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Abstract Abstract 
The abundance of chlorine in the Earth's atmosphere increased considerably during the 1970s to 1990s, 
following large emissions of anthropogenic long-lived chlorine-containing source gases, notably the 
chlorofluorocarbons. The chemical inertness of chlorofluorocarbons allows their transport and mixing 
throughout the troposphere on a global scale1, before they reach the stratosphere where they release 
chlorine atoms that cause ozone depletion2. The large ozone loss over Antarctica3 was the key 
observation that stimulated the definition and signing in 1987 of the Montreal Protocol, an international 
treaty establishing a schedule to reduce the production of the major chlorine- and bromine-containing 
halocarbons. Owing to its implementation, the near-surface total chlorine concentration showed a 
maximum in 1993, followed by a decrease of half a per cent to one per cent per year4, in line with 
expectations. Remote-sensing data have revealed a peak in stratospheric chlorine after 19965, then a 
decrease of close to one per cent per year6, 7, in agreement with the surface observations of the chlorine 
source gases and model calculations7. Here we present ground-based and satellite data that show a 
recent and significant increase, at the 2σ level, in hydrogen chloride (HCl), the main stratospheric chlorine 
reservoir, starting around 2007 in the lower stratosphere of the Northern Hemisphere, in contrast with the 
ongoing monotonic decrease of near-surface source gases. Using model simulations, we attribute this 
trend anomaly to a slowdown in the Northern Hemisphere atmospheric circulation, occurring over several 
consecutive years, transporting more aged air to the lower stratosphere, and characterized by a larger 
relative conversion of source gases to HCl. This short-term dynamical variability will also affect other 
stratospheric tracers and needs to be accounted for when studying the evolution of the stratospheric 
ozone layer. 
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The abundance of chlorine in the Earth’s atmosphere increased considerably during the 

1970s-1990s, following large emissions of anthropogenic long-lived chlorine-containing 

source gases, notably the chlorofluorocarbons (CFCs). The chemical inertness of CFCs 

allows their transport and mixing throughout the troposphere on a global scale1, before 

they reach the stratosphere where they release chlorine atoms that cause ozone depletion2. 

The large ozone loss over Antarctica3 was the key observation which stimulated the 

definition and signing of the Montreal Protocol in 1987, an international treaty 

establishing a schedule to reduce the production of the major chlorine- and bromine-

containing halocarbons. Owing to its implementation, the near-surface total chlorine 

concentration showed a maximum in 1993, followed by a decrease of 0.5-1 %/yr4, in line 

with expectations. Remote-sensing data have revealed a peak in stratospheric chlorine 

after 19965, then a decrease at rates close to -1%/yr6,7, in agreement with the surface 

observations of the chlorine source gases and model calculations7. Here we present 

ground-based and satellite data which show a recent and significant increase in hydrogen 

chloride (HCl), the main stratospheric chlorine reservoir, starting around 2007 in the 

northern hemisphere (NH) lower stratosphere, contrasting with the ongoing monotonic 

decrease of near-surface source gases. Using model simulations we attribute this trend 

anomaly to a slowdown in the NH atmospheric circulation, occurring over a few 

consecutive years, transporting more aged air to the lower stratosphere, characterized by 

a larger relative conversion of source gases to HCl. This short-term dynamical variability 

will also affect other stratospheric tracers and needs to be accounted for when studying 

the evolution of the stratospheric ozone layer. 
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Decomposition of chlorine-containing source gases (SGCl) in the stratosphere produces 

HCl, the largest reservoir of chlorine8,9. Here we investigate recent trends in atmospheric 

HCl using observations from eight NDACC-FTIR ground-based stations (from 79°N to 

45°S, Network for the Detection of Atmospheric Composition Change-Fourier Transform 

InfraRed instruments, see http://www.ndacc.org). Figure 1a shows the HCl total columns 

for Jungfraujoch (47°N; red squares) together with the evolution of the total tropospheric 

chlorine (blue curve) over the last three decades. The lower panels (b-d) focus on the 

recent HCl changes above Ny-Ålesund (79°N) and two mid-latitude stations, 

Jungfraujoch (zoom of Fig 1a) and Lauder (45°S). While at the southern hemisphere (SH) 

station we find a continuous decrease of HCl since 2001, both NH sites show an overall 

HCl decline, more rapid around 2004, followed by an increase from 2007 onwards. In 

order to quantify the column changes at all sites, we used a bootstrap resampling 

statistical tool10 involving a linear component and accounting for the strong seasonal 

modulations present in the data sets. Figure 2 displays for the eight NDACC sites the 

relative annual HCl rates of change for the 1997-2007 and 2007-2011 time periods, using 

either the 1997.0 or 2007.0 computed column as reference. For the 1997-2007 time 

interval, we determine consistent and significant HCl decreases at all NH sites, with mean 

relative changes ranging from -0.7 to -1.5%/yr. In the SH, column changes are not 

significant at the 2-σ level. For 2007-2011, mean relative column growths of 1.1 to 

3.4%/yr are derived for all NH sites while negative or undefined rates are observed for 

Wollongong and Lauder in the SH. 
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In order to corroborate these findings with independent data, and to get information on 

the altitude range where these changes occur, we included the GOZCARDS11,12 satellite 
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data set (Global OZone Chemistry And Related Datasets for the Stratosphere; v1.1), 

which merges observations by the HALOE13 (HALogen Occultation Experiment; v19), 

ACE-FTS14 (Atmospheric Chemistry Experiment-Fourier Transform Spectrometer; v2.2) 

and Aura/MLS15 (Microwave Limb Sounder; v3.3) instruments. Partial columns were 

computed between 100 and 10 hPa, considering the zonal monthly mean mixing ratio 

time series available for the whole time interval in the 70-80°N, 60-70°N, 40-50°N, 30-

40°N, 20-30°N, 30-40°S and 40-50°S latitudinal bands. These partial columns typically 

span the 16 to 31 km altitude range, i.e. the region with maximum HCl concentration and 

to which the FTIR measurements are most sensitive5. Corresponding rates of change are 

also displayed in Figure 2. For 1997-2007, there is excellent agreement in the NH 

between the satellite and the six NDACC-FTIR trends determined above. In the SH, 

GOZCARDS reveals statistically significant decreases of HCl while the FTIR time series 

suggest stable columns at the 2-σ level. For 2007-2011, the ACE-FTS and Aura/MLS 

merged data confirm the upward FTIR trends in the northern hemisphere. Figure 3 

illustrates this, showing satellite monthly means (red dots) for 30-60°N and 30-60°S, at 

46 and 7 hPa, together with a linear fit to the data for both time periods. Clearly, the HCl 

increase is confined to the NH lower stratosphere. 

As HCl is the main final product of the decomposition of any SGCl, we need to verify that 

its rise after 2007 does not result from the significant contribution of new unknown 

sources of chlorine whose emissions occur predominantly in the NH, not monitored by 

the in situ networks, and unregulated by the Montreal Protocol, its Amendments and 

Adjustments. Indeed, such SGCl species have been recently identified16 although in that 
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case, their contribution to the HCl upturn can be ruled out given their very low 

concentrations. 

We have used results from two state-of-the-art 3-D chemical transport model SLIMCAT7 

and KASIMA7 to interpret the recent HCl increase. Both models performed a standard 

simulation using surface source gas mixing ratios from the WMO A1 (World 

Meteorological Organisation; 2010) emission scenario4 and were forced using ERA-

Interim meteorological fields17 from the European Centre for Medium-Range Weather 

Forecasts (ECMWF). The key results for HCl trends from both models agree. Here we 

show data from the SLIMCAT runs; corresponding results from KASIMA are shown in 

the Extended Data Figures 1 to 4. To study the impact of atmospheric dynamics, an 

additional SLIMCAT run (S2000) used constant 2000 meteorological forcing, from 2000 

onwards. Running averages for both SLIMCAT simulations are reproduced in panels b-d 

of Figure 1. For the three sites, run S2000 (yellow curve) predicts an overall HCl 

decrease while the standard run (green squares) reproduces the observed and distinct 

evolution prevailing in both hemispheres, after correction of a constant low-bias of ~7% 

in the NH simulations. The total column changes characterizing the model data sets are 

displayed in Figure 2. The model runs predict significant decreases in HCl for the 1997-

2007 reference period at all sites and there is an overall agreement within the error bars 

for the amplitude of the signals between the model and the observations. Regarding the 

2007-2011 time period, the SLIMCAT time series are characterized by positive trends 

from Ny-Ålesund (79ºN) to Tsukuba (36ºN), by significant decreases for the SH stations, 

and no significant change for the near-tropical site of Izana (28°N). The S2000 sensitivity 

run does not produce the HCl trend reversal and, instead, indicates declines at all sites. 
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The agreement between measurement and model demonstrates that the HCl increase after 

2007 is not caused by new, unidentified chlorine sources, or by underestimates in 

emissions of known SGCl species, as these are used as model input. The model-

observation agreement also shows that there is a good understanding of the chemistry 

which converts source gases to HCl. The difference between the HCl trends forecasted by 

the two SLIMCAT runs, i.e. a significant increase for northern high- and mid-latitudes or 

a constant decrease below 30ºN, establishes that changes in the atmospheric circulation 

cause the recent HCl increase, since only the meteorological fields adopted from 2000 

onwards differ between the two runs. To diagnose these circulation changes, we 

examined age-of-air maps produced by the standard SLIMCAT run. They reveal a slower 

circulation in the NH lower stratosphere after 2005-2006, with older air characterized by 

a larger relative conversion of the SGCl into HCl. Figure 4b shows the age-of-air change 

between 2005-2006 and 2010-2011. Older air by up to 0.4 yr is found around 20-25 km 

altitude in a broad range of NH latitudes, in a region where the mean age-of-air is 

typically about 3 years. There is an obvious correlation with the evolution of the HCl 

concentrations over the same time period (Fig 4a) which exhibits a very similar pattern 

and hemispheric asymmetry. Time series of mean age-of-air near 50 hPa above Ny-

Ålesund, Jungfraujoch and Lauder are displayed in panel c. The 3-year running means 

(black curves) indicate a progressive slowdown of the NH stratospheric circulation after 

2005-2006. For Lauder, a fairly constant circulation speedup occurs from 2000 onwards. 

These changes are significant, with NH air aging by 3-4 weeks/yr after 2005, compared 

to ~1 week/yr before. For Lauder, the mean age-of-air change during the last decade is 

calculated to be -2 weeks/yr. Other important factors such as the details of specific 
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transport pathways, which lead to a given mean age-of-air, also affect the conversion rate 

of the source gases to HCl18. These pathways are simulated by the model but not revealed 

by the simple diagnostic of mean age-of-air. The slower NH circulation occurring over a 

few years after 2005-2006 seems to contrast with the speedup of the Brewer-Dobson 

circulation which is predicted in the very long-term as a response to climate change19,20, 

but the recent slowdown is likely part of dynamical variability occurring on shorter 

timescales, it does not imply a change in the general circulation strength. More than year-

to-year variability, multiyear periods of age-of-air increase or decrease, as those 

highlighted in our study or reported recently21, will likely complicate the search of a long-

term trend in mean circulation. 

We have presented observations and simulations of a recent HCl increase in the northern 

hemisphere lower stratosphere. We ascribe it to dynamical variability, occurring on a 

timescale of a few years, characterized by a persistent slowing of stratospheric circulation 

after 2005, bringing HCl-enriched air into the NH lower stratosphere. We find no 

evidence that unidentified SGCl are responsible for this HCl increase. In the southern 

hemisphere, a fairly constant decrease has been observed over the last ten years. 

Globally, our ground-based observations indicate a mean HCl decrease of 0.5%/yr for 

1997-2011, compatible with the 0.5-1 %/yr range which characterized the post-peak 

reduction of tropospheric chlorine4. Hence, we conclude that the Montreal Protocol is still 

on track, and is leading to an overall reduction of the stratospheric chlorine loading. 

However, multiyear variability in the stratospheric circulation and dynamics, as identified 

here, could lead to further unpredictable increases or redistribution of HCl and other 

stratospheric tracers. Therefore, such variability and its causes will have to be thoroughly 
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characterized and carefully accounted for when evaluating trends or searching for ozone 

recovery. 
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Figure 1 | Evolution of hydrogen chloride (HCl) in the Earth’s atmosphere. Panel a 

shows the long-term total column time series of HCl at Jungfraujoch (running average 

with a 3-year integration length, step of 1 month; in red, left scale) and the global total 

tropospheric chlorine mixing ratio (blue curve, right scale). Lower panels display the 

running average total column time series (1997-2011) of HCl at Ny-Ålesund (b), 

Jungfraujoch (c) and Lauder (d), derived from the NDACC-FTIR observations, the 

standard (green) and S2000 (yellow) SLIMCAT simulations. The thin red lines 

correspond to the ±2 standard error of the mean range. Minimum columns are observed in 

July-2007 at the NH sites (dashed lines). 
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Figure 2 | HCl relative rates of change for eight NDACC sites. Panel a provides the 

rates of change (%/year) for the 1997-2007 time period (1999-2007 for Thule and Izana, 

1998-2007 for Tsukuba); panel b for 2007-2011. The rates of change were derived from 

the FTIR and GOZCARDS observational data sets and from the two SLIMCAT 

simulated time series (see legend for colour code). The error bars correspond to the 2-σ 

level of uncertainty. 
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Figure 3 | Evolution of stratospheric HCl from satellite observations. Comparison of 

merged GOZCARDS satellite HCl observations (by HALOE, ACE, Aura/MLS) with 

SLIMCAT model runs for NH and SH mid-latitude lower (46 hPa) and upper 

stratosphere (7 hPa). GOZCARDS monthly means are shown as red dots. Linear fits to 

the GOZCARDS data and standard SLIMCAT run are displayed as red and green lines, 

respectively, for periods before and after 2005. The dashed black line shows fits to the 

S2000 run which assumes no change in circulation. An upward trend is observed in the 

NH lower stratosphere (d) while HCl is decreasing in the southern and northern upper 

stratosphere (a, b). 
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Figure 4 | Spatial distribution of the HCl concentration and age-of-air changes. 

Mean differences of the HCl concentration (a) and age-of-air (b) between 2010/2011 and 

2005/2006, as a function of altitude and latitude, derived from the standard SLIMCAT 

simulation. There is a clear asymmetry between both hemispheres, with correlated 

patterns between age-of-air and HCl, indicating that the HCl changes over that period are 

consistent with slower/faster circulation in the NH/SH. c. Running averages of the mean 

age-of-air at 50 hPa (thick/thin curve, integration length of 36/6 months), at the same 

sites as Fig. 1 (time series at 79°N and 45°S have been shifted vertically by -0.75 yr). 
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The ground-based observations were performed at the NDACC sites by solar absorption 

spectrometry in the infrared spectral region, using Fourier Transform Infrared (FTIR) 

high-resolution instruments. Observations are recorded under clear sky conditions year-

round, except at Ny-Ålesund and Thule, where the polar night prevents measurements 

between about October and February. The HCl total columns were retrieved with the 

SFIT-2, SFIT-4 or PROFFIT algorithm in narrow spectral ranges encompassing isolated 

lines of HCl5,7, generally assuming pressure-temperature profiles provided by the 

National Centers for Environmental Prediction (NCEP). The GOZCARDS11,12 dataset for 

HCl includes zonal average monthly mean time series of stratospheric mixing ratio 

profiles merging individual measurements from the HALOE (1991-2005), ACE-FTS 

(2004 onward) and Aura MLS (2004 onward) satellite-borne instruments. Line 

parameters from recent HITRAN databases22 were adopted in the spectrometric analyses. 

We used the SLIMCAT and KASIMA models7 to support our investigations. Both used 

ERA-Interim analyses provided by ECMWF17, and they provided consistent results for 

the HCl trends, giving confidence in their robustness. The models contain detailed 

treatments of stratospheric chemistry and have been extensively used for studies of 

stratospheric ozone7. Stratospheric age-of-air was diagnosed in the model runs using an 

idealised tracer with a linearly increasing tropospheric mixing ratio. For the S2000 

SLIMCAT simulation, 6-hourly winds of 2000 were used every year from 2000 onwards. 

The trend determinations were performed with a bootstrap resampling statistical tool10, 

considering all available daily or monthly means (excluding the winter months for the very 

high-latitude sites) while the model datasets were limited to days with available FTIR 
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measurements. We studied the impact of the FTIR sampling using the bootstrap algorithm, 

and found no statistically significant impact on the calculated trends. 
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Extended Data Figure 1 | Evolution of hydrogen chloride (HCl) in the Earth’s 

atmosphere and comparison with KASIMA model results.  Panel a shows the long-

term total column time series of HCl at Jungfraujoch (running average with a 3-year 

integration length, step of 1 month; in red, left scale) and the global total tropospheric 

chlorine mixing ratio (blue curve, right scale). Lower panels display the running average 

total column time series (1997-2011) of HCl at Ny-Ålesund (b), Jungfraujoch (c) and 

Lauder (d), derived from the NDACC-FTIR observations and from the KASIMA run 

(grey). The thin red lines correspond to the ±2 standard error of the mean range. The 

vertical dashed lines identify the occurrence of the minimum total columns at the NH 

sites, in July-2007. 
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Extended Data Figure 2 | HCl relative rates of change at eight NDACC sites. The 

panels a and b provide the rates of change (%/yr) for the 1997-2007 (1999-2007 for 

Thule and Izana, 1998-2007 for Tsukuba) and 2007-2011 time periods, respectively. 

They were derived from the FTIR and GOZCARDS observational data sets and from the 

SLIMCAT and KASIMA simulated time series (see legend for colour code). The error 

bars correspond to the 2-σ level of uncertainty. 
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Extended Data Figure 3 | Evolution of stratospheric HCl from satellite observations. 

Comparison of merged GOZCARDS satellite HCl observations (by HALOE, ACE and 

Aura/MLS) with KASIMA model results for NH and SH mid-latitude lower (46 hPa) and 

upper stratosphere (7 hPa). GOZCARDS monthly mean observations are shown as red 

dots. Linear fits to the GOZCARDS data and the KASIMA run are displayed as red and 

blue lines, respectively, for periods before and after 2005. An upward trend is observed 

and modelled in the NH lower stratosphere (d) while HCl is decreasing in the southern 

and northern upper stratosphere (a, b). 
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Extended Data Figure 4 | Spatial distribution of the HCl concentration and age-of-

air changes. Mean differences of the HCl concentration (a) and age-of-air (b) between 

2010/11 and 2005/06, as a function of altitude and latitude, derived from the KASIMA 

model simulation. c. Running averages of the mean age-of-air at 50 hPa (thick/thin curve, 

integration length of 36/6 months), at the same sites as in Fig. 1 (time series at 79N/45S 

have been shifted vertically by -0.75/-0.50 yr). Comparison with age-of-air time series 

derived from SLIMCAT (see frame c of Fig. 4) indicates that KASIMA provides higher 

absolute values of mean age-of-air. Note that the upper boundary of KASIMA is at 120 

km, yielding higher mean ages, compared to SLIMCAT (upper boundary 60 km). 
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