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Abstract 

The extensive use of alkoxyamines in controlled radical polymerisation and polymer 

stabilisation is based on rapid cycling between the alkoxyamine (R1R2NO–R3) and a stable nitroxyl 

radical (R1R2NO•) via homolysis of the labile O–C bond. Competing homolysis of the alkoxyamine 

N–O bond has been predicted to occur for some substituents leading to production of aminyl and 

alkoxyl radicals. This intrinsic competition between the O–C and N–O bond homolysis processes 

has to this point been difficult to probe experimentally. Herein we examine the effect of local 

molecular structure on the competition between N–O and O–C bond cleavage in the gas phase by 

variable energy tandem mass spectrometry in a triple quadrupole mass spectrometer. A suite of 

cyclic alkoxyamines with remote carboxylic acid moieties (HOOC–R1R2NO–R3) were synthesised 

and subjected to negative ion electrospray ionisation to yield [M – H]− anions where the charge is 

remote from the alkoxyamine moiety. Collision-induced dissociation of these anions yield product 

ions resulting, almost exclusively, from homolysis of O–C and/or N–O bonds. The relative efficacy 

of N–O and O–C bond homolysis was examined for alkoxyamines incorporating different R3 

substituents by varying the potential difference applied to the collision cell, and comparing 

dissociation thresholds of each product ion channel. For most R3 substituents, product ions from 

homolysis of the O–C bond are observed and product ions resulting from cleavage of the N–O bond 

are minor or absent. A limited number of examples were encountered however, where N–O 

homolysis is a competitive dissociation pathway because the O–C bond is stabilised by adjacent 

heteroatom(s) (e.g., R3 = CH2F). The dissociation threshold energies were compared for different 

alkoxyamine substituents (R3) and the relative ordering of these experimentally determined energies 

is shown to correlate with the bond dissociation free energies, calculated by ab initio methods. 

Understanding the structure-dependent relationship between these rival processes will assist in the 

design and selection of alkoxyamine motifs that selectively promote the desirable O–C homolysis 

pathway.  

Keywords: Tandem mass spectrometry, nitroxyl radical, alkoxyamine, bond homolysis  
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1. Introduction 

Hindered amine light stabilisers (HALS) are anti-oxidant additives employed to improve the 

durability and lifetime of polymer surface coatings in outdoor applications.[1, 2] Even at low 

concentrations, inclusion of HALS improves gloss and colour retention in pigmented coatings and 

provides a superior aesthetic for the lifetime of the product. Despite the clear advantages offered by 

their usage, the exact role of HALS in stabilising polymer coatings remains an active topic of 

discussion.[3-11] Contemporary mechanisms for this anti-oxidant action invoke cycling of the amine 

functional group of the HALS between the alkoxyamine (R1R2NO–R3), nitroxyl radical (R1R2NO•, 

variously referred to as ‘nitroxide’ or ‘aminoxyl’), and aminyl radical (R1R2N•) forms (Scheme 

1a).[12] The stable nitroxyl radical scavenges deleterious polymer chain-based macroradicals (R3•), 

which otherwise accelerate polymer degradation through chain scission. The combination product is 

an alkoxyamine containing the polymer fragment bonded directly to the nitroxide. Advantageously, 

nitroxyl radicals are subsequently regenerated from these alkoxyamines, and by-products of the 

reformation step are relatively inert. While direct cleavage of the O–C and N–O bonds directly 

connects the alkoxyamine with both the nitroxyl and aminyl radicals, under typical service 

conditions homolysis pathways are not energetically competitive with an alternative mechanism 

that involves a β-hydrogen elimination step and connects these intermediates within the catalytic 

cycle.[12-14] Nevertheless, the impact of the R3-substituent, which varies widely depending on the 

polymer substrate and breakdown mechanism, on the relative energetics of the O–C and N–O bonds 

remains of considerable interest.[15] 
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Scheme 1: (a) Polymer stabilisation activity of HALS by regenerative cycling of nitroxyl radicals, 

as described by contemporary computational cycle involving β-hydrogen abstraction from an 

alkoxyamine and an aminyl radical intermediate;[12] (b) Simplified mechanism of nitroxide 

mediated polymerisation, highlighting reversible oxygen-carbon bond formation and homolysis 

(kcomb, kdiss, and kp represent the rates of combination, dissociation, and propagation, respectively). 

 

Alkoxyamines are similarly central to the mechanism of nitroxide-mediated polymerisation 

(Scheme 1b), a technique that produces materials with low polydispersity and controlled molecular 

weight.[16, 17] However, the success of nitroxide-mediated polymerisation depends on control over 

the reversibility and rates of alkoxyamine formation and dissociation, as well as suppressing the 

significance of side-reactions, such as disproportionation. These factors in turn are dependent on the 

structure of both the nitroxide and the monomer.[18, 19] Driven by the importance of reversible O–C 

bond homolysis to both polymer synthesis and stabilisation, the molecular structural factors 

governing such a step in alkoxyamines are well characterised.[20-28] Conversely, less attention has 
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been paid to the unwanted corresponding N–O cleavage, which would result in the formation of 

highly reactive aminyl and alkoxyl radicals. Homolysis of the N–O bond in alkoxyamines is 

promoted when either or both of the resulting radicals are stabilised. For example, N–O bond 

homolysis is observed during degradation of indoline-based nitroxides, whereby the homolysis 

product is an aryl aminyl radical,[29-31] and in thermolysis of alkoxyamines with aryl or acyl O-ether 

substituents.[32-35] In a theoretical study of the competitive bond cleavage processes,[36] Tordo et al. 

demonstrated that, whilst semi-empirical computational methods reliably predict relative trends in 

the O–C bond dissociation energies (BDEs) of a series of alkoxyamines,[14] higher level density 

functional methods are required to adequately describe the competition between the O–C and N–O 

cleavage processes. A more recent comprehensive theoretical study,[15] using benchmarked high-

level ab initio methods, established that certain alkoxyamine functionalities (i.e., R3 in Scheme 1) 

promote N–O homolysis over O–C homolysis due to anomeric stabilisation of the O–C bond.[37] 

Gigmes and co-workers have suggested that “there may be a competition between (N)O–C and N–

O(C) bond cleavage. The possibility and the extent of bond cleavage depend on the nature of the R3 

alkyl moiety bound to the O-atom of the nitroxide function.”[29] Testing this hypothesis 

experimentally for the intrinsic dissociation of alkoxyamines in the gas phase is the central aim of 

this work. 

Tandem mass spectrometry is a well-established approach to investigate competing 

mechanisms of dissociation in gas-phase ions. If the charged moiety is largely fixed within the 

molecular scaffold and is isolated from the labile functional groups, then it is possible to observe 

charge-remote dissociation, which may be closely related to thermolysis of analogous neutral 

species.[38-40] It has previously been demonstrated that alkoxyamines undergo charge-remote 

homolysis of the O–C bond.[41-43] For example, Oh et al. derivatized small peptides with 

alkoxyamines[44-46] and subjected these to electrospray ionisation (ESI) to form ions with the charge 

sites localised to amino acid residues and thus remote from the alkoxyamine. Subsequent collision-

induced dissociation (CID) of these ions resulted in almost exclusive O–C bond homolysis, 
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generating an alkyl radical which initiated further fragmentation of the peptide ion. However, 

depending on the nature and proximity of the charge to the alkoxyamine moiety, bond homolysis is 

not always selectively observed, and ions resulting from charge-directed fragmentation may also be 

present.[47, 48] Building on this understanding we have developed a molecular scaffold incorporating 

an alkoxyamine functional group carrying a wide range of R3-subsituents and a remote negative 

charge to experimentally investigate competition between charge-remote O–C and N–O homolysis 

during low-energy CID. Further experimental and computational approaches verify the structure-

dependent energetics of the competing N–O and O–C homolysis processes, and highlight the local 

structural requirements for N–O homolysis in alkoxyamines. 
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2. Material and methods 

2.1 Materials 

Nitroxyl radicals 4-carboxy-2,2,6,6-tetramethylpiperidine-1-oxyl (4-carboxy-TEMPO, 1) 

and 3-carboxy-2,2,5,5-tetramethylpyrrolidine-1-oxyl (3-carboxy-PROXYL, 2) were purchased from 

Sigma Aldrich (Sydney, Australia), and used without further purification. Hydrogen peroxide 

(Australian Chemical Reagents, Queensland, Australia) was used as a 40% (w/w) aqueous solution. 

Perdeuterated (D6)-acetone was purchased from Cambridge Isotope Laboratories (Andover, MA, 

USA). Methanol employed for mass spectrometry was HPLC grade (Thermo Fisher Scientific, 

Melbourne, Australia) and used as received. All other materials for synthesis were purchased from 

Sigma Aldrich, and used as received. 

 

2.2 Synthesis 

Synthesis of alkoxyamines from nitroxide precursors and various alkyl radical sources has 

been widely documented.[49-54] Alkoxyamines (with the exception of 1c and 1e) were prepared 

according to the method of Schoening et al.,[55, 56] whereby alkyl radicals are generated in situ from 

a ketone or aldehyde, copper (I) chloride, and hydrogen peroxide. In the presence of the nitroxide, 

nascent radicals are readily trapped, forming the desired alkoxyamines, listed in Scheme 2. This 

method was chosen for its simplicity, ready availability of reagents, and wide array of possible 

functionalities, with the exception of benzaldehydes, which do not generate phenyl radicals under 

these conditions. 1c was prepared by substituting TEMPO for 4-carboxy-TEMPO (1) in a literature 

method, refluxing overnight in cyclohexene.[57, 58] Preparation of 1e was also based on adaptation of 

an existing method, refluxing 4-carboxy-TEMPO (1) and the radical initiator 1,1’-

azobis(cyclohexanecarbonitrile) for 30 hours in methanol.[59] 4-N,N,N,-trimethylamino-TEMPO 

was prepared as the iodide salt according to the method of Strehmel et al.[60] Characterisation of all 

products by high-resolution mass spectrometry is provided as Supporting Information (Table S1). 

 



 8 

Scheme 2: Alkoxyamines (1x) and (2x) examined in this study, based on 4-carboxy-TEMPO (1) 

and 3-carboxy-PROXYL (2), where x is any R3 group (a-i).  

 

 

2.3 Mass spectrometry  

Negative ion mass spectra were recorded with a QuattroMicro (Waters, Manchester, U.K.) 

triple quadrupole mass spectrometer equipped with an ESI source and controlled by Micromass 

MassLynx software (version 4.1). Alkoxyamines (Scheme 2) were diluted to ca. 5 µM in methanol, 

and infused directly into the ESI source at 5 µL min-1. The capillary voltage was set to 3.0 kV, cone 

voltage 25 V, and source temperature 80 °C. Nitrogen was used as the drying gas, at a temperature 

of 110 °C, and flow rate of 320 L h-1. In all collision induced dissociation (CID) scans, ions of 

interest were selected in Q1, subjected to collisions with argon gas in Q2 at a pressure of 3.0 ± 

0.1 mTorr, and the collision energy in the laboratory frame (Elab) was varied from 2–25 eV. For 

product ion structural validation, MSn spectra were recorded on an LTQ 2-dimensional linear ion 

trap mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA), and high-resolution MS 

and MS/MS spectra were acquired on a Waters Xevo G1 Q-ToF mass spectrometer. 
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Breakdown curves are obtained by plotting the normalised intensity of the product ion(s) of 

interest against the collision energy in the centre-of-mass frame (Ecm), where Ecm is equal to Elab 

multiplied by the reduced mass of the colliding ion and neutral argon gas. Empirically, threshold 

behaviour was analysed by using a least-squares fitting criterion to fit sigmoid functions to the data, 

of the type shown in Equation 1.[61, 62] 

!!(!!") != !!"!/(1!+ !e
!!
!,!!
!!!" !!)                 (1) 

In Equation 1, BRi is the branching ratio of the product ion of interest (i), E1/2,i is the energy at 

which the function has reached half of its maximum value, and the parameter bi describes the 

steepness of the sigmoid curve. Furthermore, we define “dissociation threshold” as the energy at 

which the product ion abundance is equal to 5% of the total ion intensity (i.e., Ii = 0.05). As we are 

comparing fragmentation onsets and not quantitatively deriving energetic thresholds, we find that 

using the appearance energy definition of Schrӧder et al.,[61, 62] (i.e., using a linear extrapolation of 

the sigmoid curve at E1/2 to the x-axis) does not significantly improve the quality of the data fit or 

the correlation with calculated thermodynamic quantities.  

 

2.4 Computational procedures 

Standard ab initio molecular orbital theory and density functional theory calculations were 

carried out using Gaussian 09[63] and MOLPRO 2012.1.[64] Calculations were performed at a high 

level of theory, recently demonstrated to predict gas- and solution-phase bond dissociation energies 

and associated equilibrium constants to within chemical accuracy.[15, 65] Geometries of all species 

were fully optimised at the M06-2X/6-31+G(d) level of theory. For all species, full systematic 

conformational searches (at a resolution of 60o) were carried out to ensure global, and not merely 

local, minima were located. Frequencies were calculated at this level and scaled by recommended 

scale factors.[66] Improved energies for all species were calculated using a double layer ONIOM-

type method. The core layer (including both the nitroxyl and carboxylic acid moieties) was 

calculated using composite high-level G3(MP2,CC)(+) level of theory,[67] where (+) denotes 
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inclusion of diffuse functions in a standard 6-31G(d) basis set. The full system was calculated with 

the M06-2X/6-31+G(d) method. This methodology has been shown to accurately predict the gas-

phase energetics of nitroxyl and other free radical reactions.[65, 68] Entropies and thermal corrections 

at 25, 80, and 110 °C were calculated using standard formulae for the statistical thermodynamics of 

an ideal gas under the harmonic oscillator approximation in conjunction with the optimised 

geometries and scaled frequencies.[69] 
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3. Results and discussion 

Alkoxyamines are readily detected as protonated or alkali metal adduct ions by electrospray 

ionisation (ESI),[48] matrix assisted laser desorption ionisation (MALDI),[70, 71] liquid extraction 

surface analysis (LESA),[72] or desorption electrospray ionisation (DESI).[73] However, in the 

absence of another basic moiety, protonation of an alkoxyamine nitrogen raises the O–C BDE by 

over 100 kJ mol-1.[74] Charge-driven dissociation mechanisms dominate upon CID of [M + H]+ or 

[M + Na]+ alkoxyamine ions, leading to predictable and readily assignable products in the resulting 

spectra,[41, 48] but no information is ascertained concerning the relative energies of the N–O and O–

C bonds. Our first attempts to produce charge-remote alkoxyamines were based on 4-N,N,N-

trimethylamino-TEMPO, in order to sequester the charge on the piperidine fragment and promote 

homolysis. However, the CID spectra of such alkoxyamines (Supporting Information, Figure S1) 

feature predominantly protonated O-alkyl acetone oxime fragment ions, and [M – 59]+ ions 

corresponding to loss of trimethylamine. The former dissociation is consistent with previous reports 

on the charge-directed dissociation of substituted piperidines.[72] In the absence of the desired 

charge-remote dissociation of the alkoxyamine moiety, an alternative strategy was sought. Only 

limited examples in the literature describe the tandem mass spectrometric analysis of alkoxyamines 

upon negative ion electrospray ionisation.[46] Commercially available nitroxides 4-carboxy-TEMPO 

(1) and 3-carboxy-PROXYL (2) were found to be suitable scaffolds for producing [M – H]– anions 

for the suite of TEMPO-based alkoxyamines designated 1a-i and the PROXYL-series 2a, 2b and 2h 

(Scheme 2).  

 

3.1 Dissociation of Methoxyamines  

Methanolic solutions of alkoxyamines displayed in Scheme 2 exhibit abundant [M – H]– 

ions upon negative ion ESI. These anions were isolated and subjected to CID in a triple quadrupole 

mass spectrometer using argon as the collision gas. Comparative CID spectra of methoxyamines 1a 

and 2a are displayed in Figure 1(a) and 1(b), respectively. The most abundant product ion in each 
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example represents a loss of 15 Da from the precursor ion and is assigned to the neutral loss of a 

methyl radical (•CH3); a deviation from the ‘even-electron rule’.[75, 76]  

 

Figure 1: Negative ion ESI-MS/MS spectra (at a laboratory frame collision energy of 15 eV) of the 

[M – H]– ions; (a) 1a at m/z 214, (b) 2a at m/z 200, (c) (D3-methyl)-2a at m/z 203. Peaks between 

m/z 150 and 190 (Figure 1a), and between m/z 150 and 175 (Figure 1b and 1c) have been magnified 

by a factor of 5. 

 

To demonstrate that the loss of 15 Da arises solely from O–C homolysis and not by ejection 

of a methyl radical from the piperidine ring, selective replacement of hydrogen with deuterium on 

the methoxyamine moiety was undertaken by using D6-acetone in the synthesis of 2a to form the 
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isotopologue (D3-methyl)-2a. Isolation and fragmentation of the [M – H]– ion at m/z 203, under the 

same experimental conditions, yields an abundant ion at m/z 185 representing a loss of 18 Da and 

ejection of D3-methyl radical (•CD3) (Figure 1c). Importantly, no [M – H – 15]− ions are observed at 

m/z 188 suggesting the methyl loss pathways occurs exclusively via O–C bond cleavage. For further 

confirmation, CID experiments were repeated on a linear ion-trap mass spectrometer with MSn 

capabilities. Upon isolation and collisional activation of the m/z 185 product ions from both 2a 

(Figure 1b) and D3-2a (Figure 1c), the resulting spectra are identical, and moreover, identical to the 

MS2 CID spectrum of the [M – H]– ion of a 3-carboxy-PROXYL (2) standard (Figure 2b). 

Similarly, the MS3 spectrum of the m/z 199 product ion from 1a is identical to the MS2 spectrum of 

4-carboxy-TEMPO (1) (vide infra). The [M – H – 15]− product ions at m/z 199 and m/z 185 for 1a 

and 2a respectively, correspond to loss of a methyl radical exclusively via homolysis of the oxygen-

carbon bond and are therefore assigned as the deprotonated nitroxyl radicals 4-carboxy-TEMPO (1) 

and 3-carboxy-PROXYL (2), respectively.  

Closer examination of the CID spectra in Figure 1 reveals further similarities in the 

precursor ion dissociation pattern. In Figure 1(a) and 1(b), additional ions constituting neutral losses 

of 30, 31 and 46 Da in both spectra indicate that the predominant fragmentation pattern is common 

to both the 6- and 5-membered ring alkoxyamines. In Figure 1(c), the corresponding losses from the 

deuterium-labelled precursor ion are increased by 3 Da (i.e., 33, 34 and 49 Da). That is, the product 

ions at m/z 170, 169 and 154 are observed in both Figures 1(b) and 1(c), indicating that none of 

these ions contain the methyl group from the methoxyamine. 

The MS2 spectrum of m/z 199 from authentic, deprotonated 4-carboxy-TEMPO (1) is 

identical to the MS3 spectrum of m/z 199 from prior dissociation of 1a (Figure 2a). Collisional 

activation of m/z 199 ions (either from standard 1 or prior dissociation of 1a) yields predominantly 

ions at m/z 184, indicating that methyl radical ejection also occurs from the nitroxide radical. These 

data suggest that the ions observed at m/z 184 in Figure 1(a) are likely to come from consecutive 

losses of methyl radicals rather than a single concerted loss of 30 Da. This stepwise process is 
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illustrated in Scheme 3 and involves an initial loss of the methyl group from the methoxyamine to 

yield the nitroxide radical that subsequently ejects a methyl group from the piperidine ring. A 

plausible structure for the ion at m/z 184 is therefore the nitrone 4-carboxy-2,2,6-trimethyl-2,3,4,5-

tetrahydropyridine-N-oxide (Scheme 3a).  

 

Figure 2: CID spectra of [M – H]- ions of authentic: (a) 4-carboxy-TEMPO (1), and (b) 3-carboxy-

PROXYL (2), both at a collision energy of 20 eV (in the laboratory frame), showing methyl radical 

loss to form nitrones at m/z 184 and 170, respectively. 

 

An analogous, stepwise methyl radical ejection process is proposed for the dissociation of 

the 5-membered cyclic nitroxide 2 (Figure 2b). When the primary ions (m/z 185) from O–C 

homolysis of 2a are further interrogated by MS3, ions at m/z 170 are observed as a result of methyl 

radical ejection. A prominent ion at m/z 126 is also observed corresponding to the loss of CO2 from 

ions at m/z 170 and suggesting the carbanion structure as indicated in Scheme 3(b). Formation of 

this carbanion is facilitated in the PROXYL scaffold by resonance stabilisation by the carbon-

nitrogen double bond. This contention is supported by the fact that, decarboxylation is not observed 
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directly from the precursor ion and likewise, CO2 loss is observed only to a very minor extent (e.g. 

m/z 140, Figure 2a) upon the dissociation of the larger rings of TEMPO-based series where similar 

stabilisation of the carbanion is not possible. 

 

Scheme 3: Stepwise dissociation of negatively charged alkoxyamines through competing charge-

remote O–C and N–O homolysis pathways: a) TEMPO-based alkoxyamines; b) PROXYL-based 

alkoxyamines, highlighting additional decarboxylation step and resonance stabilised product ions. 

 

At high collision energies (Elab > 20 eV), additional low mass ions are observed in the CID 

spectra of both alkoxyamines 1a and 2a (Supporting Information, Figure S2). Putative structures for 

these ions are provided as Supporting Information (Scheme S1 and Table S2). Importantly, the 

presence of these ions in the CID spectra of the authentic nitroxides 1 (e.g. m/z 122, Figure 2a) and 

2 (e.g. m/z 108, Figure 2b) implies that they are secondary dissociation products upon O–C 

homolysis of alkoxyamines. As secondary product ions, the abundance of these species may be 

included when considering the total population of ions arising from O–C homolysis at high 

collision energies. 
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In Figure 1, product ions at m/z 199 and 184 upon collisional activation of 1a (and 

equivalently m/z 185 and 170 for 2a) result from homolysis of the O–C bond. Conversely, ions at 

m/z 183 and 168 are the products of N–O bond cleavage. Homolysis of this bond results in loss of a 

methoxyl radical, and transient aminyl radicals are observed in low abundance at m/z 183 (1a), and 

m/z 169 (2a). As with the nitroxyl radical product ions, a further loss of 15 Da is also observed in 

the spectrum, and is likewise assigned to subsequent methyl radical ejection from the aminyl radical 

to form an imine (Scheme 3). Unlike stable nitroxyl radicals, authentic aminyl radicals are not 

readily prepared and isolated in the gas phase so CID spectra of known standards were not available 

for comparison. However, when the primary ions at m/z 183 from N–O homolysis of 1a are isolated 

in a linear ion trap, product ions at m/z 168 are observed in the MS3 spectrum, arising from facile 

demethylation of the aminyl radical, even when no additional collisional activation is applied. No 

significant low mass secondary product ions are identified from further isolation and fragmentation 

of ions at either m/z 183 or 168. When the equivalent primary ions (m/z 169) from N–O homolysis 

of 2a are analysed by MS3, ions at m/z 154 are similarly observed, indicating subsequent 

demethylation. An additional ion at m/z 110 is also observed, putatively assigned to decarboxylation 

of m/z 154 ions, and resonance stabilised by the carbon-nitrogen double bond. Like the dissociation 

via O–C homolysis, decarboxylation is not observed directly from the precursor ion.  

The major product ions observed upon collisional activation of methoxyamine 1a are 

summarised in Scheme 3(a). Importantly, product ions at m/z 199 and m/z 184 are a consequence of 

O–C homolysis, and m/z 183 and m/z 168 are the result of N–O homolysis. Equivalent mechanisms 

are proposed in Scheme 3(b) for the fragmentation of the pyrrolidine-based alkoxyamine 2a.  

3.2 Effect of O-Ether Functionality (R3) 

Product ions attributed to either N–O or O–C homolysis, as summarised in Scheme 3, do not 

contain the original O-ether fragment (R3). CID spectra of additional TEMPO-based alkoxyamines 

1b-1i, each with a different R3 functionality, were also examined (Table 1). In each case, the same 

product ions were observed as for 1a, with the spectra only differing in peak intensities. For 
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example, the CID spectra of 1b, 1g, 1h, and 1i (Figure 3) all show features at m/z 168, 183, 184 and 

199 identical to those of 1a (Figure 1a). In a similar way, most of the product ions observed for the 

methoxyamine 2a (Figure 1b) are also observed in the CID mass spectra of the PROXYL-based 

alkoxyamines 2b and 2h (Table 1). Significantly, the major product ions arising from dissociation 

of both series of alkoxyamines do not contain the R3 substituent (full suite of MS/MS spectra are 

provided as Supporting Information, Figure S3).  
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Figure 3: Negative ion CID MS/MS spectra (at a collision energy of 20 eV) of alkoxyamines, each 

exhibiting varying abundances of product ions at m/z 184, 183, and 168; (a) benzyloxyamine 1b, (b) 

n-butyloxyamine 1g, (c) fluoromethoxyamine 1h (a minor ion at m/z 182 is assigned to loss of HF 

and CH2O), (d) (1-acetyloxy)ethoxyamine 1i, which also undergoes cis-elimination to produce 

vinyloxyamine (m/z 226) and acetate ions (m/z 59). 

 

Table 1: Relative abundance of product ions in the CID spectra of [M – H]– ions based on 4-

carboxy-TEMPO (1) and 3-carboxy-PROXYL (2) at a laboratory-frame collision energy of 15 eV, 

normalised to base peak (100%) in each spectrum. Each value is an average of at least 3 

measurements, each of which comprise at least 50 individual scans. 

# 

(R3) 
[M – H]– m/z 199 m/z 184 m/z 183 m/z 168 

Other Ions 

m/z (% abundance) 

1a 

(CH3) 
76.6 100.0 6.8 1.5 10.1  

1b 

(CH2Ph) 
3.9 100.0 2.5 n.d. n.d.  

1c 

(cyclohex-2-ene) 
2.9 100.0 1.6 n.d. n.d.  

1d 

(CH(CH3)COOEt) 
4.9 100.0 1.5 n.d. n.d.  

1e 

(1-CN-cC6H11) 
23.5 100.0 7.6 n.d. n.d.  

1f 

(tC4H9) 
100.0 66.2 1.1 n.d. 0.7 200 (5.7)† 

1g 

(nC4H9) 
100.0 78.1 4.5 0.9 6.2  
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1h 

(CH2F) 
100.0 0.4 14.2 6.0 36.4 

182 (6.1)‡; 138 

(39.2); 49 (10.1) 

1i 

(CH(CH3)OAc) 
52.4 8.9 1.1 85.0 100.0 

226 (78.6)#; 59 

(54.2)# 

 [M – H]– m/z 185 m/z 170 m/z 169 m/z 154 
Other Ions 

m/z (% abundance) 

2a 

(CH3) 
23.4 100.0 9.8 1.1 5.3  

2b 

(CH2Ph) 
0.8 100.0 3.7 n.d. n.d.  

2h 

(CH2F) 
100.0 1.2 30.0 14.8 69.2 

168 (1.8)‡; 128 (8.2); 

110 (3.3); 49 (25.9) 

n.d. = less than 0.2% relative to base peak. 
† Isobutene loss from 1f (-56 Da) 
‡ Concerted loss of HF and formaldehyde from 1h and 2h 
# cis-Elimination from 1i producing either acetate anion (m/z 59) or [M – CH3CO2H]− (m/z 226). 
See text for details. 
 

Product ions not assigned to either N–O or O–C homolysis are observed in the CID spectra 

of 1h (Figure 3c), 2h, and particularly 1i (Figure 3d) to an extent not observed in other substrates. 

These ions may arise from even-electron dissociation of the precursor ion that is competitive with 

homolysis when the latter is energetically cumbersome. We speculate that the abundance of N–O 

homolysis product ions (m/z 168 and 183, Figure 3d) are inflated by a competing charge-remote cis-

elimination[77] of acetic acid that forms a vinyl-substituted alkoxyamine at m/z 226 

(R1R2NOCH=CH2), which then undergoes further dissociation via N–O homolysis. When this ion is 

isolated within the linear ion trap and subjected to further collisional activation in an MS3 

experiment, product ions at m/z 183 and m/z 168 are observed in high abundance. Due to this 

competing even-electron dissociation, 1i is excluded from further discussion on homolysis trends in 

alkoxyamines.  
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Based on the product characterisation conducted for 1a, the product ion at m/z 199 in all 

spectra in Figure 3 is assigned as 4-carboxy-TEMPO (1), arising from homolysis of the oxygen-

carbon bond, and loss of a carbon-centred radical. More generally, homolysis of the oxygen-carbon 

bond is a major fragmentation process in the CID of charge-remote alkoxyamines, with a 

particularly high efficacy in substrates that produce a stabilised alkyl radical (e.g., a benzyl radical 

from 1b and 2b, an allyl radical from 1c, or an α-carbonyl radical from 1d, 1e). These results are 

consistent with the observation of selective O–C bond homolysis upon collisional activation of 

peptide ions modified with a TEMPO-CH2Ph linkage,[44] structurally similar to 1b. Conversely, 

homolysis of the oxygen-carbon bond is suppressed in 1h and 2h, due to anomeric stabilisation of 

the bond by hyper-conjugation from the adjacent heteroatom,[21, 37] and thus ions resulting from N–

O homolysis are observed in high abundance from these precursors. 

 

3.3 Dissociation Thresholds of Alkoxyamine Ions 

The data set presented in Table 1 demonstrate that the alkoxyamine substituent, R3, 

influences the relative efficacy of N–O bond homolysis against O–C bond homolysis, which 

manifests as varying abundances of the ion pairs: m/z 168 and 183 for the former, and m/z 184 and 

199 for the latter (Scheme 3). To explore this effect, the energy acquired by each precursor ion was 

varied by adjusting the potential difference between the ion source and the collision cell (Elab) of the 

triple quadrupole mass spectrometer. The normalised abundance of O–C and N–O homolysis 

product ions were then plotted as a function of applied energy in the centre-of-mass frame (Ecm) 

such that dissociation thresholds (the energy required for formation of 5% product ion abundance, 

E5%) could be compared between N–O and O–C bonds in a single substrate, and between different 

substituted alkoxyamines.  

For the TEMPO-based alkoxyamines 1a – 1h, cleavage of the O–C bond was found to be 

the preferred homolysis channel. For example, the aforementioned ions at m/z 199 and 184 (and at 

higher energies, m/z 122 and 106 – Figure 2a) are major product ions in the CID spectrum of 
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methoxypiperidine 1a, when Ecm > 1.5 eV (E5%), whereupon dissociation of the precursor ion 

becomes significant (Figure 4). The abundance of product ions reaches a maximum at 

approximately 3.0 eV where they constitute ca. 82% of the total ion population. Product ions from 

N–O homolysis at m/z 183 and 168 are observed only at low abundance, accounting for ca. 18% of 

the total ion population, even at the highest energies utilised, with a higher dissociation threshold of 

2.3 eV.  

 

Figure 4: Relative abundance of product ions arising from N–O homolysis and O–C homolysis of 

methoxypiperidine (1a) as a function of applied collision energy in the centre-of-mass frame. 

 

The relative dissociation thresholds are rationalised by comparing the calculated free 

energies of the two bonds. Our results computed at 298 K are given in Figure 5 below, while Table 

S3 in the Supporting Information demonstrates that the qualitative trends in these bond dissociation 

free energies are largely independent of temperature. In neutral alkoxyamines, O–C homolysis is 

preferential to N–O homolysis for all R3 except 1h, 2h and 1i due to anomeric stabilisation of the 

O–C bond in these three species. The preference for direct O–C cleavage is minimal for those R3 

units that produce relatively non-stabilised carbon-centred radicals upon homolysis, e.g., •CH3 and 

tBu• as in 1a, 1f and 2a. However, the most striking feature of Figure 5 is the effect of deprotonation 

on these bond homolysis energetics. There is generally no appreciable difference in the N–O bond 

energetics between neutral and anionic alkoxyamines; however, O–C bonds are significantly 
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weakened toward homolytic cleavage by deprotonation of the remote carboxylic acid moiety. This 

is due to a combination of two factors: (i) conventional polar effect of the negative charge 

destabilising alkoxyamines and stabilising the forming nitroxyl via their corresponding charge-

separated resonance contributors, R1R2NO––R3+ and R1R2N+•–O–, respectively; and (ii) additional 

Coulombic stabilisation of nitroxyl radicals by remote negative charges arising from their enhanced 

polarisability.[65, 68] Based on these arguments, we predict that inverting the charge polarity would 

strengthen the O–C bond due to these polar effects. Relocating the charge site onto the opposite side 

of the O–C bond (as in TEMPO-mediated peptide sequencing) would minimise the latter 

stabilisation contribution due to the lower alkyl radical polarisability relative to a nitroxyl radical.[68] 

Moreover, with respect to polar resonance contributors, a negative charge on the R3 substituent 

would be expected to raise the O–C bond energy whereas a positive charge would decrease the 

bond energy.[46, 68] The thermodynamic preference (ΔΔG298) for O–C cleavage in deprotonated 

alkoxyamines in the present investigation is further enhanced by up to 20 kJ mol–1 compared to 

their neutral counterparts. This observation is true for all R3 moieties studied herein, and thus trends 

in the effect of the R3 moiety are representative of the trends in neutral species. 

 
Figure 5: Calculated free energies (kJ mol-1) of O-C and N-O bond homolysis in anionic (-) and 

neutral (H) alkoxyamines at 298 K.  
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Breakdown curves for the alkoxyamines 1b – 1e are shown in Figure 6(a). Homolysis of the 

O–C bond occurs at a significantly lower threshold energy (E5% = 0.5 – 0.7 eV) compared to 

methoxyamine 1a (E5% = 1.5 eV). In these substrates, almost quantitative conversion from 

alkoxyamine to nitroxyl radical is observed, even below collision energies of 2.0 eV. Furthermore, 

O–C homolysis is highly selective, with no N–O homolysis product ions detected at m/z 168 or 183 

for any of the precursors 1b – 1e. Compared to the alkyl ethers (e.g. 1a, 1f, 1g), which exhibit a 

modest thermodynamic preference for homolysis of the O–C bond, substrates 1b – 1e contain much 

weaker O–C bonds (ΔG298 < 120 kJ mol-1), and a greater selectivity (ΔΔG298 > 60 kJ mol-1) for O–C 

cleavage (Figure 5). These observations are consistent with the presence of R3-substituents that 

stabilise the resulting alkyl radical for 1b – 1e. 

 

 

Figure 6: (a) Selective O–C homolysis in alkoxyamines (1b-1e) that release a stable radical upon 

dissociation. (b) N–O homolysis (filled shapes) is the dominant fragmentation mechanism upon 

CID of fluoromethoxyamine (1h). Methoxyamine (1a) is included for comparison, exhibiting 

preference for O–C cleavage (open shapes).  



 24 

Conversely, the alkoxyamine containing an adjacent heteroatom (1h) exhibits remarkably 

different fragmentation behaviour. In Figure 6(b), the O–C homolysis product ion abundance from 

the CID of 1h (and 1a, for comparison) are plotted with open shapes, whilst the abundance of 

corresponding N–O product ions are denoted with filled shapes. In 1h, there is competition between 

the two pathways much like the alkyl substituted alkoxyamine 1a, however in this case N–O 

homolysis is the dominant pathway, and products of O–C homolysis are observed in minor 

abundance. Despite this, selectivity is not as pronounced as in 1b – 1e. Furthermore, higher 

experimental threshold energies are required for dissociation of the N–O bond: 1.8 eV for 1h and 

2.3 eV for 1a, compared with 1.5 eV for O–C homolysis in 1a. These observations are rationalised 

by again considering the relative N–O and O–C bond energies in these ions (Figure 5). In 

deprotonated 1h, the free energy required to cleave either the N–O (163.9 kJ.mol-1) or O–C bonds 

(183.6 kJ.mol-1) at 298 K is higher than the energy requirement for cleavage of the O–C bonds in 

substrates that preferentially dissociate via O–C homolysis (75-135 kJ mol-1).  

Within the current experiment it is also possible to compare homolytic dissociation not only 

as a function of O-ether alkoxyamine substituent, but also as a function of ring size, by comparing 

the breakdown curves of 6-membered cyclic alkoxyamines (1x) with the equivalent 5-membered 

rings (2x). In Figure 7, breakdown curves show the normalised abundances of ions arising from O–

C homolysis of TEMPO-based 1a, 1b, 1h (denoted by open shapes), as well as PROXYL-based 2a, 

2b and 2h (filled shapes). Compared to TEMPO-based alkoxyamines, PROXYL-based 

alkoxyamines exhibit a greater overall abundance of product ions at a given collision energy input, 

and similarly a lower O–C dissociation threshold (e.g. 1.2 eV for 2a and 0.5 eV for 2b, compared 

with 1.5 eV for 1a and 0.7 eV for 1b). Both O–C and N–O bonds are systematically weaker in 5-

membered PROXYL-based alkoxyamines, compared with equivalent 6-membered TEMPO-based 

alkoxyamines, resulting in more facile dissociation. For the methyl and benzyl substituents, the 

calculated O–C bond dissociation free energy is 10-13 kJ mol-1 lower in PROXYL substrates 

compared to TEMPO (Figure 5), consistent with the observation of lower experimental threshold 
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energies. When the alkoxyamine contains the fluoromethyl moiety, the O–C bonds of 1h and 2h are 

approximately isoenergetic, thus the similarity in their dissociation thresholds.  

 

 

Figure 7: Breakdown curves comparing O–C homolysis in 6-membered TEMPO-based 

alkoxyamines (open shapes) with the more facile homolysis in 5-membered PROXYL-based 

alkoxyamines (filled shapes), with methyl, benzyl, and fluoromethyl substituents. A lower threshold 

energy is required for dissociating alkoxyamines based on the PROXYL ring (see insets), compared 

to TEMPO, a trend reflected in the relative O–C bond energies (Figure 5). 

 

 By combining all of the obtained experimental and computational data from both TEMPO 

and PROXYL-based alkoxyamines, the utility of this method for experimentally deriving relative 

thermodynamic quantities can be evaluated. There is a good correlation (R2 = 0.82, Supporting 

Information Figure S4) between experimentally obtained O–C threshold energies and calculated gas 

phase free energies of O–C homolysis. The fit spans an energy range of over 150 kJ mol-1, from 

substrates with weak O–C bonds due to the formation of stable carbon-centred radicals upon 

dissociation (e.g., 1b-1e), to those with anomeric stabilisation of their O–C bonds (1h). However, 

the experimental dissociation threshold values are systematically over-estimated with respect to the 

calculated bond dissociation free energies (slope = 0.6, intercept = 62 kJ mol-1). This offset 

indicates a significant kinetic shift,[78, 79] which is the excess energy required to produce detectable 
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dissociation of an ion within the experimental timeframe, and scales with increasing vibrational 

degrees of freedom. That is, the observed dissociation threshold is only an upper limit to the true 

thermochemical value. Moreover, when N–O homolysis is energetically competitive with O–C 

homolysis, a competitive shift may inhibit formation of higher-energy products, and as such are 

detected only at energies above the actual thresholds.[80] In these experiments, conducted on a 

commercial triple quadrupole mass spectrometer, the initial energy distribution and the kinetic 

energy of the ion population is not adequately controlled. This stands in contrast to guided ion beam 

mass spectrometry, wherein these parameters are precisely controlled and thus the resulting data can 

be used to derive accurate thermochemical quantities.[81, 82] Despite these limitations, for the aims of 

the current work, the experimentally derived dissociation thresholds have provided an excellent 

means to explore relative trends in bond energies and to test computational predictions. 
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4. Conclusions 

A suite of novel alkoxyamines was prepared based on the nitroxyl radicals 4-carboxy-

TEMPO (1) and 3-carboxy-PROXYL (2). CID of [M – H]– anions in a triple quadrupole mass 

spectrometer produced radical fragment ions, which arise from charge-remote homolysis of either 

the O–C or N–O bonds. The relative abundance of these ions is dependent on the O-alkyl 

functionality. These systems thus allowed the first direct experimental comparison of the 

competition between O–C and N–O homolysis in alkoxyamines. An exception to this behaviour 

was observed for alkoxyamine 1i, in which a charge-remote electrocyclic rearrangement was 

competitive with homolysis. 

Breakdown curves were utilised to experimentally compare dissociation thresholds. The 

majority of alkoxyamines exhibit an O–C dissociation threshold lower than their corresponding N–

O dissociation threshold, consistent with their relative calculated bond dissociation free energies. 

Only in the presence of a fluoromethyl substituent (1h and 2h) was N–O cleavage unequivocally 

observed as the dominant dissociation mechanism. Calculations further reveal that – compared with 

neutral scaffolds – O–C bonds are weakened in the presence of a negative charge on the TEMPO or 

PROXYL ring by ca. 20 kJ mol-1.[65, 68] However, the effect is consistent across the range of 

scaffolds studied, and thus the observed structural trends are also representative of neutral 

alkoxyamines.  

In controlled radical polymerisation and polymer stabilisation, the O-ether substituent (R3) is 

dependent on the radicals produced by the growing or degrading polymer substrate. For example, 

benzyloxyamines (1b and 2b) are models for the alkoxyamines derived from polystyrenes, whereas 

carbonyl-containing substrates (1c and 1i) represent the capture of model polyester-derived radicals. 

It is clear from the presented data that direct N–O homolysis is typically not competitive with the 

prevailing O–C homolysis. Only in the presence of an adjacent heteroatom would N–O homolysis 

be expected to dominate. Therefore, aminyl radicals and secondary amines observed in the 

degradation of alkoxyamines at normal service temperatures (up to 80 oC) are likely not formed 
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directly from N–O bond homolysis, but by alternative processes, such as those outlined in Scheme 

1(a).[12, 13]  

 

5. Acknowledgements  

The authors acknowledge the generous financial assistance provided by the Australian 

Research Council (ARC) through the Centre of Excellence for Free Radical Chemistry and 

Biotechnology (CE0561607) and Discovery grants (DP120102922, DP140101237) schemes, an 

ARC Future Fellowship (to M.L.C.), an Australian Postgraduate Award (to D.L.M.), and 

allocations of supercomputing time on the National Facility of the Australian National 

Computational Infrastructure.  

  



 29 

6. References 

[1] F. Gugumus, The performance of light stabilizers in accelerated and natural weathering, Polym. 
Degrad. Stab., 50 (1995) 101-116. 
[2] C. Schaller, D. Rogez, A. Braig, Hindered amine light stabilizers in pigmented coatings, J. Coat. 
Technol. Res., 6 (2009) 81-88. 
[3] J.L. Hodgson, M.L. Coote, Clarifying the mechanism of the Denisov Cycle: How do Hindered 
Amine Light Stabilizers protect polymer coatings from photo-oxidative degradation?, 
Macromolecules, 43 (2010) 4573-4583. 
[4] P. Gijsman, J. Hennekens, D. Tummers, The mechanism of action of Hindered Amine Light 
Stabilizers, Polym. Degrad. Stab., 39 (1993) 225-233. 
[5] P.P. Klemchuk, M.E. Gande, E. Cordola, Hindered Amine mechanisms: Part III - Investigations 
using isotopic labelling, Polym. Degrad. Stab., 27 (1990) 65-74. 
[6] D.R. Bauer, J.L. Gerlock, D.F. Mielewski, Photo-degradation and photo-stabilization in organic 
coatings containing a hindered amine light stabilizer: Part VI—ESR measurements of nitroxide 
kinetics and mechanism of stabilization, Polym. Degrad. Stab., 28 (1990) 115-129. 
[7] J. Pospišil, S. Nešpurek, Photostabilization of coatings. Mechanisms and performance, Prog. 
Polym. Sci., 25 (2000) 1261-1335. 
[8] F. Gugumus, Mechanisms and kinetics of photostabilization of polyolefins with HALS, Die 
Angew. Makromol. Chem., 176/177 (1990) 241-289. 
[9] K. Schwetlick, W.D. Habicher, Antioxidant action mechanisms of hindered amine stabilisers, 
Polym. Degrad. Stab., 78 (2002) 35-40. 
[10] E.N. Step, N.J. Turro, M.E. Gande, P.P. Klemchuk, Mechanism of polymer stabilization by 
Hindered-Amine Light Stabilizers (HALS) - Model investigations of the interaction of peroxy-
radicals with HALS amines and amino ethers, Macromolecules, 27 (1994) 2529-2539. 
[11] E.N. Step, N.J. Turro, P.P. Klemchuk, M.E. Gande, Model studies on the mechanism of HALS 
stabilization, Angew. Makromol. Chem., 232 (1995) 65-83. 
[12] G. Gryn'ova, K.U. Ingold, M.L. Coote, New insights into the mechanism of amine/nitroxide 
cycling during the Hindered Amine Light Stabilizer inhibited oxidative degradation of polymers, J. 
Am. Chem. Soc., 134 (2012) 12979-12988. 
[13] M.R.L. Paine, G. Gryn'ova, M.L. Coote, P.J. Barker, S.J. Blanksby, Desorption electrospray 
ionisation mass spectrometry of stabilised polyesters reveals activation of hindered amine light 
stabilisers, Polym. Degrad. Stab., 99 (2014) 223-232. 
[14] J.M. Cogen, Semiempirical prediction of the thermochemistry of intermediates involved in the 
cyclic mechanism of hindered amine stabilizers, Polym. Degrad. Stab., 44 (1994) 49-53. 
[15] J.L. Hodgson, L.B. Roskop, M.S. Gordon, C.Y. Lin, M.L. Coote, Side reactions of Nitroxide-
Mediated Polymerization: N-O versus O-C cleavage of alkoxyamines, J. Phys. Chem. A, 114 
(2010) 10458-10466. 
[16] C.J. Hawker, A.W. Bosman, E. Harth, New polymer synthesis by nitroxide mediated living 
radical polymerizations, Chem. Rev., 101 (2001) 3661-3688. 
[17] C.J. Hawker, Molecular-weight control by a living free-radical polymerization process, J. Am. 
Chem. Soc., 116 (1994) 11185-11186. 
[18] G. Moad, E. Rizzardo, S.H. Thang, Toward living radical polymerization, Acc. Chem. Res., 41 
(2008) 1133-1142. 
[19] G. Gryn'ova, C.Y. Lin, M.L. Coote, Which side-reactions compromise nitroxide mediated 
polymerization?, Polym. Chem., 4 (2013) 3744-3754. 
[20] S.R.A. Marque, Influence of the nitroxide structure on the homolysis rate constant of 
alkoxyamines: A Taft-Ingold analysis, J. Org. Chem., 68 (2003) 7582-7590. 
[21] S.R.A. Marque, H. Fischer, E. Baier, A. Studer, Factors influencing the C-O bond homolysis of 
alkoxyamines: Effects of H-bonding and polar substituents, J. Org. Chem., 66 (2001) 1146-1156. 
[22] S.R.A. Marque, C. Le Mercier, P. Tordo, H. Fischer, Factors influencing the C−O bond 
homolysis of trialkylhydroxylamines, Macromolecules, 33 (2000) 4403-4410. 



 30 

[23] D. Bertin, D. Gigmes, S.R.A. Marque, P. Tordo, Polar, steric, and stabilization effects in 
alkoxyamines C−ON bond homolysis:' A multiparameter analysis, Macromolecules, 38 (2005) 
2638-2650. 
[24] G.S. Ananchenko, H. Fischer, Decomposition of model alkoxyamines in simple and 
polymerizing systems. I. 2,2,6,6-tetramethylpiperidinyl-N-oxyl-based compounds, J. Polym. Sci., 
Part A: Polym. Chem., 39 (2001) 3604-3621. 
[25] P. Marsal, M. Roche, P. Tordo, P. de Sainte Claire, Thermal stability of O−H and O−Alkyl 
bonds in N-Alkoxyamines. A Density Functional Theory approach, J. Phys. Chem. A, 103 (1999) 
2899-2905. 
[26] G. Moad, E. Rizzardo, Alkoxyamine-initiated living radical polymerization: Factors affecting 
alkoxyamine homolysis rates, Macromolecules, 28 (1995) 8722-8728. 
[27] J.L. Hodgson, C.Y. Lin, M.L. Coote, S.R.A. Marque, K. Matyjaszewski, Linear free-energy 
relationships for the alkyl radical affinities of nitroxides: A theoretical study, Macromolecules, 43 
(2010) 3728-3743. 
[28] C.Y. Lin, S.R.A. Marque, K. Matyjaszewski, M.L. Coote, Linear-Free Energy Relationships 
for Modeling Structure-Reactivity Trends in Controlled Radical Polymerization, Macromolecules, 
44 (2011) 7568-7583. 
[29] D. Gigmes, A. Gaudel-Siri, S.R.A. Marque, D. Bertin, P. Tordo, P. Astolfi, L. Greci, C. 
Rizzoli, Alkoxyamines of stable aromatic nitroxides: N-O vs. C-O bond homolysis, Helv. Chim. 
Acta, 89 (2006) 2312-2326. 
[30] Y. Guillaneuf, D. Bertin, D. Gigmes, D.-L. Versace, J. Lalevee, J.-P. Fouassier, Toward 
Nitroxide-Mediated Photopolymerization, Macromolecules, 43 (2010) 2204-2212. 
[31] D.-L. Versace, Y. Guillaneuf, D. Bertin, J.P. Fouassier, J. Lalevee, D. Gigmes, Structural 
effects on the photodissociation of alkoxyamines, Org. Biomol. Chem., 9 (2011) 2892-2898. 
[32] J.W. Grissom, G.U. Gunawardena, Intermolecular reaction of nitroxide radicals with biradical 
intermediates generated from aromatic enediynes, Tetrahedron Lett., 36 (1995) 4951-4954. 
[33] H. Henry-Riyad, T.T. Tidwell, Thermolysis of N-tetramethylpiperidinyl triphenylacetate: 
homolytic fragmentation of a TEMPO ester, J. Phys. Org. Chem., 16 (2003) 559-563. 
[34] W.W. Huang, H. Henry-Riyad, T.T. Tidwell, Reactions of the “stable” nitroxyl radical 
TEMPO with ketenes:' Formation of a unique peroxidic source of aminyl radicals, J. Am. Chem. 
Soc., 121 (1999) 3939-3943. 
[35] J.L. Heidbrink, F.S. Amegayibor, H.I. Kenttämaa, Gas-phase radical-radical recombination 
reactions of nitroxides with substituted phenyl radicals, Int. J. Chem. Kinet., 36 (2004) 216-229. 
[36] A. Gaudel-Siri, D. Siri, P. Tordo, Homolysis of N-alkoxyamines: A computational study, 
ChemPhysChem, 7 (2006) 430-438. 
[37] M.V. Ciriano, H.-G. Korth, W.B. van Scheppingen, P. Mulder, Thermal stability of 2,2,6,6-
tetramethylpiperidine-1-oxyl (TEMPO) and related N-alkoxyamines, J. Am. Chem. Soc., 121 
(1999) 6375-6381. 
[38] J. Adams, M.L. Gross, Charge-remote fragmentations of closed-shell ions. A thermolytic 
analogy, J. Am. Chem. Soc., 111 (1989) 435-440. 
[39] C.F. Cheng, M.L. Gross, Applications and mechanisms of charge-remote fragmentation, Mass 
Spectrom. Rev., 19 (2000) 398-420. 
[40] S. Dua, J. H. Bowie, B. A. Cerda, C. Wesdemiotis, Search for charge-remote reactions of even-
electron organic negative ions in the gas phase. Anions derived from disubstituted adamantanes, J. 
Chem. Soc., Perkin Trans. 2, (1998) 1443-1448. 
[41] I.C. Wienhöfer, H. Luftmann, A. Studer, Nitroxide-mediated copolymerization of MMA with 
styrene: Sequence analysis of oligomers by using mass spectrometry, Macromolecules, 44 (2011) 
2510-2523. 
[42] P.J. Wright, A.M. English, Scavenging with TEMPO• to identify peptide- and protein-based 
radicals by mass spectrometry:' Advantages of spin scavenging over spin trapping, J. Am. Chem. 
Soc., 125 (2003) 8655-8665. 



 31 

[43] M. Berger, J. Cadet, J. Ulrich, Radiation-induced binding of 2,2,6,6-tetramethyl-1,4-
piperidone-N-oxyl to thymidine in oxygen-free aqueous solutions. Isolation and characterization of 
the adducts, Can. J. Chem., 63 (1985) 6-14. 
[44] M. Lee, M. Kang, B. Moon, H.B. Oh, Gas-phase peptide sequencing by TEMPO-mediated 
radical generation, Analyst, 134 (2009) 1706-1712. 
[45] M. Lee, Y. Lee, M. Kang, H. Park, Y. Seong, B.J. Sung, B. Moon, H.B. Oh, Disulfide bond 
cleavage in TEMPO-free radical initiated peptide sequencing mass spectrometry, J. Mass 
Spectrom., 46 (2011) 830-839. 
[46] J. Lee, H. Park, H. Kwon, G. Kwon, A. Jeon, H.I. Kim, B.J. Sung, B. Moon, H. Oh, One-step 
peptide backbone dissociations in negative-ion free radical initiated peptide sequencing mass 
spectrometry, Anal. Chem., 85 (2013) 7044-7051. 
[47] X. Zhang, H. Wang, Y. Guo, Interception of the radicals produced in electrophilic fluorination 
with radical traps (TEMPO, DMPO) studied by electrospray ionization mass spectrometry, Rapid 
Commun. Mass Spectrom., 20 (2006) 1877-1882. 
[48] T.A. Lowe, M.R.L. Paine, D.L. Marshall, L.A. Hick, J.A. Boge, P.J. Barker, S.J. Blanksby, 
Structural identification of Hindered Amine Light Stabilisers in coil coatings using electrospray 
ionisation tandem mass spectrometry, J. Mass Spectrom., 45 (2010) 486-495. 
[49] C. Tansakul, E. Lilie, E.D. Walter, F. Rivera, A. Wolcott, J.Z. Zhang, G.L. Millhauser, R. 
Braslau, Distance-dependent fluorescence quenching and binding of CdSe quantum dots by 
functionalized nitroxide radicals, J. Phys. Chem. C, 114 (2010) 7793-7805. 
[50] S. Harrisson, P. Couvreur, J. Nicolas, Simple and efficient copper metal-mediated synthesis of 
alkoxyamine initiators, Polym. Chem., 2 (2011) 1859-1865. 
[51] K. Matyjaszewski, B.E. Woodworth, X. Zhang, S.G. Gaynor, Z. Metzner, Simple and efficient 
synthesis of various alkoxyamines for stable free radical polymerization, Macromolecules, 31 
(1998) 5955-5957. 
[52] T.J. Connolly, M.V. Baldovi, N. Mohtat, J.C. Scaiano, Photochemical synthesis of TEMPO-
capped initiators for "living" free radical polymerization, Tetrahedron Lett., 37 (1996) 4919-4922. 
[53] Y. Miura, K. Hirota, H. Moto, B. Yamada, High-yield synthesis of alkoxyamine initiators 
carrying a functional group by reaction of ethylbenzenes with di-tert-butyl diperoxalate in the 
presence of nitroxides, Macromolecules, 31 (1998) 4659-4661. 
[54] R. Braslau, A. Tsimelzon, J. Gewandter, Novel methodology for the synthesis of N-
alkoxyamines, Org. Lett., 6 (2004) 2233-2235. 
[55] K.-U. Schoening, W. Fischer, S. Hauck, A. Dichtl, M. Kuepfert, Synthetic studies on N-
Alkoxyamines: A mild and broadly applicable route starting from nitroxide radicals and aldehydes, 
J. Org. Chem., 74 (2008) 1567-1573. 
[56] A. Dichtl, M. Seyfried, K.U. Schoening, A novel method for the synthesis of N-alkoxyamines 
starting from nitroxide radicals and ketones, Synlett, (2008) 1877-1881. 
[57] J.E. Babiarz, G.T. Cunkle, A.D. DeBellis, D. Eveland, S.D. Pastor, S.P. Shum, The thermal 
reaction of sterically hindered nitroxyl radicals with allylic and benzylic substrates: Experimental 
and computational evidence for divergent mechanisms, J. Org. Chem., 67 (2002) 6831-6834. 
[58] S. Coseri, K.U. Ingold, Distinguishing between abstraction and addition as the first step in the 
reaction of a nitroxyl radical with cyclohexene, Org. Lett., 6 (2004) 1641-1643. 
[59] E.G. Rozantsev, V.D. Sholle, Synthesis and reactions of stable nitroxyl radicals II. Reactions 1, 
Synthesis, 1971 (1971) 401-414. 
[60] V. Strehmel, H. Rexhausen, P. Strauch, Synthesis of 4-trimethylammonio-2,2,6,6-
tetramethylpiperidine-1-yloxyl with various anions for investigation of ionic liquids, Tetrahedron 
Lett., 49 (2008) 3264-3267. 
[61] D. Schröder, M. Engeser, M. Brönstrup, C. Daniel, J. Spandl, H. Hartl, Ion chemistry of the 
hexanuclear methoxo-oxovanadium cluster V6O7(OCH3)12, Int. J. Mass Spectrom., 228 (2003) 743-
757. 



 32 

[62] D. Schröder, M. Engeser, H. Schwarz, E. Rosenthal, J. Döbler, J. Sauer, Degradation of 
ionized OV(OCH3)3 in the gas phase. From the neutral compound all the way down to the quasi-
terminal fragments VO+ and VOH+, Inorg. Chem., 45 (2006) 6235-6245. 
[63] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. 
Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. 
Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. 
Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. 
Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. 
Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. 
Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, 
J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. 
Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, 
S. Dapprich, A.D. Daniels, Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, 
Revision C.01, (2009). 
[64] H.-J. Werner, P.J. Knowles, G. Knizia, F.R. Manby, M. Schütz, P. Celani, T. Korona, R. 
Lindh, A. Mitrushenkov, G. Rauhut, K.R. Shamasundar, T.B. Adler, R.D. Amos, A. Bernhardsson, 
A. Berning, D.L. Cooper, M.J.O. Deegan, A.J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. 
Hesselman, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A.W. Lloyd, R.A. Mata, A.J. May, 
S.J. McNicholas, W. Meyer, M.E. Mura, A. Nicklass, D.P. O'Neill, P. Palmieri, D. Peng, K. 
Pflüger, R. Pitzer, M. Reiher, T. Shizoaki, H. Stoll, A.J. Stone, R. Tarroni, T. Thosteinsson, M. 
Wang, MOLPRO 2012.1, a package of ab initio programs, MOLPRO 2012.1, a package of ab initio 
programs, (2012) see http://www.molpro.net. 
[65] G. Gryn’ova, D.L. Marshall, S.J. Blanksby, M.L. Coote, Switching radical stability by pH-
induced orbital conversion, Nature Chem., 5 (2013) 474-481. 
[66] J.P. Merrick, D. Moran, L. Radom, An evaluation of harmonic vibrational frequency scale 
factors, J. Phys. Chem. A, 111 (2007) 11683-11700. 
[67] L.A. Curtiss, K. Raghavachari, P.C. Redfern, A.G. Baboul, J.A. Pople, Gaussian-3 theory 
using coupled cluster energies, Chem. Phys. Lett., 314 (1999) 101-107. 
[68] G. Gryn’ova, M.L. Coote, Origin and scope of long-range stabilizing interactions and 
associated SOMO–HOMO conversion in distonic radical anions, J. Am. Chem. Soc., 135 (2013) 
15392-15403. 
[69] J.I. Steinfeld, J.S. Francisco, W.L. Hase, Chemical Kinetics and Dynamics, Prentice Hall, 
Englewood Cliffs, 1989. 
[70] C. Barner-Kowollik, T.P. Davis, M.H. Stenzel, Probing mechanistic features of conventional, 
catalytic and living free radical polymerizations using soft ionization mass spectrometric 
techniques, Polymer, 45 (2004) 7791-7805. 
[71] M.A. Dourges, B. Charleux, J.P. Vairon, J.C. Blais, G. Bolbach, J.C. Tabet, MALDI-TOF 
mass spectrometry analysis of TEMPO-capped polystyrene, Macromolecules, 32 (1999) 2495-2502. 
[72] M.R.L. Paine, P.J. Barker, S.A. MacLauglin, T.W. Mitchell, S.J. Blanksby, Direct detection of 
additives and degradation products from polymers by liquid extraction surface analysis employing 
chip-based nanospray mass spectrometry, Rapid Commun. Mass Spectrom., 26 (2012) 412-418. 
[73] M.R.L. Paine, P.J. Barker, S.J. Blanksby, Desorption electrospray ionisation mass 
spectrometry reveals in situ modification of a Hindered Amine Light Stabiliser resulting from direct 
N-OR bond cleavage, Analyst, 136 (2011) 904-912. 
[74] M. Mazarin, M. Girod, S. Viel, T.N.T. Phan, S.R.A. Marque, S. Humbel, L. Charles, Role of 
the adducted cation in the release of nitroxide end group of controlled polymer in mass 
spectrometry, Macromolecules, 42 (2009) 1849-1859. 
[75] M. Karni, A. Mandelbaum, The even-electron rule, Org. Mass Spectrom., 15 (1980) 53-64. 
[76] F.W. McLafferty, F. Turec̆ek, Interpretation of Mass Spectra, University Science Books, Mill 
Valley, 1993. 
[77] S. Dua, J. H. Bowie, B. A. Cerda, C. Wesdemiotis, The facile loss of formic acid from an anion 
system in which the charged and reacting centres cannot interact, Chem. Commun., (1998) 183-184. 



 33 

[78] S.M. Gordon, N.W. Reid, An investigation of the kinetic shift in mass spectrometry, Int. J. 
Mass Spectrom. Ion Phys., 18 (1975) 379-391. 
[79] C. Lifshitz, Kinetic shifts, Eur. J. Mass Spectrom., 8 (2002) 85-98. 
[80] F. Muntean, P.B. Armentrout, Modeling kinetic shifts and competition in threshold collision-
induced dissociation. Case study: n-butylbenzene cation dissociation, J. Phys. Chem. A, 107 (2003) 
7413-7422. 
[81] P.B. Armentrout, Mass spectrometry - Not just a structural tool: The use of guided ion beam 
tandem mass spectrometry to determine thermochemistry, J. Am. Soc. Mass. Spectrom., 13 (2002) 
419-434. 
[82] P.B. Armentrout, The power of accurate energetics (or Thermochemistry: What is it good 
for?), J. Am. Soc. Mass. Spectrom., 24 (2013) 173-185. 


	Experimental evidence for competitive N-O and O-C bond homolysis in gas-phase alkoxyamines
	Recommended Citation

	Experimental evidence for competitive N-O and O-C bond homolysis in gas-phase alkoxyamines
	Abstract
	Disciplines
	Publication Details

	Microsoft Word - Marshall_etal_Revised_Manuscript.docx

