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Abstract: A substantial amount of experimental evidence suggests that the critical state 

envelope for ballast is non-linear, especially at low confining pressure. In order to study the 

implications of this non-linearity and the associated role of particle breakage, monotonically 

loaded drained triaxial tests were conducted using the large-scale cylindrical triaxial 

apparatus. A non-linear critical state envelope is determined in the q-p' and  -lnp' planes. 

Mathematical expressions for critical state stress ratio and specific volume are proposed to 

incorporate the evolution of particle breakage during monotonic shearing. In this paper, an 

elasto-plastic constitutive model based on the critical state soil mechanics framework is 

presented to capture the salient aspects of stress-strain behaviour and degradation of ballast. 

Constitutive parameters were conveniently determined from large-scale laboratory tests. The 

model is able to predict the monotonic shear behaviour of ballast corroborating with the 

laboratory measurements. The proposed model is further validated using experimental results 

available from past independent studies.  

Key words: particle breakage, critical state, Non-linearity, ballast, constitutive modelling.   
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Introduction 

It is found that the breakage of particles influences the strength and deformation behaviour of 

rail ballast (Indraratna et al. 1998, 2005; Indraratna and Salim 2002; Lackenby et al. 2007; 

Nimbalkar et al. 2012). It is well-established in granular media that when grain breakage 

occurs, the internal angle of friction and the associated dilation angle decrease, while 

facilitating further compression (Marsal 1967; Marachi et al. 1972; Chales and Watts 1980; 

Lade et al. 1996; Ueng and Chen 2000; Indraratna et al. 2011; Indraratna and Nimbalkar 

2013). Larger particle sizes with high grain angularity increase the extent of particle breakage 

during dilation (Lee and Farhoomand 1967; McDowell and Bolton 1998; Indraratna and 

Salim 2002; Lackenby 2006; Lackenby et al. 2007). It has been reported that highly angular 

aggregates break easily at the corners even at small confining pressures leading to a 

significant reduction of the friction angle (Marsal 1967; Marachi et al. 1972; Indraratna et al. 

2011). The presence of micro-fissures in blasted and quarried aggregates also exacerbate 

breakage during shearing (Marsal 1967; Lade et al. 1996). Indraratna et al. (1998) through 

extensive large scale triaxial testing of latite basalt aggregates provided a non-linear empirical 

relationship p = j(Bg)
k, where p is the peak angle of friction, Bg is Marsal’s breakage index 

(Marsal, 1967), j (64.84 to 73.19) and k (-0.13 to -0.18) are empirical parameters. This 

empirical equation has been derived at relatively large axial strains (@ 20-25%) and it 

represents the reduction in friction angle with increasing particle breakage. For example in 

the case of latite basalt, the increase in Marsal’s breakage index from 5% to 10% is 

associated with a reduction in friction angle of about 7-12° depending on the initial particle 

size distribution (PSD), where a PSD containing larger size aggregates indicates greater 

vulnerability to breakage. The test results by the previous studies conducted by the first 

author and co-workers do support the claim that even at large axial strains exceeding say 20-

25% (i.e. approaching a state of little or no volume change), the continual breakage of 
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particles will cause reduced angularity, and this in turn would effect a reduced critical state 

friction angle. This will be associated with a corresponding change in the critical state 

parameter, Mc (Mc = 6sincs/(3-sincs)). It has also been reported by others that the decrease 

in the value of Mc is mainly attribute to both confining pressure and particle breakage 

(Chavez and Alonso 2003; Cheng et al. 2005). This may be in some conflict with the past 

studies (Coop 1990; Mooney et al. 1998; Coop et al. 2004; Bandini and Coop 2011). The 

studies of Coop (1990), and Bandini & Coop (2011) conducted on much finer granular 

materials compared to rail ballast indicate that in spite of excessive breakage, the critical state 

stress ratio Mc remains relatively constant at high confining pressure, and very large amounts 

of breakage in shearing had little effect on Mc (Coop et al. 2004). However, as described 

earlier and observed in other studies, the rate and extent of breakage of very coarse and 

highly angular particles such as rail ballast should not be directly compared with much finer 

grained materials such as sand, which may require higher applied stresses to initiate 

significant breakage (e.g. Lade et al. 1996; Russel and Khalili 2004). Also, ballast has very 

different physical and mechanical properties (size and shape of particles, surface texture, 

inter-particulate friction, micro-fractures (due to blasting) etc.). 

Been et al. (1991) investigated the critical state of sands for a wide range of confining 

stresses and proposed a bilinear critical state line (CSL). Russell and Khalili (2004) described 

the behaviour of crushable granular materials using a three-segment CSL within a boundary 

surface constitutive model. Bedin et al. (2012) through a series monotonic triaxial testing on 

gold tailings observed a highly non-linear shape of CSL and stated that the curvature was due 

to particle breakage. Daouadji et al. (2001) represented the position of the CSL in terms of 

the amount of energy needed for grain breakage, showing that the CSL in the e-lnp' domain 

descends according to the evolution of particle gradation. Muir Wood and Maeda (2008) 

proposed a model for sands in which a series of critical state lines in the e-lnp' plane are 
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related to the current grading of the soil. As particle breakage occurs, the grading index Ig 

increase, it is assumed the current critical state line moves downwards towards a limiting 

critical state line at the limiting grading. It is therefore assumed that the effects of breakage 

are to move the critical state line continually downwards. The downward shift of the CSL on 

the e-lnp' plane can be attributed to the smaller broken grains which then rearrange to a more 

compact state attaining a lower void ratio, e (e.g. Russel and Khalili 2004; Bedin et al. 2012). 

Banidi and Coop (2011) also suggested that the influence of the newly created small 

fragments on CSL was not very large as the latter was insensitive to the new grading as 

assumed in the study by Muir Wood and Maeda (2008). Significant stress concentrations and 

attrition in coarse and highly angular particles of ballast lead to considerable breakage of 

asperities and sharp corners at relatively low stresses (Lackenby et al. 2007; Indraratna et al. 

2014). Even though the overall volume of breakage of relatively softer materials (e.g. 

carbonate sands, weathered sandstone) can be higher, the effect of degradation on the 

properties of ballast is mainly governed by the sharp drop of angularity upon breakage 

(Indraratna et al., 2011). Therefore, findings on carbonate sand reported by Bandini & Coop 

(2011) and Coop et al. (2004) may not be directly applicable to ballast, including the 

behaviour implied at the critical state. 

Indraratna et al. (2005) introduced a breakage index specifically for railway ballast to 

quantify the magnitude of degradation. The evaluation of the ballast breakage index (BBI) 

employs the change in the fraction passing a range of sieve sizes. Figure 1 illustrates the 

definition of BBI. In this paper, the critical state of ballast is investigated by large-scale 

triaxial tests, where particle breakage was quantified using the BBI. The particle breakage 

during triaxial shearing is modelled by a nonlinear function which links BBI with the 

accumulated plastic deviatoric strain ( p
s ) and initial effective mean stress pi

'. Hence, it is 

possible to predict the evolution of BBI at each stage of loading, whereby BBI is captured in 
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the CSL in both q-p' and  -lnp' planes. Inspired by the laboratory observations, an elasto-

plastic state-dependent constitutive model under triaxial monotonic loading is formulated.      

Experimental program, test results and discussions 

Sample preparation and testing 

Latite basalt, a commonly used ballast in the state of New South Wales, Australia, was used 

in this study. It was thoroughly cleaned, dried and sieved through a set of 12 standard sieves 

(aperture size 53: 2.36 mm). Figure 2 shows the particle size distribution (PSD) curve 

adopted here representing the current Australia practices (Standards Australia 1996). Particles 

from each size range were weighed separately and mixed thoroughly before placing them 

inside a 7 mm thick rubber membrane in four separate layers, where each layer was 

compacted with a plate vibrator to a density of 1530 kg/m3. Compaction was facilitated by a 

split cylindrical mould which was removed before the specimen was placed inside the cell 

pressure chamber. Prior to testing, each specimen was subjected to an upward flow of water 

from the bottom plate under a back pressure of 10 kPa. The specimen was allowed to saturate 

overnight until a Skempton’s B value of 0.97-0.98 was achieved for typical compacted ballast 

with an initial void ratio of around 0.76. Before shearing, the specimens were isotropically 

consolidated at confining pressures of 30-570 kPa (Table 1).  

The confining pressure was increased in several steps to a constant preselected value, and the 

corresponding change in volume of the specimen was then recorded. Fully drained 

compression tests were conducted at an axial strain rate of 3 mm/min, which prevented any 

build-up of excess pore water pressure. The load cell, pressure transducers and LVDTs were 

connected to a computer-controlled data acquisition system. Shearing was continued until the 

samples either reached their critical states or until the vertical strain reached the maximum 
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strain capacity of 30%. Membrane correction has been applied to the current stress 

measurements, in accordance with the hoop stress theory discussed by Henkel and Gilbert 

(1952). The additional radial stress due to membrane confinement is considered in correcting 

the measured deviator stress and mean stress. At the lowest confining pressure (σ3' = 30 kPa), 

the maximum correction for 7 mm thick rubber membrane was less than 5%, hence this has 

little effect on the data interpretation and the final conclusions. Upon completion of each test, 

the specimens were sieved to determine the extent of breakage using BBI.  

Stress-strain-volume change behaviour of ballast  

Figure 3(a) shows the measured deviatoric stress q versus the deviatoric strain at the range of 

confining pressures adopted in the present study. It is observed that q initially increases with 

increasing deviator strain until it reaches the peak value. Apparently, for a higher confining 

pressure, the peak value of q becomes higher. In Fig. 3(b), the deviatoric strain is depicted 

versus the volumetric strain. It is seen that at relatively low confining pressure (σ3' ≤ 60 kPa), 

the volumetric strain is initially compressive but it swiftly becomes dilative with the 

increasing deviatoric strain. As the confining pressure increases, the rate of dilation 

diminishes as expected. At elevated confining pressure (σ3' ≥ 240 kPa), the overall volumetric 

response is compressive. Unlike fine-grained materials such as sand and clay, no distinct 

shear plane could be observed in coarse aggregates such as rail ballast when tested in large-

scale triaxial apparatus even at low confining pressure. The failure was accompanied by 

specimen ‘bulging’ (Lackenby et al. 2007) and subsequent gradual strain softening over a 

large axial strain up to 30% (limit of the equipment), with many samples reaching a critical 

state (i.e. almost constant volumetric strain).  

Modelling of particle breakage 
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Indraratna and Salim (2002) demonstrated with experimental evidence that the particle 

breakage increases with increasing axial strain, but at a decreasing rate, finally approaching a 

relatively constant value. The value of breakage index also becomes greater as the confining 

pressure increases. From these experimental findings, a unified function is proposed as 

following to represent the particle breakage during shearing: 

[1]         
  

'ln

exp1

ib

p
sbb

p
BBI








                                                                                                            

where, b, b and b are material constants characterising the breakage of aggregates, and pi
' 

is the initial effective mean stress.  

The critical state of ballast considering particle breakage effect 

Triaxial tests were conducted at relatively large axial strain (maximum 30%) to investigate 

the critical state of railway ballast under a wide range of confining pressure (30 ≤ σ3' ≤ 570 

kPa). Figure 3(b) shows that ‘constant volume’ values corresponding to the critical state were 

observed for the tests conducted at σ3' ≥ 180 kPa. For specimens subjected to σ3' = 30 and 60 

kPa testing could not be continued until the critical state due to the actuator’s displacement 

limitation, hence, extrapolation of the stress-dilatancy data to the critical state was carried 

out, based on the technique proposed by Carrera et al. (2011) (Appendix A). Figures 4(a) and 

4(b) show the critical states for ballast on q-p' and  -lnp' plots, and the corresponding BBI at 

these critical state points are indicated in Fig. 4(c). 

The CSL in the q-p' plane is non-linear as shown in Fig. 5(a) in comparison with that without 

breakage set as a Reference Critical State Line (RCSL). RCSL can be approximately 

determined by drained triaxial compression tests under low confining pressures when particle 

breakage is insignificant. As expected, the extent of breakage is greater with increasing p', 
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and the drop in q is more pronounced as p' increases. The CSL in q-p' plane can be expressed 

as: 

[2]           'pq                                                                                                                               

where,  and μ are material constants. 

The critical state stress ratio Mc = (q/p')c is not a constant for ballast and it is plotted as a 

function of the confining stress σ3' and BBI in Fig. 5(b) and 5(c), respectively. The data 

plotted in Fig. 5 show that the changes in the critical state stress ratio (Mc) with confining 

stress can be attributed to particle breakage. The particle breakage could be associated with 

internal work (plastic work) induced by the applied stress. The total plastic work ( P
TW ) 

involved in the monotonic shearing process includes two parts: (i) P
RW  utilised during 

particle rearrangement, and (ii) P
EW  accounting for particle breakage (effective plastic work). 

The critical state stress ratio (Mc) evolves mainly in relation to the increase in effective plastic 

work ( P
EW ), which is defined as the excess of total plastic work ( P

TW ) over the plastic work 

associated with particle rearrangement ( P
RW ). Salim and Indraratna (2004) stated that the 

increment of energy consumption due to particle breakage per unit volume is proportional to 

the increment of breakage index. The test data in this study showed similar results 

(i.e. BBIW P
E   , where β is the constant of proportionality). As particle breakage increases, 

Mc decreases as shown earlier in Fig. 5(c), and can be represented by the following 

expression: 

[3]            BBIMM cc  exp10                                                                                       

where,  is model parameter, and Mc0 = critical state stress ratio for BBI = 0.  

The CSL is traditionally written in the	 -lnp plane as: 
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[4]          'ln pc                                                                                                                          

where,  and  are two constitutive parameters which define the local position of the CSL in 

terms of the specific volume c  and the effective mean stress p'.  

The specific volume and effective mean stress obtained by the tests were plotted earlier in 

Fig. 4(b). It indicated that the CSL for ballast was no longer a straight line, and that the 

location of CSL would change in the compression plane with the increase of BBI. The CSL 

in the  -lnp' plane becomes a critical state surface when the extra dimension of BBI is added 

(Fig. 6). The CSL, in the form of a dashed line in Fig. 6, corresponding to the current value of 

BBI, is assumed to have a constant slope. As the effective mean stress increases, the particles 

will break and BBI will rise. The critical state surface cannot exist for stress levels above a 

certain limit which will depend on the current value of BBI. The occurrence of breakage does 

not necessarily place the material in a critical state but changes the critical state to which the 

material would approach as it is subsequently sheared (Muir Wood and Maeda 2008). Figure 

6 shows the three-dimensional nature of this critical state surface.   

In this study, it is proposed that the critical state surface in the  -lnp'-BBI space might be 

extended from rather traditional  -lnp' relationship of eq. [4] by considering: 

[5]            'ln pBBIc                                         

where, (BBI) decreases as BBI increases. Based on the drained compression test data, a 

hyperbolic relation could be derived for (BBI) as: 

[6]             BBIbaBBI ref  exp                                                                                        

where, ref is the reference value to (BBI), a and b are material constants controlling the 

evolution rate of the CSL with particle breakage.  
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The above concept is based on the model of Muir Wood and Maeda (2008) which is 

supported to some extent by ballast data in this study. In Fig. 6, the plotted data for ballast 

indicates that with increasing p', ballast breakage increases and the corresponding specific 

volume (v = 1+e) decreases, which is in line with the hypothesis of the model suggested by 

Muir Wood and Maeda (2008). It is true that finer grained materials such as sands may 

require a ring shear equipment to reach terminal grading (Coop et al. 2004; Sadrekarimi and 

Olson 2011). Bandini and Coop (2011) used a biogenic carbonate sand with weak particles 

and found that the movement of CSL was small even for large amounts of breakage. Coarser 

ballast underwent significant breakage in the large-scale triaxial equipment as shown in Figs. 

4 and 6. There is no doubt that the current experimental data for ballast indicates that a 

downward shift of the CSL is caused by ballast breakage (Fig. 4(b)) although this downward 

shift may not be as pronounced as predicted by the Muir Wood and Maeda (2008) model.   

The state parameter   is defined as (Been and Jefferies 1985): 

[7]          c                                                                                                                           

where,   is the current volume, and c  is the critical state volume. Substituting eqs. [5] and 

[6] into eq. [7] gives,  

[8]            'lnexp pBBIbaref                                                                             

Hence, the current state of the sample is linked to the critical state by the introduction of a 

state parameter. Equation [8] also represents the evolution of   as a function of BBI. 

Constitutive model for ballast 

The total strain rate is decomposed into elastic and plastic components according to: 
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[9]          pe                                                                                                                    

where, the superscripts ‘e’ and ‘p’ denote the elastic and plastic components, respectively.  

Elastic behaviour 

The elastic deviatoric strain increment e
sd  can be obtained by: 

[10]          
G

dq
d e

s 3
                                                                                                                            

where, G is elastic shear modulus.  

The elastic volumetric strain increment e
vd  can be determined by: 

[11]          
 
 G

dp
d e

v 






12

'213
                                                                                                                  

where,   is the Poisson’s ratio. 

Plastic behaviour and yield function 

Vectors of incremental plastic strain ( p
s  and p

v ) obtained from the tests have been plotted 

along the stress paths in Fig. 7 for constant stress ratios =q/p' , varying from 0.6 to 1.5. The 

plastic strains were derived from the total strains by substracting the elastic strains computed 

at the corresponding stress increment. Plastic strains are assumed to develop at the start of the 

deviatoric stress path. Figure 7 indicates that yielding is activated at the initial unloaded state. 

In the current analysis, the yield surface in q-p' plane is described by the simple linear 

relationship:  

[12]          0'/  spqf                                                                                                                 
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where, s is the hardening law.  

The hardening relationship linking the change in location of yield locus (change in stress 

ratio) to the distortional strain is assumed as: 

[13]          pp
sm

p
s

s M
B 



                                                                                                                   

where, Bm is a material constant linked to the initial stiffness of the ballast, Mp is a ‘virtual’ 

peak stress ratio attainable at the current state defined by  . The idea of having a virtual 

peak stress ratio is to address the issue of peak stress and subsequent softening of specimens 

under drained conditions. This is similar to the concept proposed by Muir Wood et al. (1994) 

considering strain softening for sand modelling. In this study, Mp is related to the state 

parameter   by the following expression: 

[14]           pcp kMM  1                                                                                                             

where, Mc is critical state stress ratio, and kp is a constant. Mp is variable with   in a way that 

yields Mp > Mc for   < 0 (dense states), Mp < Mc for   > 0 (loose states), and Mp = Mc for 

  = 0 (critical states). 

Substituting eqs. [3], [8] and [14] into eq. [13], the hardening function can now be expressed 

as: 

[15]               'ln110 peakeM
B

BBIb
refp

BBI
cp

sm

p
s

s 



  


    

Equation [15] indicates that the hardening of ballast depends on p
s ,   and BBI. 

Dilatancy for ballast 
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Figure 8 shows that for two specimens of the same bulk unit weight (i.e. b = 15.3 kN/m3), 

the ballast specimen initially contracts then dilates under low confining pressure (i.e. σ3' = 30 

kPa), while it undergoes compression when the confining pressure is considerably higher (i.e. 

σ3' = 360 kPa). Furthermore, considering ballast specimens with different bulk unit weights 

(i.e. b = 15.3 kN/m3 and 11.2 kN/m3 separately) subjected to a shear loading increment for 

the same  (i.e. σ3' = 60 kPa), the dilation response of the two specimens is different as 

shown in Fig. 8. Both specimens translates from compression to dilation, however, the 

transformation point for the looser specimen (b = 11.2 kN/m3) is at a higher deviatoric strain 

compared to the denser one (b = 15.3 kN/m3), which confirms the expectation that the looser 

specimens experience more compression. The separation between the region of compression 

and the region of dilation for drained tests on ballast occurs at the phase transformation state 

at which  = Md and dilatancy D = 0, as shown in Fig. 8.  

Based on the aforementioned observations and accounting for the critical state constitutive 

framework, one may propose the following state dependent dilatancy relationship for ballast: 

[16]           



 ddp
s

p
v MA

d

d
D                                                                                                         

where, Md is the phase transformation stress ratio that can be expressed by: 

[17]           dcd kMM exp                                                                                                               

In the above equations, Ad and kd are two characteristic model parameters. 

Substituting eqs. [3], [8] and [17] into eq. [16], the dilatancy term D can be expressed by: 

[18]                   'lnexp
0 1 pBBIbakBBI

cd
refdeeMAD                              
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It can be seen that the conventional Cam-clay dilatancy D = M -  is a special case of eq. 

[18] (i.e. Ad = 1, kd = 0 and BBI = 0). Note that at a critical state,   = 0 and  = Mc 

simultaneously, eq. [18] yields zero dilation, obeying the traditional critical state theory. It 

can also be observed from eq. [18] that the dilatancy depends not only on Mc0 and  but also 

on   as proposed by Manzari and Dafalias (1997) as well as on particle breakage (BBI). At 

phase transformation points, D = 0, the corresponding stress ratio  = Md = Mcexp(kd  ) is 

obtained. It postulates that D depends on the difference of the current stress ratio  from a 

reference stress ratio Mcexp(kd  ). This concept is similar to those described by Manzari and 

Dafalias (1997) and Li and Dafalias (2000). 

The phase transformation state and the critical state are very similar, as discussed by Luong 

(1982). For loose ballast and ballast at high confining pressure, D = 0 is reached at the critical 

state. The critical state is therefore the same as the phase transformation state, and it occurs at 

failure for ballast that compresses during shear. For dense ballast or ballast at low confining 

pressure, the phase transformation state is reached at small strain magnitudes, as indicated in 

Fig. 8, while the critical state is reached at large strains. Hence, the phase transformation state 

can be used to give an indication of critical state stress ratio Mc for the specimens testing with 

σ3' = 30, 60 kPa. The corresponding technique is shown in Appendix A.  

Stress-strain relationship 

The incremental elasto-plastic stress-strain relationship is written as: 

[19]           










mDnH

DmnD
D

eT

eTe
e'                                                                                                     
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where De is the elastic compliance matrix, n=[np, nq]
T is the unit vector normal to the loading 

surface at the current stress state ', and m = [mp, mq]
T is the unit direction of plastic flow at 

', and H is the hardening modulus. The derivation of H is given in Appendix B. 

Model calibration and validation 

Model calibration 

As summarised in Table 2, there are three particle breakage parameters, ten plastic 

parameters and two elastic parameters in the proposed model. To assess the values of 

breakage parameters b, b, and b, it is necessary to measure the BBI at various levels of 

strain. As shown in Fig. 9, these parameters can be determined by replotting the breakage 

data as BBI(b - lnpi
') versus p

s  and finding the coefficients of the nonlinear function 

represented by eq. [1].  

The critical state parameters (Mc0, ref and ) can be obtained by conducting a series of 

drained triaxial compression tests at different effective confining pressures and plotting the 

test data on the q-p' and  -lnp' planes. The slope of the line connecting the critical states 

under low confining pressures on the q-p' plane gives the value of Mc0, and that of the  -lnp' 

plane gives the value of . The value of ref is the specific volume of the CSL at p' = 1 kPa on 

the	 υ-lnp' plane. By plotting the triaxial test results on the BBI-Mc plane, the coefficient  can 

be obtained by applying the least squares method to eq. [3], knowing Mc0. Similarly, on the 

BBI- plane, parameters a and b can be obtained by curve fitting eq. [6] once ref is known.  

The parameter kd can be determined by eq. [16] at a phase transformation state, at which D = 

0. Hence, 
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[20]          
c

d

d
d M

M
k ln

1


                                                                                                                       

where, d  and Md are the values of   and  at the phase transformation state, measured 

from drained test results. 

The parameter kp is determined by eq. [14] at a drained peak stress state, thus, 

[21]          









c

p

p
p M

M
k 1

1


                                                                                                               

where, p  and Mp are the values of   and  at the drained peak stress state, obtained from 

the laboratory results. 

Using eq. [18], the parameter Am is determined from the εv-εs curves (Fig. 3). Parameter Bm is 

obtained by best-fit regression based on the q/p'-εs curves and using eq. [13].  

Shear modulus G is calibrated from the initial small strain response of the drained triaxial 

compression tests. This procedure is illustrated in Appendix C. The Poisson’s ratio was 

assumed to be constant (i.e.   = 0.3). Using G and  , the elastic strains can be readily 

computed, while the plastic increments are then obtained by subtracting the elastic 

component from the total strains.    

Model validation 

Independent sets of triaxial test results were used for initial calibration and for subsequent 

validation of the model. Three types of ballast, three types of rockfill materials giving a total 

of 23 independent sets of data were adopted (Varadarajan et al. 2003; Chavez and Alonso 

2003; Indraratna et al. 1998, 2013; Salim and Indraratna 2004; Suiker et al. 2005; Anderson 

and Fair 2008; Aursudkij et al. 2009). The parameters used for the model are shown in Table 
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2. Figures 10(a and b) show the stress-strain and volume change predictions of ballast 

behaviour employing the current model, in comparison with laboratory observations, 

respectively. The model predictions without any breakage are also shown for comparison. 

Figure 10(a) indicates that particle breakage decreases the shear strength of ballast. As the 

confining pressure increases, the reduction in strength is more pronounced with greater 

particle breakage. Figure 10(b) shows that only a small difference is evident in volumetric 

strain response between the model prediction with particle breakage and the one without 

particle breakage for small confining pressure (i.e. σ3' = 60 kPa). As shown in Fig. 10(b), 

particle breakage causes the specimens to be more compressive, and as the confining pressure 

( '
3 ) increases this effect is more pronounced. Figure 10(c) shows the model predictions of 

particle breakage at various values of σ3', where the BBI values have been obtained at the end 

of each test. It is evident from Fig. 10(c) that BBI increases with the increasing σ3' and εs. The 

breakage data from Indraratna and Salim (2002) were also used to compare with the model 

predictions. Good agreement is found between the test data and model predictions. 

Simulations with and without particle breakage for the variation in void ratio during the 

shearing are given in Fig. 10(d), which also shows an acceptable agreement with laboratory 

data.    

Drained tests from Indraratna et al. (1998) are shown in Figs. 11(a) and 11(b). The pre-shear 

void ratios (ei) for the ballast specimens have been determined from weight-volume 

relationships and been summarised in Table 2. The critical state was determined by 

extrapolation of stress-strain data to a most probable value following an approach 

recommended by Carrera et al. (2011). The BBI values calculated by eq. [1] were used to 

calibrate the model. The stress-strain-volume behaviour is well captured for the specimen 

with σ3' = 120 kPa. For the specimen with lower confining pressure (e.g. σ3' = 30 kPa), the 

proposed model fits well with the experimental results considering volumetric strain even 
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though difference between the simulation and the experimental result can be observed for 

stress-strain behaviour. Figures 11(c, d, e & f) provide the predictions for drained tests 

reported by Indraratna et al. (2013) and Salim and Indraratna (2004). The strain softening 

behaviours of the specimens are well captured. 

Comparisons of the observed and computed behaviour of ballast from Suiker et al. (2005) are 

shown in Figs. 12(a and b). The peak strength and volumetric strains are reasonably well 

represented by the model. It is thus evident that the analytical formulations of particle 

breakage and nonlinear critical state envelopes adopted in this study are appropriate. Figures 

12(c and d) and 12(e and f) show the comparisons of drained triaxial compression tests from 

Anderson and Fair (2008) and Aursudkij et al. (2009). The stress-strain-volumetric behaviour 

is well captured for both the specimens. As the studies by Suiker et al. (2005) and Anderson 

and Fair (2008) did not present the variation of particle breakage against axial strains, the 

same breakage parameters for latite basalt have been assumed in the analysis. This 

assumption did not hinder the accuracy of the model predictions as evident from Figs. 12(a, 

b, c & d). This is because, similar igneous parent rock types, namely basalt and granite, have 

been used by Suiker et al. (2005) and Anderson and Fair (2008), respectively.  

The mechanical response of rockfill is largely dominated by particle breakage. The 

predictions of the stress-strain-volumetric behaviour for three rockfill materials (Varadarajan, 

et al. 2003; Chavez and Alonso 2003) have been made by using the current model as shown 

in Figs. 13. The predicted and observed results are very close to each other for the selected 

materials. As such it may be concluded that the model provides satisfactory prediction of the 

stress-strain-volumetric change behaviour of the three rockfill materials.      

Conclusions 
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The current study considers effects of particle breakage and non-linearity of critical state 

strength envelopes on the monotonic behaviour of ballast. Consolidated drained triaxial tests 

were conducted using large-scale cylindrical apparatus at various confining pressures. The 

shearing was continued at relatively large axial strain (maximum 30%) in order to attain a 

critical state although in some cases (σ3' = 30, 60 kPa) an extrapolation was needed. An 

elasto-plastic state dependent constitutive model based on critical state soil mechanics 

framework is proposed to address aspects of particle breakage and nonlinear behaviour. 

This study has shown that particle breakage can significantly influence the critical state. At 

relatively higher confining pressure (σ3' ≥ 180 kPa), particle breakage is more pronounced 

and this causes a shift of the location of critical state line on the q-p' and  -lnp' planes. As 

particle breakage increases, the critical state stress ratio Mc decreases. The CSL on  -lnp' 

plane is no longer a straight line, and the location of CSL changes as the extent of breakage 

(BBI) increases. The CSL on the  -lnp' plane becomes a critical state surface when the extra 

dimension of BBI is added. Based on the drained compression test data, a hyperbolic relation 

for the critical state surface was proposed to relate the specific volume with BBI. 

During triaxial shearing, the hardening of ballast depends on p
s ,   and BBI and this can be 

reflected by a hyperbolic hardening relationship. Dilatancy for ballast depends not only on , 

and   but also on BBI. The present study reveals that effects of particle breakage and their 

implications on the nonlinearity of CSL are successfully captured in the constitutive 

equations, and the model predictions are encouraging when compared with the laboratory 

data. 
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Notation  

Ad                          multiplier in flow rule 

a, b                        model parameter linking particle breakage to the specific volume 

B                           Skempton’s coefficient 

Bm                         parameter controlling hyperbolic stiffness relationship 

BBI                       Ballast Breakage Index 

D                           dilatancy 

e, ei                        void ratio and pre-shear void ratio 

G                           shear modulus  

H                           hardening modulus 

kd, kp                      model parameters  
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Mc, Mc0                  critical state stress ratio with breakage and without breakage, respectively 

Md                          phase transformation state stress ratio 

Mp                          peak stress ratio 

m, n                        unit vector along plastic flow and normal to loading surface, respectively   

p', pi
'                       effective mean stress and initial p'. 

q                             deviatoric stress 

P
EW , P

RW , P
TW        effective, used for particle rearrangement and total plastic work 

                                   

 , β                        model parameters to cater effect of particle breakage 

b                            bulk unit weight 

e
sd , e

vd                elastic deviatoric and volumetric strain increment 

e , p                 elastic and plastic strain increment 

p
s , p

v                 plastic deviatoric and volumetric strain increment 

εs , εv                        deviatoric and volumetric strain 

p
s                            plastic deviatoric strain 

                              stress ratio ( = q/p') 

s                           hardening law 

b                           particle breakage parameter 

                            slope of CSL on  -lnp' plane 

μ                            non-linear CSL parameter on q-p' plane 

                            Poisson’s ratio 

b                           particle breakage parameter 

σ3'                          confining pressure 

, ref                    specific volume on the CSL and RCSL at p' = 1 kPa 

 , c                     specific volume and critical state volume 

                           state parameter 

                           non-linear CSL parameter on q-p' plane   

b                          particle breakage parameter 
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Figure captions: 

Fig. 1. Ballast breakage index (BBI) calculation method (after Indraratna et al. 2005). 

Fig. 2. Particle size distribution of tested ballast, including the upper and lower bounds from 

Standards Australia (1996). 

Fig. 3. Static response of ballast: (a) variation of deviatoric stress q with deviatoric strain εs 

and (b) variation of volumetric strain εv with deviatoric strain εs. 

Fig. 4. Monotonic triaxial tests on ballast: (a) ctitical state points on q-p plane, (b) critical 

state points on  -lnp plane and (c) shift of PSD after triaxial shearing. 

Fig. 5. Critical states for ballast: (a) critical state line on q-p plane, (b) variation of Mc with  

σ3' and (c) evolution of Mc with BBI.  
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Fig. 6. Critical state surface in compression-breakage space (modified after Muir Wood and 

Maeda 2008). 

Fig. 7. Incremental plastic strain vectors along stress paths. 

Fig. 8. Variation in dilatancy with material state. 

Fig. 9. Particle breakage parameters (data sourced from Indraratna and Salim 2002). 

Fig. 10. Model predictions compared with experimental results of drained triaxial shearing: 

(a) stress-strain response, (b) volume change behaviour, (c) particle breakage predictions and 

(d) void ratio. 

Fig. 11. Model predictions compared with experimental results of drained triaxial shearing 

(data sourced from Indraratna et al. 1998, 2013; Salim and Indraratna 2004). 

Fig. 12. Model predictions compared with experimental results of drained triaxial shearing 

(data sourced from Suiker et al. 2005; Anderson and Fair 2008; Aursudkij et al. 2009).  

Fig. 13. Model predictions compared with experimental results of drained triaxial shearing  

for rockfill materials (data sourced from Varadarajan et al. 2003; Chavez and Alonso 2003). 

Fig. A1. (a) An example of test (σ3' = 60 kPa) that ended before reaching the critical state; (b) 

estimation of the critical state stress ratio by means of stress-dilatancy based approach. 

Fig. C1. Determination of shear modulus G. 
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Table 1. Summary of the monotonic triaxial tests. 

Test name  Confining pressure, σ3' (kPa) Bulk unit weight, b (kN/m3) 

S1 

S2 

S3 

S4 

S5 

S6 

S7 

S8 

S9 

30 

60 

180 

240 

300 

360 

420 

570 

60 

15.3 

15.3 

15.3 

15.3 

15.3 

15.3 

15.3 

15.3 

11.6 
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Table 2. Model parameters. 

Model 
properties 

Parameters Current study  Indraratna 
et al. 
(1998) 

Indraratna 
et al. 
(2013) 

Salim and 
Indraratna (2004) 

Suiker et al. 
(2005) 

Anderson 
and Fair 
(2008) 

Aursudkij et al. 
(2009) 

Varadarajan 
et al. (2003) 

Varadarajan 
et al. (2003) 

Chavez and 
Alonso 
(2003) With 

breakage 
Without 
breakage 

Material type ------ Basalt Basalt Basalt Basalt Basalt Granite Limestone Sedimentary 
rock 

Metamorphic 
rock 

Cambric 
slate 

Test details σ3' (kPa) 
ei 

60/180 
0.732/0.75 

30/120 
0.79/0.70 

30/60 
0.78/0.75 

100/200/300 
0.685/0.658/0.646 

10.3/41.3/68.9 
0.53/0.70/0.70 

40/140 
0.84/0.82 

10/30/60 
0.63/0.63/0.63 

350/700 
0.6/0.6 

600/900 
0.6/0.6 

100/300 
0.599/0.594 

Gradation 
characteristics 

d50  (mm) 
Cu 

39.5 
1.53 

38.9 
1.50 

38.8 
1.55 

35 
1.60 
 

24.2 
1.70 

40.4 
1.40 

40 
1.56 

12 
95 

13 
13 

22 
2.9 

Elasticity 
 
 

G  (MPa) 
 

8/12 
0.3 

5.27/10.83 
0.25 

5.33/7.33 
0.25 

9.33/7.83/14.67 
0.3 

4.17/26.67/44.67 
0.10 

23.9/35.2 
0.25 

3.67/4.17/16.67 
0.3 

18.75/31.25 
0.29 

33.3/33.3 
0.31 

4.67/13.33 
0.29 

Particle 
breakage 

b 
b 
b 

0.33 
11.5 
6.4 

0 
0 
0 

0.30 
11.2 
6.1 

0.31 
11.4 
6.2 

0.33 
11.5 
6.4 

0.31 
11 
6.5 

0.35 
12.5 
6.8 

0.01 
12 
5 

0.25 
15 
7.38 

0.21 
12 
7.3 

0.5 
13 
6.9 

Critical state ref 
 
Mc0 
 
a 
b 

2.41 
0.105 
2.6 
4.287 
0.2 
1.87 

2.41 
0.105 
2.18/2.0 
0 
0 
0 

2.80 
0.164 
2.52 
2.833 
0.061 
2.267 

2.70 
0.123 
2.45 
4.517 
0.048 
2.716 

2.70 
0.155 
2.24 
0.938 
0.038 
1.127 

2.30 
0.053 
2.15 
4.424 
0.030 
12.36 

2.60 
0.112 
2.43 
6.229 
0.016 
7.937 

1.85 
0.016 
2.4 
54.6 
0.042 
0.8 

1.65 
0.004 
2.36 
0.748 
0.036 
1.844 

1.701 
0.009 
1.9 
1.319 
0.025 
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Fig. 1. Ballast breakage index (BBI) calculation method (after Indraratna et al. 2005). 
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Fig. 2. Particle size distribution of tested ballast, including the upper and lower bounds from 

Standards Australia (1996). 
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(a) 

 

(b) 

Fig. 3. Static response of ballast: (a) variation of deviatoric stress q with deviatoric strain εs 

and (b) variation of volumetric strain εv with deviatoric strain εs. 
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(a) 

 

(b) 

 

(c) 

Fig. 4. Monotonic triaxial tests on ballast: (a) ctitical state points on q-p plane, (b) critical 

state points on  -lnp plane and (c) shift of PSD after triaxial shearing. 



36 
 

 

(a) 

 

(b) 

 

(c) 

Fig. 5. Critical states for ballast: (a) critical state line on q-p plane, (b) variation of Mc with 

σ3' and (c) evolution of Mc with BBI.  
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Fig. 6. Critical state surface in compression-breakage space (modified after Muir Wood and 

Maeda 2008). 
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Fig. 7. Incremental plastic strain vectors along stress paths. 
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Fig. 8. Variation in dilatancy with material state. 
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Fig. 9. Particle breakage parameters (data sourced from Indraratna and Salim 2002). 
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(a)                                                                     (b) 

 

(c)                                                                     (d) 

Fig. 10. Model predictions compared with experimental results of drained triaxial shearing: 

(a) stress-strain response, (b) volume change behaviour, (c) particle breakage predictions and 

(d) void ratio.  
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(a)                                                                      (b) 

 

(c)                                                                      (d) 

 

(e)                                                         (f) 

Fig. 11. Model predictions compared with experimental results of drained triaxial shearing 

(data sourced from Indraratna et al. 1998, 2013; Salim and Indraratna 2004). 
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 (a)                                                                   (b) 

   

(c)                                                                    (d) 

 

(e)                                                                     (f) 

Fig. 12. Model predictions compared with experimental results of drained triaxial shearing 

(data sourced from Suiker et al. 2005; Anderson and Fair 2008; Aursudkij et al. 2009).  
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(a)                                                                        (b) 

 

(c)                                                                       (d) 

 

(e)                                                                       (f) 

Fig. 13. Model predictions compared with experimental results of drained triaxial shearing  
for rockfill materials (data sourced from Varadarajan et al. 2003; Chavez and Alonso 2003). 
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Appendix A: Example of estimation of critical state 

Figure A1(a) shows an example of a test (σ3' = 60 kPa) that was stopped when the volumetric 

strain was still changing slightly. The value of stress ratio at the critical state, (q/p')cs, has 

been predicted from the stress-dilatancy graph (Fig. A1(b)) for the test, extending the last part 

of the curve to the point of intersection with the zero dilatancy axis (Carrera et al. 2011). The 

rate of volumetric strain, δεv/δεs, plotted against the stress ratio was used to assess dilatancy, 

where εv is volumetric strain and εs is deviatoric strain. The (q/p')cs value was determined as 

2.17. 

 

    (a)                                                                  (b) 

Fig. A1. (a) An example of test (σ3' = 60 kPa) that ended before reaching the critical state; (b) 

estimation of the critical state stress ratio by means of stress-dilatancy based approach. 

The separation between the region of compression and the region of dilation for drained tests 

on ballast occurs at the phase transformation state at which dilatancy δεv/δεs = 0, as shown in 

Fig. A1(a). The phase transformation state and the critical state are very similar, as discussed 

by Luong (1982). For dense ballast or ballast at low confining pressure, the phase 

transformation state is reached at small strain magnitudes, as indicated in Fig. A1(a), while 
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the critical state is reached at large strains. Hence, the phase transformation state can be used 

to give the most appropriate value of (q/p')cs which was determined as 2.15.  
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Appendix B: Derivation of H 

According to generalized plasticity, hardening modulus is defined as: 
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The linear yield function is expressed as: 
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Partial differentiation of eq. [B2] yields: 
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Critical state stress ratio can be expressed: 
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Partial differentiation of eq. [B7] gives: 
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The state parameter is expressed as: 
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Substituting eq. [B9] into expression pk1  and taking partial differentiation of it give: 
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Third term in eq. [B1] can be expressed as: 
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where g is the plastic potential function.  

Substituting eqs. [B4], [B5] and [B11] into eq. [B1], H is expressed as: 
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Appendix C: Determination of elastic shear modulus G 

The elastic shear modulus G, can be evaluated from stress-strain data of triaxial shearing, as 

shown in Fig. C1. The initial small q-εs plot gives the value of 3G. Shear modulus G can be 

determined by: 

[C1]          
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
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3

 

where δq and δεs are increments of stress and strain separately. 

 

Fig. C1. Determination of shear modulus G. 

 


	Observed and predicted behaviour of rail ballast under monotonic loading capturing particle breakage
	Recommended Citation

	Observed and predicted behaviour of rail ballast under monotonic loading capturing particle breakage
	Abstract
	Disciplines
	Publication Details

	Microsoft Word - Observed and predicted behaviour of rail ballast under monotonic loading capturing particle breakage

