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STRESS MEASUREMENT IN COAL SEAM AHEAD OF 

LONGWALL FACE – CASE STUDY 

Radovan Kukutsch, Petr Konicek, Petr Waclawik, Jiri Ptacek, 
Lubomir Stas, Martin Vavro and Alice Hastikova1 

ABSTRACT: Stress measurement and stress monitoring is an important task in mining geomechanics, 
because knowledge of the stress-strain state in a rock mass is the determining factor for the proper 
planning of roadway support and for the correct design of underground mining. This strategy is useful for 
ensuring mining safety, because increasing depth causes several issues, especially in areas with 
rockburst hazard, when roadways are loaded by the pressure ahead of an advanced longwall or by the 
stresses induced by destress blasting in overlying rock. Besides, mining is influenced by stress induced 
by previous excavations, mining edges in the overburden or abandoned workings in the same seam. 
The paper presents experiments with Compact Conical-endedBorehole Monitoring (CCBM) probes, 
which were used for stress monitoring in the area of a high-capacity coal face at Karvina Mine at the 
Lazy site (Czech Republic). This longwall panel is influenced by all the factors mentioned above. 
Monitoring of stress changes was carried out by using conical probes (CCBM) glued into a special 
cement body, which was installed directly into the coal seam. The basic description of the probe installed 
in the coal, the method of installation and the measurement results are the subject of this contribution.  
Another aim of the paper is to compare the measured values with the theoretical assumptions and 
mathematical model results. 

INTRODUCTION 

Knowledge, that is as accurate as possible, of the stress-strain state in the rock mass is the determining 
factor for the proper planning of roadway support and for the correct design of underground mining. That 
is why monitoring of the changes in stress induced by longwall mining was included within this 
experiment.  
 
The problems of rock stress and its determination have been under investigation at the Institute of 
Geonics for a long time. For the determination of all the components of the stress state, a Compact 
Conical-ended Borehole Overcoring (CCBO) system was used, which was first used by K. Sugawara 
and Y. Obara from Kumamoto University (Sugawara and Obara 1999; Obara and Sugawara 2003). The 
conical shape of the CCBO probe provides a sufficient number of strain measurements in independent 
directions in one probe position in the borehole, so that all the values of the stress tensor can be 
determined. Two variants of the CCBO probe were developed and used at the Institute of Geonics. The 
latter, called a Compact Conical ended Borehole mMonitoring (CCBM) method device, was used for 
long-term monitoring of stress tensor changes (Stas et al., 2005, 2011). Several measurements of stress 
tensor changes by the CCBM were performed (Soucek et al., 2013, Konicek et al., 2014). However, all 
the probes were installed in compact rocks, into the overburden of the coal seam. The flat conical shape 
of the borehole bottom is necessary for these types of probes in order to obtain relevant monitored data. 
In order to monitor the stress changes in the coal seam, a CCBM conical probe was glued into a special 
cement body. The body containing the CCBM probe was installed into a borehole in a selected longwall 
panel in the Karvina Sub-basin (see Figure 1) in the Upper Silesian Coal Basin (USCB). The system of 
the embedded cement body with the conical probe was implemented due to the impossibility of directly 
installing the conical probe into the coal due to the properties of coal (a brittle material that fails easily). 

 

MINING AND GEOMECHANICAL CONDITIONS 

The longwall t explored was the second panel in seam No. 4, which has a thickness of 3 to 8 m; the 
average seam thickness is 6.2 m. The seam lies about 800 m below the surface. The bed dip ranges 
from +10° to –17° (differing in the eastern and western limbs of the anticline). The longwall face length 
was 191 m. The explored area is documented in Figure 2. The hard coal seam is covered by solid and 
competent sandstone and sandy siltstone layers in this area. 
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Figure 1: Location of the Karvina Sub-basin in the Upper Silesian Coal Basin (USCB) 
 
In addition, seams No. 1, 2, and 3 have been irregularly mined out in the overburden. This causes 
irregular stress distribution in the rock mass and consequently a high risk of rockburst in the course of 
longwall mining. Seam No. 4 lies in the lower part of the Sedlove Member of the Namurian age. The 
main tectonic structures are obvious from Figure 2. A very flat anticline (maximum dip up to 20°) divides 
the geological block into two different parts, and three faults A, B and C. The influence of the mine edges 
of seams No. 2 and 3 in the overburden is evident from Figure 2 as well. For stress distribution in the 
area of the explored longwall, it is necessary to consider the mining in seams No. 2 and No. 3 in the next 
colliery B (east and north east of the explored area – see Figure 2). The first panel in seam. No. 4 was 
already mined out south of the explored long wall. Additional stress caused by this goaf caused a stress 
concentration in the south part of the explored panel. It was necessary toconsider the additional stresses 
caused by residual pillars in seams No. 2 and No. 3 too. These were left in the overburden at a distance 
of about 50 m and 80 m respectively. The location of experimental stress measurement in seam No. 4 
(see CCBM 21 in Figure 2) was in the area of the border of the shaft protective pillar, where the 
additional stress concentration produced by the edges of seams No. 2 and 3 was considered. 

 

 
 

Figure 2: Geological and mining condition of explored area 
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DESTRESS BLASTING 

Destress blasting in the area of the longwall termination was adopted (see Figure 3). The main goal of 
the destress blasting was to weaken the strength/massiveness of the overlying competent rock strata 
before the underground mining began in the area of additional stress from previous mining in the 
overburden seams (seams No. 2 and 3 in Figure 2). First, the horizon of the competent overlying strata 
was identified through the procured core samples. Then, different sets of predefined, long boreholes 
were drilled from the gate-roads, targeting these competent strata and the existing mining activity in and 
around the panel.  
 
A schematic diagram of the adopted design for the long borehole drilling for the destress rock blasting in 
the termination part of the panel is shown in Figure 3. Boreholes for the first main goal of destress 
blasting were drilled upwards at angles between 15o and 35o from both of the longwall gate-roads 
(boreholes perpendicular to gates and inclined boreholes towards the north from the maingate, all in 
Figure 3). The borehole lengths varied from 50 m (boreholes north from the maingate) to 100 m 
(boreholes perpendicular to gates). In view of the calculated amount of explosive required for the 
destress rock blasting, the diameter of these boreholes was 93 mm and the spacing of the boreholes 
was 10 m (boreholes perpendicular to gates). With suitable length and angle combinations for these 
boreholes, the bottoms (ends) of all of the boreholes were situated at a similar horizon inside the roof, 
nearly 25 m above coal seam No. 4.  
 
All of these upward-drilled boreholes were charged pneumatically by the gelatine-type explosive Perunit 
28E (heat of explosion 4100 kJ.kg-1), and sand was used for the stemming. The length and amount of 
explosive in each borehole varied according to the surrounding geo-mining conditions. According to the 
condition of explored panel No. 140 704, the lengths of the charge in the different holes varied from 32 m 
to 80 m, and the length of the sand stemming varied from 18 m to 46 m. An individual group of loaded 
boreholes, typically ranging from 4 to 5 boreholes, was fired in advance according to the predefined 
firing order. All of the charged boreholes in a certain group were fired simultaneously, without any delay. 
The weight of the explosive charged in different holes varied according to the adopted length of the 
borehole. The amount of the explosive charged in a hole of the panel varied from 250 kg to 700 kg. The 
total amount of explosive (for the 4 to 5 boreholes in a group) blasted at a time in the panel varied from 
1275 kg to 3050 kg.  
 
According to the site conditions, boreholes Nos. 41–46, 61–64, and 161–164 (Figure 3) were adopted to 
dilute the influence of the edges between the mined and the un-mined parts of the seams in the 
overburden. Blasting in boreholes Nos. 71–75 and 171–175 were used to isolate the mining in the 
longwall panel and the protection shaft pillar. These borehole blastings were designed to develop 
continuous fractures in the rock mass, which is likely to be responsible for the generation and the 
accumulation of stress concentrations due to the mining. The competent overlying rock strata, which are 
continuously fractured due to these blastings, were also observed to be caving friendly. The decision to 
blast different individual groups of boreholes at different stages was made according to the surrounding 
workings and the strata, the development of seismic activity during mining and the advancement of the 
longwall face. As per the geo-mechanical properties of the overlying rock strata and existing legislation, 
the positions of the fired boreholes were kept in the range of 30 m to 100 m ahead of the longwall face 
(stages 21–23) and at a distance more than 100 m ahead of the longwall face (stages 19 and 20). The 
amount of explosive to be charged in each borehole is derived from the dimensions of the selected 
boreholes for firing. Finally, the selection of boreholes depends on the existing mining conditions, natural 
conditions and agreement of the registered seismic activity with the legislation. 
 
The efficiency of the adopted destress blasting at the different mining stages is evaluated in terms of 
seismic effect (SE), which is calculated through the available seismic monitoring data and the weight of 
the explosive charged (Konicek 2013). These technical evaluation methods provided satisfactory results 
for the destress blasting design process. Results as well as destress blasting parameters are shown in 
Table 1. In spite of the fact that the main goal of the destress blasting was different (see text above), the 
seismic effect, which represents the effect of stress release in the rock mass, was very high (see Table 
1). For the first three stages of destress blasting (stages No. 19, 20 and 21 in Table 1), the stress 
release effect of destress blasting was evaluated as Excellent (SE= 24.8, 44.6 and 14.9), while in the 
last stages it was extremely good and very good. This corresponds to previous knowledge of destress 
blasting in similar conditions (e.g. Konicek et al., 2013). 
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Figure 3: Destress blasting design in area of longwall termination 
 

Table 1: Destress rock blasting parameters conducted in explored longwall 
 

Stage 
Numbers of 
boreholes 

Explosive 
charge 
[kg] 

Released 
seismic 
energy 

[J] 

Seismic 
effect 
By Konicek 
2013 

[J.kg-1] 

Seismic effect 
evaluation 

19 71, 72, 73, 74, 75 2 900 1.5E+05 24.8 Excellent 

20 
171, 172, 173, 
174, 175 

2 975 2.8E+05 44.6 Excellent 

21 
61, 62, 41, 161, 

162 
3 050 9.8E+04 14.9 Excellent 

22 
63, 64, 42, 163, 

164 
3 050 5.8E+04 8.7 

Extremely 
good 

23 43, 44, 45, 46 1 275 1.3E+04 5.0 Very good 

EXPERIMENT DESCRIPTION 

The objective of the experiment was to determine the stress-strain changes in the coal seam. As noted, 
the location of the experiment was chosen in an area where an additional stress concentration was 
contributed by the edges of seams in the overburden near the protective shaft pillar. Because the probe 
was not installed in the overlying rocks, where installation is relatively easy, it was necessary before 
installation in the coal seam to solve several problems. 
 
These consisted of two main technical aspects: 
 

• coal is a brittle material and close contact between the conical probe and coal is problematic, 
• suitable consistency of grouting mixture. 

 
The approach to these issues and the solution of these problems is the subject of the followingsections. 
 
 



2015 Coal Operators’ Conference The University of Wollongong 
 

 

 
58 11 – 13 February 2015 

Parameters of filling material for fixing probe in the borehole in the coal seam 
 
The basic input requirements for the composition and properties of the cementitious filling (grouting) 
mixture applied to a borehole in the coal seam, which had to be taken into account when designing the 
recipe, were: 

1. The mixture in the fresh state has to exhibit a very high degree of plasticity so that it is able to 
spontaneously (by gravity) fill the space of a borehole with a very low inclination (10-15°); 

2. Aggregates with grain sizes as small as possible must be used as filler in the mixture, with 
regard to the maximum homogeneity of the hardened mixture and the minimum porosity; 

3. During the process of the setting and hardening of the mixture, shrinkage must not occur, so that 
the maximum possible contact between the cement filler and surrounding coal can be 
maintained during subsequent stress measurement. 

 
The grouting compounds in fresh state were prepared and tested in the laboratory, showing properties 
comparable with the cast self-compacting and self-levelling materials that are commonly applied in the 
construction industry (e.g. as floor screeds). These are characterised by a high degree of spill (260-280 
mm according to EN 13454-2: 2008), a relatively high flow rate (approximately 100 mm.s-1) even in a low 
tilt test in PVC pipe (15°), and a low content of air pores (max. 2%). 
 
During setting and hardening, the mixture exhibited moderate expansion of its volume. After 28 days of 
hydration of the mixture, the total value of the length change was approximately +0.3 mm.m-1. The 
resulting mechanical and deformation properties of the hardened mixture are characterised by 
unconfined compressive strength in the range of 35-40 MPa, tensile bending from 5.0 to 6.0 MPa, 
indirect tensile strength from 3.0 to 4.0 MPa, static tensile modulus of 12-15 GPa and Poisson number 
from 0.15 to 0.22. 
 
Installtion 

The installation procedure in a coal seam is different from the installation in the overlying rocks. Since 
the probe would not stick to the coal and close contact between the probe and rock would not be 
possible, it was decided to put theprobe into a concrete body and then install this “container” in the 
borehole. The problem of inserting the probe into the concrete was solved by sticking the probe into a 
concrete body 75 mm in diameter (Figure 4). After solidification, this body was inserted into the casting 
vessel and secured with concrete, which increased the body dimensions of the probe to 280x100 mm. In 
order to approach a condition similar to that of the inserted probe in the body when it was sealed in the 
borehole, a free space was created behind the probe. Subsequently, centralisers with the same 
diameter as the borehole were mounted in front of and behind the probe in order to centre the body in 
the borehole. The orientation of the probe in the borehole was solved by using a pointer on the 
centraliser. Due to the dimensions of the probe, it was necessary to adjust the borehole diameter to the 
final proportions of the concrete container including the centralisers. 
 
The experimental data shows how the coal will behave at the cave front.  Under low confining stress, 
cleating has a dominant role and results in a weakening effect on the coal (this effect is similar to rib 
spall). Further into the coal mass, confining stresses are higher and shearing is more predominant.  
The caving model needs to be able to mimic the expansionary effect of coal at low confining stress, 
whilst adequately reflecting the effect of scale on strength. 
 

 
 

Figure 4: Cement body probe scheme: (1) CCBM probe (2) Inner cement body (3) Outer cement 
body (4) Centralizers (5) Free space (6) Pointer 
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Installation of the CCBM probe in front of the longwall No. 140 704 was done on the tailgate at the 128 m 
station. A borehole 10 m in length and 200 mm in diameter was drilled. The borehole was made 
perpendicular to the gate side at an inclination of 10° so that the end of the borehole was located in the 
coal (Figure 5). 

 
 

Figure 5: Cross-cut at tailgate 40 703 
 
After drilling and cleaning the borehole, a video inspection of the borehole was performed. After a 
positive result (the borehole was accessible over its entire length), installation proceeded. This consisted 
of inserting the concrete container with the CCBM probe into the borehole using the installation rods and 
grouting the cement mixture. The dry, bagged mixture was mixed with the predetermined quantity of 
water and other additives. To transport the mixture to the end of the borehole, a PVC pipe was used to 
ensure that the mixture reached the bottom of the borehole and not elsewhere. The last step was to 
verify communication of the probe with a data logger. 
 
24 hours after installation, the borehole was inspected using a video camera to verify successful 
solidification of the mixture. Subsequently, readings from the probe were taken and regular daily 
monitoring started. Mine employees took values from the probe and recorded the real daily advance and 
stationing of the coalface at the tailgate. The last step was to fill the mouth of the borehole with fitting 
foam. 

STRESS CHANGES MONITORING AND MODELLING 

The stress field induced ahead of a longwall face is affected by many factors, especially by: 
 

 speed of advance of longwall, 
 influence of previous mining activities (pillars and mining edges in the overburden), 
 additional stress from the goaf of the previous longwall panel, 
 occurrence of rigid strata between thick coal seams, and 
 destress blasting and other rockburst prevention measures. 

 
For the appropriate and correct interpretation, it is desirable to analyse all factors and to search for 
mutual relations. As it turns out, each of these factors play an important role in the development and 
change of the stress field. It should be pointed out that the longwall advance was irregular (from 0.5 m to 
4.2 m per day) in the monitored period. Geological and geomechanical conditions were the main causes 
of it. Local coal seam erosion as well as tectonic faults caused fractures in the overburden and 
consequently rockfall in the longwall space. It took numerous drilling and blasting works to strengthen 
the longwall face.  
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Experiments of principal stress monitoring during longwall advance were modelled using the finite 
element method via Midas GTS 3D software. The linear elastic material model was used to obtain trends 
of principal stress changes during longwall face advance. The lengths of longwall advances in the model 
were chosen as 50 m. The final 50 m advance interval was separated into 5 m long sequences. 
Together, 17 stages were defined in the construction wizard – the primary stage and 16 advance stages 
defined by two phases. The first phase of each advance stage was ″excavation of the working unit” and 
the following phase was “caving” of the working unit, including roof units. Finally, goaf areas were 
connected from the left side and front of the longwall panel and on the right side the original rock massif 
remained. Total volume of the model was 0.05 km3.  
 
The total stress field represented by its tensor (σ) was considered as the superposition of the basic 
stress tensor measured at the time of the probe installation (σ0 – start of monitoring) and supplementary 
stress changes monitored in the course of longwall advance (S) (Figure 6). 
 

σ = σ0 + S 
  
 

 
 

Figure 6: Relative principle components s(j) of tensor {S} ahead of longwall face 
 
Supplementary stress change monitoring as well as mathematical modelling were done at a distance of 
200 m before the CCBM probe. But only a 100 m section was selected for presentation (Figure 6). To 
better distinguish the shape of the graphs, the in situ monitored tensor (Sis) and modelled tensor (SM) 
were normalised by their maximal achieved value using the following relations: 
   

sis(j) = Sis(j)/Sis(1)max – for in situ monitoring 
sM(j) = SM(j)/SM(1)max – for model 

 
where (j) is adequate three normalised principal components. 
 
The trend in this case is more important than the stress change magnitude (strong, different elastic 
modulus of coal and elastic modulus of concrete material of cylinder). In Figure 6 the trend of the 
normalised principal component monitored by CCBM sis(1) illustrates that values monitored by the probe 
in the concrete body are in compliance with normalised principal components calculated by the 
mathematical model sM(1). Different trends are evident from comparison of both of the other 
components: sis(2,3) and sM(2,3). This could be caused by simplification of the mathematical model 
against real conditions. 
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CONCLUSION 

The article describes an experiment of measuring the stress changes induced by longwall face advance 
in a coal mine and presents results of the induced stress changes determined by the CCBM method. 
The CCBM probe itself was situated in the coal seam and was embedded in a concrete body. The 
results of the experiment show that it is possible to measure induced stress change by this method as 
the trends of the 3D model are in agreement with the results of the ones in situ. The next step of this 
research will be to determine the stress surrounding the concrete body (in the coal seam) and to 
determine the relationship between stress within the concrete body and outside of the concrete body in 
the coal seam. Mathematical model calibration according to the measured data must follow as well. 
Other variants of the placement of the probe in the concrete body will also be the topic of future work. 
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