell nanoparticle, hot spot, localized surface 

plasmon resonance, plasmonic enhancement, dye-sensitized solar cells 
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INTRODUCTION 

Localized Surface Plasmon Resonance (LSPR) arising from metal nanoparticles (NPs) enables 

the manipulation of light at the sub-wavelength scale, by collecting oscillated conduction 

electrons coupling with propagating light wave in confined volume. Metallic nanomaterials with 

LSPR have attracted considerable scientific interest in the development of various applications, 

such as Surface-Enhanced Raman Spectroscopy (SERS),1 biosensor,2 imaging,3 photocatalysis,4 

and molecular electronics.5 In recent years, LSPR of metallic nanostructures has also proven to 

be a promising way to further improve the performance of various solar cell configurations, e.g., 

silicon solar cells,6 GaAs solar cells,7 organic solar cells,8 dye-sensitized solar cells (DSSCs),9 

and perovskite solar cells.10 By proper incorporation of metallic nanomaterials into electrodes, 

light can be efficiently trapped or concentrated due to the LSPR, resulting in the photovoltaic 

enhancement. To understand the observed improvement in power conversion efficiency (PCE), a 

variety of theories have been postulated and summarized as follows: 1) the local near field 

enhancement from surface plasmon excitation enhances charge carrier generation, resulting in 

the increase in photocurrent;9a,11 2) strong scattering of the plasmonic metals at surface plasmon 

wavelengths is able to re-direct light into a solar cell substrate;12 3) charge separation is 

promoted as a result of localized electromagnetic field.13  

In NPs, it is well known that the shape is as important as size in determining the plasmonic and 

catalytic properties of metallic NPs. To date, a number of synthetic strategies have been 

developed to prepare metallic NPs with various shapes, including sphere,14 cubes,15 octahedral,16 

rods,17 tetrahedra,18 bipyramids,19 and newly emerged concave cubes.20 Certain NPs with well-

defined sharp corners and edges, where hot spots located, would generate much stronger 

electromagnetic field20b,21 and exhibit larger plasmonic enhancement factors.22 Among those 
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intriguing nanostructures listed above, concave cubic NPs are the most interesting, because of 

their hot spots featuring intensified electromagnetic field as well as extraordinary high chemical 

activity originating from high-index facets. Despite such distinct optical and chemical properties 

of concave cubic NPs, there is no report yet on applying such concave nanostructures in 

photovoltaic devices. This could be due to the challenges in synthesis23 as well as structure 

stability especially in DSSC cells containing highly corrosive electrolyte.  

In this work, we report a strategy for the synthesis of hot spot-containing concave cubic 

Au@TiO2 core-shell (CA@T) NPs with precisely controlled core morphology and shell 

thickness using a colloidal wet-chemical approach. The hot spot-containing CA@T NPs are 

hypothesized to offer superior plasmonic enhancement. As discussed above, much stronger 

electromagnetic field is preferably induced at the sharp corners and edges of metal NPs. 

Therefore, more photons will be captured by hot spot-containing metal NPs resulting in more 

electrons generated, as compared to the normal spherical metal NPs with smooth surface 

(Scheme 1). To confirm our idea and evaluate the plasmonic enhancement effect, such hot spots-

containing core-shell NPs were incorporated into the working electrodes of DSSCs. Systematic 

study shows that optimal shell thickness of CA@T NPs is crucial in achieving maximum 

photovoltaic enhancement. More importantly, plasmonic assisted conversion efficiency 

enhancement (23.3%) was observed in the DSSC cells with hot spots-containing CA@T NPs, 

compared to that (14.8%) of the reference cells incorporating spherical Au@TiO2 core-shell 

(SA@T) NPs with comparable core size and shell thickness under the same testing conditions. 

This confirms our hypothesis and the feasibility of using new hot spot-containing CA@T NPs to 

maximize the plasmonic enhancement in photovoltaic devices.  
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Scheme 1 Schematic illustration of superior LSPR effect induced by (a) hot spot-containing 
concave cubic Au@TiO2 core-shell (CA@T) NP in comparison with (b) normal spherical 
Au@TiO2 core-shell (SA@T) NP.  

EXPERIMENTAL 

Concave Cubic Au@TiO2 Synthesis:  

Concave nanocubic Au with well-defined sharp corners and edges and the spherical Au 

nanoparticles for comparison were synthesized using a modified colloidal wet-chemical 

method.24 The well-defined CA@T NPs were synthesized according to the technique we 

developed previously.25 Firstly, 500 mL of as-prepared Au nanoparticle suspension was 

centrifuged and washed by DI water for 3 cycles. The particles were then re-dispersed in 25 mL 

DI water. Afterwards, 25 mL of 50 mM thioglycolic acid was added to the solution and stirred 

overnight to change the functional group of the metal’s surface to be preferable to TiO2 

deposition. The pH values of both Au-core solution and 25 mL of 0.5 M TiCl3 precursor solution 

were adjusted to 2.25 by NH4OH. The TiCl3 precursor solution was then added to the Au core 

solution under mechanical stirring. The pH of the reaction was kept at 2.25±0.05 throughout the 

reaction by dropping 1M NH4OH when the pH decreased. The TiO2 shell thickness could be 
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tuned by controlling the reaction time. After desirable deposition time, the reaction was stopped 

by centrifugation at 6000 rpm. The top aliquot was poured to remove the exceed TiCl3 precursor, 

and the NPs were re-dispersed, washed and centrifuged for 3 times, then dried at 60 °C for 24 

hours before use. The concave cubic Au@TiO2 core-shell NPs with four different shell 

thicknesses were denoted as CA@T-1, CA@T-2, CA@T-3, and CA@T-4, respectively, whist 

the spherical Au@TiO2 core-shell NP was named as SA@T. 

Electrode Preparation: To prepare the DSSC working electrodes, FTO substrates (2.2 mm 

thickness, 7-8 Ω/sq, OPV-FT022-7, OPVT-Yingkou) was cleaned with acetone and 2-propanol 

using an ultrasonic bath for 30 min, respectively, and then thoroughly rinsed with distilled water. 

The pastes incorporating various Au@TiO2 NPs were prepared with a modified procedure.26 The 

ratio of Au@TiO2 NPs to P25 was 0.7 wt%. The working electrode films were fabricated by the 

doctor-blading method using P25 pastes and P25 pastes incorporating Au@TiO2 NPs as 

described in our previous work.27 The working electrodes were then put into a muffle furnace 

and gradually heated at 325 °C for 5 min, at 375 °C for 5 min, at 450 °C for 15 min, and at 500 

°C for 15 min. The resultant working electrodes prepared from P25 paste and P25 incorporating 

core-shell NPs (CA@T-1, CA@T-2, CA@T-3, CA@T-4, and SA@T) were denoted as P25, C1, 

C2, C3, C4, and S, respectively. Finally, all the electrodes were post-treated again with TiO2 

organic sol and annealed at 450 °C again.28 After cooling to 80 °C, the TiO2 films were 

immersed into a 0.5 mM solution of N719 dye (Dyesol) in a mixture of acetonitrile/tert-butanol 

(V/V=1/1) for 12-14 hours.28-29  

Cell Fabrication: The dye-loaded working electrodes and Pt counter electrodes (OPVT-Yingkou) 

were assembled into a sandwich type cell and sealed with a spacer of 60 μm thickness (OPV-

Surlyn-60, OPVT-Yingkou) with a drop of the I-/I3
- organic solvent based electrolyte solution 
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(EL-HPE, Dyesol) introduced via vacuum back-filling30. The sealed DSSCs were used for the 

photocurrent-voltage testing with an active area of 0.16 cm2.  

Characterization and Measurements: The morphology of Au NPs and core-shell NPs were 

examined by transmission electron microscopy (TEM, JEOL 1010). The absorption properties of 

core-shell NPs dispersed in ethanol and dye-sensitized photoelectrodes containing core-shell NPs 

were investigated by UV-visible light spectrometer (Shimadzu UV-2450). The photocurrent-

voltage (J-V) tests of DSSCs were performed under one sun condition using an AM 1.5 solar 

simulator (Oriel) and recorded by a Keithley model 2420 digital source meter. The incident 

photon-to-current conversion efficiency (IPCE) plotted as a function of the excitation 

wavelength was obtained by using a Newport 1918-c power meter under irradiation of a 300 W 

Oriel xenon light source with an Oriel Cornerstone 260 1/4 m monochromator in direct-current 

mode. The electrochemical impedance spectra (EIS) were measured under one sun illumination 

over a frequency range of 105 to 0.1 Hz by using Solartron 1260 Frequency Response Analyzer 

in combination with a Solartron 1480 Potentiostat. The applied bias voltage and ac amplitude 

were set as open circuit voltage and 10 mV, respectively. The time-resolved fluorescence 

emission decay spectra of various dye-sensitized TiO2 films on cover glasses were monitored at 

532 nm by using the fluorescence spectrometer (FLS 920, Edinburgh Instruments). 
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RESULTS AND DISCUSSION 
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Figure 1 TEM images of concave cubic Au NPs (a, b) and C-Au@T NPs with increasing shell 
thickness [CA@T-1 (c, d), CA@T-2 (e, f), CA@T-3 (g, h) and CA@T-4 (i, j)] Bottom panels 
show the zoomed-in images of NPs in the corresponding top panels. Scale bars for top and 
bottom panels are 100 and 50 nm, respectively. 

To synthesize CA@T NPs, we first prepared concave cubic Au NPs using a modified method.24b 

As shown in the TEM images (Figure 1a, b), it is clear that each face of the nanocubic Au was 

excavated by a square pyramid in the center. The nanocubes exhibited a darker contrast in the 

center than at the edges, which confirms the formation of a concave structure. The average edge 

length of concave nanocubes was determined to be ca. 52 nm (Figure 1b).  After 

functionalization of Au-cores by using thioglycolic acid, TiCl3 precursor solution was added to 

form a TiO2 layer on the surface of Au-cores in a controllable manner (see experimental section). 

Representative TEM images of various CA@T NPs are shown in Figure 1(c-j). It can be clearly 

seen that the cores have well-defined concave nanocubic geometry and well covered by the TiO2 

shells with increasing thickness of roughly 2, 7, 14, and 43 nm. 

To better understand the hot spot effect, spherical Au NPs (S-Figure 1a, b) with smooth surfaces 

and comparable particle size were synthesized using previously reported method.24a SA@T NPs 
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with a selective shell thickness of ca. 7 nm shown in S-Figure 1c, d were then prepared for a fair 

comparison with CA@T-2 in terms of plasmonic property.   
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Figure 2 Absorption spectra of CA@T and SA@T NPs well-dispersed in ethanol. 

Figure 2 shows the absorption spectra of CA@T and SA@T NPs well-dispersed in ethanol. The 

absorption peak of SA@T NPs is located at 601 nm in the visible region, whilst CA@T NPs 

exhibit red-shifted surface plasmon absorption with absorption peaks at 695 nm (CA@T-1), 765 

nm (CA@T-2), 816 nm (CA@T-3), and 865 nm (CA@T-4) in the near infrared (NIR) region, 

respectively. In the case of CA@T NPs, the absorption peak shifts from 695 nm to longer 

wavelengths up to 865 nm with increasing TiO2 shell thickness, due to the higher dielectric 

constant surrounding the Au cores. The NIR absorption of CA@T NPs from LSPR provides a 

unique opportunity for utilizing the low energy range of solar spectrum. 
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Figure 3 Photocurrent density-voltage characteristics of DSSCs based on a variety of working 
electrodes, measured at AM1.5 illumination (100 mW cm-2). 

In order to study the plasmonic property and evaluate the hot spot-effect of CA@T NPs, they 

have been incorporated into the working electrodes of DSSCs (see experimental section). 

Reference DSSC devices were fabricated using bare P25 films. We first investigated the 

influence of shell thickness of CA@T NPs on the plasmonic enhancement effect in DSSCs. 

Figure 3 shows the photocurrent density-voltage (J-V) curves of the DSSCs with P25, C1, C2, 

C3, C4, and S working electrodes under standard simulated AM 1.5 illumination. The 

corresponding photovoltaic performance parameters are tabulated in Table 1 for easy comparison. 

The DSSC cells fabricated with pure P25 working electrodes exhibited a short-current density 

(Jsc) of 14.78 mA cm-2, open-circuit voltage (Voc) of 753 mV, and fill factor (FF) of 0.662, 

yielding overall power conversion efficiency (η) of 7.37%. With the incorporation of CA@T-1 
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NPs into the working electrodes (C1), PCE significantly increased to 8.47% which is mainly 

attributed to the largely improved Jsc of 17.08 mA cm-2, nevertheless Voc slightly decreased to 

747 mV. PCE was further increased to 9.09% when CA@T-2 NPs with larger shell thickness of 

6.6 nm were doped into the working electrodes, corresponding to an efficiency improvement of 

23.3%. It can be seen that the enhancement in all performance parameters including Jsc (17.25 

mA cm-2), Voc (775 mV), and FF (0.68) is responsible for the further improved PCE. When the 

TiO2 shell thickness reaches 13.8 nm (CA@T-3) and 43.5 nm (CA@T-4), the photocurrent of 

DSSCs fabricated with CA@T-3 and CA@T-4 NPs decreased to 16.73 and 15.16 mA cm-2, 

resulting in lower PCE of 8.8% and 7.63%, respectively, as compared to the cells containing 

CA@T-2 NPs. Such an observation reveals that the thickness of semiconducting shell plays an 

important role in tuning and maximizing the plasmonic enhancement effect in DSSCs. When the 

shell is super thin with a thickness of only ca. 2 nm (CA@T-1), it may be hard to maintain the 

complete core-shell structure and fully cover the metal core upon annealing. Then the exposed 

Au surface would trap both electron and holes and thus serve as recombination sites, resulting in 

the decrease of Voc in DSSCs. Slightly increasing the shell thickness to ca.7 nm ensures the 

stability of core-shell NPs, and an improved Voc as well as a slightly increased FF was obtained 

as a result of the charge equilibrium between the metal cores and the surrounding TiO2 materials. 

Nonetheless, further increasing the shell thickness would keep the sensitizer molecules too far 

from the cores and weaken the LSPR enhancement effect, thus reducing the photocurrent in 

DSSCs. In addition, the control experiment with SA@T NPs exhibited a relatively lower PCE of 

8.46% in comparison with CA@T-2 NPs, despite the comparable TiO2 shell thickness. 

Obviously, the superior photovoltaic enhancement achieved is attributed to the stronger LSPR 

effect generated at the hot spots of CA@T-2 NPs as shown in Scheme 1. 
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Table 1. Photovoltaic performance of DSSCs with different working electrodes.  

Samples Jsc (mA cm-2) Voc (mV) FF (%) η (%) 

P25 14.78 753 66.2 7.37 

C1 17.08 747 66.4 8.47 

C2 17.25 775 68.0 9.09 

C3 16.73 768 68.5 8.80 

C4 15.16 763 66.5 7.63 

S 16.43 762 67.6 8.46 
 Jsc: short-circuit current density, Voc: open-circuit voltage, FF: fill factor, η: energy conversion efficiency; the 

average value of each data was obtained by testing at least 8 cells.  

The absorption spectra of various dye-loaded working electrodes shown in Figure 4 were 

conducted to explore the mechanism behind the plasmonic enhancement in DSSCs. Despite the 

similar amount of dye-loading in all these films, the presence of CA@T NPs seems to have a 

noticeable effect on the dye absorption property. Compared to the pristine P25 films, the dye 

molecules adsorbed on P25 films incorporated with CA@T as well as SA@T NPs exhibited 

significantly higher loading, which is beneficial to the photocurrent increase in DSSCs. This 

enhancement of dye extinction could be attributed to the interaction of dye molecular dipole and 

enhanced electromagnetic field induced by LSPR, together with the increase of light scattering 

which prolonged the optical path.9b In spite of comparable metal core size and shell thickness, 

the absorption of SA@T sample is considerably lower than that of hot spot-containing CA@T-2. 

The trend of absorption enhancement is obviously consistent with that of photocurrent increase 

(Table 1). 
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Figure 4 Absorption spectra of various dye-loaded working electrode films. 

The IPCE spectra of DSSCs fabricated with various working electrodes provide further evidence 

on the plasmonic enhancement effect of CA@T NPs. The IPCE can be rationalized using the 

following equation (1):27,31 

( ) inj collIPCE Al j η=                                                                                                              (1) 

where A is the light harvesting efficiency of the dye molecules, φinj is the electron injection 

efficiency, and ηcoll is the electron collection efficiency. As shown in Figure 5, the improvement 

of the IPCE value is achieved over the whole excitation spectrum of the N719 dyes, and highly 

corresponds to the absorption enhancement in Figure 4. In plasmon-enhanced DSSC cells, 

plasmon excitation could improve optical density surrounding the metal NPs and the dye 

sensitizer located in the vicinity of plasmonic core-shell NPs especially the hot spot-containing 
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CA@T NPs could capture more photons and generate more electrons (Scheme 1), thus 

increasing IPCE.32  
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Figure 5 IPCE spectra of DSSCs based on a variety of working electrodes.  

Electrochemical impedance spectra (EIS) were collected to further investigate the influence of 

localized electromagnetic field induced by CA@T NPs on charge separation and electron 

lifetime in DSSCs. Figure 6a shows the Nyquist plots of DSSCs based on a variety of working 

electrodes measured at open-circuit voltage under illumination and the equivalent circuit is 

depicted as its inset. In general, three semicircles could be obtained in the Nyquist plot of DSSCs, 

which are assigned to (1) the redox reaction at the platinum counter electrode/electrolyte 

interface at high frequencies (Rct1), (2) the electron transfer at the TiO2/dye/electrolyte interface 

at medium frequencies (Rct2), and (3) the Warburg diffusion process of I-/I3
- in the electrolyte at 
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low frequency (Zw).33 The diameters of the medium-frequency semicircles are in the order of C2 

˂ C3 ˂ S ˂ C4 ˂ P25 ˂ C1as observed in Figure 6a. The smaller diameters indicate the lower  
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Figure 6 a) Nyquist plots; and b) Corresponding Bode phase plots of the DSSC cells fabricated 
with various working electrodes. The inset shows the equivalent circuit. 
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electron transfer resistance (Rct2). Therefore, other than DSSCs with CA@T-1, the recombination 

was restrained with the incorporation of CA@T NPs and the cells containing CA@T-2 showed 

the most efficient electron transport in terms of the smallest Rct2. This result reveals that the shell 

thickness is vital in tuning the property of core-shell NPs, and more importantly the stronger 

electromagnetic field induced on hot spots is of benefit to facilitating more efficient charge 

separation, thus suppressing recombination. The electron lifetime (τe) can be calculated 

according to the equation (2): 

max

1
2eτ πω

=                                                                                                                             (2) 

 where ωmax is the maximum frequency from the intermediate Nyquist semicircle.34  As shown in 

Bode phase plots (Figure 6b), the medium-frequency peaks (ωmax) are in the same order of C2 ˂ 

C3 ˂ S ˂ C4 ˂ P25 ˂ C1. The significantly decreased ωmax in DSSCs containing CA@T-2 NPs 

suggests prolonged electron lifetime, which well explains the improvement of Voc observed in 

Figure 3.   

To further confirm the facilitated charge separation and increased electron lifetime, we 

investigated the decay behavior of the photoexcited carriers. Figure 7 shows the time-resolved 

fluorescence emission decay spectra for N719 dye loaded on cover glass coated with both pure 

P25 film and P25 films incorporating CA@T and SA@T NPs. Except C1, the decay kinetics of 

films C2, C3, C4, and S become slow, in contrast to the decay curve of pristine P25 film. In 

detail, the decay lifetime of carriers for pristine P25 film is ca. 12.2 ns while those of C2, C3, C4, 

and S increase to 15.2, 14.6, 12.4, and 13.7 ns. Nevertheless, the carrier decay lifetime for C1 

reduces to 11.2 ns. This indicates that by optimizing the shell thickness,  
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Figure 7 Fluorescence emission decay spectra of the N719 dye loaded on cover glass coated 
with P25 film and P25 films incorporating CA@T and SA@T NPs. 

plasmonic core-shell NPs could significantly promote the charge separation, thus suppressing the 

recombination of the photogenerated carriers and the backward transport of electrons from TiO2 

to the electrolyte. Moreover, the core-shell NPs containing hot spots are expected to maximize 

the photovoltaic enhancement as they can not only capture more photons but also facilitate more 

efficient charge separation owing to the much stronger localized electromagnetic field.    

CONCLUSIONS 

In summary, we have developed a strategy for the synthesis of hot spot-containing concave cubic 

Au@TiO2 core-shell (CA@T) NPs with precisely controlled core morphology and shell 

thickness, which were subsequently incorporated to form new photoanodes in DSSCs. Our 

studies revealed that the hot spots play an important role in amplifying the performance 
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improvement owing to the much stronger electromagnetic field surrounding CA@T-2 NPs. UV-

vis absorption together with IPCE shows the significantly higher light harvesting efficiency as 

the extinction rate of dye molecules increases. Furthermore, the prolonged electron lifetime is 

confirmed by EIS and fluorescence emission decay spectra as a result of more efficient charge 

separation and suppressed electron recombination. The present study of well-defined hot spot-

containing CA@T NPs provides new insights on maximizing the plasmonic-assisted efficiency 

enhancement, and could lead to new applications including nanoscale light-matter interaction, 

solar-to-chemical energy conversion and new-generation perovskite solar cells. 
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