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Very long hillslope transport timescales determined from uranium-series
isotopes in river sediments from a large, tectonically stable catchment

Abstract

The uranium-series isotopic compositions of soils and sediments evolve in response to time and
weathering conditions. Therefore, these isotopes can be used to constrain the timescales of river
sediment transport. Catchment evolution depends on the sediment dynamic timescales, on which erosion
imparts a major control. Erosion rates in tectonically stable catchments are expected to be lower than
those in tectonically active catchments, implying longer sediment residence times in tectonically stable
catchments. Mineralogical, elemental and isotopic data are presented for modern channel sediments,
alluvial and colluvial deposits from the Murrumbidgee River, a large catchment in the passive margin
highlands of south-eastern Australia and three of its tributaries from the headwaters to the alluvial plain.
Low variability in Si-based Weathering Index indicates that there is little chemical weathering occurring in
the Murrumbidgee River during sediment transport. However, quartz content increases and plagioclase
content decreases downstream, indicating progressive mineralogical sorting and/or physical
comminution with increasing transport distance. U-series isotopic ratios in the Murrumbidgee River trunk
stream sediments show no systematic downstream variation. The weathering ages of sediments within
the catchment were determined using a loss-gain model of U-series isotopes. Modern sediments from a
headwater tributary, the Bredbo River at Frogs Hollow, have a weathering age of 76 + 30 kyr but all other
modern channel sediments from the length of the Murrumbidgee River and its main tributaries have
weathering ages ~400 + 180 kyr. The two headwater colluvial deposits have weathering ages of 57 + 13
and 47 + 11 kyr, respectively. All the alluvial deposits have weathering ages similar to those of modern
sediments. No downstream trend in weathering age is observed. Together with the soil residence time of
up to 30 kyr for ridge-top soils at Frogs Hollow in the upper catchment area of the Murrumbidgee River
(Suresh et al., 2013), the current results indicate, for the first time, that sediments in the Murrumbidgee
catchment are stored in hill slope for long time (~200 kyr) before carried by the river. The long residence
times of sediments indicate a low erosion rate from the catchment. The sediment transport timescales
estimated are up to two orders of magnitude higher than those reported for tectonically active
catchments in Iceland (Vigier et al., 2006) and in the Himalayas (Granet et al., 2007), indicating the
influence of tectonism on catchment erosion.
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Abstract

The uranium-series isotopic compositions of soils and sedimentseewohesponse to time
and weathering conditions. Therefore, these isotopes can beouseastrain the timescales
of river sediment transport. Catchment evolution depends on thenesgdidynamic
timescales, on which erosion imparts a major control. Erosios mtéectonically stable
catchments are expected to be lower than those in tectonictllg aatchments, implying
larger sediment residence times in tectonically stabldhcednts. Mineralogical, elemental
and isotopic data are presented for modern channel sediménti&l @nd colluvial deposits
from the Murrumbidgee River, a large catchment in the passargin highlands of south-
eastern Australia and three of its tributaries from the headsvéo the alluvial plain. Low
variability in Si-based Weathering Index indicates that therkttle chemical weathering
occurring in the Murrumbidgee River during sediment transport. Howenertz content
increases and plagioclase content decreases downstream, mgdicpatogressive
mineralogical sorting and/or physical comminution with increasiagsport distance. U-
series isotopic ratios in the Murrumbidgee River trunk streanmseds show no systematic
downstream variation. The weathering ages of sedimentsnwitie catchment were
determined using a loss-gain model of U-series isotopes. Modernesgsliftom a headwater
tributary, the Bredbo River at Frogs Hollow, have a weatlyeaige of 76 + 30 kyr but all
other modern channel sediments from the length of the Murrumbidigee &d its main
tributaries have weathering ages ~400 = 180 kyr. The two headea@ltuvial deposits have
weathering ages of 57 £ 13 and 47 + 11 kyr, respectively. h&lldlluvial deposits have
weathering ages similar to those of modern sediments. No deamstrend in weathering
age is observed. Together with the soil residence timg @b 30 kyr for ridge-top soils at
Frogs Hollow in the upper catchment area of the Murrumbidgeer Rburesh et al., 2013),
the current results indicate, for the first time, that sedisin the Murrumbidgee catchment
are stored in hill slope for long time (~ 200 kyr) before cdriy the river. The long
residence times of sediments indicate a low erosion rate thhiensatchment. The sediment
transport timescales estimated are up to two orders of maghipider than those reported
for tectonically active catchments in Iceland (Vigier &t 2006) and in the Himalayas

(Granet et al., 2007), indicating the influence of seismaitgatchment erosion.
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1. Introduction

The evolution of uranium-series (U-series) activity ratahsing weathering is
affected by factors such as pH, the presence of organienretd time. U-series isotopes are
expected to be in secular equilibrium (parent-daughter activity ¥fal) in unweathered
bedrock older than 1 Myr (Bourdon et al., 2003; Dosseto et al., 2008#)e Half-life of the
parent isotope is longer than the daughter isotope, then in a péries half-lives of the
daughter nuclide, the parent daughter activity ratio wathesecular equilibrium (Bourdon et
al., 2003) (half-lives of*®U, U and*°Th are 4.4683 x TOyears (Jaffey et al., 1971),
24.525 x 10 years and 75.69 x i§ears (Cheng et al., 2000), respectively). Fractionation
between isotopes during geological processes such as chensedheving induces
radioactive disequilibrium. During chemical weathering, U idguemntially mobilized over
Th (Chabaux et al., 2003). Oxidizing conditions prevail in masithering environments and
so U will be present as®] which is soluble in waters as the uranyl ion,@>" and is
stabilized by highly soluble and non-reactive carbonate compleaegruir, 1978). Th will
be present as TH which is insoluble. This causes elemental fractionation fetweand Th,
and affects the®°Th/2%U) activity ratios of weathered material. In addition, tigh energy
involved in the radioactive decay of U-series isotopes can gRmogystal lattices and
enhance loss of the daughter nuclide by leaching from damagebtracks, hence creating
disequilibrium in the parent-daughter activity ratio (Kigoshi, 197dsH®It, 1983, Chabaux
et al., 2003, Vigier et al., 2011). Also, if radioactiveagoccurs near the surface of the grain
a fraction of the daughter nuclide may be directly ejected fiomineral grain (Kigoshi,
1971; DePaolo et al., 2006). The degree of fractionation of @ssésotopes in soils and
sediments can be used to determine the timescale of wagthaed erosion processes, as the

radioactive disequilibrium is time dependent.

Soil residence time (Table 1) and production rates have beemdwtdrin different
climatic and geomorphic settings through modelling the evolution oiwraseries isotopes

3
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in soil (Mathieu et al., 1995; Dequincey et al., 2002; Dossesh,e2008b; Ma et al., 2010;
Dosseto et al., 2012; Suresh et al., 2013). Using the same, riiwdleleathering age (Table
1) of sediments transported by rivers in a variety of geographiocations and climatic
settings have been determined by Vigier et al. (2001; 2005; 2006eDa=t al. (2006a; b,
2008b) and Granet et al. (2007; 2010). Variations are observed inatettidediment
weathering ages between catchments and are controlled by changkshate, human

activity, relief, tectonic activity and bedrock composition

The dissolved and suspended loads of sediments in riversylaieilv shorter
transport timescales (a few kyr) (Dosseto et al., 2008b, Gedred., 2010) relative to the
coarser particle load, such as the bedload (in the order of ~1@) kyore) (Dosseto et al.,
2008b, Granet et al., 2010). Suspended sediments from tropicad flegring through
basaltic terrain in the Deccan Traps have given residimes 55 — 84 kyr (Vigier et al.,
2005), whereas those from rivers draining basaltic terrain laridegave residence times 1 —
8 kyr (Vigier et al., 2006). The two order of magnitude défere in residence times of
sediments from lowland Amazon Rivers (100 — 500 kyr) and upland AmazorsR3/e 4
kyr) could be due to differences in catchment relief in the ®goons (Dosseto et al., 2006a,
b). Suspended sediments from the upper Ganga (Ganges) Riverilandries in the
Himalayas gave residence times ~30 kyr, but those fromwbean the Ganga plain showed
much higher residence times (~350 kyr) (Granet et al., 2007)lohger residence times on
the alluvial plains may be due to reworking of old sediments inptam. Lower relief
compared to the upper river basin in the plain could also imply sloamsport. In summary,
large variations in sediment residence times in rivegsoaserved showing the influence of
different factors like climate, catchment geomorphology and gianjacontrolling sediment
movements in the catchment areas. Studying the sediment transpestales and the
affecting factors in the Murrumbidgee catchment, a tectdpistdble passive margin in the
highland area of south-eastern Australia where periglacial tiammsliprevailed during the
Last Glacial Maximum (LGM), will further our current undenstling of soil and landscape
evolution in large catchments. A consolidated study of sedinmergBuvium, colluviums
and modern channel is expected to provide new insights on their evolutoagtiout the

catchment.

Soil processes in the upper Murrumbidgee catchment are dffegtiactors such as
rainfall and topography (Suresh et al., 2013). Ridge-top soil regdanes of approximately
4
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30 kyr have been determined using U-Th isotopes in the upper catchneaniof the
Murrumbidgee River (Suresh et al., 2013). Heimsath et al. (2@pbrted soil production
rate of ~ 45 mm/kyr by measuring cosmogenic radionuclidé®boaind *®Be concentrations
in soils at this location. Using this rate, Yoo et al. (208Tjreated a lateral transport time of
~60 kyr for soils along a 50 m hillslope profile. Dosseto et28l1() estimated comminution
ages (Table 1) of 50 um size sediments from palaeochannels and the modern lobiattee
Murrumbidgee River. They reported comminution ages an order of tadgriower for the
post-Last Glacial Maximum (LGM) sediments than the Holocenepagd GM sediments.
The authors attributed the lower sediment residence time (Tablef 1)e post-LGM
sediments to the erosion of materials from the upper catchamehthe higher sediment

residence time of the modern and pre-LGM sediments to wWarkang of alluvial deposits.

This paper presents U-series isotope, mineralogical and glajoent data of modern
sediments, alluvial and colluvial deposits from the MurrumbidgeerRof south-eastern
Australia. The data are used to estimate the weathegegya sediments in the catchment. In
combination with the soil residence times determined usingrldssisotopes (Suresh et al.,
2013) and long-term erosion rates determined using cosmogenic radiea{Eujioka et al.,
2012), the data are used to constrain the timescales of esgdaoflgnamics from initial
weathering to final deposition in this large catchment. Thilsard our understanding of the
long-term evolution and sustainability of landscapes in largehoants. The proposed
change in sediment source, pre- and post-LGM, in the Murrumbadgelement described by

Dosseto et al. (2010) is also re-examined using the new results

2. Study Area

The Murrumbidgee Rivem south-eastern Australia is divided into three distinct
geomorphic regions (Wallbrink et al., 1998). The upper catchmentmsuntainous region
with high relief (up to 2000 m above sea level) comprising an@rapproximately 20,500
km? (Fig. 1). Burrinjuck Dam isolates the upper from the nedsllurrumbidgee catchment
(combined area 34,000 Bn The middle catchment is characterized by rolling teméth
gullying (Wallbrink et al., 1998) and progressively decreasing aifguinput to the river
further downstream. The river enters the lower Murrumbidgeeiallpiain downstream of
Narrandera to eventually merge with the Murray River. Ager annual rainfall in the

5
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catchment area ranges from 1900 mm in the upper mountains to les35thanm on the
plain (NSW Water, 2011).

Modern sediment samples (currently being transported by the vivge collected
from riverbanks and bars at 7 locations throughout the length of theifloidgee River, in
the section between the confluence of the Bredbo River with tireumbidgee River in the
mountainous, bedrock-confined upper catchment and Darlington Point adluké&l plain
(Fig. 1). These modern samples were either deposited orireobidy recent flows. Modern
channel sediments were collected above and below the conftuehtiee river with major
tributaries, namely the Bredbo, Goodradigbee and the Tumut Ri&kensodern sediment
sample from the upper Bredbo River was collected from Frogewiot40 km upstream of
Bredbo (Fig. 1). Alluvial deposits from four locations along the Muniidgee River were
sampled at different depths, wherever possible (Table 2keThamples, from deep bank
exposures, represent older and/or higher floodplain deposits of lil@bcene age. Two
samples from the alluvial deposits at Wangrah Creek, a nimfmrtary in the upper
catchment (studied by Prosser et al., 1994) area also weretedlleTwo colluvial deposit
samples were collected from a gully near Bredbo. The collge@iiments were deposited by
runoff and sheetwash processes at the base of a ridge. Pldatocene dust deposit sample
(deposition age = 21.6 = 2 ka, determined by optically stimulatethéswence dating; in
Fitzsimmons et al. 2013) was collected at a depth of 150 cm MfoKenzie’s Waterhole
Creek near Carcoar (Fig. 1; Hesse et al. 2003), ®sagthe contribution of aeolian material

to the U-series isotope composition of river sediments.

3. Materialsand Method

Modern sediments were collected from banks and bars of thechaenel. Colluvial
and alluvial deposits were sampled from natural bank exposuresrdadatiee channel. The
depositional ages of alluvial sediments are unknown, excepthdse tfrom Wangrah Creek
(MU8_low and up, 12,420 * 150 yr BP; radiocarbon age; Prosaér £094).

All of the samples were dried at 60°C overnight. Aliquots ohesaample were placed
in acid-cleaned polypropylene containers for X-ray diff@ct(XRD), X-ray fluorescence

(XRF) and U-series isotopic analysis.
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Dried samples were powdered to ~10 um size for XRD using an agatar and
pestle. X-ray diffractograms were recorded using a PAldaly X'pert PRO MPD
diffractometer with a 45 kV, 40 mA CuKradiation X'celerator detector and Bragg Brentano
geometry, conducting scans from 5 to 56°a2 5° d/min. Highscore Plus software version
2.2.4 with the ICDD PDF2 database by PANalytical and the iRistveld refinement option

available in the software were used for mineral identificeand quantification, respectively.

Sediment aliquots for major element analysis were powderedddHan 10 um and
prepared into 40 mm glass discs by fusion with lithium borate congalanthanum oxide
(Norrish and Hutton, 1969). Analyses were performed using apBPh#wW2400 XRF
instrument at Mark Wainwright Analytical Centre (University New South Wales),
following the procedure described by Norrish and Hutton (1969). Reprodycibilithe
results was determined by replicate sample analysisniplea) yielding an elemental oxide

standard error below 1 % for all elements.

For U-series analysis, samples were ashed at 550 °C giverApproximately 2 g of
ashed sample was leached with Mg@¥Qo remove ion exchangeable uranium and thorium
from the grain surfaces and U-Th bound to the organic matterogedtduring ashing
(Gleyzes et al., 2002). Approximately 100 mg of leached sampewegghed into 15 ml
PFA vials and approximately 30 mg of8U-?*°Th tracer solution was added and weighed.
The samples were then digested in a mixture of HCI, EIMB and HCIQ in closed vials at
120 °C overnight. The sample solutions were then dried and thesokdid in 7M HNQ. U
and Th were separated and purified using an anion exchange resmad(BAG1X8)
following a procedure described in Sims et al. (2008). Measnewf U and Th isotopes
were performed on a Nu Instruments Nu-Plasma multi-colléC®eMS instrument following
the procedure outlined in Turner et al. (2011). Reproducibility of thalteewas assessed by
replicating the whole procedure for two samples. This yieldeg@ducibility of 0.17 % for
Th concentration, 0.8 % for U concentration, 1.2 % f8%>*%U) and 3 % for £°Th/”3).
Accuracy was determined by measuring the U-series isotdme end U-Th concentrations
in TML-3, a standard rock sample (Table Mountain Latite, Afitis et al., 1992; Sims et al.,
2008). The measured concentrations and activity ratios are witterr@ limits of published
values (Table 2; Sims et al., 2008). The total procedural biask150 pg for U and 140 pg
for Th, which are insignificant when compared to the U andmbunts of sediment samples

digested (~0.5 pg of U and ~2.5 pg of Th for 0.1g of sample)
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4. Results
4.1. Mineralogy

All of the modern channel sediment samples contain > 60 wt. %zgeacept for the
sample from the Bredbo River at Frogs Hollow (Table 3; Big.Albite, microcline and
muscovite contents vary from 0 to 20 wt. %. lllite was dettonly in some of the modern
sediments (Table 3). All the alluvial deposit samples exb8p8 up contain > 60 wt. %
quartz (Table 3). Albite content varies from 0 to 20 wt. % roaine from 0 to 10 wt. % and
muscovite from 3 to 54 wt. %. lllite was detected only indahevial sample collected from
Darlington Point (1.6 wt. %). Colluvial deposit samples cont@inwt. % quartz and
approximately 30 wt. % muscovite. Albite was detected (&4ytin only one of the colluvial
samples (Table 3). XRD analysis detected only quartz idubesample.

4.2. Particlesize

All the modern sediment samples, except MU11l from the Bredboa Riv&rogs
Hollow, contain > 25 % mud (Table 3). Alluvial samples contammade proportions of mud
(< 63 um) and sand (63 to 2,000 um) (Table 3). The alluvial depogilsaMU3 from the
deposits near the Bredbo — Murrumbidgee confluence is the dpar#i@sonly 2 % mud.
The alluvial samples from a single deposit contain varialgqutions of mud at different
depth. For example, the sample MU8_up from 1.4 m depth at Wa@geak contains 74 %
mud, whereas the sample MU8_low from 3.6 m depth contains 37 %Theske variations
reflect the mixed suspended (mud) and bed (sand) load nature ofuthenMidgee River
and reflect small variations of depositional environment withenritier bed and proximal

floodplain.

4.3. Major Elements

Major element data are given in Table S1 in the Appendix. Ah@fsamples contain

> 64 wt. % SiQ, except sample MU8_up from the Wangrah Creek alluvial depatit,57



241 wt. % SiQ. Greater than 10 wt. % AD;, ~ 2 to 9 wt. % F€s; and > 2 wt. % KO were
242  detected in all samples. An increase in S16d decrease in AD; with decreasing depth is
243  observed for alluvial deposits at Gundagai and colluvial sammesBredbo gully. The dust
244  sample contains 84 wt. % SiGb wt. % AbO3z; and 4 wt. % FgO; (Table S1).

245
246 4.4. U-seriesisotopes

247 U concentrations in the samples range from 1.7 to 6.3 ppm and Tent@tions
248 vary between 9.6 and 21.8 ppm in alluvial deposits (Table 2). Tgleesti U and Th
249  concentrations were observed in the alluvial samples MU8_up fromgia Creek and
250 MU19 low from Gundagai. In alluvial deposits from Gundagai, U and dritentrations
251  decrease with decreasing depth. The two colluvial samplesBredbo have nearly identical
252 U and Th concentrations. For the modern sediment samples, U amtddntrations display

253  arange similar to those of alluvial deposits.

254 All of the sediment samples hav&“(J/?®%) activity ratios greater than 1, indicating
255 the relative enrichment f*U. The ratios vary from 1.02 to 1.35 in the alluvial deposits and
256 from 1.09 to 1.26 in the modern sediments (Table 2, Fig. 3). Athefsediment samples
257  except MU3, MU11 and MU22 havé&*{Th/2“U) ratios lower than 1, varying from 0.61 to
258  0.86. This also may correspond to enrichmeritf.

259 The dust sample contains 11.6 ppm Th and 1.7 ppm U (Table 1). It(Ff4s/&%)
260 ratio of 0.996 and*{°Th/**V) ratio of 1.24 (Table 2).

261
262 5. Discussion
263 5.1 Mineral sorting and weathering

264 The presence of quartz, albite, microcline and muscovitd sediments is consistent
265 with the large area of granitic bedrock in the Murrumbidgeehoaat. Quartz content
266 increases and plagioclase content decreases downstream imdbenmsediments (Fig. 2).
267 This could be due either to chemical dissolution of plagioclasderpreial physical

268  weathering of plagioclase over quartz, or due to mineral hydraggnsorting. The lack of
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evidence for chemical dissolution or physical breakdown (detailedvpef minerals points
towards mineral sorting during river transport. The increasutgné of mineral dissolution
with increasing stream length should correspond to a similar tremgeathering indices,
which is not observed here. The Si-based weathering index (WIS =
SiO/(SIO+AIL,03+Ca0+Na0)x100) does not show a downstream increasing trend. The
WIS is preferable to other indices of chemical weatherind) asdhe CIA or CIW (Harnois,
1988) because of the mobilization of Al during weathering in tHepsaiiles (Driscoll et al.,
1985; White et al., 2008; Suresh et al. 2013; Suresh et al., submittee CIA and CIW
indices consider Al to be immobile (Nesbitt and Young, 1982; Hart®R&3). Suresh et al.
(2013) reported mobility of Al in the soil of the Murrumbidgee catamm&he lack of a
systematic downstream evolution of WIS values either in modetrmeats or alluvial
deposits of the Murrumbidgee River suggests that little atemveathering occurs during
sediment transport (Fig. 4). Physical breakdown of particles ogressive abrasion
downstream should correspond to a decreasing trend in particle sidmitien, which is not
observed here (Table 3). Hydrodynamic sorting of minerals,hwhicurs depending on the
settling velocity of minerals grains (related to their sdensity and shape) and flow velocity,
could have affected the distribution of the minerals in the sdsnObservations of mineral
sorting have been reported in the Yamuna River in the Hinal@yalai et al., 2004). The
absence of a downstream trend in WIS values may also imty transport of sediments by
the river.

Mobilization of elements from sediments has been commonly detuss
comparison to the composition of the average upper continenistl @/CC) (Taylor and
McLennan, 1985; Dalai et al., 2004). All major element contevdse averaged for the
alluvial deposits, modern sediments and colluvium and then normabzeserage UCC
contents taken from McLennan (1995) and bedrock values taken from QGHaggd) (Fig.
5). Normalised Na, Ca and Mg contents are all < 1, indicatisg during chemical
weathering. Al, Si and K are comparatively immobile. Mnnsedo be enriched in the
modern and colluvial samples, which could possibly indicate anthropoigeicof Mn, but

the huge error bars limits our ability to draw conclusiong. (b).

5.2. Uranium and thorium concentration and activity ratios
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U concentrations in the modern channel sediments do not show signifeazag with
stream length (Table 2). This may indicate that no signifiteaathing of U is occurring
during transport. Th concentrations are much more variable thdPositive correlations
(correlation coefficient R = 0.86 for U and 0.6 for Th) exist leetw sediment mud content
and U and Th concentration (Fig. 6). An increase in soil andmsedi U and Th
concentration with decreasing grain size has been reported by &a@iz41995), Lee et al.
(2004) and Suresh et al. (2013). In the modern channel sediment sdhptegsentrations
show a strong (R = 0.8) positive correlation with muscovite confeigt 7). Similar
observations were reported in soil profiles from Frogs Hollowhendatchment area of the
Murrumbidgee River (Suresh et al., 2013). Suresh et al. (2048pged that muscovite is the
mineral phase dominating the U budget in the Frogs Hollow soillgsofOur data suggest

that this is also true in river sediments.

The lack of significant chemical weathering during rivemsgort (Fig. 4) could
suggest that there has been little fractionation of Lesesotopes during fluvial transport. A
negative correlation exists between WIS and U and Th concensratialuvial or modern
sediments (Fig. 8). These two observations together implynthaignificant U or Th loss is
occurring during transport due to chemical weathering. The ageréen U and Th
concentration with increasing WIS may be the result of cremveathering of sediments
before reaching the river channel. Soils from Frogs Hollow in theerupurrumbidgee

catchment exhibit WIS values similar to those observed invibesediments (Fig. 8).

(**U/P3) activity ratios > 1 in all samples suggest an enrighitroé?**U over?3®u
(Fig. 3). However, during chemical weatherififlJ is preferentially removed from the solid
phase, and thereforé>{U/?®) < 1 is expected in the residue of weathering (Chabaux et al.,
2003; Dosseto et al, 2008a). The activity ratidU/>>2U) <1 is observed in the soil samples
from Frogs Hollow in the upper catchment area of the Murrumbi&peer (Suresh et al.,
2013). This again follows the suggestion that the removal of U andoihthe sediments
occurs before entering in to the river stream. Sedinféfut/t%U) activity ratios > 1 suggest
input of 24U from a fluid phase. During chemical weathering3#e leached from the solid
phase will be concentrated in the fluid, driving tH&\/?*%) ratio in the liquid > 1
(Dequincey et al., 2002; Chabaux et al., 2003; Robinson et al., 2004;sandstral., 2007,
2009; Vigier et al., 2011). The mineral phases formed fronflthisare characterised by the
(**U/P%) ratio of the fluid phase, i.e. > 1 (Plater et al., 199€quincey et al., 2002). The
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234U from the fluid phase may be retained by residual phases Brasemechanisms
discussed by Scott (1968), namely: 1. Incorporation into the lattitetay minerals, 2.
Adsorption to mineral surfaces, 3. Association to Al and Fe exaahel 4. Complexation by
organic materials.Z*U/>*®) activity ratios > 1 in river sediments have been obsemed i
Deccan rivers (Vigier et al., 2005), Amazonian rivers (Dimssé al., 2006a) and Himalayan
rivers (Granet et al., 2007).

The EU/7) ratios > 1 and?E°Th/?3%V) ratios < 1 in sediments imply a net gain of
U over loss to leaching and that the gained U has a higHer?®U) ratio than that in the
leached U component (Dequincey et al., 2002YU(Z*U) or #*°Th/2%) ratios in the
modern sediments show no systematic downstream evolution >*Phie/2*U) ratios of all
but two of the modern sediments are similar (averaged at 0.ThAestandard deviation of
0.034). The only modern sediment with?’{h/2%J) > 1 is from the uppermost headwater
location and thus is expected to have undergone the least in-chiemsport. Colluvial
samples also shov?®fTh/2%) ratios > 1. The?U/Z%) and E°Th/2U) > 1 in colluvial
deposits could imply a net removal of U due to leaching over, gaid a more fractionated
(**U/2%) ratio (> 1) in the gained component than in the leacheduibeey et al., 2002).
This could further imply that, for the sediments in the Murrumhédggtchment,2¢°Th/234U)
ratios are > 1 before sediments enter the river channekevdignificant exchange of U
between sediment and water would result in a net g&itiléf producing £°Th/”%) ratio <
1. For alluvial deposits’{Th/?*%U) ratios decrease with increasirfd*¢/?**U) (R = -0.9),
indicating the evolution of these ratios with time (Fig. 3).

5.3. Weathering age of Sedimentsin the Murrumbidgee River catchment

The variation of U-series isotopic composition of sedimentsfimetion of time and
any loss or gain of isotopes. Vigier et al. (2001), Dosseth é2@06a, b) and Granet et al.
(2007, 2010) used a model to quantify the time-variation of U-sisnéspes in sediment and
soil samples, considering the loss of isotopes by chemical weatheérheir model
considered the present concentration of any radioactive isatagpéuaction of its production
by decay from the parent (if present), and loss through its owwactdie decay and
leaching. Dequincey et al. (2002) and Dosseto et al. (2008a; b) edbtliese models by
incorporating any possible gain of isotope to the sediments by prosesseas precipitation
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of secondary phases, dust deposition or physical illuviation in sdilgstdn this model, the
time variation of the abundance of a given isotopis:N

dN;

where subscriptsandj refer to the parent and daughter isotopes, respectivedythe decay
constant (yr), Njois the initial isotope abundance in the unweathered bedfoakdw are
gain and loss coefficients, respectively (in*yrThe gain coefficient/; represents the rate at
which an isotope is incorporated to the sediments via dust depositian asedéndary phase
coating. Hence, the term$-N;, in the combined form represents the rate at which the
abundance of the isotope is increased due to gain. The loss olutitiss coefficientw
determines the rate at which isotope loss occurs during cHesaathering. The coefficients

w and /- are assumed to be constant over the duration of weatheringadar rauclide
(Chamberlain et al., 2005; Ferrier and Kirchner, 2008). White Buadhtley (2003) also
suggested constant values for a given mineral based on laboratory experiments of minera
weathering. The termrepresents the time elapsed since the onset of weathering ¢y whi
isotope fractionation occurred, and is termed sbdiment weathering age, Ty, (Table 1).
Detailed discussion on the model is given in Dosseto et al. (200@is)model can be solved
for sediment samples from a given catchment area to detthe set olv and/ values for
each nuclide and the weathering adg) (for each sample by reproducing the observed
(*°Th/”V) and 3U/2%) activity ratios. For the set of 10 samples from the modern
sediments, there are 20 input parametef&T({/?>*"U) and ¢‘U/”%U)) and 16 output
parameters (10 weathering ages, tiweelues and threé values). Thev and/ for this set

of samples for a given nuclide is assumed to be the samsolarg the model, boundary
conditions are applied to and/ values of each nuclide to include values reported so ffar fo
these parameters either in nature or in laboratory experimertseirange for a set of
samples. The reported valuesigfs, andw,s, vary between I8and 10 yr' andw,s, varies
between 10% and 10" (Vigier et al., 2001, 2005, 2006, 2011; Dequincey et al., 2002;
Chabaux et al., 2006; Dosseto et al., 2006a, b, c, 2008a, b, 2012;aMa2€10; Suresh et
al., 2013). For/ values of*® and?*U, the range used is $ao 10% and for®*°Th, the
range used is 1 to 10* which includes published values f6fU, 2% and®*°Th isotopes
(Dosseto et al., 2008a, b, 2012; Ma et al., 2010; Suresh et al), 2013
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For the Murrumbidgee sediment samples, the model was solvedoasiag written
in Matlab for alluvial, colluvial and modern samples separat€he composition of the
Devonian granitic bedrock from Cooma in the upper Murrumbidgee catahmeported by
Chappell (1984) is taken as the initial condition at the onset dfobk weathering,
representative of the catchment area. Since the bedrock isttuatel Myr, £*°Th/2*U) and
(>*U/P%) ratios are considered to be at secular equilibrium (cf. tegret al., 2013). The
gain (") and dissolution W) coefficients can take different values for each nuclide. A
constantw value implies a time-dependant evolution of chemical dissolutiten oh an
isotope, with a highew value corresponding to the rate of reaction slowing down faster to

reach a steady state, and vice-versa (White and Byag0e3).

While solving, the model equation (1) iteratively producé®Th/U) and
(**U/*%) ratios and compares them with the measuféHZ%) and GUP%) to
minimize the difference between the model-produced and measti@sl Since the equation
is highly non-linear, a set of solutions for eagh) W and /~ value is generated. The mean
value of each set will be taken as the final solution. Trer galue associated with each final
solution is calculated using the ktandard deviation of the produced set of solutions. The
leaching and gain coefficients for all nuclides and thealues of each sample are given in
Table 4.

The weathering age of colluvial deposits from Bredbo Gully encosepdhke vertical
soil profile residence time, lateral transport time throughtthslope, and the storage time in
the colluvial deposit. Two Bredbo Gully samples collected at 0.4anla7 m depth display
weathering ages of 48 + 11 and 57 + 13 kyr, respectively (Tabfeg4;9). The modern
sediment from the upper Bredbo River (Frogs Hollow) has aheegag age of 77 + 31 kyr.
There are no alluvial deposits observed upstream of this sarmsfingnd sediments are thus
expected to be delivered to the channel directly from theldpk. All the other modern
sediments and alluvial deposits have weathering ages tlyatroar 313 + 142 to 451 + 191
kyr. Note that ages of 316 + 52 and 480 + 78 kyr for modern sediments Fem t
Murrumbidgee River were determined by Dosseto et al. (2010), wsexg¢omminution

dating approach developed by DePaolo et al. (2006), which agireeur results.

Anthropogenic activities such as land clearing and agriculturatiggadave directly
or indirectly led to increased soil erosion rates and catchsaelimnent yield, compared with
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pre-European settlement rates (Wasson et al., 1998; Olley, €208B). Conversely, the
Burrinjuck Dam (constructed in 1920) is considered to be an emtél of river sediments
(e.g. Wasson et al., 1987; Srikanthan and Wasson, 1993; Olley 49@r., 2003) and
thousands of small farm dams have been constructed throughout the catdHaveever,
these significant changes to sediment load have not affdwedverall source types or U-
series characteristics of sediments in the river. @sults show that the sediments upstream
and downstream of the Dam have the same weathering agetimglithat the trapping of
sediments by the construction of the dam has not affectednah@&e of sediments
downstream. Dosseto et al. (2010) also reported residencedirme800 kyr for both pre-
European (deposition age ~2.5 kyr) and post-European settlement sedfroemtshe

Murrumbidgee River downstream of the Burrinjuck dam.

The leaching coefficientssf for 2%U and U estimated from the model for the
sediments are consistent (within the large model errors; Pgblehowing that removal of
these isotopes from the sediments takes place at compartddeovar the timescales of
sediment evolution. The gain coefficienfs) for these isotopes in the sediment samples are
also the same, within the large errors associated. Legacbefficients estimated for modern
sediments are similar to those determined for the suspendedesesliin the Mackenzie
River (Vigier et al., 2001) and for Amazon highland rivers @&s et al., 2006b). Leaching
coefficients of?**U for the Ganga River and Narmada and Tapti rivers are am ofde
magnitude lower than those determined for the Murrumbidgee sedinléhese differences
probably indicate that leaching of U-series isotopes from setsimisncontrolled by the
conditions of weathering in the rivers. Dosseto et al. (2008a)\Vagiér et al. (2011)
compiled 8 leaching coefficients for sediments of different residetime and found a
linear relationship. The leaching coefficient’dU observed here also conforms to the same
relationship. White and Brantley (2003) reported that the disenlusite of silicate minerals
decreases significantly over kilo year timescales. Thisdcqassibly correspond to a
decrease of leaching rate 8fU. A general explanation is still to be reported for the
observation of decreasing leaching coefficient with increaseathering age. Keech et al.
(2013) reported the leaching coefficients of U-series isotopes $smhsamples in the soil
chronosequence in Merced and proposed that the leaching process rbayundborm over
the timescales of weathering. They argued that weatheringaateary over time and hence

assuming a first order leaching coefficient may not be apptegnathe case of sediments.
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However, since the weathering rate represents the ratas¥ lmss and leaching coefficient
represents the timescales of loss of an isotope, a first asdamption is still plausible. The
coefficients reported here for the modern sediments, alldejbsits and colluvial samples
having different residence times are similar, and could pgssiticate steady state isotope

leaching and gain coefficients over the time of weathering.

5.4. Timescales of sediment transfer and storage in the catchment

The stages of sediment evolution can be recognised as: (Litlpecdile residence
time, (2) the lateral (colluvial) transport time, (3) transpiime through the river and
intermediate depositions and (4) time since the final depositiabléT1). Suresh et al.
(2013), using U-series isotopes, determined soil residence ¢ime¥) kyr on ridge tops in
the upper catchment area of the Murrumbidgee River. Based on caosmouglide
estimates of soil production rates (Heimsath et al), Yool.e2@07) modelled lateral
residence time (Table 1) of soil at the same localityygusoil and saprolite geochemistry, to
derive a lateral transport time of 60 kyr for a soil columi off base area to be transported
50 m downslope. The turnover times of sediments during river trarespibelluvial deposits

are discussed below.

The results presented here suggest that there is relatam@ty transfer of sediment
through the channel system from the upper catchment to the latehnent, including time
spent in alluvial storage, with no detectable aging of sedsnaoivn the river (although
weathering ages do carry very large uncertainties). Alldeglosits occur along the upper
Murrumbidgee (Fig. 10) and were sampled but showed weathemsgraghe same range as
the modern river sediments and with no downstream age trendgssimggthat alluvial
storage in the upper catchment is of short duration. This ctesteal by calculating the time
required to fill the alluvial pockets in the upper catchment.area total area of the sub-
catchment contributing sediments to the Murrumbidgee River upstEBonrinjuck Dam is
9673 knf (Verstraetan et al., 2007). Using the range of catchmenida¢ion rates of 9 to 24
mm kyr* (Fujioka et al., 2012) and the area available for erosionyahene of sediments
exported by the river from the upper catchment area per yedecastimated to be 8.7 x10
to 2.3 x 10 kmPyr™. The width of alluvial deposits in the upper catchment aesabeen
estimated using Google Earth (Fig. 10). The total volume difrnt stored in these alluvial
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pockets can be calculated by taking the average width (500 m), theckesidered to be 4
m, from the observed thicknesses of the two alluvial depositpled and the depth of the
channel) and total length of the alluvial pockets (50 km, estinfxtan Google Earth),
yielding a value of 0.1 kin Thus it can be inferred that the time required to liidl alluvial
pockets is < 1 kyr (assuming 100% sediment trap efficiency), winphes that reworking
of these alluvial sediments cannot account for the weatherexyagr 300-500 kyr observed
in modern river sediments. AMS radiocarbon measurements showhéaipper limit of
deposition age of floodplain deposits at Wangrah Creek is 12.45:kyr (Prosser et al.,
1994), with several substantial sediment flushing and filling epsad the Holocene. They
also reported the existence of remnant slope deposits oldeB@heyr in the Wangrah Creek
catchment. This further implies that reworking of old alludaposits cannot account for

residence timescales over 300-500 kyr for modern sediments.

Since the time spent by the sediments in the weatheringegyralfiivial deposits and
in transport by the river cannot account for the long residence tirsedahents; it can be
inferred that the ageing of sediment is occurring during hillskopesport. As mentioned
above, Yoo et al. (2007) reported that colluvial transport tim@0Oikyr through a 50 m
downhill transect. The weathering ages of the two colluaal@es in this study are 48 + 11
and 57% 13 kyr and the weathering age for sediment in the Bredbopdljacent to the study
locality of Yoo et al. (2007) at Frog’s Hollow is 77 kyr, supportinig general timeframe.

To test whether hillslope transport could account for sedimeatheeng ages of
hundreds of thousands of years, we determined the distribution of €ogthd in the
Murrumbidgee catchment. Using 1s DEM data and ArcGIS the c@dulmedian slope
length in the upper Murrumbidgee catchment was estimated to be P& m. Assuming a
linear relationship between slope length and sediment transporatich¥oo et al.’s (2007)
rates, it can be estimated that the sediments spend ~ 226 kyr residing on the hillslope
prior to reaching the river channel. The assumption of a liredationship between slope
length and sediment transport time is justifiable as the waleoil loss equation model
(USLE) considers that hillslope sediment delivery is lineaglgted to the slope length and
steepness (Gallant, 2001; Lu et al.,, 2006; Verstraeten et al.,. 20A@7)he basis of the
calculated transport time, it can be concluded that the latesidlence time driven by
transport through hillslope most likely accounts for the long residénoe of modern
sediments in the Murrumbidgee River, whereas the vertidalesidence time driven by soil
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production from the saprolite and fluvial transport time by therraccount for a smaller

proportion.

A shorter comminution age (42 + 7 kyr) for a post-LGM palaeochamfdle lower
Murrumbidgee River has been reported by Dosseto et al. (2010) instdatrasidence times
over 300 kyr for modern sediments and over 100 kyr for pre-LGM palasoelsssediments.
They proposed that reworking of old (high residence time) alluvial deposhe middle and
lower valley was the dominant sediment source pre- and post-L@W,yaunger (low
residence time) hillslope soil or sediment from the uppehosat was the sediment source
during the LGM. Faster downslope transport of sediments fromatibbroent area during the
LGM is plausible, as the vegetation cover during LGM in theaawas herb and grass-
dominated (Singh and Geissler, 1985) and hence could have promoted ddosisetq et al.,
2010 and references therein). Nevertheless, the residenceftimare than 300 kyr for the
post LGM sediment deposits at Wangrah Creek suggests that saffie@must have been
quite limited. Furthermore, extensive erosion of the hillslopesldvremove very old soil
material and therefore remove the source of very old sedidembsited in the upper
catchment alluvium during the Holocene and transported today. Oursresm$train the
sources of young LGM sediment to fresh bedrock erosion (e.g. @Haguh) or ridgetop soils,

rather than colluvial soils or alluvium within the upper batent.

5.5. Assessing the potential contribution of aeolian material

Holocene dust deposits from the Snowy Mountains in the upper catcloiéme
Murrumbidgee River have been analysed by Marx et al. (2011). thsenigace element data
of the dust samples, they showed that the source of dust is theyMdarling basin and that
all the dust samples have U/Th ratios > 1. The latetBteise dust sample analysed here has
a U/Th ratio < 1, which may point towards a different source of piist to the Holocene.
The sample preparation procedure followed by Marx et al. (2011) dicielatie removal of
exchangeable phases, which may have an effect on U/Th raties poBsibility of aeolian
dust contribution to the Murrumbidgee sediments was tested follothedpinary mixing
models suggested by Albarede (1995) for concentrations and ratiagldtionships were
deducible from the model using U-series concentrations or gctafiios of the sediments
and the dust, when considering the U and Th data of soil from FrodmwH(reported by
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Suresh et al., 2013) or of the most downstream sediment sampltheramlluvial samples as
the other end member for mixing. Correlations were absent whentsufisd — Th data
(tributary-trunk stream, colluvial, alluvial or modern sedimem®&re considered in the
binary mixing model. The non-uniform spread in the U and Th concemsabf the
sediments with some of the values less than that of the dusih@davn in Fig. 8) also indicate
that no significant mixing of sediments with dust is occurring,nbote samples are required

to thoroughly understand the potential dust contribution.

5.6. Broader Implications

A consolidated study of the evolution timescales of all the estments of sediments
in a single catchment (colluvial, alluvial and modern chanedinsents) is reported for the
first time here. The results have local as well asbal implications. The residence
timescales of the Murrumbidgee sediments discussed hereyntlogli€urrent understanding
of influence of LGM on sediment transport by rivers in temgefaistralia. Dosseto et al.
(2010) concluded that during the LGM, fresh sediments were loaddg tMurrumbidgee
River due to high hillslope connectivity. Their argument of réavy of alluvial deposits
being the source of modern sediments of very long residaneeafiter the LGM envisages
large alluvial deposits in the upper catchment area, whichkemena The long residence
times of alluvial and colluvial deposits in the upper catchmesa eeported here necessitate
alternate explanations for the arguments of Dosseto é2(dl0). The young residence times
of post-LGM sediments from the palaeochannels of the Murrumbiiesr could only be
explained by proposing that they are either produced by bedrock incisionroed from the
ridgetops containing young soil. Prosser et al. (1994) suggestethéhhillslopes were not
well connected with the river channel during the LGM. This suggesupports inferred
long residence times of sediments, as this will correspondyittg af sediments in the

hillslopes.

Long residence times of river sediments may correspond to stogion in the
catchment (Dosseto et al., 2008a). Tectonic and climate regamesknown to affect
denudation rates (von Blackenburg, 2006; Portenga and Bierman, 2011).lobadlyg
averaged erosion rate on catchments in tectonically actiase erever an order of magnitude
higher than that for catchments in tectonically inactive afi@agenga and Bierman, 2011).
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Sediment residence times of 1-8 kyr have been reported for tedlp@ictive catchments in
Iceland (Vigier et al., 2006). Granet et al. (2007) reportédkyr transfer time of sediments
by the river Ganga draining the tectonically active upper Higaal region. The long
residence times (~320 kyr) of sediments in the MurrumbidgeerReported here may
reflect the stable tectonic conditions of the catchment. Topograplyg pl major role in

weathering and erosion. A global compilation of the slope and tle$ data of drainage
basins showed positive correlation with erosion rates (PortemjadBeerman, 2011). The
relationship observed between the estimated slopelength and thédal@ml residence time
in the Murrumbidgee catchment supports their suggestion (providedatbe lateral

residence times of sediments correspond to a slow erosidn rate
6. Conclusions

1. The mineralogical, elemental and U-series isotopic charstitsr of
sediments carried by the Murrumbidgee River in the south-eastesinafia
were determined. The mineralogy of the sediments is consisfémtthe
granitic lithology of the catchment.

2. The Si-based Weathering Index does not vary systematically deamnst
suggesting insignificant chemical weathering of sediments dtrangport in
the Murrumbidgee River.

3. The concentrations and activity ratios of U-series isotopeshef river
sediments do not show evidence of downstream evolution. Rapid exafange
U-series isotopes between water and sediments to reach micahe
equilibrium may be occurring. Alternatively, the lack of syséatic
downstream trends in geochemistry could imply rapid sediment trarisport
the river system.

4. Muscovite content in the sediments shows a positive correlatitm Wi
concentration. Muscovite content plays a major role in controlllrggries
isotopes in sediments. A similar observation was reported fos soithe
upper catchment of the Murrumbidgee River (Suresh et al., 2013)

5. Long lateral residence time of colluvial soil is inferrée220 kyr). Soil
residence time driven by hillslope transport and average stmgghl of the
catchment indicates that of the total residence time in cétehment,
sediments spend ~220 kyr in hillslope transport. This could further imply
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slow erosion, consistent with the average erosion rate of 9 mrakyr
estimated using cosmogenic radionuclides (Fujioka et al., 2012).

6. The observation of long residence times (~400 kyr) of post-LGpbsles at
Wangrah Creek in the Murrumbidgee catchment contrasts with ahegy
residence times of post-LGM palaeochannel deposits reportedsseid et
al. (2010). The proposal of Dosseto et al. (2010) that erosion of young soil
from ridge top as the source of LGM sediments need to be revisad.
sources of young sediments during LGM in the catchment could beckedr
incision or fresh bedrock weathering on the ridges.

7. Long weathering ages (> 320 kyr) are observed for the alldejabsits and
modern sediments in the catchment, except for the modemesgtdsample
collected from the Bredbo River at Frogs Hollow (77 kyr). To#ueial
deposit samples also have an order of magnitude younger weathgeng
(~50 kyr). Longer residence times of sediments in the catchmunid
correspond to the stable landscape, which has been relativdfgaiead by

tectonic activity or climatic changes.
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Tables

Table 1. Definition of timescale terminology used.

Name

Definition Deter mined by

Comminution age

Weathering age

Soil residence time

Lateral residence time

Sediment residence
time

Time since the production of fine

grains (<50 pm) by bedrock 238234 disequilibrium
weathering

Time since the onset of chemical

weathering of bedrock to produce *8U-24J-2*Th disequilibrium
regolith.

Time since the conversion of

saprolite into soil Weathering age of topsoil

1. *Be-derived soil production

function and geochemical mass
Time spent by the soil on the balance model (Heimsath et al.,
hillslope. 2000).

2. Footslope colluvial

weathering age

Time spent by the sediment Comminution age or weathering
grains from formation by bedrock age minus deposition age (if
weathering until final deposition. applicable)
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915 Table 2. Sampling localities and U-series dataathed sediment samples from the Murrumbidgee Riveithree of its
916 tributaries.

Channel
Sample name Place Length Sample Th (£pm) U (ppm) & FUrPUE  (PThP0)E
¥ Depth (m)
(km)
Alluvium
MUS_low Wgrr;gefh -40 3.6 16.6240.03  3.820.03 1212001  0.670.02
MUS_up Wgr':gsh -40 1.4 21.70:0.04  6.330.05 1.35£0.02  0.620.02
MU3 Bredbo 0 4.1 10.69£0.02  1.77+0.01 1.02+¢0.01 71003
MU18 Bundarbo 240 0.4 13.81:0.02  2.83%0.02 1.12¥0.0 0.86+0.03
MU19_low Gundagai 360 7.7 21.78+0.03 5.59+0.04 40262 0.64+0.02
MU19_mid Gundagali 360 3.6 18.46£0.03  3.12+0.02 1008 0.82:0.02
MU19_up Gundagai 360 0.25 12.49:0.02  2.3620.02 0@  0.84+0.03
MU22 Dag:)r;gtm” 780 3 14.91:0.03  2.71%0.02 1.05£0.01  1.09+0.03
Colluvium
MU6_low Bé‘zﬁso 1 17 16.61:0.03  2.61%0.02 1.27+0.02  1.11#0.03
MU6_up Bé‘;ﬁg" 1 0.4 16.95:0.03  2.63:0.02 1.06£0.01  1.090.03
Modern
Frogs
MU11 -40 0 13.92¢0.02  1.89%0.02 1.1820.01  1.17+0.04
Hollow
MU4 Bredbo 1 0 15.13:0.03  2.92+0.02 1124001 8062
MUS Bredbo 1 0 12.89+0.02  2.68+0.02 1.25£0.02 80702
MU1 Bredbo 0 0 13.540.02  3.12£0.02 1.16:0.01  0®BO2
MU12 Efdnggs 160 0 0.65:0.02  2.1620.02 1.1920.01  0.7420.02
MU15 B”\'/‘gl'f‘eb;"a 160 0 12.50£0.02  3.11+0.02 1.26£0.02  0.64+0.02
MU17 Bundarbo 240 0 17.79+0.03  4.42+0.04 1.1940.01 0.75£0.02
MU20 Gundagai 360 0 12.5240.02  4.23+0.03 1.22+0.01 0.49+0.02
MU16 Brungle 360 0 18.17¢0.03  3.66£0.03 1.15+0.01 .7380.02
MU21 Dagg;r?tto” 780 0 10.73:0.02  2.19:0.02 1.09+.0.01  0.71%0.02
Dust
MU24 Carcoar 15 11.61#0.02  1.70£0.01 140.01 1083
Gravimetric
standard
TML-3 (n=2)

29.62+0.44 10.469+0.118 0.9944B0 1.004+0.006

917 *¥Negative values indicate upstream BredbGoncentrations are determined by isotope dilutiéeported with @ external errors

918
919
920
921
922
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923 Table 3. Mineralogy, WIS and granulometric mud fiat data of the sediment samples from the Murraigéé River
924 catchment.

Sample Albite M uscovite Mud fraction
name Quartz (%) (%) Microcline (%) (%) 1llite (%) WIS (%)? (%)’
Alluvium
MU8_low 71.2 6.4 0 224 0 83.4 37.3
MUS8_up 45.9 0 0 54.1 0 72.3 74.4
MU3 72.7 19 0 8.2 0 86.5 2.2
MU18 78.4 14.3 4.1 3.2 0 84.4 37.3
MU19_low 62.8 12.9 3.9 20.5 0 80.4 78.3
MU19_mid 78.1 17.3 0 4.7 0 84.3 43.4
MU19_up 67.3 19.1 10.4 3.2 0 85.4 20.3
MU22 72.8 8 3.3 14.3 1.6 83.2 37.5
Colluvium
MU6_low 61.1 0 0 39 0 78.0 325
MU6_up 61.9 6.6 0 31.6 0 83.0 30.4
Modern
MU11 57.7 22.3 18.4 1.6 0 84.4 1.9
MU4 71.8 115 0 5.4 11.3 82.8 38.1
MU5 73.8 10.6 0 6.4 9.2 85.4 46.0
MUl 68.9 14.1 0 16.9 0 82.8 57.5
MU12 72.7 14 8.2 1.8 3.3 86.3 251
MU15 70.2 9.9 6.6 10.1 3.3 83.5 40.9
MU17 60.3 11.6 8.9 2 14 80.0 96.4
MU20 76.1 9.1 15 11.8 1.5 84.4 46.8
MU16 69.6 10.9 4.9 9.8 52 80.0 38.0
MuU21 84.6 8.1 2.1 3.2 2 87.6 30.9
Dust
MU24 100 92.4

925 3 From major element data see Table™¥rom particle size distribution measurement
926
927
928
929
930

931



932

933
934
935

936
937

938

939

940

Table 4. Modelled leaching and gain coefficientsJaand Th isotopes and weathering ages.

Wa3g Wo34 Wa30 [ 2 [ 2 [ 20
Alluvium 0.742+0.007 0.771+0.023 9.42+8.69 1.5840.9 1.96+1.94 4.02+3.85
Colluvium 0.746+0.001 0.752+0.007 *3.6+0.04 *1.080. *0.7£0.4 *1.3+0.01
Modern 0.732+0.004 0.729+0.004 17.7£1.4 3.17+£1.58 .8881.93 6.72+3.33
O M3
Aluvium
MU8_low 395+166
MUS8_up 438+177
MU3 3134142
MU18 370£163
MU19_low 413+171
MU19_mid 334+146
MU19_up 355+155
MuU22 339+154
Colluvium
MU6_low 57+13
MU6_up 48+11
Modern
MU11 77+31
MU4 369+168
MU5 397+180
MU1 402+181
MU12 403+187
MU15 418+189
MU17 419+189
MU20 451+191
MU16 381+173
MuU21 371+169

All the coefficients are in I0yr?
*Taken from Suresh et al. (2013), reported forgbi profile from Frogs Hollow.
The model errors reported @@
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Figure Captions

Fig. 1. The Murrumbidgee catchment area map (DEM ttam Geoscience Australia). BR: Bredbo River.:GR
Goodradigbee River, TR: Tumut River. MR: MurrumbgdgRiver. WC: Wangraha Creek. FH: Frogs Hollow.
Locations of all the samples used in this studysti@vn. The numbers marking sample locations coores to
their MU numbers in Table 2. Suffix to the samplemnber reefers to the type of the sample (m: modern,
alluvial deposit, c: colluvial deposit, d: dust dsjt)

Fig. 2. Downstream variation of quartz and alhit¢hie modern sediments from the Murrumbidgee River.

Fig. 3. U-series activity ratios of the sedimend @ust samples. The error bars represent extenabjtecal
errors.

Fig. 4. Downstream variation of Si-based Weathetimigx for modern, alluvial and colluvial sedimefitsm
the Murrumbidgee catchment.

Fig. 5. Average major element oxide concentratiohsediments normalized to those of the upper oental
crust concentrations from McLennan (1995) and ts¢hof the Cooma Graodiorite (Chappell 1984). Algat
1 indicates elemental mobilization, and a valueinrdicates elemental gain.

Fig. 6. Variation of concentration of U and Th withud content in the modern, colluvial and alluvial
sediments. External analytical errors are sméfian the symbol size.

Fig. 7. Variation of concentration of U and Th wittuscovite content in the modern sediment sampbegrnal
analytical errors are smaller than the symbol size.

Fig. 8. Variation of concentration of U and Th wifiS for the river modern, colluvial and alluviadediments
and dust samples. Soil data from Frogs Hollow enupper catchment (Suresh et al., 2013) are atsersh
External analytical errors are smaller than thelsyinsize.

Fig. 9. Weathering agedf) of sediments from the Murrumbidgee River along kngth of the stream. The
error associated with,, is the & standard deviation

Fig. 10. Width of alluvial deposit pockets in theper catchment area (upstream of Gundagai) of the
Murrumbidgee River and two of its tributaries.
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Figure 1
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