
University of Wollongong University of Wollongong

Research Online Research Online

Department of Computing Science Working
Paper Series

Faculty of Engineering and Information
Sciences

1984

Robotic software for the mini-mover 5 robot arm Robotic software for the mini-mover 5 robot arm

Alexander Zelinsky
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/compsciwp

Recommended Citation Recommended Citation
Zelinsky, Alexander, Robotic software for the mini-mover 5 robot arm, Department of Computing Science,
University of Wollongong, Working Paper 84-6, 1984, 100p.
https://ro.uow.edu.au/compsciwp/53

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/compsciwp
https://ro.uow.edu.au/compsciwp
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/compsciwp?utm_source=ro.uow.edu.au%2Fcompsciwp%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages

Preprint No 84-6

THE UNIVERSITY OF WOLLONGONG

DEPARTMENT OF COMPUTING SCIENCE

ROBOTIC SOFTWARE FOR THE
MINI-MOVER 5 ROBOT ARM

Alexander Zelinsky

Department of Computing Science
University of Woltongong

Abstract

The aim of the project is to design and
implement software on a MOTOROLA
M68000 16 bit microprocessor to control a
MINI-MOVER 5 robot arm.

P.O. Box 1144. WOLLONGONG. N.S.W. AUSTRALIA
telephone (042)-270-859

telex AA29022

April 10. 1984

ROBOTIC SOFTWARE FOR THE MINI-MOVER 5 ROBOT ARM

Alexander ZELINSKY

Department of Computing Science

University of Wollongonq .

29th December 1983

CONTENTS

CHAPTER 1 PROJECT COMMENCEMENT

1.1 Project Description
1.2 Project Stages

1
2

PROJECT INVESTIGATIONCHAPTER 2

2.1 Study
2.1.1
2.1.2
2.1.3
2.1.4

2.1. 5

of Robotic Software
Robot generations
Design of Robot Languages
Robot Programming Language Levels
Characteristics of a "good"
Robot Programmming Language
Conclusions

4
4
5
6

13
17

2.2 Study of Mini-Mover 5 Robot
2.2.1 Robot Cabling Design
2.2.2 Stepping Motor Control
2.2.3 Computer Interface
2.2.4 Conclusions

CHAPTER 3 PROJECT DESIGN

3.1 Definition of Design Approach

CHAPTER 4 DETAILED PROJECT DESIGN

4.1 Detailed Design Approach

18
18
26
26
29

30

32

4.2.10

4.2.12

4.2.11

4.2 Robot
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.2.9

Control Language Design
INIT Command
RESET Command
STEP Command
CLOSE Command
READ Command
STATUS Command
BOUNDS Command
HOME Command
Forward Translation Commands
4.2.9.1 FHDJOINT Command
4.2.9.2 FHDCART Command
Backward Translation Commands
4.2.10.1 BWDCART Command
4.2.10.2 BWDJOINT Command
Manual Set Commands
4.2.11.1 SET Command
4.2.10.2 JSET Command
4.2.10.3 CSET Command
Interconnection of Robot
Control Language Commands
4.2.12.1 Structure Chart

35
35
36
39
42
43
44
46
47
48
48
50
55
55
63
65
67
70
73

76
77

CONTENTS

CHAPTER 5 PROJECT IMPLEMENTATION

5.1 Implementation Approach
5.1 Implementation Problems

78
79

CHAPTER 6 RECOMMENDATIONS

6.1 Possible Future Enhancements

CONCLUSION

ACKNOWLEDGEMENTS

BIBLIOGRAPHY

APPENDICES

A. Calibration Grid
B. Support Library Algorithm~

B.l MUltiple Precision Arithmetic
Algorithms

B.2 Trigonometric Algorithms
B.3 Mathematical Algorithms

C. Project Source Code

81

83

84

85

86
87

87
90
93
94

CHAPTER 1
PROJECT COMMENCEMENT

1.1 Project Description

The aim of the project is
software on a MOTOROLA M68000
control a MINI-MOVER 5 robot arm.

to design and implement
16 bit microprocessor to

The software will be designed such that the commands to
control the robot are simple and transparent to the user.
The commands will be independent and the design will allow
extensibility of the software by the users.

The software will become a tool, which will allow users
to write application programs to control the robot in
performing tasks. Possible areas of application include:

* Education in the control of robots
* Artifical Intelligence and Robotics
* Industrial Automation
* Playing Games
* Robot Art
* Assembly by robots

- 1 -

Page 2

1.2 Project Stages

The project will be divided into the following major
sections:

1. Project Commencement

This will include a brief introduction to the project
and a definition of the project stages.

2. Project Investigation

(i) Study of Robotic Software

A study of robot software in use today will be
undertaken. Attention will be paid to what features are
desirable and undesirable. in "good" robotic software.

(ii) Study of the MINI-MOVER 5 robot

A study of the MINI-MOVER 5 robot will be
undertaken. This study will examine the physical and
software capabilities of the MINI-MOVER 5 robot.
Attention will be paid to the limitations of the robot
when interfaced to a microprocessor.

3. Project Design

Based upon the project investigation section a project
design will be developed. The design will attempt to
include the desirable features of robotic software systems
without violating the capability and limitation bounds of
the MINI-MOVER 5 robot.

4. Detailed Project Design

Basically this section is an expansion of section 3.
This stage will prOVide detailed diagrams of system
inputs/outputs and definitions of algorithms, the database
and user inputs required. This section will also include
the design of the database and a general outline of the
programs. It will indicate the division of the programs
into logical procedures and the definition of each
procedure.

- 2 -

Page 3

5. Interface Coding and Debugging

The interface code between the MINI-MOVER 5 and the
M68000 microprocessor will be written, tested and debugged.

6. Coding and Debugging

The remaining code will be written,
debugged.

7. Report and Seminar

tested and

A report will be written and a seminar presented in an
effort to communicate achievements and results.

- 3 -

Page 4

CHAPTER 2
PROJECT INVESTIGATION

2.1 Study of Robotic Software

2.1.1 Robot Generations

The increasing level of sophistication of robotic
software(l) is reflected in the "generations" of the
evolution of robots. The "generations" of robot evolution
can be categorised as follows:

Generation 1

The robots are programmable, control is open loop (i.e.
no feed back) and motion is memory cunlrolled (i.e.
continuous play back of a taught motion path). Such robots
have several degrees of freedom. Typical applications
include spray painting and welding.

Generation 2

The robots are programmable, sensor controlled (i.e.
feedback) and motion is memory control~ed. Motion paths are
interrupted by sensor feedback, these interrupts are
serviced by preprogrammed functions in the controlling
computer. Such robots can react to changes in their
environment and thus are a powerful tool.

Generation 3

The robots have the same capabilities as generation 2
robots but with added capability of vision. Such robots
manipulate objects on the basis of computer vision. These
robots can be used in sophisticated industrial applications
e.g. complicated assembly tasks.

Footnote.

(1) Robotic software can also be referred to as robot
programming languages.

- 4 -

Page 5

Generation 4

The robots have adapative control capabilities. This
means that robots exhibit automatic reprogrammability on the
basis of sensor and vision inputs. Such robots form a very
flexible and powerful tool.

Generation 5

The robots have artifical intelligence.

The current state of technology in robotics stands between
generations 3 and 4.

2.1.2 Design of Robot Programming Languages

In the design of robot programming languages there are
three basic approaches:

(1) Take an existing programming language and add to it
routines to control the robot. This approach permits the
full power of a language to be used.

(2) Write a library of routines so that the user program
consists of a series of calls to these routines via simple
control statements.

(3) Design a language specifically for robot manipulation.

Approach (3) may seem to be an expensive alternative
but there are no programming languages available which have
these featues: high level, general purpose, real time,
support of co-operant and parallel, routines and are able to
interface to external sensor and vision devices.

A general comment on the design of robot programming
languages can be made: the design is closely related to the
application.

- 5 -

Page 6

2.1.3 Robot Programming Languages Levels

The sophistication level of robot programming languages
follows a similar path to the evolution of robots. Robot
programming languages havp. five distinct levels of
sophistication. These levels are summarised in figure
2.1.3.1.

Levell. Microcomputer/Hardware Level

At the lowest level of robot control, the
microcomputer/hardware level, commands are highly dependent
on the physical structures of the robot. Hence no formal
programming languages exist at this level. The emphasis
here is on converting joint coordinates to torques and
forces on the motors, and on conveying sensor data to higher
levels.

- 6 -

Level 5

Level 4

Level 3

Level 2

Level 1

Level of human
Intelligence

I
V

I
I
V

-:-T~a-57"""k-O-=--ri-e-n~t-a~t-e-:-d--:-

level

I
I

...,--_.",..,-__V_--.,. _
I Structured I
IProgramming level I
I I

I
I

_____V _

Primitive
Motion level

I
I

-:----=---:---:-_V_=-~_:___:_
Point-to-Point

level

I
I

_____V _

Microcomputer
/Hardware level

Figure 2.1.3.1

- 7 -

Page 7

Computing Power Required

Mainframe

Minicomputer/Mainframe

Minicomputer

Microcomputer/Small
Minicomputer

Page 8

Level 2. Point to Point Level

Point to point robot languages are the most common
available at present. They provide robot programming by
enabling the user to save a series of positional points.
These points are obtained by "manual" guiding of the robot
through the required motions.

Usually the guiding is done by using a manual device
that activates the joint motors in the robot and records the
desired locations. This is known as "walk through
teaching". Higher level guiding systems provide specialised
function buttons which allow the editing of programs and the
interaction of the program with external signals.

The advantage of point to point languages is that they
are available and operatable now. Once a task has been
programmed it can be repeated any number of times without
operator intervention. Programs are easy to debug because
testing is constantly being done on the robot itself. An
online editing system allows the programming to be refined
during an operating cycle until the optimum sequence has
been achieved.

The disadvantage of point to point languages is that
they include little or no branching and subroutine
capability, and limited sensor interaction. The emphasis is
on robot motion rather than the task to be performed. There
is limited software to handle emergencies and no provision
is made for off line programming.

The following languages are point to point languages:
FUNKY and T3.

FUNKY is an IBM development, it is an advanced guiding
system that produces robot programs through the use of
manual guiding and a function keyboard.

T3 is a language provided with the T3 industrial robot
manufactured by Cininatti Milacron, T3 is a commercially
available system that uses guided teaching and function
buttons to program robot tasks.

- 8 -

Page 9

Level 3. Primitive Motion Level

Primitive motion level languages can be described as
point to point motion in language form. These languages
help shield the user from some of the cumbersome aspects of
the lower level languages. The following aspects
characterise primitive motion languages: simple branching,
subroutines (generally with parameter passing), more
powerful sensing capabilities (including vision), primitive
parallel execution and _limited coordinate transformation.
Most of the primitive motion languages available today are
based on interpreters or assemblers.

The disadvantage with primitive motion languages is
that the emphasis is on robot motion rather than the task on
hand. The languages do not provide complex control
structures (while-do etc.) or effective parallel execution
capabilities. There is limited software to handle
emergencies and no provision is made for off line
programming.

The following languages are primitive motion languages:
ANAROD, EMILY, RCL, RPL, SIGLA and VAL.

ANAROD is the language provided with the Anomatic II
Controller industrial robot manufactured by Anorad
Corporation. ANAROD is commercially available and provides
a powerfUl numerical control language with programmable
mathematical expressions, variables, jumps and subroutines,
and a self configuring capability.

EMILY is an early attempt by IBM to develop a higher
level, workhorse robot language with a reasonably simple
processor.

under development at
RCL is a command
is used to program
a robot task.

a language which is
Polytechnic Institute.

motion control language which
of steps needed to accomplish

RCL is
Rensselaer
orientated
a sequence

RPL is a FORTRAN like user language developed by SRI
International. RPL is designed to facilitate the writing
and debugging of application programs for material handling,
inspection, and assembly tasks.

- 9 -

Page 10

SIGLA is a robot language available from Olivetti with
their Super-Sigma robot. Sigla uses only 8K of memory, yet
provides features such as parallel task control and variable
instruction sets for software tailoring.

VAL is a system and language for programming computer
controlled robots. VAL was developed over a period of
several years by Unimation.

Level 4. Structured Programming Level

Structured Programming Level represents a major
improvement over the primitive motion level because
structured programming languages incorporate structured
control constructs and permits extensive use of coordinate
transforms. Characteristics of structured programming
languages include: complex data structures, improvements in
sensor interaction, improvements in parallel processing, use
of predefined state variables, and user defineable data
structures with parameter passing.

The complex data structures allow the definition of
points, lines, planes, and frames, thus making
transformations easier. State variables refer to reserved
words such as arm, tool, leftwrist' and gap. The sensing
capabilities are similar to primitive motion level
capabilities. Parallel processing is expanded by use of
semaphore constructs: cobegin and coend. Motion on the
structured level is defined in terms of transformations on
the frame of the robot hand e.g. move, rotate and goto.

Structured level programs increase program
understandability and aid task orientated programming by
sophisticated parallel processing and state variable
concepts. Off line programming is more feasible, making use
of relational transformations.

A major asset and a major drawback
programming are coordinate transformations.
allow many advtanages in programming but are
and use.

of structured
Transformations
hard to learn

The following languages are structured programming
languages: AL, HELP, MAPLE, MeL and PAL.

- 10 -

Page 11

The AL programming system developed at the Stanford
Artificial Intelligence Laboratory is a high level robot
language with ALGOL like control and block constructs;
predefined data types for scalars, vectors, rotations and
positions; operations on those data types; local
coordinate systems that can be affixed to one another; and
the ability to specify motion in terms of objects grasped in
the hands.

HELP is a robot language developed by General Electric.
It is a high level procedural language that is relatively
easy to learn to use, supports structured program design,
supports similtaneous arm movement, is sufficiently
comprehensive for robot operation, and has a special set of
built in functions to support robot operation.

MAPLE is a robot language developed at IBM. Maple has
a PL/l like base language for computation and several
extensions for directing a robot to carry out complex tasks.

MCL is an extension of the APT numerical control
language developed by McDonnell Douglas Corporation. MeL is
a high level language designed for off line programming of
industrial robots and associated equipment under a robotic
control system.

PAL is a robot programming system developed at Purdue
University. Tasks are represented in terms of structured
cartesian coordinates, and every motion command is a request
to position and orientate the robot to satisfy a position
equation.

Level 5. Task Orientated Level

A task orientated language conceals low level details
such as sensors and coordinate transforms from the user.
The languages make use of high-level commands such as place
object 1 on object 2. To accomplish tasks such as this, a
world modelling system is required. Such a system would
involve tactile sensing, and a sophisticated vision system
with which objects can be located and identified.

Task orientated language commands are divided into four
classes:

- state change statements e.g. place
- tool statements e.g. operate

- 11 -

Page 12

- fasten statements e.g. rivet
- miscellaneous statements e.g. verify

High level commands such as the above lead to
ambiguities. To alleviate ambiguities the systems are
usually designed 50 that program debugging proceeds
interactively with the user. The compiler can question the
user about any ambiguities.

Task orientated robot languages as yet are an
unachieved dream, although IBM is currently developing a
task orientated language called AUTOPASS. AUTOPASS is a
high level programming system for computer controlled
assembly work. AUTOPASS is orientated toward objects and
assembly operations that enable the user to concentrate on
the overall assembly sequence and to program with English
like statements using familiar name and terminology.

2.1.4 Characteristics of a "Good" Robot Proqramminq Lanquaqe

(1) Clarity, Simplicity and Unity Concept

At point-to-point level this concept is extremely
simple. Hence their success in industry. But
point-to-point robot languages do not have the programming
power of higher-level languages.

Primitive-motion level languages have a great number of
commands, but few control constructs. They are composed of
a hodge podge of commands. Thus primitive-motion languages
lack unity. This is mainly due to the fact that they have
been developed dynamically, thus leading to an overabundance
of commmands.

Robot languages at the structured programming and task
orientated levels were developed with consistent programming
language characteristics in mind. The use of structured
programming, and data structures, eases the demand for
specific commands. The use of clauses such as MOVE greatly
increase generality. These languages are well structured
and consistent but their success in industry has yet to be
proven.

- 12 -

Page 13

(2) Clarity of Program Structure

Structured programming techniques were developed to
make programs easier to comprehend, and debug, by using
while-do and if-then-else constructs. Structured robot
languages use structured programming constructs which give
the program structure readability and understandability.
Primitive-motion robot languages make use of goto and
if-then constructs. Such constructs reduce the clarity of
program structure when compared with structured languages.

(3) Naturalness of Application

Point-to-Point robot languages are hardly languages,
yet, they have proved quite successful for many
applications. The shortcomings of point-to-point languages
led to the development of primitive-motion languages. But,
lack of readable commands (most two letter), and control
structures, make primitive-motion langauges slightly better
than point-to-point languages.

Keywords and variables of any length can be used at the
structured level. So, commands are understandable and self
explanatory. Complex data structures are very useful.

Task-orientated languages are very natural to use,
since, commands are ENGLISH like and use of transforms is
hidden. These features make programming easy for any type
of application. But high-level languages create ambiguity,
50 the user must understand lower-level languages for
debugging.

(4) Ease of Extension

It is important that robot languages have a modular
expandable structure that can handle present needs and
future needs of new applications. One way to do this is
through subroutines with parameter passing. Parameter
passing avoids the problem of the reuse of global variables.

Point to point languages have no subroutines 50 they
are difficult to extend.

- 13 -

Page 14

Primitive motion languages have limited expansion since
most have subroutine capabilities with no parameter passing.

All structured programming languages have powerful
subroutine capabilities which allow parameter passing and
several levels of nesting. Structured programming languages
can be extended.

Task orientated languages have the same capabilities as
structured languages.

(5) Debug and Support Facilities

Efficient debugging tools are of extreme importance in
developing robot programs. Off line programming using
graphics simulation makes debugging less critical, since
program development takes place without robot use. Lower
level languages have much more extensive debugging
facilities because they are in actual use today and
debugging must be done on the robot. Structured programming
level languages, which are designed with off line
programming in mind, provide few hands on debugging aids.

(6) Efficiency

the
can
and

which
with

The efficiency of a robot language depends upon
ease with which programs can be developed. Efficiency
be measured by two factors: programmability
portability. Programmability is the ease with
programs can be developed. Portability is the ease
which the language can be adapted to a new environment.

Programmability is a measure of the ease with which
users of the robot language can produce correct executable
code. The best basis for measuring programmability is the
time taken to write a program.

A transportable, or portable, robot language is one
that can easily be adapted for use by any robot on any
computing facility. A measure of the portability of a
language to a system is the amount of time it takes to
complete the interface between the language and the system.
Because of the number of computing facilities and robot
mechanisms available, an intermediate step between the
compiler and the system is one way to ensure widespread
portability with minimal effort. This intermediate step is
a low level psp.udo language known as "p-cade" which can

- 14 -

Page 15

easily translated into the base language of the system.

Robot languages in use today are highly specific to the
robot and the computer system on which they are developed.
With the exception of the robot language AL, where an effort
to make the language portable has been made, very little has
been done to develop highly portable robot languages.

(7) Decision Making Capahilites

In order to function most efficiently and safely in
real time, the robot system should be able to handle
unexpected changes to the environment. This faculty
requires a dynamic model of the robot environment, constant
monitoring of the model for unexpected changes, and the
ability to make intelligent decisions based on the changes.
The robot must execute its task concurrently with the
monitoring system. When an unexpected change occurs, the
monitor interrupts task execution and attempts to return the
model to the expected state. Only task orientated robot
languages have simple decision making capabilities based on
a dynamic world model of the environment.

(8) Interaction with External Devices and Sensors

A robot language must be able to handle interaction
between the robot and external devices. Rarely will robots
operate as stand alone units. Desirable language features,
therefore, include messages that can be sent between devices
and commands that allow concurrent activities of different
devices.

The languages at the point-to-point level permit only
very primitive interaction with external devices.

At the primitive-motion level, interaction
almost none to fairly complex vision system
Parallel processing at this level, if it
restricted to concurrency between more than one

ranges from
interaction.
exists, is
robot.

Structured level languages have abilities that range
from no interaction at all, to allowing portions of the code
to apply to any device in the robot environment. Parallel
processing, if provided, is in the form of waiting and
signaling events.

- 15 -

Page 16

The task orientated level provides commands that imply
interaction with external devices and concurrent control of
devices but do not explicitly send and recieve signals.

(9) Compilers V's Interpreters

In robot applications an interpreter has many
advantages over a compiler. An interpreter executes code as
it is encountered. A compiler passes through the code more
than once before it generates code for the statements. A
program that runs on a interpreter is easier to change and
allows partial execution of sections of code. This is ideal
for on line programming and debugging. However interpreters
are generally slower at runtime because of parsing and
interpretation. Structured control constructs are difficult
to implement because of their complex branching
requirements.

A popular solution to this problem is to provide a
structured level language that compiles into a lower level
primitive language. This compromise allows the programmer
to use an interpreter during the debugging stages, but the
disadvantage of such an approach is that the original
structured code is not always the true source code for the
lower level language once it has been debugged. (Little
attempt has been made to recreate a structured level program
from the lower level code.)

(10) Interaction with Horld Modelling Systems

The ability to interact effectively with a world
modelling system is the key to the development of a truly
intelligent robot programming system. Without a world model
the robot is essentially blind to it's environment, and the
user must specify any changes that the robot's activity
makes to the environment. A dynamic world modelling system
will not only keep track of the initial state of the robot
environment, but Will, also, adapt changes made by the robot
into the model. Research 1s currently being undertaken in
this area, but currently no functional dynamic world
modelling system is available.

Although complex world modelling systems lie in the
future, some of the robot systems today do have simple world
modelling facilities under development. The most important
fact to consider in the current development of a robot
programming language 15 the potential ease of extension of
the language to accept information from a world modelling
system when a more powerful one becomes available.

- 16 -

Page 17

2.1.5 Conclusions

On the basis of the previous information
conclusions can be formulated about the
robotic software.

some general
development of

Because of the interactive nature of robot programming
and the need for rapid debugging techniques, an interpreter
based language is favoured over a compiler based one. To
alleviate the disadvantage of slow run time performance, use
an interpeter to produce correct programs, but let a
seperate compiler produce fast efficient code from the
programs at run time.

Robot languages should provide as many debugging
features as possible. Particularly off line debugging and
development facilities which use computer graphics to
simulate the robot and its environment.

In order to meet the growing needs of the robot
industry, a robot language must be extensible.
Extensibility implies a modular lanquage structure with user
defined subroutines which have parameter passing
capabilities. Global variables should not be allowed, this
can be done by parameterisation of variables in subroutine
calls. Multiple nesting of subroutines should be allowed.

The robot language
programming techniques and
manner as possible.

should
present

maintain
them in

structured
as simple a

The use of transformations is important in robotics.
So a robot language should allow the definition and use of
transformations.

Variable names should be unrestricted in length and
recognition should involve as many characters as possible.

Robot languages should use English like syntax 'for
language readability and understandability.

- 17 -

Page 18

A robot environment usually involves interaction among
several devices. A useful robot language would allow easy
interaction and parallel execution capabilities with
peripheral devices e.g. sensors and vision systems.
Without interaction with sensors and peripheral devices the
robot will be isolated from the world around it and will
never be able to perform with any high degree of
proficiency.

- 18 -

Page 19

2.2 Study of MINI-MOVER 5 Robot

The performance characteristics of the MINI-MOVER 5
robot arm are summarised in Table 2.2.1. The robot arm
consists of a stationary base and four movable segments
connected in series by the base, shoulder, elbow and wrist
joints. The major structural components are shown in Figure
2.2.1. The arm has five degrees of freedom which permits
combined motion of the body, shoulder, elbow and wrist to
position the arm anywhere from close to the base to 444mm
away. The configuration of these joints defines the
position and orientation of the robot hand or gripper.

The arm members are hollow, formed from formed
aluminium sheet metal. The three outer segments are joined
by hinged shafts that define the axis of the joint. Each
joint is controlled by a flexible cable that runs from a
drive unit mounted on the body to a pulley mounted on the
joint shaft. The drive unit for each joint consists of a
stepping motor, reduction gearing and a cable drum. From
each drum, a tensioned cable goes out over pulleys to the
member being driven and returns to the drum. Rotation of
the drum causes rotation of each member in proportion to the
ratio of the diameter of the drive pulley attached to that
member to the diameter of the drum.

2.2.1 Robot Cabling Design

The arrangement of cables used in the MINI-MOVER 5 is
shown in Figure 2.2.1.1. Since the cabling design was made
to simplify geometry and maintain a low cost, several of the
joints interact. Movement of one joint may result in
possible unwanted motion in another. Compensation for these
interactions can be made in software. Thus, the cabling
details must be understood in order to properly control the
motion of the arm.

Base Rotation (Joint 1). The base drive cable
two idler pulleys, making a 90 degree bend to a
fixed to the base. The base drive motor causes
arm to rotate about the base joint.

passes over
drive pulley
the entire

Shoulder Bend (Joint 2). The shoulder drive cable passes
around the drive pulley fixed to the upper arm segment and
rotates the upper arm segment about the shoulder joint.

- 19 -

Page 20

Table 2.2.1

MINI MOVER 5 Performance Characteristics

GENERAL

Configuration
Drive
Controller
Interface
Power requirement

PERFORMANCE

Resolution
Load Capacity

Gripping Force
Reach
Static Load Force

PERFORMANCE DETAILS

5 revolute axes and integral gripper
Electric Stepper Motors, open loop
Microcomputer provided by user
8 bit parallel
12 volts, 4 amps DC

0.3 mm on all axes
225 gm at full p.xtension
450 gm at half extension
13 N maximum
444 mm
18 N maximum

Motion

Base
Shoulder
Elbow
Wrist Roll
Wrist Pitch
Hand

Range

+90,-90 deg
+144,-35 deg
+0,-149 deg
+90,-90 deg
+180,-180 deg
0-75 mm

Speed (full load)

0.37 radl's
0.15 rad/s
0.23 rad/s
1. 31 radl s
1. 31 rad/s
13 N/s

Speed (no loadl

0.42 rad/s
0.36 rad/s
0.82 rad/s
2.02 rad/s
2.02 rad/s
20 mm/s

PHYSICAL CHARACTERISTICS

Arm weight 3 kg
Interface cable length 900 mm

- 20 -

SHOULDER JOINT

BODY

BASE ~--

x

zAXIS

UPPER
ARM

ELBOW JOINT

.....--- FOREARM

WRIST JOINT

HAND
y AXIS

x AXIS

Page 21

Figure 2.2.1 Major Structural Components

- 21 -

Page 22

LJ iii\'[

Wf':sr
'il rERENTI/.

"--SHOULDER AXLE

.~=~~~~!i!!!!!!!1~-ii;Y BASE 0 RIVE PU llEY
i--

1- c::::- ~-~------------t ---,--.-,'

Figure 2.2.1.1 Cabling Diagram

- 22 -

Page 23

Elbow Bend (Joint 3). The elbow drive cable passes around
an idler pulley on the shoulder axis to a drive pUlley in
the lower arm segment. Joints 2 and 3 interact, 50 that
changing the shoulder angle results in an equal change in
the elbow angle. This interaction was designed 50 that the
elbow drive controls the forearm with respect to the
horizontal. However the limits of the forearm motion are
measured with respect to the upper arm not the horizontal
(x-y) plane.

Wrist (Joint 4, left and Joint 5, right). The fourth and
fifth drive cables pass around idler pulleys on both the
shoulder and elbow joints and terminate on the drive pulleys
of Lhe left and right wrist differential gears. The
interaction of these joints with joints 2 and 3 has the
effect that the wrist drives control the angle of the hand
with respect to the horizontal (pitch) and the rotation of
the hand around its pointing vector (roll) as shown in
Figure 2.2.1.2. Through the action of the differential, the
pitch angle P equals the average of the,positions of the
left and right gears and the roll angle R is their
difference. The range of motion is limited to +270,-270
degrees at each of the wrist gears due to cable length
limits and to +90,-90 degrees in pitch due to interaction
from the lower arm.

Hand (Joint 6). The hand drive cable passes over idler
pulleys located on the shoulder and elbow joints, through
the center of the wrist differential, and finally terminates
at the hand. This drive interacts with joint 3 (elbow) in
that the elbow bend will cause the hand to open. This can
be compensated in software by closing the hand exactly the
same number of steps that the elbow is raised.

The hand housing is attached to the output miter gear
of the differential gear set. The hand housing supports the
two pairs of links, each pair which terminates in a grip, as
shown in Figure 2.2.1.3. The housing, links and grips are
attached to each other by small pins. Torsion springs
provide the force to open the hand as the hand cable is
slackened. As the hand cable is pulled, the hand closes
upon an object to be grasped and the cable tension mounts,
activating a tension sensitive switch. The state of this
switch can be read by the control computer which may stop
the drive motor as soon as it closes, in which case the
grasping force is limited to about 0.3 N.

- 23 -

SIDE VIEW PITCH
--~Y +p\ ANGLE

____ J

I

...•.~V::~ ROLL
.'/ ! ANGLE

Figure 2.2.1.2 Defintion of Roll and Pitch angles.

- 24 -

Page 24

TENSiON
SWITt:::;H

!DLER PULL::: YS

'JRiVE MOTe"

LINKS

Figure 2.2.1.3 Control system for gripping

- 25 -

GRIP

Page 25

Page 26

Gripping force can be increased by pulling in more
cable after the tension switch closure is detected.
Additional cable taken up stretches the extension spring
which is mounted in series with the hand ~rive. This
additional cable take up is converted into gripping force at
the rate of I Newton for every 12 steps. Thus gripping
force as well as hand opening can be controlled by the same
cable drive. Figure 2.2.1.4 gives a graph of the gripper
force v's motor steps.

2.2.2 Stepping Motor Control

Each of the cable drives is controlled by a stepper
motor. The motors used have four seperate windings, each
driven by a power transistor. The drive is digital, with
the transistors switched on or off- to obtain a desired
pattern of currents in the motor. By appropriately changing
the pattern of currents a rotating magnetic field is
obtained inside the motor, causing it to rotate in small
increments or steps. In the MINI-MOVER 5 each of the four
coils is individually controlled from the computer. This
allows the pattern of motor currents to be controlled by the
computer software.

In order to step a motor the sequence of binary
patterns shown in Figure 2.2.2.1 is output to the desired
motor. The pattern on each row of the table, when sent to
the corresponding drive transistors of the motor, will cause
it to move one step. To step the motor clockwise the
patterns are output sequentially from top to bottom. When
the end of the table is reached, it is necessary to wrap
around to the other end of the table and continue
sequentially. To move the motor in the opposite direction,
the sequence is reversed.

2.2.3 Computer Interface

The MINI-HOVER 5 can be interfaced to a microcompuer
via a 8-bit parallel I/O port. The interface is organised
as seven 4-bit parallel output and a single 4-bit input as
shown 1n Figure 2.2.3.1. Information on the address lines
is used to channel the four bits of output data to the
appropriate motor drive through individual 4-bit latches.
In this way the computer can control the 4-bit phase
patterns on each motor with a minimum of hardware. After a
phase pattern is sent to a 4-bit latch, it is held by the
latches until the next pattern is sent. Outputs of the
latches control the power drivers and their respective motor
coils.

- 26 -

Page 27

HAND GRIP

OPENING FORCE

75mmJ
15N

11O~1
50mm ;+
25mm

5N

1000

o....l---·,J----+---1Ir----+--~_+_----'- 0
o 500

DRIVE MOTOF-\ STEPS

Figure 2.2.1.4 Gripper Force Graph

4>1 4>2 4>3 4>4

0 1 0 1 t~
0 1 0 0

18w 0 1 1 0(/)

~ 0 0 1 0 0
..J::::e: (.)u 1 0 1 0 a:

0' UJ
..JI 1 0 0 0 f0-ul z

I 1 0 0 1 :::Ji 0t 0 0 0 1 u

Figure 2.2.2.1 Table of drive patterns for stepper motor coils.

- 27 -

Page 28

4-81T LATCHES (7)

~~_D--l~... ~
4 ­

_J-" -

1\+~_Tr,l'

CATf\ ,;
4 --I­
Bl):;

I---=a~
! r---i
, I

ADDRESS :, ~ _~ _
DECODER ! I : ~h.

_=~J r-u=~:

. /""j --~--l '~I---rl--- n-:
: --- -, I! --L_t- ...
LJ I : 10--'=-~::

1 I -:
i
i -1-----,
i f--{]~_~

i ! I
I '- - -- -~------,

! i {'1---'"+-- ~-.

i I I"-~

I I I -.J----..
I L - - - ---- r -- --.

():--~~f-~- -1
1-----l--D=--:-:GUS I - -~-----.
I
L_.

Figure 2.2.3.1 Block diagram of computer interface

- 28 -

Page 29

The grip switch is connected to one of the inputs of
the auxilIary port, permitting the computer to close the
hand until the gripping force builds up. The other inputs
and outputs of the auxilIary port are available to the user
for experimentation with other sensors or controls. These
inputs may be used for tactile, proximity, force and/or
position sensors which can be mounted on the hand, arm
extremities, and or the table top. Note also that an
auxilIary output port is available. This port may be used
to control a work turntable, for example, to control
external parts feeders, or synchronise other equipment with
arm operations.

2.2.4 Conclusions

The fact that the electric pulse stepper motors are
open loop control (i.e. no feedback) is major disadvantage.
This means that all positional information about the
MINI-MOVER 5 must be maintained in software. The software
positional information approach could lead to errors if
stepper motor slippage or an overrun of the end points
occurred. End point overrun could be avoided by placing
software limits on the endpoints. Such software limits
would involve the use of joint transformations due to the
interaction of the joints. The effectiveness of software
limits would depend on the robot user initialising the
positional information system to the correct values.

The robotic software written to drive the MINI-MOVER
must compensate for joint interaction.

- 29 -

Page 30

CHAPTER 3
PROJECT DESIGN

3.1 Definition of Design Approach

Based upon the study of robotic software and the study of
the MINI-MOVER 5 capabilities it was decided that most of
the "good" robot programming features could be implemented
on the MINI-MOVER 5 if the following approach was adopted:

(1) Define a concise set of commands with which the
MINI-MOVER 5 can be controlled. The commands in this
instruction set will be transparent to be user and
independent of each other. Any MINI-MOVER 5 robot action
can be programmed by this instruction set, without the need
for definition of a new command. The commands will be
designed and written in a structured manner. The MINI-MOVER
5 can only be controlled by the defined set of commands.
Thus this command set will form a robot control language for
the MINI-MOVER 5 robot. The control language will be stored
in PROM (programmable read only memory) on the M68000
microprocessor board.

(2) A high level structured language which has "good"
extensibility features will be extended to include the
defined robot control language. The high level application
programs for the MINI-MOVER 5 which include calls to the
robot control language will be developed on a host computer
(Perkin Elmer 3220). Upon completion of the development of
the high level application program, the program will be
cross-assembled into M68000 assembler code and down-line
loaded into the M68000 microprocessor, see Figure 3.1.1.
For this project the programming language C was chosen as
the high level language. The reason for the choice of C as
the high level language was the availability of a M68000
cross-assembler.

This project design is one that extends a higher level
language to include desirable robot language features. The
effectiveness of such a solution depends on the design of
the robot control language. A poor design will impair the
flexibility and effectiveness of the robotic software.

- 30 -

Host Computer Control Computer

Page 31

Robot

I Down-line PROM I 8 bit 1/0
High level I load I I port I Interface
Application 1----------)1 1----------)1 Card

I I 1 1 1 _
ICross assemble 1
I I

PERKIN-ELMER 3220 MOTOROLA M68000

Figure 3.1.1.

- 31 -

MINI-MOVER 5

Paqe 32

CHAPTER 4
DETAILED PROJECT DESIGN

4.1 Detailed Design Approach

Expandinq upon the project design scope it is necessary to
define and develop the robot control language for the
MINI-MOVER 5 robot. Before defining a set of commands to be
included in the robot control language it would be a good
idea to look at what kind of actions the MINI-MOVER 5 could
do. Typical examples of such actions include:

(1) Move the shoulder 20 motor steps.
(2) Turn the base 58 deqrees clockwise.
(3) Close the hand (gripper) on an object.
(4) Open the gripper to an opening of 50mm.
(5) Move the shoulder 10 degrees up and elbow 34

degrees down.
(6) Move the robot from cartesian point (Xl,Yl,Zl) to

cartesian point (X2,Y2,Z2).
(7) Teach the robot a task.

From the above expectations of the capabilities of the
MINI-MOVER 5 a number of observations can be made. These
being:

(1) There are three distinct types of robot motion control,
associated with each type of motion control is a positional
reference frame to describe the position of the robot. The
three classes of robot motion control are as follows:

(i) Robot Motor Control

At this level of control emphasis is upon control
of the robot stepper motors. Since the stepper motors
are open loop, positional information must be
maintained in software by way of positional registers.
Each of the six stepper motors has a corresponding
positional register. These positional reqisters form a
reference frame which describes the position of the
MINI-MOVER 5 in terms of the number of steps each
stepper motor has been turned. Such positional
information provides valuable data but does not convey
to the user any information regardinq the position of
the robots joints or the position of the robot in the
cartesian workspace. Thus there is a need for the

- 32 -

Page 33

ability to translate the positional register reference
frame into joint coordinate and cartesian coordinate
reference frames.

(ii) Robot Joint Control

At this level of control the emphasis is upon
control of the robot joints. To control the robot by
joint control there is a need for positional
information to be maintained in a reference frame which
describes the position of the robot in terms of joint
angles for each moveable segment. To move the robot by
joint control the joint coordinate reference frame must
be translated into positional register values and
passed as parameters to the Robot Motor Control l~vel.

Joint control is the most convenient way to control the
MINI-MOVER 5. But there is still the need to convey
information to the user in terms of cartesian
coordinates. This can be done by translation of the
joint coordinate reference frame into a cartesian
reference frame.

(iii) Robot Cartesian Control

At this level of control the emphasis is upon
control of the robot in cartesian coordinates. Such
motion control requires positional information to be
maintained in a reference frame which describes the
location of the robot in terms of specifying the
position and the orientation of the end point of the
robot arm in 3 dimensional space. The end point refers
to the centre point between the two finger tips of the
gripper. To move the robot by cartesian control the
cartesian coordinate reference frame must be translated
into joint coordinate values and passed as parameters
to the Robot Joint Control level. The Robot Joint
Control level will handle the translation of the joint
coordinates into positional register values. The
positional register values will be passed as parameters
to the Robot Motor Control level. The Robot Motor
Control level will move the robot to the position
described by the supplied arguments. Cartesian
coordinate control is useful particularly for assembly
tasks. This level of control is high enough to obscure
low level detail and makes its workings transparent to
the user.

- 33 -

Page 34

The three types of robot control modes involve
different translations. These translations can be divided
into two classes: Forward and Backward translations.
Forward translation is the translation of positional
register information into joint coordinate information, and
the translation of joint coordinate information into
cartesian coordinate information. Backward translation is
the converse of forward translation, that is, the
translation of cartesian coordinate information into joint
coordinate information, and the translation of joint
coordinate information into positional register information.

(2) The MINI-MOVER 5 robot must have coordinated motion
capabilities. For example if a motion of the robot requires
movement of the shoulder and elbow, and this action is
undertaken by moving the elbow first and the shoulder
second, a rather awkward and unpredictable path results.
However if the motion was undertaken by interleaving the
motions of the shoulder and the elbow during the duration of
the motion a coordinated motion results. Coordinated motion
produces a straighter path from A to B and is also faster.

(3) To fulfil the requirement of being able to close the
gripper on a object, the software must have the ability to
monitor the sensor switch located in the robot arm.

(4) To fulfil the requirement of being able to teach the
MINI-MOVER 5 tasks there is a need for a database which
stores the positional information about the robot. A
database will enable the capability to "remember" a variable
number of points or positions associated with a taught task.

- 34 -

Page 35

4.2 Robot Control Language Design

Based upon the the previous observations a set of commands
to control the MINI-MOVER 5 can be drafted.

4.2.1 Initialise <INIT) Command

The INIT command sets up the interface between the
M68000 microprocessor and the the MINI-MOVER 5 robot. The
interface is a Peripheral Interface Adapter (PIA) located on
the M68000 board which is set up to allow an 8 bit output
into the MINI-MOVER 5 and a 4 bit input from the MINI-MOVER
5. Upon completion of the computer interface setup the
MINI-MOVER 5 and the system database are reset by issuing
the RESET command.

Algorithm

INIT
begin
Set up PIA
RESET
end

- 35 -

Page 36

4.2.2 Reset MINI-MOVER 5 and Database (RESET) Command

The RESET command resets the electric currents in all
six stepper motors in the MINI-MOVER 5 robot to zero. Such
a feature is useful as it allows the robot to be backdriven
(i.e. the robot can be moved by grabbing it and moving it
around). The RESET command also resets the system database
to its initial value. Since all positional information is
maintained in software there is a need for the robot
positional software to be initialised at a known position.
A initial position is required so that the physical position
of the robot matches the sofware position of the robot.
When positional initialisation is required the arm is either
moved manually or by using the SET commands to a fixed
position. The initial position is shown in Figure 4.2.2.1.
A calibration grid is suppied in Appendix A to simplify
initialisation.

The cartesian coordinates of the initial position are:

x = 200 rom
y = 0 mm
Z = 0 mm

The corresponding joint coordinates associated with the
above cartesian coordinates are:

Base = 0 degrees
Shoulder = 24.95500113 degrees
Elbow = -77.39549286 degrees
Pitch = -90 degrees
Roll = 0 degrees
Gripper = 0 mm (closed)

The six positional registers Pl,P2,P3,P4,P5 and P6 are
initialised to zero.

- 36 -

Algorithm

RESET
begin
Set motor currents to zero.
Pl :: P2 :: P3 = P4 = P5 = P6 = 0
BASE = 0
SHOULDER = 24.95500113
ELBOW = -77.39549286
PITCH :: 90
ROLL :: 0
GRIPPER :: 0
X = 200
Y = 0
Z = 0
end

- 37 -

Page 37

Figure 4.2.2.1 Initialisation Position

- 38 -

Page 38

Page 39

4.2.3 Robot Motor Driver (STEP) Command

One of the complicated aspects of controlling the
MINI-MOVER 5 by computer is to control the motion of all six
stepper motors simi1taneous1y. The STEP command does this
task. To do this the STEP command has seven parameters
passed to it when it is called i.e.
STEP(D,JI,J2,J3,J4,J5,J6).

D is a positive integer which represents the delay
between the pulses to the stepper motors and JI,J2, •... ,J6
are signed integers which represent the number of steps that
each of the six motors is to be turned.

The delay D determines the speed of the motion.

The integers J1,J2, ,J6 determine the motion of each
joint. The sign of each number indicates the direction each
motor should be driven, the magnitude indicates the number
of steps. The J1,J2, •••. ,J6 integers represent the
following stepper motors:

J1 - Base swivel
J2 - Shoulder bend
J3 - Elbow bend
J4 - Right Wrist
J5 - Left Wrist
J6 - Gripper

Roll and Pitch movements are achieved by
movements of the left and right wrist motors.
obtained by moving both left and right wrists in
direction. Roll is obtained by motion of both
opposite directions.

combined
Pitch is

the same
wrists in

The STEP command uncouples the elbow (J3) and the
gripper (J6) interaction, such that a command to move the
elbow will not affect the gripper opening.

Additionally the STEP command
unequal joint (Jl,J2, .. ,J6) integers
motion. For example if the base motor
and the shoulder motor is to move
timing is shown in Figure 4.2.3.1.

- 39 -

linearly coordinates
to obtain coordinated
is to move 21 steps
3 steps the resultant

Page 40

x, .x

Shoulder Motor Steps
START FINISH

Base Motor Steps

Figure 4.2.3.1 Step Timing Diagram

The STEP command also monitors a STOP motion flag.
This flag is used if an event occurs elsewhere in the system
and there is a need to abandon the current robot motion.

Finally the STEP command maintains robot positional
information by updating the positional registers
Pl,P2,P3,P4,P5,P6 which correspond to the base, shoulder,
elbow, right wrist, left wrist and gripper motors. A
positional register is updated every time its corresponding
stepper motor is turned.

- 40 -

Page 41

The algorithm to control the stepping is a modified version
of one developed by T.A. Siem presented in a paper called
"Applying Microprocessors in Tool Design".

Algorithm

STEP(D,Jl,J2,J3,J4,J5,J6)
begin
M = max(Jl,J2,J3,J4,J5,J6)
for i = 1 to 6 do

begin
direction[iJ = sign(J[iJ)
J[iJ = abs(J[iJ)
sum[il = M/2
end

N = M
while N <> 0 and not STOP do

begin
for i = 1 to 6 do
begin
sum[iJ = sum[iJ - J[iJ
if sum[i] < 0 then

begin
sum[il = sum[il + M
stepmotor(i)
P[iJ = P[i] + direction[iJ
end

end
wait<D)
N = N - 1
end

end

- 41 -

Page 42

4.2.4 CLOSE Command

The CLOSE commmand causes the gripper (hand) to close
until the grip switch indicates that the gripping force has
built up to at least l.5N. This occurs either when the
gripper fingers close on an object, or when the gripper
fingers close and touch one another.

The CLOSE command is implemented by using the STEP
comand to close the gripper one step, subtracting one from
the positional gripper register (P6) and checking the grip
switch. This sequence is repeated until the grip switch
closes.

Algorithm

CLOSE
begin
while Grip Switch not CLOSED do

begin
STEPCD,O,O,O,O,O,-l)
P6 = P6 - 1
end

eM

- 42 -

Page 43

4.2.5 READ Command

The READ command is used to access the system database
and depending on the supplied parameter returns the values
of one of the following:

- Robot Motor Positional Register Values.
- Robot Joint Coordinate Values.
- Robot Cartesian Coordinate Values.

Algorithm

READ(i)
begin
if i = 1 then

return(Pl,P2,P3,P4,P5,P6)
else

if i = 2 then
return(BASE,SHOULDER,ELBOW,

PITCH,ROLL,GRIPPER)
else

return(X,Y,Z)
end

- 43 -

Page 44-

4.2.6 STATUS Command

The STATUS command is used to display the positional
information about the MINI-MOVER 5 robot on the terminal
console.

The STATUS command is implemented by using the READ
command to access the system database and then displaying
the returned information on the console. The format of the
status display is given in Figure 4-.2.6.1.

Algorithm

STATUS
begin
read(l)
display(Pl,P2,P3,P4,P5,P6)
read(2)
display(BASE,SHOULDER,ELBOW,PITCH,ROLL,GRIPPER)
read(2)
display(X,Y,Z)
end

- 44 -

o
Z
f­
!Xl

I
)(
uJ

~

«J
E...
o

LA.-ca
c.-
E...
Q)...
~
ca-Q.
en.-
e
o
Q)

".->

III
I­
<{
(J

I
!
I

"

\
of,

r
(()

\

f­
e.1
\\J

"

FIGURE 4.2.6.1

PAGE 45

-_ ..._~
- ._--

... -I---

..- ... ~­
.•....- _.

. _--)
I 0 -I-t-i
::-:--1-=-=:;
-i--~
.- ._-_.-,--

- .. -

STATUS COMMAND SCREEN DISPLAY

- 45 -

Page 46

4.2.7 BOUNDS Command

The BOUNDS command is used to check if a proposed robot
motion will violate the physical bounds of the MINI-MOVER 5
i.e. cause overrun of the robots end points. The bounds
checking has to be implemented at joint coordinate level due
to the interaction of joints. The bounds violation checking
can be summarised by the folloWing set of rules. The rules
are given in terms of joint angles and are expressed in
degrees, except the gripper opening which is expressed in
millimetres.

-90 <= BASE <= 90
-22 <= SHOULDER <= 139

o <= SHOULDER - ELBOW <= 149
(Handles shoulder/elbow interaction)

-180 <= ROLL <= 180
-90 <= PITCH <= 90
-90 <= PITCH - ELBOW <= 90

(Handles hand/elbow interaction)
o <= GRIPPER <= 75

(Handles gripper opening)

- 46 -

Page 47

4.2.8 HOME Command

The HOME command is used to return the MINI-MOVER 5
robot to its initialisation point. This is done by
accessing the system database and reading the positional
registers Pl,P2, ,P6. The read values are negated and
supplied as parameters to the STEP command, which moves the
robot to its initial position.

Algorithm

HOME
begin
read(l)
STEP(D,-Pl,-P2,-P3,-P4,-P5,-P6)
end

- 47 -

"

Page 48

4.2.9 Forward Translation Commands

The forward translation commands consist of two
commands; the Forward Joint (FWDJOINT) translation command
and the Forward Cartesian (FWDCART) translation command.

4.2.9.1 Forward Joint (FWDJOINT) Command

The FWDJOINT command accesses the system database to
read the positional register values; Pl,P2, ... ,P6. It then
translates the positional register values into joint
coordinates using conversion factors and updates the system
database joint coordinates; BASE, SHOULDER, ELBOW, PITCH,
ROLL and GRIPPER.

The conversion factors to translate the positional
register values into joint coordinate values are given in
Table 4.2.9.1.1. Note: The joint angles are stored as
radians except GRIPPER which is stored in millimetres. The
PITCH angle (P) and ROLL angle (R) are calculated for the
right wrist angle (~) and the left wrist angle (8~ by the
following formulae:

·1
(°5P = - + °4)

2

1
R = - (°5 - (1)

2 4

(I)

(2)

Table 4.2.9.1.1

Conversion Factors Between Motor Steps
and Joint Angles

Motor

1
2
3
4
5
6

Joint

Base
Shoulder
Elbow
Right Wrist
Left Wrist
Gripper

- 48 -

Steps/Radian

1125
1125

672
241
241
340

Algorithm

Page 49

F'HDJOINT
begin
for i =
PITCH
ROLL
end

1 to 6 do
joint[iJ = P[iJ/table[iJ

= (joint[SJ + joint[4J)/2
= (joint[SJ - joint[4J)/2

- 49 -

Page 50

4.2.9.2 Forward Cartesian (FWDCART) Command

The FWDCART command accesses the system database to
read the joint coordinates values of; BASE, SHOULDER,
ELBOW, PITCH and ROLL. It then translates the joint
coordinates into cartesian coordinates using trigonometry
and updates the system database cartesian coordinates; X, Y
and Z, which specify the position of the end point of the
robot. The position of the end point is defined by the
following three distances:

X The distance of the desired end point in from of the
robot, measured from the base pivot along the X axis.

Y The distance of the desired end point to the left and
right of the robot, measured from the base pivot along the Y
axis.

Z The vertical height of the desired end point above the
table top.

The orientation of the end point is defined by the
PITCH angle P and the ROLL angle R.

Thus a unique point in the cartesian reference frame
can be defined by specifying the position and orientation of
the end point. i.e. (X,Y,Z,P,R).

To translate joint coordinates into cartesian
coordinates the relationship between the different parts of
the robot arm must be specified. This can be done in terms
of the kinematic model shown in Figure 4.2.9.2.1. The
kinematic model shows how each joint is articulated, how the
joint angles are measured and the distance between joints.
The distances between the joints are indicated by the
constants H,L and LL. H' is the distance from the table top
to the shoulder centerline, L is the distance from the
shoulder joint to the elbow joint and elbow joint to wrist
joint, and LL is the ~istance from the wrist joint to the
centre point between the two fingers. Values for these
distances are given in Table 4.2.9.2.1.

- 50 -

KINEMATIC SYMBOLS USED

9 Hinge
Joint

~
zAXIS

Swivel
Joint

ll:

~
l

Differential
Joint

X

Page 51

z

x AXIS

Figure 4.2.9.2.1 Kinematic Model of the MINI-MOVER 5

- 51 -

Page 52

Table 4.2.9.2.1

. Lengths of MINI-MOVER 5 Segments

Segments

H
L
LL

Length (rom)

195.0
177.8

96.5

The first step is to determine Z, the verica1 height of
the end point, and an intermediate variable RR, the
horizontal distance from the base pivot to the end point.
The situation is summarised in Figure 4.2.9.2.2. Summing
the vertical contributions from each link gives the
following expression for Z:

Z = H + L sin 82 + L sin e,) + LL sin P

Summing the horizontal contributions gives:

RR = L cos 02 + L cos 03 + LL cos P.

(3)

(4)

The
of the
shown in
are:

second step is to determine the X and Y coordinates
end point from the intermediate varaible, RR, as
Figure 4.2.9.2.3. By inspection, the coordinates

x = RR cos 01

Y = RR sin 81

Algorithm

(5)

(6)

FWDCART
begin
RR = L cos (SHOULDER) + L cos (ELBOW) + LL cos(PITCH)
X = RR cos (BASE)
Y = RR sin(BASE)
Z = H + L sin(SHOULDER) + L sin (ELBOW) + LL sin(PITCH)
end

- 52 -

Page 53

where Pitch angle P is given by

z

END
POINT

TABLE TOP

I LLsinP

LL cos P

~I_L

l sin {)2

---L.--.:--L

------- RR --------·1

H

zAXIS

1

BASE
r-------- -,

Figure 4.2.9.2.2 Side View of Kinematic Model

- 53 -

Page 54

RRsine,

/ /ENDPOINT

'?'<'?'<

y AXIS

t
I

r-------
I
I
I
I P"'-r------.....L.-------r---'----'----il_ x AXIS
I I
I I
I BASE IL -I

RR cos 81

Figure 4.2.9.2.3 Top View of Kinematic Model

- 54 -

Page 55

4.2.10 Backward Translation Commands

backward translation commands consist of two
the Backward Cartesian (BWDCART) translation

the Backward Joint (BWOJOINT) translation

The
commands;
command and
command.

4.2.10.1 Backward Cartesian (BWDCART) Command

The BwnCART command moves the MINI-MOVER 5 to a point
with a specific position, orientation and gripper opening in
the cartesian reference frame. The destination point
(X,Y,Z,P,R,G) of the move is supplied as a parameter to the
BWOCART command. The supplied parameter is translated by
trigonometry into joint coordinate values, and these values
are supplied as parameters to the BWDJOINT command which
translates the joint coordinates into positional register
values. The positional register values are then passed as
parameters to the STEP command which moves the MINI-MOVER 5
end point to the location described by (X,Y,Z,P,R,G). Note:
The gripper opening G argument is passed directly as a
parameter to the BWDJOINT command.

The first step of the r~ckward cartesian solution is to
determine the base angle (01) and the radius vector RR from
the base to the end point as in Figure 4.2.10.1.1. Using
the Pythagorean Theorum

RR = {X2:. y 2-

()1 = arctan(Y/X)

(7)

(8)

The second step of the solution is the translation of
the Roll angle (R) from the cartesian frame to the joint
frame i.e. Roll in the cartesian frame is interpreted as
the gripper angle to the Y-axis, while Roll in the joint
frame is interpreted as the gripper angle to the wrist axis.
See Figure 4.2.10.1.2. By subtracting the base angle (81)
from the commanded Roll angle, keeps the gripper orientation
fixed along the Y-axis as the robot is moved.

R=R-O 1 (9)

- 55 -

v

x ------

Figure 4.2.10.1.1. Top view of Arm

- 56 -

y

----'--JI»- X

Page 56

Page 57

y AXIS

R

-=-r---,-----------..., x AXIS

BASE
,------1
I
!
I
I I
LJ

(.) HAND ALIGNED TO ARM

y AXIS

R
/

BASE
r-------I
l
I -+-'".-'----------------iI..~ X AX IS
[I I
I IL -.J

(b) HAND ALIGNED TO VAXIS

1qure 4.2.10.1.2. Roll in Joint Frame (a) and Cartesian Frame (b)

- 57 -

Page 58

The third step is tq work back from the coordinates of
the end point to those of the wrist. As in the forward
translation the side view.of the kinematic model shown in
Figure 4.2.9.2.2 is used. Distances in this view are
measured vertically along the Z-axis and horizontally along
the radius from the base (R axis). Letting RE and ZE be the
coordinates of the end point in this plane, we can calculate
the coordinates of the wrist RW and ZW by using
triangulation. The coordinates of the wrist are:

RW = RE - LL cos P

ZW = ZE LL sin P

(10)

(11)

The fourth step is to define the shoulder-elbow-wrist
triangle so that the shoulder angle 02 and the elbow angle
0'3 can be determined. For this purpose the translated

coordinate system in Figure 4.2.10.1.3 is used. The origin
is (0,0) at the shoulder and the coordinates of the wrist
are now (RO,ZO).

The distance from the shoulaer to the wrist RO is the
same as RW previously determined in equation (10). This is
expressed as:

RO = RE - LL cos P (12)

The height of the wrist above the shoulder ZO is just
the height of the wrist above the table top ZW,less the
height of the shoulder H. Thus,

ZO = ZW - H

Substituting for ZW using equation (11) gives:

ZO = ZE - LL sin P -'H

- 58 -

(13)

(14)

z

L

ELBOW

L

WRIST

II
\

- t__L------------ z
__.~ 0

~ ft _._.---JI- r

Page 59

~---------RO ----------1

o

Figure 4.2.10.1.3 Shou1der-E1bow-Wrist Triangle

l

b

h

I
b

I

L

Figure 4.2.10.1.4 Simplified Triangle

- 59 -

The fifth ~tep is to
triangle for O2 and f)3.

introduced to simplify the
must be solved first.

Page 60

solve the shoulder-elbow-wrist
Three new angles Q, B, and ¢, are

solution. These three angles

Since tan(~) = (ZO/RO), then:

{3 = arctan (ZO IRO) (15)

Pivoting the shoulder-elbow-wrist triangle about the
shoulder by ~ gives the simplified triangle shown in Figure
4.2.10.1.4. The simplified triangles can be partitioned
into two right angle triangles. The length of each base
base b, is half that of the total base, or:

The height h is

h = i.l 12 - 1)2

Since the tangent of A is hlb,

h = arctan h/b

(16)

(17)

(18)

Substituting for h in equation (18) using equation (22)
gives

Q' = arctan
(19)

b

Substituting for b in equation (19) using equation (16)
gives

4 12
ex = arctan 1

HO
2 + Zo2

- 60 -

(20)

Page 61

The sixth step is to use a and ~ to determine B2and 83•
The following three relations are set up and solved. At the
shoulder (see Figure 4.2.10.1.3)

At the elbow apex (see Figure 4.2.10.1.3)

82 + ¢ + B3 = 180 degrees

(21)

(22)

Summing the internal angles of the simplified triangle (see
Figure 4~2.10.1.4) gives

¢ = 180 - 20' (23)

Substituting the value of 82 from equation (21) and the value
of ¢ from equation (23) gives

()3 = a - ' ~

thus completing the backward cartesian translation solution.

- 61 -

Page 62

Algorithm

BHDCART(X,Y,Z,PITCH,ROLL,GRIPPER)
begin
BASE = arctan(Y/X)
RR = sqrt(sqr(X) + sqr(Y»
ROLL = ROLL - BASE
RO = RR - LL cos (PITCH)
ZO = Z - LL sin(PITCH) - H
beta = arctan(ZO/RO)
alpha = arctan(sqrt(4 sqr(L)/(sqr(RO) + sqr(ZO» - 1»
SHOULDER = alpha + beta
ELBOW = beta - alpha
BWDJOINT(BASE,SHOULDER,ELBOW,PITCH,ROLL,GRIPPER)
eoo

- 62 -

Page 63

4.2.10.2 Backward Joint (BWDJOINT) Command

The BWDJOINT command moves the MINI-MOVER 5 to a point
with specific joint orientations and gripper opening in the
joint frame. The destination location
(BASE,SHOULDER,ELBOW,PITCH,ROLL,GRIPPER) of the move is
supplied as a parameter to the BWDJOINT command. The
supplied parameters are check for bounds violation. If the
supplied parameters do not violate bounds they are then
translated by conversion factors into position register
values which are passed as parameters to the STEP command
which moves the MINI-MOVER 5 end point to the location
specified by (BASE,SHOULDER,ELBOW,PITCH,ROLL,GRIPPER).

The first step of the backward joint solution is to
find the right wrist angle (~) and th8 left wrist angle (05)
from the PITCH and ROLL angles. This can be done by using
equations (1) and (2) giving

°4:= P + R

°5 = P - R

(24)

(25)

The second step is to check if any of the supplied
parameter arguments will violate the bounds of the robot
i.e. cause overrun of the end points. This is done by
issuing a BOUNDS command. Should any parameter violate a
bound then no motion is undertaken and an error status is
returned to the issuer of the BWDJOINT command.

The final step is to translate the joint coordinates
and the gripper opening into positional register values, to
be passed as arguments to the STEP command. This is done by
multiplying the joint coordinates and the gripper opening by
the conversion factors in Table 4.2.9.1.1.

Upon completion of the translation the STEP command is
issued to move the robot to the desired location.

- 63 -

Page 64

Algorithm

BHDJOINT(BASE,SHOULDER,ELBOH,PITCH,ROLL,GRIPPER)
begin
J[4] = PITCH + ROLL
J[S] = PITCH - ROLL
for i = 1 to 6 do

J[i] = joint[i] x table[il
STEP(D,Jl,J2,J3,J4,JS,J6)
end

- 64 -

Page 65

4.2.11 Manual Set Commands

The manual Set commands display a menu on the terminal
console and place the MINI-MOVER 5 (depending on the Set
command selected) into one of three manual control modes:

(1) Robot Control Mode - SET command.
(2) Joint Control Mode - JSET command.
(3) Cartesian Control Mode - CSET command.

The Set commands allow the user to invoke functions
which move the robot and manipulate the system database, by
pressing certain keys on the terminal console keyboard. If
a function invocation results in motion of the robot, the
FWDJOINT and FWDCART commands are issued. These commands
update the system database with the new positional
information of the robot. The new positional information is
also displayed on the terminal console, this is done by
issuing the STATUS command.

The interpretation of keystrokes is implemented by a
finite state machine.

- 65 -

Page 66

The Bet commands have the same basic algorithm which is
as follows:

Algorithm

SET
begin
display(menu)
repeat

beg-in
FWDJOINT
FWDCART
STATUS
end

until QUIT
end

Keyboard Interrupt Routine

beg-in
interprete(key)
if valid then

beg-in
function(key>

if key = Q then
QUIT = true

else
QUIT = false

end
else

display('Invalid Input')
end

- 66 -

Page 67

4.2.11.1 SET Command

The SET command places the MINI-MOVER 5 into "robot
control mode". Robot motion is done by calling the STEP
command with the appropriate parameters. The functions that
can be invoked by a keystroke under the SET command are as
follows:

I This key invokes the MINI-MOVER 5 and system database
initialisation command called INIT. But before the
command is invoked the user is asked whether
initialisation is required or not. A reply of keystoke Y
is taken as yes, all other input is ignored. The
inclusion of the question is a precaution against
accidental initialisation.

H This key invokes the HOME command which returns the
MINI-MOVER 5 to the initialistion position.

V This key invokes the function to change the number of
steps the MINI-MOVER 5 moves every time the STEP command
is issued. The next keystroke is taken as the steppinq
rate. Only keys 1,2,3,4,5, and 6 are valid keys. These
keys represent a step rate of 1,5,10,15,20 and 25
respectively. Any other input generates a INVALID INPUT
message on the terminal console.

D This key invokes the function to change the delay between
motor steps of the MINI-MOVER 5 in the STEP command. The
next keystroke is take as the delay. Only keys 1,2,3,4,5,
and 6 are valid keys. These keys represent delay
functions of 1,5,10,15,20 and 25 respectively. Any other
input generates a INVALID INPUT message on the terminal
console. .

+ This key invokes the function to set the direction of
motion of the stepper motors in the MINI-MOVER 5 to be
positive i.e. UP, CLOCKWISE etc. when the STEP command
is invoked.

- This key invokes the function to set the direction of
motion of the stepper motors in the MINI-MOVER 5 to be
negative i.e. DOWN, COUNTER-CLOCKWISE etc. when the STEP
command is invoked.

B This key invokes the function to issue the STEP command to
turn the base stepper motor with the selected stepping
rate, direction and delay.

- 67 -

Page 68

S This key invokes the function to issue the STEP command to
turn the shoulder stepper motor with the selected stepping
rate, direction and delay.

E This key invokes the function to issue the STEP command to
turn the elbow stepper motor with the selected stepping
rate, direction and delay.

P This key invokes the function to issue the STEP command to
pitch the gripper with the selected stepping rate,
direction and delay.

R This key invokes the function to issue the STEP command to
roll the gripper with the selected stepping rate,
direction and delay.

G This key invokes the function to issue the STEP command to
move the fingers of the gripper with the selected stepping
rate, direction and delay.

C This key invokes the function to issue the CLOSE command
which closes the fingers of the gripper with the selected
delay.

Q This key invokes the function to terminate the SET command
and to return control to the calling routine.

The menu displayed by the SET command is shown is
Figure 4.2.11.1.1.

- 68 -

DATi:.. _ ~~ "__"__"_""""__
Video Display Terminal Format EXHISI"T NO. _

PRO.FC r _ SYSl E::M __. __ _ , PROGR.,W.l " _" • PAGE __" 01 _

I"Ij
H
G1
c:::
61
,j::.

·N
•
I-'
I-'·I-'·I-'

(f.l
t:tj
~

()
0

~I~
(f.l
()

61
t:tj
z
0
H
(f.l

t-O
t'-I
~
t-<:

.-41 I} .! j.; L !,-, !'+l±H !! +! ''\t, I! ISIJ PU 1 2 3 4 c' i6 7 8 9 3c11 2 3 4 5 6 7 8 9 ~O 1!2 :l-lTS 6 7 8 9 ~O 1 2 3 4 5 6 7 SI9_~oi 1 213 4,5~i 6]'1 fq 11213 i4, S 6! 11 a 9189
~ J L,U il,; I_,! i ! iii i_L1 ' i I ,._ -' I . , ! : I I I ~ i t i ! I I I i I tl
H· i!ITF~ H+Hvrfr~j ~1~9'!", -Pr-"f<>'t Vi .~ert " ,I+I!, :' I ~ II , : : ' r+ R1
t'-l-~ 1L:r"f\ CiWb*~'14€!d>f4'tiFi ,1t~tIi1Ei 0 Cll1!yl(, 11.1. [it> ~Iyll IdgP±,FLillJl7lqJ
~~ f 1 II i- _i Ifj~n~~~~~-+-~p ;LI-trl:-LJ, i ~r D i~b R!g~r4+~,~t""le~h lsii~~I!1SmlI GJ 1: I ! ! -W-! I ILJ1-:1 ' f;,"'; I i I ~ I Iii ! Iii PI I I I I-L iJ T I I i ..L 1 I 1 I I ! I I I II I! : I 1 : :

r' ,i.;-'::1:" .Ilijillf1Ci,;r, t icc", I r: -- / 711!ITT: " 10 Ii ;-H~ t+~J'! lU4i-ll :-'h
l! 'i ~1.du I leJrS)! : j ! !U~ r I r I ~ iJ i i ~i I ~)! i tltmi ;' 1< I(~ f fJ I I I t j I I I : ' I I I
I:~ : ;"J ,~} 01 ,El)j_+.il.l0ff_!_Uf 'T'1Ot'Jr4,L _I i I~ i r3)~! 1~_/ir., 5i~W-W_;-fTIlTf11TI'!I ,! I., I' iii: IDi-' :I I rI IRo II '~2J_:t !l--_wrr I "':-k", T: TT /'5 i(~._~_::! ! 1,1 i . 41~~_LJJLiJ 1l1TITiJ-t-li j
1"1 :~:!!: fPlitc/\ Qi'J I! IIIDIJilll'\,O!y-'~t 1

m
I f:l(!(. ' tt!'IIT!?Jc! :C])I: I 1:1 :Tt I!' ~ttn: iii!

8:'Tt -·T~rrrit c/lr,(if)r·i bip~r' TK:r~6(?7ti ;-~~r~ +~.! '1\1 ~' !-r:~l~~ I ,~I:J;-t-t+t I ; ! ! I ij:l"TiTlrr-n++ --~ ;-+ -+ '"-1~ n:r-r'+'::t:-+ ~'-j-+ j! +=~ '1--1-- -~t', r-' .t-+-t" t- - 14-+ '-r ..-~-.t- -' ,-+ -+- r-N L-I-~-t++ ...+-+--tt- ' ~,-+- ---'-'-'."- --~
:3 i i n;\ 1-rLi~[u_~eJ1i} , ' I : i m'! i I I I, f: 1 I : 'i I ! ! i , ! i I; I 1 Iii I, ':! I:! i I I I ! I I ! I I : ' :

r;;r r ' .~ :-i' ~T"'LTfr-tl7t;)1:-t-r~t-r I i In-li r~-trt-rH+-"t-Trl-Tr;-:--:- i1't I ii i" t-~T7-1-t~'Tjlrj-;--rrrtr-n:l-iiT~!
~'-t+-I I ; ; i .' ""1- 'j~~ r : ' l -j i I _..1_ LH t-. +-1' -;---1.--1 Ii: : -'-'-t-t---+--l- -j- - tt~J+ """--'- i- : ~ +-'-+-~-+-t+-+--+--i--I
i "'1' I I,: I : ' i ! ! ! i I ! I 1 I I I" . I I i I I 1+1 : It! !!' ',I! , I Ii! I II:! L~ ,'! I :
~---r-tt-"""""-t--+ .,,', i l , \ .' t..-+-+i-+-" I -+-~.' _~-l.,.., L I ~t--';""T t--~++_~
I' 0 '_~ +_!: i~ ; ! -d i KJ q~~Jnii '- ~ f; k?~J&[a4 t/ I I : • : ~_~TT !! I h-~l.LJ++~-WJ' 1 ! -L I I -"--i-Li-l-LLlJJ
i jJ _~ __~~ !_: __I U: I L ! ! I L-J- Tl ii, ~,I Tj[. iii T)_~j iii I I 'I, J_L: : • I I ! iilr 1 Tt I I ! I j 1 i :

~
.clILl i 11 I~m I -r1 r I ': _ i I ,..Itt': 1 ! L !: ! I ! iii I i

I ,q !T! I ' i i . ! Ii', i! I _;! ,- L ! 1i.lJ I I I I I I , I !
..:~..+_ i I I I I :! I I ! ! I. T ,I : l--t--I I! I ~ I I I! I I'! i; \ i, 1

i21 r I I! : I I : I !~..Ll _++ I I I L ! t...:-. I i I I itttl1 j II nr~+-I r

L:~j__ ri~-=elsil~V1! Lb"lf~~in<li~s;', I i ~.! Z~:' I !' .! ;'ill rl i i: ,If: I I
l2.3 f ~ 1~~tJ n c "I (t"\ c'ldcl,i w t!pic:.' I ~ct;s? Wolv \ ~cir: ; ~J'hlo:v; \'l,,-td"-I-W~c:1\I\I: iCJ .Jjl1S LW-4-H
L~4 \ 'y, C) fbb ~ I Iff c t'ek ~o 01 (~ lll\lo.tlels • ~ti 2f ~T i tl~ I 1jl~ Ti iMULL I 'i..L1lill

I i I t-d±~lll' i i I [I I I iii- 4l " ! I I I I tI

litH II i I I I -t*
1--1' ' t"t i i I I I I Ji ,

: i- i 1 Jill, -, I i IJ I 11 lJ! I i 1/ I I i I I

t-el
~
G1
t:tj

0"1
\.0

REMARKS _

----. ------_. ---~---

-------_._-~--- ------- - ------------~------ ---- --~ ._._------------

------------ ----_._----._---- -----

Page 70

4.2.11.2 JSET Command

The JSET command places the MINI-MOVER 5 into "joint
control mode". Robot motion is done by calling the BWDJOINT
command with the appropriate parameters. The functions that
can be invoked by a keystroke under the JSET command are as
follows:

I This key invokes the MINI-MOVER 5 and system database
initialisation command called INIT. But before the
command is invoked the user is asked whether
initialisation is required or not. A reply of keystoke Y
is taken as yes, all other input is ignored. The
inclusion of the question is a precaution against
accidental initialisation.

H This key invokes the HOME command which returns the
MINI-MOVER 5 to the initialistion position.

next
Only
keys

and 25
INPUT

V This key invokes the function to change:
- The number of degrees each joint of the robot moves
- The number of millimetres the gripper moves
every time the BWDJOINT command is issued. The
keystroke is taken as the degree/millimetre rate.
keys 1,2,3,4,5, and 6 are valid keys. These
represent a degree/millimetre rate of-l,5,10,15,20
respectively. Any other input generates a INVALID
message on the terminal console.

D This key invokes the function to change the delay between
motor steps of the MINI-MOVER 5 in the BWDJOINT command.
The next keystroke is take as the delay. Only keys
1,2,3,4,5, and 6 are valid keys. These keys represent
delay functions of 1,5,10,15,20 and 25 respectively. Any
other input generates a INVALID INPUT message on the
terminal console.

+ This key invokes the function to set the direction of
motion of the stepper motors in the MINI-MOVER 5 to be
positive i.e. UP, CLOCKWISE etc. when the BWDJOINT
command is invoked.

- This key invokes the function to set the direction of
motion of the stepper motors in the MINI-MOVER 5 to be
negative i.e. DOWN, COUNTER-CLOCKWISE etc. when the
BWDJOINT command is invoked.

B This key invokes the function to issue the BHDJOINT
command to turn the base joint with the selected degree
rate, direction and delay.

- 70 -

S This key invokes the function
command to turn the shoulder
degree rate, direction and delay.

Page 71

to issue the BWDJOINT
joint with the selected

E This key invokes the function to issue the BWDJOINT
command to turn the elbow joint motor with the selected
degree rate, direction and delay.

P This key invokes the function
command to pitch the gripper
rate, direction and delay.

to issue the BWDJOINT
with the selected degree

R This key invokes the function to issue the BWDJOINT
command to roll the gripper with the selected degree rate,
direction and delay.

G This key invokes the function to issue the BWDJOINT
command to move the fingers of the gripper with the
selected millimetre rate, direction and delay.

C This key invokes the function to issue the CLOSE command
which closes the fingers of the gripper with the selected
delay.

Q This key invokes the function to terminate the JSET
command and to return control to the calling routine.

The menu displayed by the JSET command is shown is
Figure 4.2.11.2.1.

- 71 -

....
co
E....
o
LL-as
t:.-
E...
CD
t-
>.as-Q.
U).-o
o
(1)

"'C.-
>

i

I

I
0

I

Q
<-

f-

CD
Lll

i (:J
x <{
w CL

I
.~

:r
V
o
a:
0.

~.

~tJ

f-­
',I)

>-
'.I:

PAGE 72

._.- .

~--

±
-±

~,

--~

:'-+~-I:E-;
--->- ..,
-~-- -'

-+-

L:=-ri
f---H--<-t-- --'
-t---

-- -I--

- 1--'-

I----I--i---

- - 1---
I

-r-+-
I

I

I
• !

""f-
-::
o

,­,
UJ
--,
o
C!
0..

FIGURE 4.2.11.2.1 JSET COMMAND SCREEN DISPLAY

- 72 -

next
Only
keys

and 25
INPUT

Page 73

4.2.11.3 CSET Command

The CSET command places the MINI-MOVER 5 into
"cartesian control mode". Robot motion is done by calling
the BWDCART command with the appropriate parameters. The
functions that can be invoked by a keystroke under the CSET
command are as follows:

I This key invokes the MINI-MOVER 5 and system database
initialisation command called INIT. But before the
command is invoked the user is asked whether
initialisation is required or not. A reply of keystoke Y
is taken as yes, all other input is ignored. The
inclusion of the question is a precaution against
accidental initialisation.

H This key invokes the HOME command which returns the
MINI-MOVER 5 to the initialistion position.

V This key invokes the function to change:
- The number of degrees the pitch and roll angles of the

gripper move
- The number of millimetres the gripper moves

The number of millimetres the robot moves in the X, Y
and Z planes

every time the BWDCART command is issued. The
keystroke is taken as the degree/millimetre rate.
keys 1,2,3,4,5, and 6 are valid keys. These
represent a degree/millimetre rate of 1,5,10,15,20
respectively. Any other input generates a INVALID
message on the terminal console.

D This key invokes the function to change the delay between
motor steps of the MINI-MOVER 5 in the BWDCART command.
The next keystroke is take as the delay. Only keys
1,2,3,4,5, and 6 are valid keys. These keys represent
delay functions of 1,5,10,15,20 and 25 respectively. Any
other input generates a INVALID INPUT message on the
terminal console.

+ This key invokes the function to set the direction of
motion of the stepper motors in the MINI-MOVER 5 to be
positive i.e. UP, CLOCKWISE etc. when the BWDCART
command is invoked.

- This key invokes the function to set the direction of
motion of the stepper motors in the MINI-MOVER 5 to be
negative i.e. DOWN, COUNTER-CLOCKWISE etc. when the
BWDCART command is invoked.

- 73 -

Page 74

X This key invokes the function to issue the RWDCART command
to move the robot in the X-plane with the selected
millimetre rate, direction and delay.

Y This key invokes the function to issue the BWDCART command
to move the robot in the V-plane with the selected
millimetre rate, direction and delay.

Z This key invokes the function to issue the BWDCART command
to move the robot in the Z-plane with the selected
millimetre rate, direction and delay.

P This key invokes the function
command to pitch the gripper
rate, direction and delay.

to issue the BWDJOINT
with the selected degree

R This key invokes the function to issue the BWDJOINT
command to roll the gripper with the selected degree rate,
direction and delay.

G This key invokes the function to issue the BWDJOINT
command to move the fingers of the gripper with the
selected millimetre rate, direction and delay.

C This key invokes the function to issue the CLOSE command
which closes the fingers of the gripper with the selected
delay.

Q This key invokes the function to terminate the CSET
command and to return control to the calling routine.

The menu displayed by the CSET command is shown is
Figure 4.2.11.3.1.

- 74 -

OA TE _. _ Video Display Terminal Format E.XI-1\B\l" NO. _

PROJECT ___.. . SYSTEM . .,__. PROGRAM ~ _ ___ PAGE o~ _

ITJ
H
GJ
c:
65
~·tv·I-'
I-'·W·I-'
(J
(f)
t!j
1-3

(J
0

-....J

l~U1

0

(f)
(J

[:g
t!j
Z

0
H
(f)

"tI
t"i
:J::l
I<

+L 31,15 v'l S 8H!'2 :iT:i c, ,j 7 8 g~(117 J\-P6I1 8!'!l3qI12 34567 8 g~O 1231.151" I 8 S~ 1'1 31 ~u 718 9~{~;12!3 4 sl6 7 8 sin '121';45 6!i 8 9~8(

~+t- - fii.1U, I H iil ! . 11. I /,1,1/ ' j !II ! i

t!-t·[-J-t-j,-e-Lf¥~-rt-i~F~~?r~+l-Kfrt .r !f- -~~~~r+H·+, +- - -. "-"j-h+-Hl-f-~+rrtti, ;! I I
• , I I 1-' +-lJ : \-.' __+_-lLl.l_ 1_ I' I- -I I I !'trii 'Wv-tlt,,:ctt '91~JtJ'M"m'l~ Al!011 V lLlcClIh1\JI(!~'j,,-+_H_1P_!f; y~ ~)Ln \ \+-l I '1 ! I ,: I:

1;-tT - I ilft..iJ-.rJ~/· i Tt: Tt rJH'I. I.!.__ I ir}I_~~~~-i-ll~lt'rt~ "elifTg~,~, ! I H-tt!, i i

~
t~- ·-i-·-r . '+ -1"'!:41t';'''r-r--l 11+' • [I ~ I '1 1 , !~r!'1 I i I I" ,I I I I I

,': ." : 1~-M~ i! + l-L.,L _I.J. i L._ I I . -1..:- i i-rt·.,.-++- ~+-L'J r T r
7 I A .~~I, 1-- f- ,_l.. r ! I 111 : ! '" L~4!-+..A I '_ L++- I .1 i I Ii!'

I' , tt:JA~~"Yi . oIu~~' i '<. iqU' i , I~ ,1 'GZilll iii t i -t+tti, I",

t,: '" ',; '2\ ': h:> 'oN, i I "!;;D!' , 11<1.;,rlZ[3i
3

I I I'.':, '1 'i

' 10 II< Ir 11 ,:R:J,) l.'. 1U:v- I , If _' j' i' 117 t r f1f.' I . I' I':J', Ii' I I I i
I ' TN', I +sf I 12' li,s i T H 1 I, I! I Icl-t-->- 110 !~~~~\1lR!P)t-~-l--- ,-t-M:~~;1!:hl(f',-\-+~.I-I---,~l~~~- i I I '~7t~1-, 'i±~tttt+tt:i; I

kp I' Lt:r·llf"lre~I('·'''\I'lb ~I 'ctp~)I,~ If~' i.L~~tttt,_tJmL ' , ,',
JI"I~(;~J ' r-, +- • -t-t--t-,- -+ lIt' I",', '

1'1 i :!'lllt!'\ \,l'~el it II I I; I I I I': j.! I-~JH-U JlJ-L i I +++_' I .':, I:
'I ': I t, " ' itT, ! I I ' I I [I ' II I iii I I I

fl, : I, ~~''PJ~Ql~1' ~J.I. I 'JtJ, -tL~ ,-r;r-+--"-+t -t-r ·~,+l-++-I' '+1~f H! I ! ! I I 'I~,
' 10 H- I' + " I ! I I I ' I I I ' I I ' : I I -tt I "I ii, : ! II +tl i, -i--J
~- - ' ': ., : • ,.' -'--~-;-; I' --r--rT7:i . --r- I r I " I I
)10 Tt, Ii! ~ IflAI n!;IJ;Hn:)", ILJIIlI~ !~rU' I! I , II '~.J-..LLI, I ,_+- L-LJttrl.l-l-W[
>- I ~r [11 ' I I +-++1" I I I I I' r, I I I I ' I~ i 7 l. I ! J I! . ! I ' I ! ,: II!!
1-18! : i+-, Li I I I :J+iIi,l i !

19 '.L1\-41 I illJ ! ! I I 1t.l-+J.~-+ I: ,I ~J1IJll 1 i

/20 'I ,i L ! i I _Ll ii, Ii' I i I LLi i ! I 'r
121 I: , I -r I I I I 1- I : ! I 1

m
1 1_t+! I I Ii' I! 11 IT i I

~. l.-! i q~/ 0 10 (' 'rd i ~ -I : I i I X I !\j '7 ' I ! ! ,r I
L3 i I M1, ,.,' 1'.... \ ole;l r ; 11;1 ~Is', i Q.(Ih~() d fJ~L~ b"" y!\,·k I~ IJ Kfr\.~
2. /F.lo~blt IUct~ I'-O~(i IY Ii: '.1 ,\ I~IP _;~3 I ~ , lQ_LlI~ ITlllJJJ..ll1JJ

1 'iI Iii I ! I . I I .

I ' i ' 1 I
I I .

'l:l
:J::l
GJ
tr1

-.J
Ul

REMARKS -- ----------- ---_ .._----------- -_._------- --._--_.- ---"-_.._---~---- - - .~ ._----------------

------_. ------ ._--_. - -- -_._._------------._-----

Page 76

4.2.12 Interconnection of Robot Control Language Commands
4.2.12.1 Structure Chart

A structure chart has been drawn to show the
interconnection of the robot control language commands. The
structure chart appears on the following page.

- 76 -

STATUS

m~l\D

cswr

JSET

SET

CLOSE

BWDCART

BWDJOINT

STEP

- 77 -

INIT

BOUNDS

PAGE 77

HOME

RESET

FWDJOINT

FWDCART

Page 78

CHAPTER 5
pRO.JECT IMPLEMENTATION

5.1 Implementation Approach

The implementation approach was as follows:

(1) The interface code between the MINI-MOVER 5 and the
M68000 would be written, tested and debugged. This code
would be used as a test bed for the remainder of the
software. The interface code involved the INIT and STEP
commands. It was decided that this code would be
implemented in M68000 assembler language, since a
requirement of the project scope was that the robotic
software had real time capabilities i.e. acceptable
speed.

(2) The remaining software would be written, tested and
debugged. It was decided that this code would be
implemented in the C programming language.

- 78 -

As a
all the
language.
library,
language.
following:

Page 79

5.2 Implementation Problems

In the course of implementation is was discovered that
the M68000 cross-assembler was unusable for the following
reasons:

(1) The cross-assembler did not give diagnostics for the C
program code. Instead if a source error was detected
the cross-assembler would crash, often with a rore dump.

(2) The cross-assembler had no support libra.ry.

consequence of this problem it was decided that
software would be written in M68000 assembler
This decision required the provision of a support

which also had to be written in M68000 assembler
The support library would have to prOVide the

Multiple precls10n arithmetic (Multiply, Divide,
Add and Subtract).

- Trigonometric functions (Cosine, Sine and
Arctangent).

- Mathematical functions (Square and Square root).

The project implementation was hampered by several
problems, these were:

(1) To interface the MINI-MOVER 5 to a 8-bit I/O port on the
M68000 microprocessor required some hardware
modifications to the MINI-MOVER 5. The modifications
were set out in the "MINI-MOVER 5 Reference Manual"
which accompanied the robot. It was discovered that the
numbering of the pins in the manual for the
modifications was wrong. The reference manual has since
been updated with the corrections to the pin numbering.

(2) During the course of implementation of the interface
code it was discovered that the output timing signals
provided in the reference manual were wrong. It was
found that the output strobe (OUT) could not be sent low
at the same time as the selection of the data/address
lines occurred. The problem was remedied by sending the
output strobe low after the data/addressing lines had
been selected. The reference manual has since been
updated with the new timing signals.

- 79 -

Page 80

(3) During the course of implementation of the interface
code it was also discovered that the stepper motor
addresses provided in the reference manual were
incorrect. The motor addresses instead of being
(OOl)-base, (OlO)-shoulder, (Oll)-elbow, (IOO)-right
wrist, (IOI)-left wrist and (lIO)-gripper they were all
offset by one i.e (OOO)-base,
(OOI)-shoulder, ... ,(IOI)-gripper. The reference manual
has since been updated with the new timing signals.

(4) It was also found that the reference manual had other
discrepancies, particularly in regard to MINI-MOVER 5
specifications. It was quite common to find the robot
dimension information incorrect.

The algorithms used in the implemementation of the support
library routines are provided in Appendix B. The source
code for the project software is provided in Appendix c.

- 80 -

Page 81

CHAPTER 6
RECOMMENDATIONS

6.1 Possible Future Enhancements

Listed below is a suggested
enhancements to the robotic software
project.

set of possible
developed for this

(1) The MINI-MOVER 5 has provlsl0n for the addition of four
sensors. This facility could be used to add positional,
or limits sensors on the MINI-MOVER 5. Such sensors
would remove much of the load from the positional
information software routines. The addition of tactile
sensors could be benifical since they would provide
information about the robot's environment. The software
required to monitor the sensor inputs from the robot
would be minimal, the software would be very similar to
the software developed for the CLOSE command, which
controls the closing of the gripper by monitoring the
gripper sensor switch.

(2) To make the MINI-MOVER 5 a powerful robot which can
monitor and react to changes in its environment, a robot
vision system could be implemented. Although the system
would be simple and crude, because of the computational
restrictions of the M68000 microprocessor, a simple
template matching system could be implemented. The
vision system would be independent of the robot control
language and as such require no changes to the existing
software.

(3) In the stUdy of robotic software in use today it was
noted- that debugging tools, particularly off-line
debugging tools are a very important and desirable
feature in "good" robotic software. The robotic
software written for this project provides few debugging
tools apart from the debugging aids associated with
assembly languages. A useful enhancement would be
provision of a debugging aid, paricularly a off-line
debugging aid which uses computer graphics to simulate
the robot and its environment. Such a debugging system
could be implemented on the host computer (Perkin-Elmer
3220) where the applications are developed. Before the
applcation code is down-line loaded, the code could be
debugged using the aid. An off-line debugging tool
would not require any changes to existing software.

- 81 -

Page 82

(4) A useful enhancement to the robotic software would be
the provision of up-line loading facilities to the host
computer (Perkin-Elmer 3220). Such a feature would be
useful for programs in which the the robot is taught a
task, and it is desired to save the information
associated with the control of this task. This
information must be passed back to the host because the
M68000 microprocessor does not have non-volatile memory.
An up-line loading enhancement would require additional
software, which reads the system database and
communicates with a task running in the host computer.

- 82 -

Page 83

CONCLUSION

The aim of the project was
software on a MOTOROLA M68000
control a MINI-MOVER 5 robot arm.

to design and implement
16 bit microprocessor to

This required software which controlled the robot via a
robot control language, which was easy to use and
transparent to the user. A design requirement of the
software was to allow extensibility of the software by the
user. The software was to be a tool for writing robot
application programs.

'rhe software has been written and debugged. The
project design proved to be a success. The project as
presented fulfills the given specifications, and provides a
successful method of computer control of a robot. The
software implemented in this project enables the programming
of the MINI-MOVER 5 robot to do meaningful tasks.

- 83 -

Page 84

ACKNOWLEDGEMENTS

Sincere thanks must be extended to a number of people
who assisted in the development of this project:

~ Mr P.J. McKerrow, project supervisor, for his valuable
thoughts and for his willingness to discuss any problems.

~ Messers J. Fulcher and M. Millway, professional
officers, whose hardware expertise solved many problems.

A Mrs G. Zelinsky, my wife, for her continued support and
encouragement.

- 84 -

Page 85

BIBLIOGRAPHY

1. K. Hivany, "Computer
Architecture and Design".

Arithemtic, Principles,

2. W. Barden Jnr, "How to Program Microcomputer".

3. N. Gr-aham, "Microcomputer Programming for Computer
Hobbyists".

4. L.A. Leventhal, "6809 Assembly Language Programming".

5. F.G. Duncan, "Microprocessor, Programming and Software
Development".

6. R. Zaks and W. Labiak "Programming the 6809".

7. Motorola, "MC68000 l6-bit Microprocessor User's Manual"

8. R.G. Dromey, "How to Solve it by Computer".

9. K. Takase, R.P. Paul and E.J. Berg, "A Structured
Approach to Robot Programming and Teaching", IEEE
Transactions on Systems, Man and Cybernetics April 1981.

10. H.R. Holt, "Robot Decision
"Introduction to Robotics".

Making" , Volume 1

11. G. Gini and M. Gini, "ADA a Language for Robot
Programming ?", Computers in Industry No. 3 1982.

12. R.H. Taylor, P.D. Summers and J.M. Meyer, "AML a
Manufacturing Language", International Journal of
Roboti~s Research Vol. 1 No. 3 1982.

13. M.A. Lavin, L.1. Lieberman, "AML/V an Industrial
Machine Vision Programming System", International
Journal of Robotics Research Vol. 1 No. 3 1982.

14. "Robots", Compressed Air, April 1982.

15. H.M. Morris, "Where Do Robots Fit in Industrial
Control ?", Control Engineering, February 1982.

16. Microbot, "MINI-MOVER 5 Reference Manual"

- 85 -

Page 86

APPENDIX A
Calibration Grid

The figure presented on the following page is a
calibration grid which can be copied or removed from this
report to facilitate calibration and initialisation of the
MINI-MOVER 5. The robot should be placed on this grid such
that the base is in the position indicated. The robot
should then be moved so that the gripper is closed and the
finger tips are aligned with the calibration mark shown in
the figure.

- 86 -

j

f

" -," . ~ I,
,. " I .'

i
" I. '
I' ,

t,.. ' , ... "

t " .
l j (i, ..;

• -.._ '\0"_

I ,

I..... !.o

i i"
. , ..

I ~;

. '\

'" !, ,.
f I

N .-
, ­- ,.1

, , ,
! . .L '.1 ~ t, ,
!-j
.j j

I l \

x
~

~

~

~ Rt.... -~ t\I

C" ~
0

.~

00-
~
~ ~
~

<J ,...-
~

~

~

~

,.~

.......

0-
I

., - ...
I

00
I

, 'I

., ,I "

"
"l

a- g
I I

Page 87

APPENDIX B
Support Library Algorithms

The algorithms set out below, are the
implementation of the support library
software project. The algorithms can be
three classes:

ones used in the
for the robotic
categorised into

- Multiple Precision Arithmetic Functions
- Trigonometric Functions
- Mathematical Functions

B.l Multiple Precision Arithmetic Algorithms

It was determined that to give accurate results in the
translation commands of the project software, required 6
decimal places of precision in the arithmetic functions. It
was decided to use a fixed point representation for the
floating point numbers. It was calculated that using 32-bit
words to store the floating point numbers, required a 8.24
representation (i.e. 8-bit integer and 24-bit fraction) to
attain the required precision of numbers. Such a
representation was acceptable since the numbers stored using
this format were angles using a radian representation.

The multiplication function consists of multiplying two
32-bit numbers together and returning a 64 bit result. This
function can be implemented by using the Motorola M68000 MUL
assembler instruction which multiplies two l6-bit numbers
and returns a 64-bit result. The 32-bit multiplication
requires four l6-bit multiplications in order to obtain the
correct result. This process is developed by using the
rules of factoring and associativity.

- 87 -

Algorithm

MULTIPLY(Nl,N2)
begin
x ,;, LOWWORD(Nl)
y = LOWWORD(NZ)
result = MUL(x,y)
x = HIGHWORD(Nl)
Y = LOWWORD(NZ)
partialsum = MUL(x,y)
result = result + partialsum
x = LOWWORD(Nl)
Y = HIGHWORD(N2)
partialsum = MUL(x,y)
result = result + partialsum
x = HIGHWORD(Nl)
y = HIGHWORD(N2)
partialsum = MUL(x,y)
result = result + partialsum
return(result)
end

- 88 -

Page 88

Page 89

Divison is performed by subtracting the largest
possible multiple of the divisor from the left most digits
of the dividend. The new dividend is the result of the
subtraction of a multiple of the divisor from the the
dividend. The multiplier of the of the divisor becomes the
next digit of the quotient. The remainder is the result of
the last subtraction. Binary division is performed exactly
the same way as is decimal division.

Algorithm

DIVIDE(dividend,divisor)
quotient = 0
counter = 32
repeat

begin
if left(dividend) > divisor then

begin
left (dividend) = left(dividend)

- divisor
quotient = quotient + 1
end

counter = counter -1
end

until counter = 0
return(quotient,dividend)
[remainder in dividend }
end

- 89 -

Page 90

B.2 Trigonometric Algorithms

It was determined that the project software, required
the sine, cosine and arctangent trigonometric functions.

The most common method used by many systems to
implement trigonometric functions is to use a fitted
polynomial to the desired function. Calculating polynomials
is straight forward. One simply supplies the coefficients
for the required function. The calculation for the
polynomial is as follows:

P(z) = aO + al*z + a2*z*z + a3*z*z*z + ...
.•••• + an*z* *z (z to the n)

this can be broken down to:
P(z) = aO + z*(al + z*(a2 + z*(a3 + •... z*(an) ... »)

which reduces the number of multiplies and which can be
encoded as:

Algorithm

TRIG(z)
begin
p = an
for i = n-l to 0 do

begin
p = P"""z + a(i)
end

return(p)
[p = desired polynomial on exit }
end

The sine and cosine functions are implemented using
fitted polynomials. The table of coefficients for these
functions is given below. Note: All coefficients not
listed are zero.

Table of Coefficients

function
argument range

(l/X}*SIN(X)
o <=X (= pi/2

COS(X)
o (=X (= pi/2

aO
a2
a4
a6
a8
alO

I
-0.1666666664­

0.0083333315
-0.0001984090

0.0000027562
-0.0000000239

- 90 -

1
-0.4999999963

0.0416666418
-0.0013888397

0.0000247609
-0.0000002605

Page 91

The arctangent function can not be implemented
efficiently using the fitted polynomial technique, since it
is not a repeating polynomial. Instead another method is
used, which is the Cordie technique. The Cordie technique
was developed by Henry Briggs in 1624. This algorithm is
easily implemented of any computer which has access to "bit
fiddling". The algorithm consists basically of splitting
the supplied argument into values for which the
corresponding arctangent function value is known. The
values are split into powers of two, since they can easily
be manipulated on a computer. The algorithm is as follows:

Algorithm

ARCTANGENT (X)
begin
Y = 1.0
Z = 0.0
J = 0
repeat

begin
Xold = X
X = X - Y~power(2,-J) [Shift op. }
if X >= 0.0 then

begin
Y = Y + Xold~power(2,-J)

Z = Z + atan(2,-J)
end

else

end
until J > 32
end

begin
X = Xold
J = J + 1
end

{ 32-bits of precision }

Note: power(x,n) is a function which raises x to the
power n.
atan(x) is a lookup table of arctangents of
powers of 2.

- 91 -

Page 92

The lookup table of arctangents is given below.

Arctangent Table for Cordie Technique

i power(2,-i) arctan(power(2,-i»

0 1 0.7853981633
1 0.5 0.4636476090
2 0.25 0.2449786631
3 0.125 0.1243549945
4 0.0625 0.0624188100
5 0.03125 0.0312398334
6 0.015625 0.0156237286
7 0.0078125 0.0078123410
8 0.00390625 0.0039062301

Note: By examing the series it can bee seen that it is rapidly
converging. For i > 8 arctanangent an be approximated by
power(2,-j).

- 92 -

forward and its
root function was
to Solve it by
for this function

Page 93

B.3 Mathmetical Algorithms

It was determined that the project software, required
the square and squareroot mathematical functions.

The square function is straight
algorithm is not listed. The square
implemented using a algorithm from "How
Computer" by R.G. Dromey. The algorithm
is as follows:

Algorithm

SQUAREROOT(m)
begin
g2 = m/2
repeat

begin
gl = g2
g2 = (gl + m/gl)/2
end

until abs(gl - g2) < error
return(g2)
end

- 93 -

Page 94

APPENDIX C
Project Source Code

The source code listings for the software written to
implement this project, appear on the following pages.

- 94 -

	Robotic software for the mini-mover 5 robot arm
	Recommended Citation

	tmp.1283926093.pdf.CfKz2

