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Purpose: Accurate geometry is required for radiotherapy treatment planning (RTP). When considering the 
use of magnetic resonance imaging (MRI) for RTP, geometric distortions observed in the acquired images 
should be considered. While scanner technology and vendor supplied correction algorithms provide some 
correction, large distortions are still present in images, even when considering considerably smaller scan 
lengths than those typically acquired with CT in conventional RTP. This study investigates MRI acquisition 
with a moving table compared with static scans for potential geometric benefits for RTP. Methods: A full 
field of view (FOV) phantom (diameter 500 mm; length 513 mm) was developed for measuring geometric 
distortions in MR images over volumes pertinent to RTP. The phantom consisted of layers of refined 
plastic within which vitamin E capsules were inserted. The phantom was scanned on CT to provide the 
geometric gold standard and on MRI, with differences in capsule location determining the distortion. MRI 
images were acquired with two techniques. For the first method, standard static table acquisitions were 
considered. Both 2D and 3D acquisition techniques were investigated. With the second technique, images 
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using a deformable B-spline registration with the resulting deformation fields providing the distortion 
information for each acquisition. Results: MR images acquired with the moving table enabled imaging of 
the whole phantom length while images acquired with a static table were only able to image 50%–70% of 
the phantom length of 513 mm. Maximum distortion values were reduced across a larger volume when 
imaging with a moving table. Increased table speed resulted in a larger contribution of distortion from 
gradient nonlinearities in the through-plane direction and an increased blurring of capsule images, 
resulting in an apparent capsule volume increase by up to 170% in extreme axial FOV regions. Blurring 
increased with table speed and in the central regions of the phantom, geometric distortion was less for 
static table acquisitions compared to a table speed of 2 mm/s over the same volume. Overall, the best 
geometric accuracy was achieved with a table speed of 1.1 mm/s. Conclusions: The phantom designed 
enables full FOV imaging for distortion assessment for the purposes of RTP. MRI acquisition with a 
moving table extends the imaging volume in the z direction with reduced distortions which could be 
useful particularly if considering MR-only planning. If utilizing MR images to provide additional soft tissue 
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Abstract:  

Purpose: Accurate geometry is required for radiotherapy treatment planning (RTP). When considering the 20 

use of magnetic resonance imaging (MRI) for RTP, geometric distortions observed in the acquired images 

should be considered. While scanner technology and vendor supplied correction algorithms provide some 

correction, large distortions are still present in images, even when considering considerably smaller scan 

lengths than those typically acquired with CT in conventional RTP. This study investigates MRI acquisition 

with a moving table compared with static scans for potential geometric benefits for RTP. 25 

Methods: A full field of view (FOV) phantom (diameter 500 mm; length 513 mm) was developed for 

measuring geometric distortions in MR images over volumes pertinent to RTP. The phantom consisted of 

layers of refined plastic within which vitamin E capsules were inserted. The phantom was scanned on CT to 

provide the geometric gold standard and on MRI, with differences in capsule location determining the 

distortion. MRI images were acquired with two techniques. For the first method, standard static table 30 

acquisitions were considered. Both 2D and 3D acquisition techniques were investigated. With the second 

technique, images were acquired with a moving table. The same sequence was acquired with a static table 

and then with table speeds of 1.1 mm/s and 2 mm/s. All of the MR images acquired were registered to the 

CT dataset using a deformable b-spline registration with the resulting deformation fields providing the 

distortion information for each acquisition.  35 

Results: MR images acquired with the moving table enabled imaging of the whole phantom length while 

images acquired with a static table were only able to image 50-70% of the phantom length of 513 mm. 

Maximum distortion values were reduced across a larger volume when imaging with a moving table. 

Increased table speed resulted in a larger contribution of distortion from gradient nonlinearities in the 

through plane direction and an increased blurring of capsule images, resulting in an apparent capsule 40 

volume increase by up to 170 % in extreme axial FOV regions. Blurring increased with table speed and in 

the central regions of the phantom, geometric distortion was less for static table acquisitions compared to 

a table speed of 2 mm/s over the same volume. Overall, the best geometric accuracy was achieved with a 

table speed of 1.1 mm/s. 
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Conclusions: The phantom designed enables full FOV imaging for distortion assessment for the purposes of 45 

RTP. MRI acquisition with a moving table extends the imaging volume in the z direction with reduced 

distortions which could be useful particularly if considering MR-only planning. If utilising MR images to 

provide additional soft tissue information to the planning CT, standard acquisition sequences over a smaller 

volume would avoid introducing additional blurring or distortions from the through plane table movement. 

  50 
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I. INTRODUCTION 

The radiotherapy treatment planning (RTP) process requires accurate patient geometry. It is 

fundamental for ensuring the dose planned is delivered to the tumour region whilst limiting dose to organs 

at risk (OAR). With an increase in the use of magnetic resonance imaging (MRI) for RTP purposes1, assessing 

geometric accuracy is important, particularly when considering the potential for MRI-only planning.  55 

System related geometric distortions in MRI are created by non-uniformity of the main magnetic 

field (B0) and nonlinearities in the gradient fields. Distortions in MR images have decreased in magnitude 

with improvements in technology. Most modern scanners allow for shimming and on or off line application 

of vendor correction algorithms to decrease the gradient nonlinearity and some B0 field inhomogeneity 

effects. While vendor supplied correction algorithms provide a reduction, residual distortions still remain in 60 

various regions of the scanner2-4. 

Clinical MRI scanner performance is optimised around the isocenter of the scanner, with gradient 

linearity and B0 field homogeneity decreasing with increased distance from isocenter. Distortion magnitude 

therefore increases radially outwards, even with the application of correction algorithms3. Improvements 

in scanner and coil technology have resulted in the ability to image anatomy in regions at larger distances 65 

from isocenter than previously achievable, where distortion considerations become more imperative. The 

maximum diagnostic imaging field of view (FOV) is typically 40-50 cm in all imaging planes. For RTP, the loss 

in geometric accuracy with increasing distance from isocenter is likely to considerably reduce the maximum 

FOV. Geometric accuracy of within 2 mm is observed for RTP imaging and treatment QA5, with MRI 

distortions greater than this requiring consideration.  70 

When utilising MRI for RTP, the required imaged anatomy depends on its application, whether 

acquired for use in conjunction with CT or for the purposes of MR-only planning. In some cases, registering 

MRI to CT may warrant smaller FOV coverage (e.g. prostate). In such cases images may only need to 

encompass the anatomy of interest for contouring and registration purposes. Other treatments (such as 

head and neck) may require a longer FOV which covers all of the patient anatomy both superiorly and 75 

inferiorly, as well as the patient contour. If considering MR-only planning, a larger axial FOV coverage 
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would be required to ensure the patient skin surface is included for the required dosimetric calculations. 

For the purposes of RTP, the geometrical accuracy requirement over the scan length (x, y and z coverage) is 

more stringent than that required for routine diagnostic imaging. Spatial distortion assessment is a vital 

part of MRI quality assurance (QA) for RTP in addition to other specific QA required for RTP (e.g. surface 80 

coil intensity correction6, laser alignment, etc.).  

Modern clinical MRI scanners have moved towards wider and shorter bore designs to improve 

patient comfort. Magnetic field strength may also be increased from 1.5 T to 3.0 T, allowing faster imaging 

with improved imaging quality7. These features can make the optimisation of scanners more challenging, 

consequently increasing the geometric distortions. More scanners have moved away from spherically 85 

optimised to cylindrically optimised magnets to account for these features and to ensure the optimisation 

is more suited to the shape of the patients. All of these scanner designs have characteristic uniformity and 

linearity distortions. The AAPM report 100 for MR QA8 recommends the geometric accuracy of clinical MRI 

scanners should be determined. A number of studies have investigated this on MRI scanners for the 

purposes of RTP 4, 9-11. Comprehensive distortion mapping of each system is recommended to determine 90 

the tolerances and constraints to minimise MRI distortion impact for RTP or provide data for a correction 

scheme where appropriate.  

On short bore systems, image acquisition with a moving table is one approach to increase the scan 

length in the z direction. This allows images to be acquired close to the scanner isocenter, where B0 and 

gradient performance is optimised. Potentially, this could reduce the severe distortion effects at the edge 95 

of scans and improve the usable imaging range superiorly and inferiorly for RTP.  Images can be acquired 

close to the isocenter at different table positions over a limited scan stitched together12, 13. A more recent 

approach involved image acquisition with the table moving continuously through the scanner at a constant 

velocity (sliding multislice (SMS))14-16. Moving-table acquisitions have been investigated in detail in 

magnetic resonance angiography (MRA) and whole body MRI15, 16, as well as for screening and staging in 100 

oncology12, 17. Investigations into its utilisation in radiotherapy is limited13. While the SMS technique can 

reduce the magnitude of distortions present in an image for a larger scan length, it does not completely 
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remove distortions. The technique is designed to reduce the distortion components from the z axis with no 

additional benefit in the axial plane. One angiography study using SMS18 demonstrated additional 

distortion effects and blurring in all 3 imaging planes when utilising this acquisition technique.  105 

Many commercially developed phantoms for distortion assessment are designed for diagnostic MRI 

QA, not for radiotherapy purposes. Multiple imaging parameters such as geometric distortion, uniformity, 

resolution, chemical shift, signal to noise (SNR) and ghosting can be tested within one phantom. As a result, 

each phantom compartment is quite small. A number of distortion studies have been conducted utilising 

such phantoms19-22. These phantoms can provide distortion analysis over a restricted FOV before requiring 110 

manual repositioning of the phantom23 over a limited number of points. Our previous work3 has shown 

limitations of one such commercial diagnostic phantom to adequately determine distortion across all 3 

imaging planes, hence missing regions where patient anatomy may need to be imaged for RTP. A number 

of studies have developed their own distortion phantoms, for specific applications24-28.  

 In this study, we present a phantom for characterising whole FOV geometric distortion on a MRI 115 

scanner. The new 3D-phantom is novel due to its extension in length and the usage of numerous offset 

Vitamin E capsules rather than rods for through plane distortion assessment. Investigations were made to 

assess the performance of a moving table image acquisition option to determine potential benefit of this 

technique for RTP. Comparisons were made to conventional static table 2D and 3D image acquisition 

sequences. A sound understanding of the geometrical limitations for static and moving table acquisitions is 120 

essential for investigations into MRI acquisition techniques for utilisation in RTP. This study investigates 

distortions from systematic factors with different acquisition techniques: a) static Vs moving table 

acquisition, b) variations in moving table speed, and c) vendor supplied 2D and 3D correction algorithms. 

Other distortion considerations including patient effects (susceptibility and chemical shift) on distortion as 

well as the impact of geometric distortion on inhomogeneity in MR images are presented elsewhere2, 11, 29-125 

31.  

 

II. MATERIALS AND METHODS 
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II.A. Phantom specifications 130 

The phantom (Fig. 1) consisted of layers of flat sheet panel polyethylene and polypropylene 

(Dotmar Uniboard Eco) as the housing material. Vitamin E capsules were inserted throughout to provide 

the MRI signal. The phantom was cylindrical in shape with a flat bottom for stability giving a diameter of 

500 mm and height of 375 mm. The length of the phantom was 513 mm, exceeding the limits of the 

standard imaging capabilities of the MRI scanner utilised, quoted as z = 450 mm. 135 

 

 

Fig. 1: Photograph of the distortion phantom positioned in a 70 cm wide bore 3 T Siemens Skyra 

 

Each Uniboard layer had a thickness of 19 mm. A total of 27 layers were used, 14 layers containing 140 

227 capsules and 13 layers containing 204 capsules.  This resulted in a total of 5830 capsules inserted into 

the phantom. Holes 8 mm in diameter were drilled through each layer to ensure tight fit of the vitamin E 

capsules to reduce any air gaps. A cylindrical capsule shape (diameter 8 mm; length 19 mm) was chosen to 

minimise susceptibility effects from the capsules themselves32.  

Each alternating layer had these holes drilled in an offset grid pattern (Fig. 2), with this grid pattern 145 

being defined in polar coordinates. This offset of grid position enabled observation of through plane 
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distortions. In the central phantom compartment, 2 axially centralised capsules were removed from the 

phantom in order to enable localisation of the central phantom region within the acquired images.  

The phantom material had a density of ~ 0.7 g/cm3 to reduce the overall weight, with the total 

phantom weight approximately 60 kg. A base constructed of the same material (external dimensions of 800 150 

mm x 500 mm) enabled steady transfer of the phantom between CT and MRI. A central section of the base 

tray (dimensions of 513 mm x 445 mm, corresponding to the phantom base) was pitted, leaving a thickness 

of 9 mm. Within this, the phantom body was placed and the base section held together rigidly. Ten plugs 

made from the same Uniboard material with length of 19 mm and a diameter of 5 mm were positioned 

between every layer to aid in holding the phantom together. 155 

 

 

Fig. 2: Alternating layers in the phantom. Note the offset grid pattern between each layer for 3D point 

localisation. This ensures distorted points don’t overlap with capsules in adjacent layers, aiding in through 

plane distortion assessment 160 

 

II.B. CT 

 To validate the geometry and determine the location of the capsules within the phantom, a CT 

image provided the baseline geometric ‘gold standard’.  The phantom was scanned on an 85 cm bore, 

Brilliance CT big bore oncology CT scanner (Philips Healthcare). All CT images were acquired with a FOV of 165 

500 mm x 500 mm (512 x 512 image resolution) with a scan length greater than 514 mm to ensure the 
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whole phantom volume was imaged. Scans were acquired with a slice thickness of 1 mm so that the CT 

images could be used as a reference to analyse MR images of any slice thickness larger than 1 mm. 

 

II.C. MRI 170 

MRI scans of the phantom were performed on a Siemens 70 cm bore Magnetom Skyra 3.0 T 

(Siemens Healthcare) (Fig. 1). The manufacturer quotes the gradient linearity as an average deviation equal 

to 0.2, 0.3, 0.2 % (x, y, z %) over 30 cm and 0.4, 0.5, 0.3 % over 50 cm. The magnet is cylindrically optimised, 

designed to achieve a homogeneous volume 1.5 times that of an ellipsoid system. Guaranteed 

homogeneity of the magnet over a 50 cm x 50 cm x 45 cm is quoted as less than 4 parts per million (ppm). 175 

All scans performed underwent standard tune-up B0 shimming localised to the imaging volume. 

For this study, 3 different acquisition methods were investigated: 

1. Standard 2D image acquisition 

2.  3D volume image acquisition 

3. Continuously moving table acquisition: TimCT (Total Imaging Matrix, Continuous Table)  180 

For each image acquisition sequence, 2 images of the phantom were obtained. The frequency encode 

directions between these 2 datasets were rotated by 180o to enable separation of B0 and gradient 

distortion components during the image analysis process33, 34. A bandwidth of at least 440 Hz/pixel was 

implemented for each sequence as would be used for RT planning protocols7 to minimise susceptibility and 

chemical shift. Vendor 2D or 3D correction algorithms were applied during image acquisition as available. 185 

Scanner gradient nonlinearities are stored in the system as spherical harmonic coefficients, enabling the 

gradient field to be derived at any location within the magnet. The coefficients are used to calculate the 

gradient values for the scanner which are then applied to correct each voxel position and signal intensity 

accordingly throughout the imaged volume. The 2D correction provides only an in-plane correction to the 

distortion while the 3D correction accounts for through-plane distortion as well. These correction 190 

algorithms provide reproducible results within 0.5 mm. Distortions were reported at the centre of each 
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capsule as visualised on each slice within each dataset. Based on acceptance criteria for RTP imaging and 

treatment QA5, distortion values larger than 2 mm were considered to be significant.  

 

II.C.1. 2D and 3D acquisition sequences 195 

 The imaging parameters for the static 2D and 3D image acquisitions are outlined in table 1. For the 

2D image acquisition, a standard spin echo (SE) sequence was used. A steady state gradient echo (GRE) 

sequence (CISS – constructive interface in steady state) provided the best image quality for the 3D 

acquisition of the phantom and was consequently investigated. The maximum scan lengths achievable for 

the given slice thickness and coil capabilities for each sequence was acquired. The phantom centre was 200 

aligned to the scanner isocenter. For these scans 2D correction was available as part of the imaging 

protocol whereas 3D correction was performed retrospectively on the scanner console. 

 
Table 1: Acquisition parameters of standard imaging sequences 

Sequence 
Slice thickness 

(mm) 
TE/TR (ms) 

Scan length  

(mm) 

Pixel BW 

(Hz/pix) 

Resolution 

(pixels) 

SE 2 12/2760 252 445 320 x 320 

SE 3 12/2760 368 445 320 x 320 

CISS 2 3.15/6.84 353 460 320 x 320 

 205 

II.C.2. TimCT – extended FOV 

 The phantom was placed on the scanner and covered with two 18 channel body coils for imaging 

the whole phantom volume with TimCT. The table was then moved into the scanner so that one end of the 

phantom was located at the scanner isocenter and the whole phantom could then be moved through the 

bore. All images were T1 in-phase Dixon spoiled GRE sequences acquired with 5 mm slice thickness. Table 2 210 

shows the imaging parameters for different table speeds. The slab length refers to the scan length being 

imaged as the table moved and was dependent on the table speed selected. After images were acquired 
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with the TimCT option selected, the phantom was setup with the phantom centre aligned to the scanner 

isocenter. The same sequence was then acquired with static table acquisition for comparison. These scans 

were all acquired with the vendor 3D correction algorithm applied. 215 

 

Table 2: Acquisition parameters of the TimCT sequence and the corresponding sequence without the TimCT 

option utilised  

Sequence 
TE/TR 
(ms) 

Scan length 
(mm) 

Pixel BW 
(Hz/pix) 

Resolution 
(pixels) 

Table speed 

(mm/s) 
Slab length 

(mm) 

Spoiled GRE (TimCT) 1.47/190 540.3 610 512 x 512 1.1 60 

Spoiled GRE (TimCT) 1.47/190 550.5 610 512 x 512 2 110 

Spoiled GRE (Non 
TimCT) 

1.47/452 365 610 512 x 512 0 365 

 

II.D. Distortion assessment 220 

 

II.D.1.Image registration: 

Three dimensional quantification of the geometric distortion was obtained by rigid and deformable 

registration between the CT and MR images. A robust inverse-consistent registration algorithm was used to 

rigidly align the CT and MR images within MILXView 35. The algorithm handled the position and orientation 225 

information contained in the image header and provided a fully automatic result. All MR images acquired 

were rigidly registered to the CT with 1 mm slice thickness, ensuring all datasets were in the same frame of 

reference. The MR images then matched the 0.98 x 0.98 x 1 mm voxel resolution of the CT dataset. 

Performance of the rigid registration was visually assessed before continuing. After rigid registration, each 

resulting MRI dataset was non-rigidly registered to the CT dataset. The deformable registration method 230 

was based on a cubic B-spline free-deformation model using a normalised mutual information metric from 

the non-commercial open source software (NiftyReg version 1.3.9)36. The registration was performed in 4 

iterations with final grid spacing of 25 mm. In this implementation, all control points were optimised and 
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interpolation performed in 3D across the whole image at each step. The accuracy of the registration 

algorithm was within half a pixel. 235 

 

II.D.2. Gradient and B0 distortion components: 

 Non-rigid image registration resulted in the determination of the total geometric distortion 

(dist_total). Following a previously reported method33, 34, image acquisition was repeated with the 

frequency encode direction reversed. The frequency encoding direction is subject to geometric errors from 240 

both B0 inhomogenity and gradient nonlinearity: 

𝑦1 = 𝑦 +  
∆𝐵0(𝑥,𝑦,𝑧)

𝐺𝑦
+  

∆𝐵𝐺𝑦(𝑥,𝑦,𝑧)

𝐺𝑦
     (1) 

where y1
 is the distorted location, y is the true position, ΔB0 is the distortion contribution from B0 

inhomogeneity, Gy is the frequency encoding strength and ΔBGy is the distortion contributions from 

gradient nonlinearities in the frequency encoding direction. Analysis on images with reversed frequency 245 

encoding directions can separate these components. For this study, the deformation field obtained by 

registering the MR images of opposing frequency encode directions was halved to give the distortion due 

to B0 inhomogeneity (dist_B0). This was then subtracted from the total deformation field obtained in the 

MR-CT registration, giving the residual distortions, due to the gradient nonlinearities (dist_Grad) (Fig. 3). 

 250 

III. RESULTS 

 

III.A. Standard static acquisition sequences 

Distortions due to residual gradient nonlinearities and B0 inhomogeneities are separated in Fig. 4 

for the standard SE sequence acquired with 2 mm slice thickness (3D correction algorithm applied). The 255 

vector fields are thresholded to highlight regions within the imaging FOV where distortions were greater 

than 2 mm. The vectors indicate the total distortion in all directions (x, y and z). Distortions resulting from 

residual gradient nonlinearities are greater than those due to the B0 inhomogeneity. The dist_Grad were 
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greatest at the superior and inferior regions of the image with dist_B0 largest at the extreme regions of the 

axial FOV.  260 

Table 3 indicates the overall geometric performance of each sequence (dist_total), accounting for 

variations in scan length due to sequence capabilities. The table includes results for 2D and 3D corrected 

images, the percentage of the phantom length scanned and differences in the image length acquired per 

second, based on the acquisition time of each sequence. Images with the retrospective 3D correction 

applied had an improved geometrical performance.  265 

Maximum distortions for the 2 mm SE, 3 mm SE and CISS sequences were 7.9 mm, 9.8 mm and 7.6 

mm respectively with the 2D distortion algorithm applied. With the 3D correction algorithm applied 

retrospectively, these were reduced to 4.08 mm, 4.4 mm and 4.9 mm. These maximum distortions 

occurred in the most superior and inferior regions of the image.  

We define the convergence region of the registration algorithm as the region where the accuracy 270 

of the registration algorithm is better than 1 pixel. This region was found to be within a length of ± 119 mm 

and an axial radial distance of r = 180 mm from the centre of the scanner. The magnitude of distortion was 

accurately measured within this region, even when the spatial displacement greatly exceeded the 2 mm 

tolerance limit. Beyond this volume, extreme distortion resulted in some capsules no longer being visible in 

the image. As such, distortion measurements beyond this region could not be reliably measured but can be 275 

assumed to be much greater than 2 mm. Black rings began appearing beyond this point in the images with 

the 3D correction algorithm applied in regions of severe distortion or where capsules were not observable 

in the 2D corrected images.  

 

 a)  b)  c) 
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Fig. 3: Phantom images a) CT, b) MRI with anterior (ant)-posterior (post) frequency direction and, c) 280 

subtraction of two MR images with frequency encode direction reversed. 

 

a) b) 

Fig. 4: Vector maps indicating regions of distortion ≥ 2 mm for the a) dist_Grad and b) dist_Bo components 

of distortion for the standard 2D SE acquisition sequence with 2 mm slice thickness with the 3D correction 

algorithm applied. Visualisation provided by the Simple Medical Imaging Library Interface (SMILI) 285 

http://aehrc.com/research/biomedical-imaging/software-solutions 37 

 

Table 3: Geometric performance of the acquisition sequences  

Sequence 
% phantom 

imaged 

Distance from 

isocenter where 

distortion ≤ 2 mm 

% phantom with 

distortion < 2 mm 

Nominal acquisition 

time* 

(minutes : seconds) 

2 mm SE (2D corr) 

               (3D corr) 
49 

98 mm 

152 mm 

29 

44 
29:56 

3 mm SE (2D corr) 

               (3D corr) 
 72 

82 mm 

154 mm 

30 

54 
20:22 

CISS (2D corr)  69 93 mm 32 13:30 
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         (3D corr) 148 mm 51 

 Spoiled GRE (Non 

TimCT) 
71 147 mm 47 2:41 

Spoiled GRE 

(TimCT 1.1 mm/s) 
100 140 mm 87 9:30 

Spoiled GRE 

(TimCT 2 mm/s) 
100 55 mm 61 5:26 

* Nominal acquisition time = time required to image whole phantom 

 290 

III.B. TimCT  

Vector field maps for the total distortion observed for the spoiled GRE sequence acquired with a 

static table and TimCT with table speeds of 1.1 mm/s and 2 mm/s are shown in Fig. 5. The longer scan 

length imaged with TimCT is evident when compared to the static table acquisition. Distortion patterns for 

TimCT scans were more consistent through the phantom volume compared to the static table where a 295 

large reduction in geometric integrity was observed at the edge of the field where the through plane 

distortion was worse. Maximum distortions (dist_total) were 6.1 mm (71% phantom volume imaged), 4.4 

mm and 5.8 mm for the static, 1.1 mm/s and 2 mm/s table speeds respectively.   

Figure 6 shows the percentage of points within a defined phantom volume where distortions were 

observed to be greater than 2 mm for the static table, TimCT 1.1 mm/s and TimCT 2 mm/s scans 300 

respectively. The volumes were defined from the centre of the phantom, with varying through plane 

lengths (± z) and radial distances in the axial plane (r). All measurements were reported with respect to the 

phantom centre as opposed to scanner isocenter since this provided a consistent reference point for static 

and moving table acquisitions. The maximum distortion observed is reduced when TimCT is utilised. Table 3 

compares the spoiled GRE sequence investigated for TimCT purposes to the standard static acquisition 305 

sequences.  



16 
 

Figure 7 compares the geometric performance of the spoiled GRE without TimCT compared to 

TimCT with a table speed of 1.1 mm/s over different radial distances and scan lengths from the scanner 

centre. It shows the volume percentage comparison in which distortions are less than 2 mm within the 

volume in question. Values greater than 1 indicate the TimCT sequence performed better geometrically.  310 

As was found for the standard static sequence acquisitions, beyond the convergence region of a 

length of ± 119 mm and radial distance of r = 180 mm from the phantom centre on the static spoiled GRE, 

grid points were either not visible in the image or the distortions were too great for the registration 

algorithm to perform accurately beyond this point. The registration algorithm was not found to fail for the 

TimCT images.  315 
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Fig. 5: Vector maps indicating regions where total 

distortion ≥ 2 mm for the spoiled GRE sequence 

acquired with table speeds of a) 0 mm/s, b) 1.1 

mm/s and c) 2 mm/s 320 

 

  

a) 

b) 

c)  
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 335 

Fig. 7: Ratio of the spoiled GRE regions where distortion < 2 mm for images acquired with TimCT at 1.1 

mm/s and with a static table (TimCT/Non-TimCT). Values greater than 1 indicate the TimCT sequence 

performed better geometrically  

 

IV. DISCUSSION 340 

 

The developed phantom enables measurements of MRI distortion across the full FOV as required 

for RTP, where the patient anatomy is required for dose calculations. The axial size of the phantom should 

encompass the size of patients which would be suited for MR scanning, allowing for additional placement 

of surface coils over the patient/phantom. The phantom length makes it suitable for imaging over various 345 

scan lengths without the need for physical relocation and re-scanning. The extended length also allows 

assessment of techniques such as the TimCT moving table option. While the phantom weighed 60 kg, a 

water phantom of similar volume would have resulted in a final weight of over 85 kg. When measuring 

system distortion it is important to reduce distortion contributions from the phantom itself. This was 

achieved by carefully considering the design of the phantom to achieve a tight fit of elongated capsules to 350 

reduce susceptibility from air and the capsules themselves. The dimension of the capsules provides a 
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sufficient signal point source while still enabling assessment of through plane distortion (unlike rods for 

example). 

The distortion distributions observed in Fig. 4 highlight the optimisation characteristics of the 

scanner utilised. When looking at the gradient component of distortion, the distortion magnitude is worse 355 

at the superior-inferior edges of the FOV where the gradient field linearity declines due to the short bore 

size. The B0 field components show that this effect is worse axially around the bore edges as opposed to the 

through plane edges. This highlights the cylindrical nature of the magnet used in this new scanner and 

emphasises the need for QA on each specific system. It should be noted that B0 inhomogeneity is a more 

crucial component when imaging certain patient anatomy (e.g. sinuses within the head), creating regional 360 

variations on top of the system effects described here. In clinical acquisitions appropriate steps should be 

taken to address this including further increasing the bandwidth, more localised volumetric shimming and 

even considering B0 correction. Choice of appropriate MRI protocols7, 38 within a department is an 

important part of this process. 

Comparison of the static image acquisitions in table 3 highlights the difference in 2D and 3D vendor 365 

correction algorithm application. During image acquisition, the SE and CISS sequences only permitted 2D 

correction application while the 3D correction could be applied to the spoiled GRE. For the SE and CISS 

sequences, retrospective 3D correction could be performed. This highlights a practical limitation that may 

be encountered during imaging as well as emphasising the importance of knowing the capabilities of each 

system, both on and offline. Since the 2D correction algorithm does not consider the slice selection 370 

direction, through plane distortions are not taken into account. As expected, the geometric performance of 

sequences acquired with the 2D algorithm applied was poorer than the 3D corrected images in which 

distortion is considered in all 3 axes. This resulted in an improvement of the percentage of the phantom 

volume where distortions were within 2 mm of 15%, 24% and 19% (absolute percentage coverage) for the 

2 mm SE, 3 mm SE and CISS sequences respectively. Distortions greater than 2 mm were not observed 375 

within a radial distance of 148 mm from isocenter. For radiotherapy purposes, the highest order correction 

algorithm available should be applied. Restrictions in scanner and sequence capabilities in applying these 
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corrections indicate more potential improvements could be made towards MRI scanning options for the 

purposes of RTP.  

 The moving table option offered with TimCT acquisition provided a significant increase to the field 380 

length that can be imaged compared to static table acquisition (table 3; Figs. 5 and 6). The vendor quotes 

the TimCT option allows for imaging with field lengths of 205 cm. It was tested to 50 cm in this study which 

encompassed the length of the phantom and exceeded the maximum scan length limits of static table 

acquisition.  

Of the sequences investigated, TimCT acquisition with a table speed of 1.1 mm/s performed the 385 

best geometrically. However this came at the cost of time. Acquisition time for the TimCT 1.1 mm/s was 9 

minutes, 30 seconds, 3.5 times greater than that of the static table acquisition for the same spoiled GRE 

sequence (2 minutes, 41 seconds to image the whole phantom). While that resulted in increased image 

scan length and distortion improvement at superior and inferior regions of the image, the additional scan 

time could lead to increased patient movement and associated artifacts within the image, potentially 390 

reducing its benefit for RTP. Time variations are also subject to the desired imaging sequence. For example, 

TimCT at 1.1 mm/s with the spoiled GRE resulted in an improved acquisition time when compared to the 

static table SE sequences (14 minutes, 40 seconds), the latter with scan lengths of only 47-68% that of the 

spoiled TimCT GRE. 

However with TimCT, an additional source of error is introduced with the through plane table 395 

movement. This is evident when comparing the 1.1 mm/s and 2 mm/s table speeds (Fig. 5 b, c; Fig 6 b, c). 

Through plane movement results in blurring of the capsules and an increase in the severity of the gradient 

nonlinearity distortions across all 3 imaging planes. This effect worsens with increasing distance from the 

isocenter of the scanner due to the increased gradient nonlinearities, as discussed for blood vessel imaging 

in MRA by Polzin et al. 18.  400 

Table movement amplifies the system distortions and manifests as blurring within the image. Since 

these distortions are larger at the outer edges of the FOV, blurring is worse in these regions with the effect 

minimal in the central FOV. With TimCT acquired at 1.1 mm/s, blurring resulted in an increase in apparent 
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capsule volume of 43 ± 5 % (± 2 standard deviations) at r = 225 mm from scanner centre and 95 ± 8 % at r = 

240 mm. Blurring increased with table speed with the 2 mm/s TimCT average capsule volume increasing by 405 

93 ± 1 % and 170 ± 5 % at r = 225 and r = 240 mm, respectively. Increasing the table speed from 1.1 mm/s 

to 2 mm/s resulted in a 26% increase in the percentage of grid points experiencing distortions greater than 

2 mm. While TimCT at 2mm/s permitted a reduction in maximum distortion and a more regular distortion 

pattern compared to the static table acquisitions, it performed worst in the distance from isocenter where 

distortions greater than 2 mm became observable. Distortions became greater than 2 mm beyond a radial 410 

distance of 55 mm from phantom centre. This corresponded to the maximum distance from scanner 

isocenter that an image could be acquired at that speed.  

Figure 7 indicated regions for the best geometric performance between the static and 1.1 mm/s 

TimCT image acquisitions. When imaging within a small radius from isocenter with a short scan length, the 

two techniques perform similarly, with the Non TimCT acquisition performing slightly better for a larger 415 

scan length. As the scan length increased beyond ± 100 mm from phantom centre, the TimCT sequence 

was found to perform best for all radial distances investigated. This is dependent on the table speed. When 

the table speed was increased to 2 mm/s, the static sequence performed geometrically better, though it 

was not able to image the whole phantom. This information is useful when determining what acquisition 

technique to use for the purposes of RTP, given the anatomy of interest, the FOV required and the role of 420 

the MRI data. For example for centrally located anatomy, such as brain, head & neck or when deliberately 

using a small FOV (e.g. prostate) to subsequently register to CT, static acquisition may be sufficient. As 

indicated in figure 6, if imaging over a distance of ± 100 mm from the phantom centre, the static image and 

TimCT at 1 mm/s perform very similarly, with distortions greater than 2 mm increasing beyond a radial 

distance of 200 mm from the scanner centre. In other instances where extended z coverage is warranted or 425 

anatomically suited (e.g. peripheral sites, lung etc.) then a moving table strategy may be important. Figure 

6 highlights the potential use of TimCT for this purpose. At 1 mm/s, the percentage of points experiencing 

more than 2 mm distortion remaining constant over the whole phantom volume, compared to the static 

case where the whole volume could not be imaged and the distortion increased with increasing distance 
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from the phantom centre. Although TimCT is currently a vendor specific implementation, this work has 430 

shown advantages in repositioning anatomy rather than simply extending the image volume which should 

be considered on other systems using stepping table variations. This paper served to highlight the 

geometrical variations that these techniques manifest and emphasises the importance of understanding 

the limitations of MRI acquisitions. 

TimCT scans acquired with table speeds greater than 2 mm/s were investigated. These were not 435 

analysed however, with capsules towards the outer edge of the phantom in axial slices becoming severely 

blurred and displaced. Some of these points were no longer observable in the image and the analysis 

process would not have been able to account for the loss of information. Increasing the table speed was 

done at the expense of the slab length imaged as the table moved through the scanner. Faster table speeds 

were therefore susceptible to additional blurring due to the movement as well as increased gradient 440 

nonlinearity effects due to an imaging area extending further from isocenter. 

One of the limitations of the study was the performance of the registration algorithm at high 

distortion regions at the FOV edges in the static acquisitions. The registration performed well in central 

regions of the phantom where no grid point information was lost. Outside the convergence region of the 

registration algorithm, the image contrast is not sufficient and thus the algorithm merely extrapolates the 445 

transformation. This was apparent from visual inspection. Distortion values greater than 2 mm were 

assumed for regions of the phantom that could not be imaged with static acquisitions and the regions in 

which the registration algorithm failed. Because the distortion patterns were more regular throughout the 

whole imaging volume for the TimCT scans and there was no field limitations resulting in a loss of capsule 

visualisation, the registration algorithm was not found to fail for these images. 450 

The ability to change imaging parameters from the default sequence setting for TimCT was more 

restricted than the static spoiled GRE acquisition option. Of particular note for this study were the slice 

thickness options available and the restrictions this put on table speed options. As a result, the slice 

thickness of 5 mm investigated for this sequence was larger than the 2 mm generally used for treatment 

planning on CT. TimCT was also limited to 2 acquisition sequences, the spoiled GRE and a single shot turbo 455 
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spin echo (TSE) sequence. The TSE sequence was scanned during preliminary data collection however the 

SNR on the phantom images was too low for the purposes of image analysis.  

Static or moving table MRI acquisition for RTP would need to be assessed based on the application. 

Both techniques could be useful in providing supplementary information to planning CTs. Static images can 

provide the geometric information required, particularly over anatomical regions extending over a shorter 460 

scan length. In some cases, TimCT would be required to ensure adequate scan length coverage, particularly 

if dealing with long OARs or target volumes. The same argument could be used for their application in MR-

only planning.  

 

V. CONCLUSION 465 

A novel phantom design for measuring MRI distortion over a large 3D volume of the scanner has 

been presented, which permits the mapping of geometrical accuracy across the whole imaging volume as 

required for RTP. Measurements have been made with both static and moving table acquisitions to 

demonstrate variations in the achievable geometric accuracy. The moving table technique (TimCT) was 

shown to extend the distortion free volume of the phantom by continuously acquiring data from a small 470 

section around the scanner isocenter. There are a number of limitations to this procedure including choice 

of available pulse sequence and effects of increasing table speed. However, this work illustrates the nature 

of MRI distortions, demonstrating geometric variations that can occur between image acquisition 

techniques (as opposed to sequence variations) which is not well known in the RT community. It is 

important to fully characterise an individual MRI system and use this knowledge to select the most suitable 475 

imaging protocol for radiotherapy treatment planning. 
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