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mechanical properties and electrical resistivity of Mg-3Al-1Zn alloy
ribbons

Abstract

This paper investigates the influence of vacuum annealing temperature on the microstructure, mechanical
properties and electrical resistivity of Mg-3Al-1Zn rapid solidification (RS) magnesium ribbons. The results
indicate that when the annealing temperature is increased, the grain size of the ribbons is dramatically reduced
from 10 to 1 um. The highest break stress and micro-hardness is obtained at 673 K. These effects are ascribed
to the dispersion strengthening caused by the high amount of fine nanoparticles distributed in the material.
Electrical resistivity-temperature (p-T) curves have been used to provide useful information about the effects
of the annealing temperature on the grain size, grain orientation and crystal structure of the ribbons. In this
way, a new lightweight electric wire or connection cable line could be produced which would have good
electromagnetic interference (EMI).
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Abstract

This paper investigates the influence of vacuum annealing temperature on the microstructure,
mechanical properties and electrical resistivity of Mg-3Al-1Zn rapid solidification (RS)
magnesium ribbons. The results indicate that when the annealing temperature is increased, the
grain size of the ribbons is dramatically reduced from 10 to 1 um. The highest break stress and
micro-hardness is obtained at 673 K. These effects are ascribed to the dispersion strengthening
caused by the high amount of fine nanoparticles distributed in the material. Electrical resistivity-
temperature (p—7) curves have been used to provide useful information about the effects of the
annealing temperature on the grain size, grain orientation and crystal structure of the ribbons. In
this way, a new lightweight electric wire or connection cable line could be produced which

would have good electromagnetic interference (EMI).
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Magnesium (Mg), one of the lightest structural metal materials has the advantages of a good
specific strength and stiffness ratio, easy damping, cutting, and recycling. Because of their low
density and highly specific mechanical properties, Mg-based materials are often used by
companies for light-weight applications such as in the aerospace and automotive industries [1].

However, a limited number of slip systems in Mg results in inadequate strengthening and in the
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degradation of ductility or deformability. Recent research into the formability of Mg-based
alloys that involves the activation of alternative deformation mechanisms has been done for
ultra-fine grained or even nanometer-scale materials [2-5]. RS is an opportunity to extend solid
solubility, produce new phases and refine and homogenize microstructure, extending the solid
solubility limits, etc. Magnesium alloy is easily oxidized, especially the ribbon easy combustion
etc. RS makes full use of the advantage of the entire metal melting with eddy current energy in a
vacuum so that impurities in the air can be prevented from entering into the magnesium and a
high-quality alloy can be produced. While heat treatment in a vacuum environment can prevent
oxidation and has a degassing effect which will further refine the grain structures. The
fabrication of high-purity magnesium also uses a vacuum evaporation system and the Mg is then
purified [6-8]. Hexagonal metals present a more complex case due to their low symmetry, which
restricts the number of slip systems, and their strong plastic anisotropy. As for other use of
vacuum treatment of magnesium, such as AZ31, AZ61, ZK60, ZE41 and AZ80 are mainly on
the encouraging the corrosion resistance and vacuum diffusion bonding [9, 10, 11, 12].

The present research concentrates primarily on an annealing temperature of 573 K and lower.
There are very few studies reporting annealing temperatures higher than 573 K for RS ribbons.
However, for industrial-size material, the repeated roll casting reprocessing procedure requires a
temperature above 723 K for approximately 10 hours [13, 14]. Whether the higher annealing
temperature can produce new phases and whether the refined and homogenized microstructure
affects the mechanical properties are not yet clear. Until now, no particular relationship between
vacuum annealing temperature, grain size and electrical resistivity has been reported [15, 16].

In the present work, the effects of the vacuum annealing temperature on the microstructure,
the mechanical properties and the electrical resistivity of Mg—3Al-1Zn alloy ribbons at 573, 673
and 773 K are investigated. This study aims to obtain the annealing temperature on grain size,
grain orientation, crystal structure, mechanical properties and electrical resistivity of the ribbons
fabricated by RS. The nominal composition of the AZ31B alloy in weight percentage is 3.0 % Al,
1.0 % Zn, 0.27 % Mn and the rest Mg. The raw material of AZ31B was induction-melted in a
quartz tube and melt-spun at a typical wheel surface speed of 30 m/s. Ribbons are vacuum-
annealed at the pressure of 2x10™ Pa with an elevated temperature of 573, 673 and 773 K for 1 h
and then cooled along with the vacuum furnace. The microstructure and cross-section of the

ribbons were investigated by a field emission scanning electron microscope (FE-SEM, Hitachi



S-4800) attached to an X-ray energy dispersive spectroscopy (EDS) setup. The crystal structure
of the sample was analyzed using a Panalytical X'Pert PRO type X-ray diffractometer (XRD)
with Cu Ka radiation. The Vickers hardness number (VHN) was determined using a
microhardness test machine (HXP-1000TM). Indentations were made with a 100 gf load applied
for 15 seconds. Mechanical tests including break stress and elongation were performed at room
temperature using an Instron-type tensile testing machine (Testometric M350-10KN, England)
under a constant cross-head speed of 1 mm/min. The electrical resistivity of the ribbons was
measured using a Quantum Design's multi-use vibrating sample VersalLab system. The
temperature-dependent electrical resistivity (p—7) curves were measured at a cooling/heating rate
of 3 K/min with four probe technique.

The room-temperature XRD patterns of AZ31B as-spun and annealed at temperatures of 573,
673 and 773 K for 1 h are presented in Fig. 1. It can be seen that the patterns can be indexed as a
hexagonal close-packed structure, which indicates that the samples are in the a-Mg phase at
room temperature. No secondary phase (5-Mgj7Al,) is observed from the diffraction pattern.
Because the solidification of ribbons is very fast (wheel speed 30 m/s), the f-Mg;7Al;, phase
does not have enough time to precipitate. According to the relationship between cooling rate and
ribbon thickness (~40 pm), the cooling time is calculated to be about 1.20x10” s and the cooling
rate is about 5.8x10" K/s. As RS can greatly increase the solubility of Al in the a-Mg phase,
supersaturated solid solution AZ31B alloy ribbons are formed, and this can significantly improve
the mechanical properties [6, 8, 17, 18].

The lattice parameters (a, b, c¢), ¢/a and intensity ratio of Ioo2)/I(10-11) of the samples are
calculated. The parameters a and ¢, and the lattice parameter of the ¢/a has been changed but not
significantly. The intensity ratio of Zoo2)/l(10-11y 1s significantly influenced by the annealing
temperature, however: 0.2558 (as-spun), 0.3104 (573 K), 0.3518 (673 K) and 0.3250 (773 K). It
is known that the basal plane orientation is very sensitive to the grain orientation and crystal
structure, and the intensity ratio of Ioo2)/I(10-11) may also affect the mechanical properties of the

magnesium ribbons [12, 17, 18].
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Fig. 1 Room-temperature XRD patterns of AZ31B (a) as-spun ribbon and vacuum annealed at (b) 573 K, (c)
673 Kand (d) 773 K for 1 h.

The microstructure of the ribbons was investigated using FE-SEM. Figure 2 shows the typical
FE-SEM micrographs of AZ31B as-spun ribbon and vacuum annealed at 673 K for 1h. As
showed in Fig. 2(a), a typical dendrite crystal structure is observed under rapid cooling. Fig. 2(b)
shows the microstructure of the as-spun ribbon’s free surface. It is an equiaxial crystal structure
with an average grain size of 5-10 um, which is far below the grain size obtained by the
conventional casting process. In RS conditions, the diffusion and migration of the solute atoms at
the solid-liquid interface are hindered, leading to fast a-Mg crystal growth and a high rate of
solute rejection. In this way, a single supersaturated phase forms, which is significantly different
from the conventional transformation of liquid—a-Mg + f-Mg7Al;; [19-21]. Fig. 2(c) shows the
typical micrographs of AZ31B ribbon annealed at 673 K for 1 h. According to the XRD patterns,
the samples are either still or in the a-Mg state at room temperature. However, as shown in Fig.
2(c), the crystal structure with an average grain size of 0.5-1.0 um is far below the as-spun grain
size. In Fig. 2(c) the ultra-grains with a grain size of about 20-50 nm are observed at the large o-
Mg grain surfaces and edges. Ordinary solidification of Al in magnesium is 11.5 wt %, which is
much higher than that of any original AZ31B contents, and it may be that no more Al atoms can
precipitate. A regional point scan using EDS shows that the nanoparticles are of about Zn

magnesium alloys, the Zn weight percentage is higher than the matrix [9]. The Mg 97Zn¢ o3 phase



has a relatively low melting point and will decompose at 623 K. The phenomenon of the
Mg;YZne phase on mechanical property enhancement has been reported on Mg-Zn-Y-Zr alloys,
and 1its transition temperature is about 720 K. From Fig. 2(c), numerous small nanoparticles
separated from the eutectic are homogeneously dispersed at the a-Mg grain surfaces and edges.

These particles contribute to the enhancement of material hardness [22-26].

nanoparticle
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Fig. 2 FE-SEM micrographs of the different regions of AZ31B as-spun ribbon free surface (a), (b) and 673

K vacuum annealed (¢)

The room temperature tensile properties of rapidly solidified ribbons are shown in Fig. 3. It
can be seen that the tensile stress and strain vary as the annealed temperature increases. The
ultimate tensile stress of the sample annealed at 673 K is about 203 MPa, which is much higher
than that of the other different temperature annealed samples. The strain of the sample annealed
at 673 K is about 3.8 %, which is half that of the as-spun ribbon. As the heat treatment
temperature is increased up to 773 K, the nanoparticle decomposes and as a result, both the
tensile stress and strain change dramatically. While annealing temperature is increased from 673

to 773 K, the tensile stress drops to 140 MPa and the strain increases to 4.75 %. Annealing



typically results in a soft, ductile metal that is easier to process. We can see that the elastic
deformation region has gradually expanded as the annealing temperature increases. The elastic
deformation region of as-spun ribbon is about 1% and annealing it at 573 K for 1 h increased the
level to 1.5 %. The 773 K annealed ribbon finally reaches 2.5 %. The yield strength is defined as
the 0.2 % proof stress. The sample annealed at 773 K for 1 h shows an obvious discontinuous
yield phenomenon with yield strength of about 25 MPa, which can significantly enhance the
capability of elastic-plastic deformation of AZ31B alloy [27, 28].

The tensile fracture surface of the AZ31B, (a) as-spun and annealed at (b) 573 K, (c¢) 673 K
and (d) 773 K have also been examined. The as-spun ribbon mainly contains the typical dendrite
and equiaxial crystal structure. The equiaxial crystal is a quasi-cleavage fracture with many
tearing edges, which provide the evidence that many courses were completed and much energy
was consumed before fracture. As for sample (c), the intensity ratio of Ioo2)//(10-11) has had the
maximum value. Plastic deformation is well known from the close-packed plane of the sliding
desired maximum critical shear stress, in addition to the dislocation density and grain size, the
crystallographic orientation also strongly influences the plastic deformation. This might be the
reason why the mechanical properties of the ribbon tensile test dramatically changed for the
sample annealed at 673 K for 1 h. The increase in tensile stress can be ascribed to the critical
stress for crack propagation at grain boundaries increasing as the grain size decreased. As for
sample (d), grain refinements give rise to not only a good combination of high strength and high
ductility at room temperatures, but also superplasticity. This indicates a tensile deformation
regime, and a large number of cavities can be found. The cavities are mostly small and the

majority of them are spherical.
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Fig. 3 Comparisons of the engineering stress-strain and fracture surface of four rapidly solidified AZ31B

alloy ribbons, (a) as-spun ribbon and annealed at (b) 573 K, (c) 673 K and (d) 773 K for 1 h.



Tensile stress and micro-hardness of the rapidly solidified AZ31B alloy ribbons can be seen in
Fig. 4. It can also be seen that tensile stress shows a similar variation trend with micro-hardness.
The specimen annealed at 673 K not only has the highest tensile stress but also the highest
micro-hardness of about 150 HV. It has been reported that the micro hardness value of the
quasicrystal phase is about 556 HV and that of the B-Mg;7Al;, phase is about 153 HV [24]. High
micro hardness can be achieved by adjusting the heat treatment temperature of the AZ31B alloy
ribbon that contains the nanoparticles [22-24]. By grain refinement, a high micro hardness can be
obtained which is twice the value of the ordinary casting state, even without modifying the phase
in the magnesium alloy. The tensile stress and micro hardness of the alloys can be ascribed to the
conjoint actions of:

(1) Fine grain size. Generally, the grain size of the material meets Hall-Petch relationship, that
with the annealing temperature increase the garin size decreased and the ribbon have the better
performance in tensile stress and microhardness [24].

(2) Solid solution strengthening. In this work the effect of solid solution strengthening by Al
and Zn on the hardness of RS polycrystalline has been studied, with the annealing temperature
increase the composition segregation reduced, and gets the good result.

(3) Dispersion strengthening from the presence of nanoparticles. As for sample (c), numerous
small nanoparticles separated from the eutectic are homogeneously dispersed at the a-Mg grain

surfaces and edges. These particles contribute to the enhancement of material hardness.
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Fig. 4 The tensile stress and micro hardness of the rapidly solidified AZ31B alloy ribbons, as-spun ribbon and



annealed at 573 K, 673 K and 773 K for 1 h.

Figure 5 shows the temperature-dependent electrical resistivity (p—7) curves of the AZ31B
ribbons. Real magnesium alloy will always have crystal defects. For example, some points may
not exist or may be held by other impurities. The electrical resistivity is a sensitive parameter
which monitors the structural changes of the alloy. Thermal shock of the atoms in the lattice
points will occur, and the thermal vibrations of the particles will appear as if phonons are moving
in the crystal. Detailed analysis of the factors influencing the electrical resistivity can help
explain the changes in the internal organizational structure of the alloy. The electrical resistivity
decreases as the heat treatment temperature increases. In contrast to the sample resistivity in the
as-spun and 573 K annealed sample, we can see that in the 573 K annealed sample, resistivity at
the test temperature (above 225 K) is higher than that of the as-spun sample. This might be due
to the fact that the as-cast sample is better organised. At the same time, the 573 K heat treated
sample will encounter more problems such as crystal defects and lattice mismatch. With the heat
treatment at 673 K and above, alloy electrical resistivity decreases dramatically and approaches
or reaches a resistivity of 61.9 nOmhs.m [15, 16, 29]. Further tests of the relationship between
resistivity and temperature have been done. We can find that a well annealed magnesium alloy
ribbon not only has excellent mechanical properties, but also a better relationship between
temperature and electrical resistivity. The electrical resistivity-temperature curve shows that the
magnesium ribbon could be a new and useful cryogenic temperature sensor. In this way, a new
lightweight electric wire or connection cable line could be produced which would have good

electromagnetic interference (EMI).
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Fig. 5 The temperature-dependent electrical resistivity (p—T) curves of the AZ31B, (a) as-spun ribbon and

annealed at (b) 573 K, (¢) 673 K and (d) 773 K for 1 h.

The present paper reports an experimental investigation of vacuum annealing temperature on
the influence of rapid solidification of the microstructure, mechanical properties and electrical
resistivity of nominal composition AZ31B magnesium alloy ribbons. It was observed that with
an increase in the annealed temperature, the grain size of the ribbons dramatically decreased. The
highest break stress and micro-hardness of the sample annealed at 673 K is ascribed to dispersion
strengthening caused by the high amount of fine nanoparticles. The electrical resistivity-
temperature curve was tested to understand the reason for annealing temperature’s effect on the
grain size, grain orientation and crystal structure of the ribbons. The electrical resistivity

decreases dramatically and approaches or reaches a resistivity 61.9 nOmhs.m.
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