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The effects of vacuum annealing temperatures on the microstructure,
mechanical properties and electrical resistivity of Mg-3Al-1Zn alloy
ribbons

Abstract
This paper investigates the influence of vacuum annealing temperature on the microstructure, mechanical
properties and electrical resistivity of Mg-3Al-1Zn rapid solidification (RS) magnesium ribbons. The results
indicate that when the annealing temperature is increased, the grain size of the ribbons is dramatically reduced
from 10 to 1 μm. The highest break stress and micro-hardness is obtained at 673 K. These effects are ascribed
to the dispersion strengthening caused by the high amount of fine nanoparticles distributed in the material.
Electrical resistivity-temperature (ρ-T) curves have been used to provide useful information about the effects
of the annealing temperature on the grain size, grain orientation and crystal structure of the ribbons. In this
way, a new lightweight electric wire or connection cable line could be produced which would have good
electromagnetic interference (EMI).
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Abstract 

This paper investigates the influence of vacuum annealing temperature on the microstructure, 

mechanical properties and electrical resistivity of Mg-3Al-1Zn rapid solidification (RS) 

magnesium ribbons. The results indicate that when the annealing temperature is increased, the 

grain size of the ribbons is dramatically reduced from 10 to 1 µm. The highest break stress and 

micro-hardness is obtained at 673 K. These effects are ascribed to the dispersion strengthening 

caused by the high amount of fine nanoparticles distributed in the material.  Electrical resistivity-

temperature (ρ–T) curves  have been used to provide useful information about the effects of the 

annealing temperature on the grain size, grain orientation and crystal structure of the ribbons. In 

this way, a new lightweight electric wire or connection cable line could be produced which 

would have good electromagnetic interference (EMI).  
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Magnesium (Mg), one of the lightest structural metal materials has the advantages of a good 

specific strength and stiffness ratio, easy damping, cutting, and recycling. Because of their low 

density and highly specific mechanical properties, Mg-based materials are often used by 

companies for light-weight applications such as in the aerospace and automotive industries [1]. 

However, a limited number of slip systems in Mg results in inadequate strengthening and in the 
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degradation of ductility or deformability. Recent research into the formability of Mg-based 

alloys that involves the activation of alternative deformation mechanisms has been done for 

ultra-fine grained or even nanometer-scale materials [2-5]. RS is an opportunity to extend solid 

solubility, produce new phases and refine and homogenize microstructure, extending the solid 

solubility limits, etc. Magnesium alloy is easily oxidized, especially the ribbon easy combustion 

etc. RS makes full use of the advantage of the entire metal melting with eddy current energy in a 

vacuum so that impurities in the air can be prevented from entering into the magnesium and a 

high-quality alloy can be produced. While heat treatment in a vacuum environment can prevent 

oxidation and has a degassing effect which will further refine the grain structures. The 

fabrication of high-purity magnesium also uses a vacuum evaporation system and the Mg is then 

purified [6-8]. Hexagonal metals present a more complex case due to their low symmetry, which 

restricts the number of slip systems, and their strong plastic anisotropy. As for other use of 

vacuum treatment of magnesium, such as AZ31, AZ61, ZK60, ZE41 and AZ80 are mainly on 

the encouraging the corrosion resistance and vacuum diffusion bonding [9, 10, 11, 12]. 

The present research concentrates primarily on an annealing temperature of 573 K and lower. 

There are very few studies reporting annealing temperatures higher than 573 K for RS ribbons. 

However, for industrial-size material, the repeated roll casting reprocessing procedure requires a 

temperature above 723 K for approximately 10 hours [13, 14]. Whether the higher annealing 

temperature can produce new phases and whether the refined and homogenized microstructure 

affects the mechanical properties are not yet clear. Until now, no particular relationship between 

vacuum annealing temperature, grain size and electrical resistivity has been reported [15, 16]. 

In the present work, the effects of the vacuum annealing temperature on the microstructure, 

the mechanical properties and the electrical resistivity of Mg–3Al–1Zn alloy ribbons at 573, 673 

and 773 K are investigated. This study aims to obtain the annealing temperature on grain size, 

grain orientation, crystal structure, mechanical properties and electrical resistivity of the ribbons 

fabricated by RS. The nominal composition of the AZ31B alloy in weight percentage is 3.0 % Al, 

1.0 % Zn, 0.27 % Mn and the rest Mg. The raw material of AZ31B was induction-melted in a 

quartz tube and melt-spun at a typical wheel surface speed of 30 m/s. Ribbons are vacuum-

annealed at the pressure of 2×10
-4

 Pa with an elevated temperature of 573, 673 and 773 K for 1 h 

and then cooled along with the vacuum furnace. The microstructure and cross-section of the 

ribbons were investigated by a field emission scanning electron microscope  (FE-SEM, Hitachi 



S-4800) attached to an X-ray energy dispersive spectroscopy (EDS) setup. The crystal structure 

of the sample was analyzed using a Panalytical X'Pert PRO type X-ray diffractometer (XRD) 

with Cu Kα radiation. The Vickers hardness number (VHN) was determined using a 

microhardness test machine (HXP-1000TM). Indentations were made with a 100 gf load applied 

for 15 seconds. Mechanical tests including break stress and elongation were performed at room 

temperature using an Instron-type tensile testing machine (Testometric M350-10KN, England) 

under a constant cross-head speed of 1 mm/min. The electrical resistivity of the ribbons was 

measured using a Quantum Design's multi-use vibrating sample VersaLab system. The 

temperature-dependent electrical resistivity (ρ–T) curves were measured at a cooling/heating rate 

of 3 K/min with four probe technique. 

The room-temperature XRD patterns of AZ31B as-spun and annealed at temperatures of 573, 

673 and 773 K for 1 h are presented in Fig. 1. It can be seen that the patterns can be indexed as a 

hexagonal close-packed structure, which indicates that the samples are in the α-Mg phase at 

room temperature. No secondary phase (β-Mg17Al12) is observed from the diffraction pattern. 

Because the solidification of ribbons is very fast (wheel speed 30 m/s), the β-Mg17Al12 phase 

does not have enough time to precipitate. According to the relationship between cooling rate and 

ribbon thickness (~40 µm), the cooling time is calculated to be about 1.20×10
-5

 s and the cooling 

rate is about 5.8×10
7
 K/s. As RS can greatly increase the solubility of Al in the α-Mg phase, 

supersaturated solid solution AZ31B alloy ribbons are formed, and this can significantly improve 

the mechanical properties [6, 8, 17, 18]. 

The lattice parameters (a, b, c), c/a and intensity ratio of I(0002)/I(10-11) of the samples are 

calculated. The parameters a and c, and the lattice parameter of the c/a has been changed but not 

significantly. The intensity ratio of I(0002)/I(10-11) is significantly influenced by the annealing 

temperature, however: 0.2558 (as-spun), 0.3104 (573 K), 0.3518 (673 K) and 0.3250 (773 K). It 

is known that the basal plane orientation is very sensitive to the grain orientation and crystal 

structure, and the intensity ratio of I(0002)/I(10-11) may also affect the mechanical properties of the 

magnesium ribbons [12, 17, 18].  



 

Fig. 1 Room-temperature XRD patterns of AZ31B (a) as-spun ribbon and vacuum annealed at (b) 573 K, (c) 

673 K and (d) 773 K for 1 h. 

 

The microstructure of the ribbons was investigated using FE-SEM. Figure 2 shows the typical 

FE-SEM micrographs of AZ31B as-spun ribbon and vacuum annealed at 673 K for 1h. As 

showed in Fig. 2(a), a typical dendrite crystal structure is observed under rapid cooling. Fig. 2(b) 

shows the microstructure of the as-spun ribbon’s free surface. It is an equiaxial crystal structure 

with an average grain size of 5-10 µm, which is far below the grain size obtained by the 

conventional casting process. In RS conditions, the diffusion and migration of the solute atoms at 

the solid-liquid interface are hindered, leading to fast α-Mg crystal growth and a high rate of 

solute rejection. In this way, a single supersaturated phase forms, which is significantly different 

from the conventional transformation of liquid→α-Mg + β-Mg17Al12 [19-21]. Fig. 2(c) shows the 

typical micrographs of AZ31B ribbon annealed at 673 K for 1 h. According to the XRD patterns, 

the samples are either still or in the α-Mg state at room temperature. However, as shown in Fig. 

2(c), the crystal structure with an average grain size of 0.5-1.0 µm is far below the as-spun grain 

size. In Fig. 2(c) the ultra-grains with a grain size of about 20-50 nm are observed at the large α-

Mg grain surfaces and edges. Ordinary solidification of Al in magnesium is 11.5 wt %, which is 

much higher than that of any original AZ31B contents, and it may be that no more Al atoms can 

precipitate. A regional point scan using EDS shows that the nanoparticles are of about Zn 

magnesium alloys, the Zn weight percentage is higher than the matrix [9]. The Mg0.97Zn0.03 phase 



has a relatively low melting point and will decompose at 623 K. The phenomenon of the 

Mg3YZn6 phase on mechanical property enhancement has been reported on Mg-Zn-Y-Zr alloys, 

and its transition temperature is about 720 K. From Fig. 2(c), numerous small nanoparticles 

separated from the eutectic are homogeneously dispersed at the α-Mg grain surfaces and edges. 

These particles contribute to the enhancement of material hardness [22-26]. 

 

 

Fig. 2 FE-SEM micrographs of the different regions of AZ31B as-spun ribbon free surface (a), (b) and 673 

K vacuum annealed (c) 

 

The room temperature tensile properties of rapidly solidified ribbons are shown in Fig. 3. It 

can be seen that the tensile stress and strain vary as the annealed temperature increases. The 

ultimate tensile stress of the sample annealed at 673 K is about 203 MPa, which is much higher 

than that of the other different temperature annealed samples. The strain of the sample annealed 

at 673 K is about 3.8 %, which is half that of the as-spun ribbon. As the heat treatment 

temperature is increased up to 773 K, the nanoparticle decomposes and as a result, both the 

tensile stress and strain change dramatically. While annealing temperature is increased from 673 

to 773 K, the tensile stress drops to 140 MPa and the strain increases to 4.75 %. Annealing 



typically results in a soft, ductile metal that is easier to process. We can see that the elastic 

deformation region has gradually expanded as the annealing temperature increases. The elastic 

deformation region of as-spun ribbon is about 1% and annealing it at 573 K for 1 h increased the 

level to 1.5 %. The 773 K annealed ribbon finally reaches 2.5 %. The yield strength is defined as 

the 0.2 % proof stress. The sample annealed at 773 K for 1 h shows an obvious discontinuous 

yield phenomenon with yield strength of about 25 MPa, which can significantly enhance the 

capability of elastic-plastic deformation of AZ31B alloy [27, 28]. 

The tensile fracture surface of the AZ31B, (a) as-spun and annealed at (b) 573 K, (c) 673 K 

and (d) 773 K have also been examined. The as-spun ribbon mainly contains the typical dendrite 

and equiaxial crystal structure. The equiaxial crystal is a quasi-cleavage fracture with many 

tearing edges, which provide the evidence that many courses were completed and much energy 

was consumed before fracture. As for sample (c), the intensity ratio of I(0002)/I(10-11) has had the 

maximum value. Plastic deformation is well known from the close-packed plane of the sliding 

desired maximum critical shear stress, in addition to the dislocation density and grain size, the 

crystallographic orientation also strongly influences the plastic deformation. This might be the 

reason why the mechanical properties of the ribbon tensile test dramatically changed for the 

sample annealed at 673 K for 1 h. The increase in tensile stress can be ascribed to the critical 

stress for crack propagation at grain boundaries increasing as the grain size decreased. As for 

sample (d), grain refinements give rise to not only a good combination of high strength and high 

ductility at room temperatures, but also superplasticity. This indicates a tensile deformation 

regime, and a large number of cavities can be found. The cavities are mostly small and the 

majority of them are spherical.  

 



  

  
 

Fig. 3 Comparisons of the engineering stress-strain and fracture surface of four rapidly solidified AZ31B 

alloy ribbons, (a) as-spun ribbon and annealed at (b) 573 K, (c) 673 K and (d) 773 K for 1 h. 

 



Tensile stress and micro-hardness of the rapidly solidified AZ31B alloy ribbons can be seen in 

Fig. 4. It can also be seen that tensile stress shows a similar variation trend with micro-hardness. 

The specimen annealed at 673 K not only has the highest tensile stress but also the highest 

micro-hardness of about 150 HV. It has been reported that the micro hardness value of the 

quasicrystal phase is about 556 HV and that of the β-Mg17Al12 phase is about 153 HV [24]. High 

micro hardness can be achieved by adjusting the heat treatment temperature of the AZ31B alloy 

ribbon that contains the nanoparticles [22-24]. By grain refinement, a high micro hardness can be 

obtained which is twice the value of the ordinary casting state, even without modifying the phase 

in the magnesium alloy. The tensile stress and micro hardness of the alloys can be ascribed to the 

conjoint actions of: 

(1) Fine grain size. Generally, the grain size of the material meets Hall–Petch relationship, that 

with the annealing temperature increase the garin size decreased and the ribbon have the better 

performance in tensile stress and microhardness [24].  

(2) Solid solution strengthening. In this work the effect of solid solution strengthening by Al 

and Zn on the hardness of RS polycrystalline has been studied, with the annealing temperature 

increase the composition segregation reduced, and gets the good result.  

(3) Dispersion strengthening from the presence of nanoparticles. As for sample (c), numerous 

small nanoparticles separated from the eutectic are homogeneously dispersed at the α-Mg grain 

surfaces and edges. These particles contribute to the enhancement of material hardness. 

 
 

Fig. 4 The tensile stress and micro hardness of the rapidly solidified AZ31B alloy ribbons, as-spun ribbon and 



annealed at 573 K, 673 K and 773 K for 1 h. 

 

Figure 5 shows the temperature-dependent electrical resistivity (ρ–T) curves of the AZ31B 

ribbons. Real magnesium alloy will always have crystal defects.  For example, some points may 

not exist or may be held by other impurities. The electrical resistivity is a sensitive parameter 

which monitors the structural changes of the alloy. Thermal shock of the atoms in the lattice 

points will occur, and the thermal vibrations of the particles will appear as if phonons are moving 

in the crystal. Detailed analysis of the factors influencing the electrical resistivity can help 

explain the changes in the internal organizational structure of the alloy. The electrical resistivity 

decreases as the heat treatment temperature increases. In contrast to the sample resistivity in the 

as-spun and 573 K annealed sample, we can see that in the 573 K annealed sample, resistivity at  

the test temperature (above 225 K) is higher than that of the as-spun sample. This might be due 

to the fact that the as-cast sample is better organised. At the same time, the 573 K heat treated 

sample will encounter more problems such as crystal defects and lattice mismatch. With the heat 

treatment at 673 K and above, alloy electrical resistivity decreases dramatically and approaches 

or reaches a resistivity of 61.9 nOmhs.m [15, 16, 29]. Further tests of the relationship between 

resistivity and temperature have been done. We can find that a well annealed magnesium alloy 

ribbon not only has excellent mechanical properties, but also a better relationship between 

temperature and electrical resistivity. The electrical resistivity-temperature curve shows that the 

magnesium ribbon could be a new and useful cryogenic temperature sensor. In this way, a new 

lightweight electric wire or connection cable line could be produced which would have good 

electromagnetic interference (EMI). 



 
Fig. 5 The temperature-dependent electrical resistivity (ρ–T) curves of the AZ31B, (a) as-spun ribbon and 

annealed at (b) 573 K, (c) 673 K and (d) 773 K for 1 h. 

 

The present paper reports an experimental investigation of vacuum annealing temperature on 

the influence of rapid solidification of the microstructure, mechanical properties and electrical 

resistivity of nominal composition AZ31B magnesium alloy ribbons. It was observed that with 

an increase in the annealed temperature, the grain size of the ribbons dramatically decreased. The 

highest break stress and micro-hardness of the sample annealed at 673 K is ascribed to dispersion 

strengthening caused by the high amount of fine nanoparticles. The electrical resistivity-

temperature curve was tested to understand the reason for annealing temperature’s effect on the 

grain size, grain orientation and crystal structure of the ribbons. The electrical resistivity 

decreases dramatically and approaches or reaches a resistivity 61.9 nOmhs.m.  
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