
University of Wollongong University of Wollongong

Research Online Research Online

Department of Computing Science Working
Paper Series

Faculty of Engineering and Information
Sciences

1982

A semantically-based formatting discipline for Pascal A semantically-based formatting discipline for Pascal

Paul A. Bailes
University of Wollongong

Antonio Salvardori
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/compsciwp

Recommended Citation Recommended Citation
Bailes, Paul A. and Salvardori, Antonio, A semantically-based formatting discipline for Pascal, Department
of Computing Science, University of Wollongong, Working Paper 82-19, 1982, 26p.
https://ro.uow.edu.au/compsciwp/70

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online

https://core.ac.uk/display/37022498?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.uow.edu.au/
https://ro.uow.edu.au/compsciwp
https://ro.uow.edu.au/compsciwp
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/compsciwp?utm_source=ro.uow.edu.au%2Fcompsciwp%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages

THE UNIVERSITY OF WOLLONGONG

A SEMANTICALLY-BASED FORM ATTING
DISCIPLINE FOR PASCAL

by

Paul A. Bailes and Antonio Salvadori

Preprint No. 82/19

DEPARTMENT OF COMPUTING SCIENCE

P.O. BOX 1144, WOLLONGONG, N.S.W 2500, A USTRALIA

A SEMANTICALLY-BASED FORMATTING DISCIPLINE FOR PASCAL

by

Paul A. Bailes and Antonio Salvadorl

Preprint No. 8 2 -1 9 Novem ber 12. 1982

P.O. Box 1144. WOLLONGONG N.S.W. 2500. AUSTRALIA
tel (042)-282-981

telex AA29022

A S em an tica lly -b ased Form atting D iscipline for Pascal

-A
Paul A. Bailes and Antonio Salvadori

Departm ent of Computing Science

The University of W ollongong

W ollongong N.S.W.

AUSTRALIA

ABSTRACT

The abstract (or sem antic) syntax of the Pascal language is identi

fied. and a linea r representation fo r the trees so formed within the

framework of the concrete syntax fo r that language is imposed. The

indentation schem e so form ed, augm ented with a sm all numDer of

pragm atic considera tions, is com pared with several previously proposed

formatting schem es for Pascal and an example of the use of this new

method is given.

November 12. 1982

* permanent address: University of Guelph. Ontano. Canada NIG 2W1.

A Sem antically - based Form atting Discipline for Pascal

Paul A. Bailes and Antonio Salvadori

Departm ent of Computing Science

The University of W ollongong

W ollongong N.S.W.

AUSTRALIA

SUMMARY

The abstract (or sem antic) syntax of the Pascal language is identified , and a

linear representation for the trees so form ed within the fram ework of the con

crete syntax for that language is im posed. The indentation schem e so form ed,

augmented with a sm all num ber of pragm atic considerations, is com pared with

several previously proposed form atting schem es for Pascal and an exam ple of

the use of this new method is given.

KEY WORDS Program m ing languages Formatted languages Program readability

Pascal Abstract syntax

INTRODUCTION

Recognition that a program is not jus t an example of person-m ach ine com m unication

but also, and very im portantly, one of person-person com m unication, has developed

ever since the appearance of the firs t "h igh -leve l" languages. Such com m unications

include those between program w rite r and program m ainta iner during the life cycle of

an item of software, and those between m embers of a team involved in e ither develop

ment or maintenance.

"permanent address: University of Guelph. Critano. Canada NIG 2W1.

- 2 -

M ethodological and associated language developm ents such as constructs supporting

1 2 structured program m ing and data abstraction take cognizance of this fact.

Nevertheless, tne ir mere presence in a program , considered as a string of symbols

written line by line does not im m ediately convey to the reader an understanding of its

semantic structure.

This paper attempts to provide a remedy to this situation with em phasis on Pascal^. by

proposing a layout o r form atting d isc ip line to c learly d isplay sucn structures. This lay

out can be achieved e ithe r by form atting or "pretty prin ting" program s or by individuals

wnen preparing text in the absence of such an aid. in which case, the term “d iscip line"

Decomes particu larly m eaningful. The choice of Pascal is motivated by its w idespread

use in teaching environm ents, where

(a) it is used extensively to develop and teach a lgorithm s to students.

lb; m both reading and writing program s, students need all tne help they can get. in

wmch case, w e ll-de fined and uniform layout ru les should be of considerable

benefit.

Of course, such benefits can also be seen to apply generally.

P R O G R A M S T R U C T U R E

The sem antic structure of a program i.e. the structure in terms of wmcn its meaning is

2
deduced, can be said to be its abstract syntax . This may be represented by a tree

structure with "operators" as nodes and "operands" as sub-trees. For example, the

Pascal expression

x + y

has concrete syntax tree

- 3 -

<expression>

<term> <factor>

<factor> y

x

aerivea according to the syntax ru les of the language, but has tne abstract tree

+

x y

conveying the meaning of the addition of x and y. Sucn treatm ent can of course be

given to more “ interesting'' constructs. For exam ple,

while Condition do Statement

can be said to have the abstract o r sem antic tree

while do

Condition Statement

in wmch the "while 00“ opera tor has two operands “Condition" and “Statement" witn

the obvious meaning.

This capturing of the m eaning of a program is fortunate, because the environm ent of

program presentation, by lines on a page, adm its to the c lea r and easy representation

of tree structures by relative indentation. For example, the tree

- 4 -

appears as

A
B
C

E
F

D

The m ethodology for our treatm ent of Pascal, then, shall be to recognize a suitable

abstract syntax, and to impose that structure on the concrete syntax as manifested in a

particu lar program by the use of indentation, in detail, the various headers and Key

words of the concrete syntax shall take the p lace of the operators of the abstract syn

tax.

P A S C A L P R O G R A M S T R U C T U R E

Siblings in the abstract tree are in the same way equivalently related under tne in flu

ence of the ir associated operator. In the body of a Pascal program or procedure or

function, this re la tionsh ip manifests itse lf between

- label declara tions
- constant declara tions
- type declara tions
- variable declara tions
- procedure and function declara tions
- tne statem ents of the body

suggesting the follow ing indentation schem e

- 5 -

heading

labels

constants

types

variables

functions

procedures

begin
statem ent

end.

Note that

(a) Function declarations are placed p rio r to procedures as a d isc ip lined aid to pro

gram reading. “Forward" declara tions can be used to overcom e difficu lties witn

the definition order.

(bf There is no indentation brought about by the presence of begin and end. wmcn

are meaningful only as (syntactic) delim ite rs that are chosen to group all tne

statements as a node in this level of the tree. Supposing that such a grouping

was at all m eaningful, then indentation would have been appropriate. However in

our view, each statement should in a sense have d irec t access to the dec lara

tions.

(c; When a program or procedure or function conta ins sub-procedures o r sub-

functions. tne ir bodies will be indented, so that only the user accessib le part, tne

heading, will be available at the outer i.e. interesting, level of indentation e.g.

- 6 -

procedure first;
declara tions

procedure second;
declara tions
begin
Statements fo r second

end:
begin
Statements for first

end:

so that reading the "Statements for first" to d iscover the meaning of accessed

names, the reader has only to look along the cu rren t level of indentation, and

only those declara tions at tnat level w ill be worthy of interest, while those inside

second, which are of no concern , are c learly moved out of the line of sight oy

indentation.

H nally. it should be noted that a program would conceivably appear as

program
declara tions
begin
Statements

end.

where the indentation of a ll but one line of the text is c learly redundant, un less go to

statements and labels are being used (see below), it is of course reasonable to om it

the indicated indentation in this particu la r situation.

P A S C A L D E C L A R A T I O N S

Noting that we have already covered procedures and functions, we see that we nave

recognized in our sem antic tree tne Pascal syntax schem e of grouping labels, con

- 7 -

stants. type and variable declarations. This Is sim ply because we nold tnat this is a

matter of the sensible organ isa tion and classifica tion of declaratives wnose individual

texts are physically ins ign ifican t for purposes of com prehension.

Label declarations appear as

label

‘ v *2' *3- - *n:

wnere each l(is a valid label. The keyword appears as a line by itself, corresponding

to tne semantic operator, the operands are on the succeeding line and are indented.

Canonically, they should be on separate lines i.e.

label

‘ l-
*2-
‘3-

*n'

but the brevity of each label makes the previous proposal the more pragm atica lly

sound.

The canonical arrangem ent is more correctly shown with respect to constant de fin i

tions:

const
N am e1 = C ,;

Nam en = Cn ;

We further make the pragm atic observation that the ,,=" delim eters be aligned for c la r

ity. which may easily be achieved by using a <tab> characte r o r characters, just as can

be used to effect indentation. In this regard it is felt that all indentations should be of

equal width. Capital letters may also be used fo r the "name" so that constants may oe

clearly identifiable wherever they may appear. For example

- 8 -

const
BLANKS
MAXHEIGHT = 6;
MINWEIGHT = TOO;

With types, schem atica lly

type
Nam e1 =

N am e„ = T •n n

a new item of in terest is introduced; record defin ition, including variant records.

Because the expression of a type defin ition , the T above, is a lready indented, tnere

need be no fu rther indentation fo r record ... end e.g.

type
man = record

age : in teger;
address : array [1 ..60] of char
end;

The discussion of variant records shall be treated under the 'case" statement below,

in a s im ila r m anner the schem atic fo r "var" declara tions would be;

v a r
N am e1 : T ,;

N am e„ ; T •n m

To c learly d istingu ish variable names from constants lower case letters only should be

used e.g.

v a r
eyeco lor ; string ;
height : in teger;
weight : in teger;

- 9 -

P A S C A L S T A T E M E N T S

We have already shown how the com pound statem ent which is tne body of a program ,

procedure or function is not indented with respect to begin ... end im plying that for

consistency the structuring operations which can contain com pound statements oe

regarded as n -a ry operators.

This is shown ra ther well when contem plating the Pascal iterative constructs. For tne

"repeat" statement, we may perhaps have sem antica lly

repeat until

representable by

repeat
S ta tem ent^

S tatem enin
until

Condition

Note now the keywords representing the sem antic operator are not indented, but that

tne operands are. By no great stretch of the im agination, it is possible to conceive of

the “repeat until" operator as being “c u rrie d ' i.e. it is applied to the "Condition", pro

ducing a new sem antic operator, which can be then applied to S ta tem ent^ ...

.Statem ent^ D iagram m atically

(
repeat until

l

Condition

/S ta tem ent^ ... ;S tatem entnwhich becomes

- 10 -

repeat
S ta tem ent^

Statem entn
until Condition

i.e. the sim ple in itia l app lication of repeat ... until to the Condition deserves no spe

cia l indentation.

Formats for the “while" and "fo r” statem ents are then easily derived;

w h ile Condition do
Statement

while Condition do
begin
S ta tem en t^

Statem entn
end

for Index := Expression^ to Expression^ do for downtol
Statement

for Index := Expression 1 to Expression2 do
begin
S tatem ent^;

Statem entn
end

Note that there is no reason for the “do" to appear on an individual line.

With regard to branch ing, the “ if" statem ent is sim ply

- n -

or

yielding

if Condition then
Statement^;

Statement
end 1

and perhaps

e lse
begin
S tatem ent^

Statementj
end

with begin ... end optional in the case of a single Statement. C learly the tree struc

ture has two levels, whereas our indentation schem e only has one. because of the for

tuitous placement of the non-indented else.

An important sem antic phenom enon for which Pascal provides only in the lim ited way

of the "case" statement (see below) is the m ulti-w ay branch, which must be simulated

in Pascal by a series of nested "if" statements:

- 12 -

if Condition 1 then
Statement 1

e lse
if C ondition^ then

State ment2
else

Therefore, in the case where, say C ondition2 above does not represent a condition of

the state of the m achine depending upon "not C ond ition^ ' Put represents an a lte rna

tive to "Condition^", then we suggest:

if Condition-(then
S ta te m e n t

e lse
if Condition2 then

Statement,,
else

the ''case" statem ent is sem antica lly

and therefore gives

case Expression of
branch-j

b ranchn
end

the c losing "end” is indented to avoid

- 13 -

begin
Statement;

case

end
end

Labelj Labeln ;
begin
Statem ent^;

Statem entm
end

others :
begin
Statem ent^;

S ta tem ent.;
end

Each branch in detail is a lis t of labels followed by a series of statements

i.e.

An “others" or "default” branch that some versions of Pascal provide may be treated as

one of these e.g.

For example

- 14 -

case day of
m onday. tuesday. Wednesday, thursday :

begin
rise;
work;
sleep;
end;

friday :
b e g in
rise;
work;
drink;
sleep;
end;

others :
begin
rise;
sleep;
end

end;

The form at of the variant record declara tion may be derived from tne format of the

'case'' statement. The overall s tructure is

ca se tag_fie ld type_ identifie r of
Variant^;

Variant n

(note the absence of a term inating end). Each variant appears likewise as

ia b e l1 iabe in :
body

where body is structured as the declaration of procedure or function formal param e

ters:

(N am ej : Type^; ... ;Nam en : Typen>

The potential problem of exceeding the righ t m argin is discussed below in the context

of param eter declarations.

As an example:

- 15 -

type
planet = (venus. m ars, p luto);

a lien = record
age : in teger:
weight : real
ca se o rig in : p lanet of

venus. mars :
(arms, heads, legs : in teger;
m arried : boolean);

pluto ;
(wheels, gears, cogs : integer)

end;

The indentation of labels can be extended to the destination of a "goto” e.g.

Statement

99 ;
Statement

goto 99

We are theoretically guaranteed to have the space to make the label outstanding (the

body of an entire program may need to be indented in this case;.

Finally, of structured statements, is the “with" statement, which is obviously

with Record do
begin
S ta tem ent^

Statem entn
end

The remaining statements are the "goto", "assignm ent", and “procedure ca ll" which

are not part of this discussion because they do not involve contro l structure sem antic

operators.

- 16 -

M I S C E L L A N Y

A sound pragm atic point concerns the lines which exceed some extreme righ t m argin,

determ ined by paper, screen or physical device width, which occur often in the context

of procedure and function param eter specifications and ca lls, and wnose frequency

increases as the left m argin is indented further.

For procedure and function param eters, the follow ing schem e is proposea. instead ot

an horizontal decom position, we propose

procedure P (fo rm a l-param ete r^ .

fo rm a l-pa ram ete rn):

for a procedure heading, and

function F (fo rm a l-p a ra m e te r^

fo rm a l-pa ram e te rn)
; function-type ;

for a function heading, and

PF (ac tua l-pa ram ete r^ .

ac tua i-p a ra m e te rn) ;

for a procedure o r function call. This is done purely for the sake of aesthetics. For

example

procedure readyfile t filenam e : nam estr;
var num beroffie lds : integer;
var field : fie idtypet;

Should an entity (typically, part of a long expression, o r perhaps part of a formal

param eter specification) exceed the righ t m arg in , a break is simply made at the last

blank part of the righ t m argin and continuation proceeds from the current indent posi

tion on the next line e.g.

- 17 -

verylong ;= (longer * verylong) /
sum m ationofvariables;

Note how the continued expression lines align from the left, and not the position of the

control line.

Finally, we remark that the advantages of horizontal spacing, particu la rly between

groups of declarations, cannot be overestim ated, and that s im ila rly mandatory should

be a comment explaining the nature of a procedure, function or program after its

heading.

P R E V I O U S L Y P R O P O S E D S C H E M E S

The merits of our proposal, apart from its sem antica l foundation and beauty, can be

demonstrated by discussing some previously proposed schem es.

Chronologically, the firs t published form atting schem e for Pascal is that which could

4
be deduced from the pages of Wirth . which is that presum ably ca lled tne “c lassica l"

5
style . While the examples presented are ra ther inconsistent in indentation, nonethe

less the following trends are observed:

(a) the general structure of a p rogram /p rocedure /function is

heading
declara tions

begin
statements

end

wmch vaguely corresponds to ours save for the irre levant prom inence of tne

begin ... end brackets.

(b) the bodies of loops and tra ile rs tend to be indented; if they are single statements

they sometimes appear on the same line as the sem antic operator e.g.

if Condition then Statement
else Statement

and the indentation of a com pound statement body is apparently a consequence

ot begin ... end in fluence e.g.

- 18 -

if Condition then
begin

Statement

end

However, we repeat that such ru les are deductions, and require c larification and

im provem ent - the curren tly described p iece of work can be thought of as sucn.

Some concrete proposals can be found in S inger. Hueras and Ledgaro6 Their m erit

is the em phasis on use of vertical spacing to aid clarity, and on the definition of va ri

ous d iscip lines regarding in terfacing of sub-prog ram s to tne ir environments tsucn

issues are regarded as being outside the scope o f the present work). On the o ther

nano

(a) not much is said about the indentation of nested procedure definitions, is the fo l

lowing forbidden?

procedure A
procedure B
begin

Statement

end;
begin

Statement

end

(b) while the bodies of loops etc are to be indented, so are the subordinates of a

begin ... end which g roup ing we have shown to be sem antically insignificant,

always occurring as part of a m ore m eaningful set. The present scheme allows

double indentation

- 19 -

while Condition do
begin

Statement

end

which can only lead to a qu icker than necessary confrontation with the righ t m ar

gin. Sim ilarly superfluous is the required indentation of the deta il of a record

definition between record and end. The detail of the indentation of tne bodies of

a “case" statement with respect to the case labels (and labels in general) is

unspecified. Finally, the then and else branches of the “ if" are given yet more

indentation e.g.

if Condition
then

begin
Statement

end
else

begin
Statement

end

wnich we suggest dem onstrates the lack of a form al correspondence between

this scheme and the abstract syntax of its object program s.

A further set of rules in Peterson7 which does not address the general m ethodological

questions we felt the latter did so well echoes its mistakes with regard to indentation.

Notable is a lack of specification of a num ber of concepts and re la tionsh ips such as

nested procedure declarations (which is an absolutely vital issue in the environm ent of

top-down development) and the layout of some statements and labels. Present again

is the idea that begin ... end is semantically s ign ifican t (which s ign ificance is

represented by indentations). Even more obscure is the way in which m ultip le levels of

- 20 -

indentation are required in tne bodies of the contro l constants, tor example

If Condition
then begin

Statement

end
else begin

Statement

end

and

w hile Condition
do begin

Statement

end

which is faulty in that

(a) there is an excess of syntactic detail and complex indentation to in troduce some

essentia lly sim ple concepts.

(b> indentation to the righ t proceeds excessively quickly.

(c) the righ t-jus tifica tion of while and do must be hard to effect, sim ilarly, the Inden

tations are not uniform , but depend upon the relevant sem antic operator.

5
An interesting schem e addresses the issue of indentation in addition to the irrita tion

caused to the Pascal p rogram m er by having to rem em ber the trivial details of p lace

ment of sem icolons and the need to insert begin ... end around compound state

ments as bodies of such as w hile 's and if's. The la tter is solved by the elegant

expedient of making begin and end part of every structured construct, and, because

Pascal allows an empty statem ent, p lacing a sem icolon after every statement (i.e.

before "end" - we see that a sem icolon can never occur before an else, thougnt. For

example, we write

- 21 -

if Condition then begin
Statement

end e lse begin
S tatement

end

where tne Statement can be a sim ple or m ultip le statem ent w ithout fear. The scneme

admittedly addresses only part of the layout problem , and could be incorporated into

our framework as an alternative to our particu la r form ulations in this regard. It is after

much consideration that we choose not to. because

tat tne fate of the outer begin ... end for the body of a program /procedure /function

is not simply and uniform ly accounted for (it causes an indent of its own in tne

scheme referred to)

(b) we are in a sense changing the language, hypothesising a new concrete syntax

along the lines of

if Condition then
Statement

else
Statement

fi

and implementing it in term s of com binations of e lem ents of the Pascal syntax;

we cnoose not to impose this burden on the program m er believing our scneme

aids layout just as effectively and in a more fam ilia r and natural way.

fi 7 fiThe work of Singer et al and Peterson is further d iscussed by M ohilner with respect

to the "right margin" problem. We feel that our solution to this problem is on firm er

g
foundations. Oppen discusses pretty prin ting from an im plem entation viewpoint

ratner than discussing a basic form atting policy for particu la r styles of language.

Our final example is an analysis by Rose and W elsh10 of a version of Pascal with

inbuilt formatting rules as part of the syntax, avoiding the need for begin ... end

- 22 -

delim iters and sem icolons and the end te rm ina to r (of caso and record entities;. We

see the basic princ ip les of our design appearing , but of course w ithout the need to

consider the p lacem ent of begin and end (the possibility of the om ission of which, as

this work dem onstrates, proves the ir uselessness as a sem antica lly m eaningful con

struct). Details with which we quibble are

(a; tne layout of the " if” statem ent as

if Condition
then

Statem ent
else

Statem ent

there being no reason for the placing of the “then ” on a single line.

(b) som etim es we then see

if Condition
then Statement
else

S ta tem en t^

Statem entn

which masks the “ then Statement" and s im ila rly in the case of an “e lse State

ment".

(cJ m ultip le statem ents per line, which mars c larity

(d) s im ilarly, (case) labels and statem ents on the same line.

in sum m ary these proposals are sound, particu la rly with respect to the way in wmcn

tney agree with ours about the nested structure of declarations, but we claim the re la

tive m erit of our work is in the accom m odation of the actual Pascal syntax, and in the

strictness of our approach with respect to the vertical separation of text.

C O N C L U S I O N

Ease of understanding of a program is facilita ted by a c lea r exposition of its sem antic

tree structure, which can be achieved by indentation. A formatting d iscip line tor

- 23 -

Pascal based upon indentation to re flect the sem antic structure of program s has been

developed. A com parison with o ther schem es of varying quality has been attempted,

the results of which com parison by them selves command the proposed scneme. The

scheme is simple, stra ightforward and sem antica lly e legant.

- 24 -

EXAMPLE

program example (input, output);
{ example — reads a lis t of not g rea te r than 1000 num bers

and outputs them in ascending o rder)
const

LIMIT = 1000; { upper bound on num ber of item s read)
type

var
m m range = 1..LIMIT; { index type fo r table }

num bersread ; 0..LIMIT; { coun ter fo r num bers read }
table : array [m inrange] of in teger; { num ber storage }
i : m inrange; { loop index)

procedure sm allfrom (base : m inrange);
{ sm allfrom — select the sm allest num ber in the range "base“ to

“num bers-read" }
var

mm : m inrange; { index of sm allest num ber found)

function indexsm allfrom (base : m inrange) ; in teger;
{ indexsm allfrom — in teger function to give the position of the

sm allest num ber starting at position “base T
var

index : m inrange; { index of sm allest num ber found so far }
begin
if base = num bersread then

indexsm allfrom ;= base
else

begin
index := indexsm allfrom (base + 1);
if table [base] < table [index] then

indexsm allfrom := base
else

indexsm allfrom ;= index
end

end;
begin
mm ;= indexsm allfrom (base);
writeln (table [m in]);
table [m in] ;= table [base]
end;

begin
num bersread := 0;
while not eof do

begin
num bersread := num bersread + 1;
readln (table [num bersread])
end;

for i := 1 to num bersread do
sm allfrom (I)

end.

- 2 5 -

A C K N O W L E D G E M E N T S

One of the authors (A.S.) wishes to thank Professor J. Reinfelds, the staff and faculty of

the University of Wollongong for the ir support and kind hospita lity whilst he was a visi

tor in the department.

R E F E R E N C E S

1. O.J. Dahl. E.W. Dijkstra and C.A.R. Hoare. S tructured Program m ing. Academ ic

Press. 1972.

2. J.V. Guttag. E. Horowitz and D.R. Musser, The design of data type specifications .

in Current Trends in Program m ing Methodology. 4. 60-79(1978).

3. K. Jensen and N. Wirth. Pascal - User Manual and Report. 2nd eon.. S prm ger-

Verlag, New York. 1975.

4. N. Wirth, Algorithms + Data S tructures = Program s. Prentice Hall, Englewood

Cliffs. 1976.

5. A. Sale. 'Stylistics in Languages with Compound S tatem ents'. Aust. Comp. j . . 10,

2. 58-59(1978).

6. A. Singer, j . Hueras and H. Ledgard. A Basis for Executing Pascal Program

mers'. SIGPLAN notices. 12. 7. 101-105(1977).

7. J.L. Peterson. On the Formatting of Pascal P rogram s'. SIGPLAN notices, 12. 12.

83-86(1977).

8. P. R. Mohilner. 'P rettyprinting Pascal P rogram s', SIGPLAN notices. 13. 7, 34-

40(1978).

9. D.C. Oppen. 'P rettyprin ting ', ACM Trans, on Prog. Lang, and Sys.. 2. 4. 465-

483(1980).

10. G. Rose and J. Welsh. 'Form atted Program m ing Languages'. Software - Practice

and Experience. 11.651-669(1981).

	A semantically-based formatting discipline for Pascal
	Recommended Citation

	tmp.1433914939.pdf.B4ve5

