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Abstract 

 

Optically Stimulated Luminescence (OSL) dating has enormous potential for 

interpreting fluvial sediments, because the mineral grains used for OSL dating are 

abundant in fluvial deposits. However, the limited light exposure of mineral grains 

during fluvial transport and deposition often leads to scatter and inaccuracy in OSL 

dating results. Here we present a statistical protocol which aims to overcome these 

difficulties. Rather than estimating a single burial age for a sample, we present ages as 

likelihood functions created by bootstrap re-sampling of the equivalent-dose data. The 

bootstrap likelihoods incorporate uncertainty from age-model parameters and 

plausible variation in the input data. This approach has the considerable advantage 

that it permits Bayesian methods to be used to interpret sequences containing multiple 

samples, including partially bleached OSL data. We apply the statistical protocol to 

both single-grain and small-aliquot OSL data from samples of recent fluvial sediment. 

The combination of bootstrap likelihoods and Bayesian processing may greatly 

improve OSL chronologies for fluvial sediment, and allow OSL ages from partially 

bleached samples to be combined with other age information. 
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1. Introduction 

 

Sedimentary deposits of river-transported material provide an important record of 

environmental history. Fluvial sediments are widely studied to understand modern 

fluvial sedimentation rates (e.g. Owens et al., 1999; Hobo et al., 2010), determine 

fluvial response to climatic, tectonic and sea-level forcing (e.g. Busschers et al., 

2008), and to reconstruct flood risks (e.g. Benito et al., 2008). However, the use of 

fluvial archives is severely hindered by the lack of consistent dating. Accurate and 

precise dating is clearly essential for correlating fluvial sedimentation with external 

forcing. Fluvial sediments are non-continuous and lack the annual layering necessary 

for high-precision methods; dating control must therefore be obtained through 

radiometric methods. Radiocarbon dating offers the most precision, but is of limited 

use for direct dating of fluvial activity due to the frequent absence of organic carbon, 

and because the carbon is often re-worked from older deposits. In contrast, Optically 

Stimulated Luminescence (OSL) dating is nearly always possible, because the raw 

material for OSL dating - sand-sized mineral grains - is abundant in fluvial sediment. 

OSL dating also has the advantage of a wide age-range of applicability (~10 a to >100 

ka). With these advantages, OSL dating could provide continuity in a multi-dating-

method chronology, and become the standard method for dating fluvial sediment 

(Wallinga, 2002; Rittenour, 2008). 

 OSL dating requires determination of the radiation dose absorbed by the 

mineral grains since burial (the burial dose), and the radiation dose rate. It is the 

determination of the burial dose that presents difficulties in dating fluvial sediment. 

The problem lies with the most fundamental requirement for obtaining an age with 

OSL techniques – that the mineral grains were exposed to enough sunlight during the 

last episode of transport and deposition for the OSL signal to be reset. A few tens of 

seconds of bright sunlight is enough for resetting, but the equivalent light exposure is 
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not always received by grains transported within the water column. The effect is 

usually known as ‘partial bleaching’ (or ‘heterogeneous bleaching’), with the 

consequences for age determination dependent on the severity of the effect. Partial 

bleaching tends to be most problematic where deposition is more recent (e.g. within 

the last 2000 a, Jain et al., 2004). 

It is notable that where OSL has proven successful in interpreting fluvial 

systems (e.g. Rittenour et al., 2005; Rodnight et al., 2005; Busschers et al., 2007), the 

degree of partial bleaching in the data is minimal. The appearance of partial bleaching 

in a dataset necessitates some statistical processing, although the selection and 

application of ‘age models’ is a frequent source of discussion (Bailey and Arnold, 

2006; Rodnight et al., 2006; Arnold and Roberts, 2009; Thrasher et al., 2009). 

Difficulties arise due to the sensitivity of the burial dose to the lowest De value, which 

may or may not be an outlier, and in assessing the amount of spread in the data that 

can be assigned to the burial-dose population. As there is no commonly agreed 

procedure for coping with these issues, there is a degree of inconsistency in age-

model application. More devastatingly, the error terms assigned to the burial ages 

reflect (at best) the uncertainty in fitting the model to the data, and take no account of 

uncertainty in the decision process itself. As a consequence, OSL ages for fluvial 

sediments often appear scattered or inaccurate, with error terms that are less than 

meaningful. 

The aim of this paper is to provide a robust protocol for the analysis of OSL 

data from fluvial (or glaciofluvial) sediment. We use both single-grain and small-

aliquot data from a fluvial sequence, allowing us to test the validity of using multi-

grain aliquots for partially bleached samples. We show that by embedding partially 

bleached OSL data in a Bayesian framework, the coherence of an OSL chronology 

can be increased. The use of Bayesian methods requires the construction of a 

likelihood function for the OSL age, for which we develop a new method based on 

bootstrap re-sampling of the De distribution. The method is able to incorporate 

uncertainties in the De distribution and age-model parameters, and through the 

combination with Bayesian statistics leads to an objective means of identifying 

outliers. 
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2. Methods 

 

2.1 Sample details 

 

We use a sequence of seven OSL samples taken from a single core through embanked 

floodplain sediments of the River Waal, The Netherlands. The sediments were 

deposited over the last 1000 years; the OSL data show far more overdispersion than 

would be expected from well-bleached samples (Table 1). Some bioturbation of the 

upper part of the sequence can be expected, as some smoothing of heavy metal 

profiles has been observed (Hobo et al., 2010). In the lower part of the core, a rapid 

rate of deposition is likely to have precluded this effect. For most of the relevant time 

period, there is no alternative dating method available for these sediments. OSL 

measurements were performed firstly on multi-grain aliquots of 100-200 grains each, 

with details described in Wallinga et al. (2010); additional site information and 

alternative dating methods are presented by Hobo et al. (2010). For the current paper 

we include three additional samples of the underlying channel deposits taken from the 

same core; all OSL decay curves were re-analysed using the ‘early background’ 

subtraction described in Cunningham and Wallinga (2010). Integration intervals were 

0-0.4 s for the initial signal, 0.4-1.4 s for the background, under ~40 mW cm
-2

 blue 

LED stimulation. 

 New single-grain measurements were performed on all 7 samples, using a 

Risø TL/OSL-DA-15 reader with single-grain attachment (Bøtter-Jensen et al., 2000). 

Single-grains were optically stimulated using an Nd:YVO4 diode-pumped laser (λ= 

532 nm). The detection filter was a 2.5 mm Hoya U340, following Ballarini et al. 

(2005). The natural and test-dose OSL was measured for all grains; grains with a 

relative standard error on the first test-dose OSL of less than 6.5% were selected for 

the complete measurement protocol, with other grains ignored in the analysis. Signal 

analysis for single grains also used the early background subtraction (0-0.17 s for the 

initial signal, 0.17-0.58 s for the background). The measurement protocol for single 



 

6 

grains was otherwise identical to the multi-grain protocol. Grains were accepted if 

their recycling ratios were between 0.9 and 1.1, and if recuperation was less than 10% 

of the regenerative dose. 

Table 1 about here 

 

2.2 Bayesian chronological framework 

 

Bayesian methods have long been recognised as a powerful aid in the analysis of age 

information (Buck et al., 1991, Bronk Ramsey, 1995). A Bayesian chronological 

framework has two particular uses: it provides a formal method of combining multiple 

age estimates into a meaningful chronology (including an objective means of 

identifying outliers), and it utilises stratigraphic relationships between the samples to 

increase dating precision. Bayesian methods have gained widespread use with 

radiocarbon-based chronologies (e.g. Blockley et al., 2007, Jacobi and Higham, 2009, 

Bronk Ramsey et al., 2010), where the analysis helps discriminate between multiple 

peaks in calibrated age probability distributions. 

The power in Bayesian techniques comes through the incorporation of ‘prior’ 

information, i.e. information known before measurement of any sample. For 

sedimentary sections, this comes from the stratigraphic relationship between the 

sample locations, which may simply constrain the order in which the samples were 

deposited, or may contain more detailed assumptions about the depositional process 

(Bronk Ramsey, 2008). The chronological model is developed through the 

combination of the prior model with the age information obtained from measurements 

(the ‘likelihood’), input in the form of a probability density function (PDF). 

Given the ability of Bayesian analysis to identify outliers and increase 

precision, it is clearly of interest in processing OSL ages derived from 

heterogeneously bleached samples. There are a number of freely available 

chronological tools that make use of Bayesian statistics (see Parnell et al., 2011). One 

such program is OxCal (Bronk Ramsey, 1995), which is widely used for analysis of 
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radiocarbon dated sequences, and can also be used to include age information from 

other methods (e.g. OSL ages from well-bleached samples; Rhodes et al., 2003). The 

wholesale inclusion in OxCal of a sequence of fluvial OSL samples has not yet been 

attempted, and this could be a reflection of inaccuracy or spurious precision in ages 

assigned to fluvial samples. 

OxCal requires age information in the form of a PDF. For a well-bleached 

OSL sample with the age defined with a 1σ error term, this is easily achieved using 

the internal functions of OxCal (see Rhodes et al. (2003) for details). For partially 

bleached samples, the creation of a PDF is not so straightforward: the OSL age may 

be dependent on the age model used and the assumptions that go with that model, and 

the use of a normally distributed error term may not be valid. What is required, 

therefore, is a means of estimating a likelihood function for the age of a sample, 

incorporating the different sources of error. In the sections that follow, we show how 

bootstrap methods can be used to create an analogue of the likelihood function. 

 

2.3 Bootstrap likelihoods 

 

Outline of procedure 

Measurements of equivalent dose (De) can be made on single grains or on multi-grain 

aliquots. In either case, we can define a dataset of x = (x1,x2,...,xn)  of n De estimates. 

Each xi = (yi,si), that is, each xi consists of an estimate of De (yi), and an estimate of the 

standard error of that measurement (si). We wish to estimate θ, the mean radiation 

dose received by the grains since they were last buried (the 'burial dose'); our estimate 

of θ is denoted . The age of the sample is then estimated by  / , where  is the mean 

dose rate to the grains. For partially bleached samples, a commonly used method of 

calculating  is using the 3-component minimum-age model (MAM3) of Galbraith et 

al. (1999). Under this model, the parameter γ = log(θ) is estimated using a maximum 

likelihood approach. The log(xi)s are assumed to belong to a population equal to γ, or 

to a second population greater than γ represented by a half a normal distribution. With 

this model, it is assumed that the dispersion in the population of well-bleached grains 
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is entirely accounted for by the associated error terms. The evidence from dating of 

well-bleached (e.g. aeolian) sediment consistently shows that this assumption is not 

reasonable, and so Galbraith et al. (2005) introduced the term σb to the age models. σb 

can be included in the MAM3 by increasing the sis (Galbraith and Roberts, in press), 

effectively allowing the well-bleached population to be defined by a log-normal 

distribution with mean  and relative standard deviation σb.  

 In this paper we use an altered, 'unlogged' version of the MAM3 described by 

Arnold et al. (2009), henceforth the MAM3ul. This unlogged version is more suitable 

for very young sediments as it can deal with estimates that are equal to zero within 

their uncertainty limits. Rather than calculating a single estimate of θ, we design a 

protocol for creating a probability density function to represent the likelihood as a 

function of θ. The protocol can be described as a bootstrap partial likelihood, and is 

summarised below. Each step of the protocol is expanded upon in the following 

subsections. 

 

Bootstrap likelihood protocol: 

1. Create a bootstrap sample  from the original data  

2. Stochastically generate σb 

3. Calculate the bootstrap replicate  with likelihood estimated using a nested 

bootstrap or bootstrap recycling. 

4. Incorporate unshared systematic error. 

5. [after repeating steps 1-4 many times] Apply polynomial smoothing to the 

pairs of [θ, L(θ)]. 

 

Bootstrap resampling 

The bootstrap was introduced by Efron (1979) as a non-parametric means of 

estimating the standard error of the parameter of interest. A full account can be found 
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in Efron & Tibshirani (1993). With this method, a bootstrap sample x* = 

(x*
1
,x*

2
,…x*

n
)  is drawn by random sampling with replacement from the original 

dataset x, of length n. This process is performed repeatedly, with each bootstrap 

sample used to create a bootstrap replicate  The function s(·) is the same as that 

applied to the original data x, in our case the MAM3ul. 

 

The σb  parameter 

When applied to the minimum-age models, σb represents the overdispersion in the 

data that would be expected should the sample of interest be well-bleached. It is a 

fixed parameter of the minimum-age models, and must be estimated before a model is 

run. An overestimate of σb will lead to an overestimate of the burial dose (and hence 

the age), an underestimate in σb will lead to an underestimate the burial dose and age.  

It is far from certain what the value of σb should be, and it is likely to be sample 

dependent. The influences on σb can be categorised as follows: 

 Errors arising during measurement – different grains may react differently to 

optical and thermal stimulation, causing them to yield different De; see 

Thomsen et al. (2005; 2007). 

 Grain-to-grain variation in the dose rate received by grains in nature. This 

could arise through the localised concentrations of beta sources in sediment 

(e.g. feldspars or zircons, Mayya et al., 2006), or through the presence of 

macro bodies of non-radioactive material (Nathan et al., 2003, Cunningham et 

al., 2011a). 

 Calculation of measurement errors. Because σb estimates the spread in the data 

beyond that caused by the sis, it is dependent on the way the sis are calculated. 

We could therefore expect σb to be dependent on the laboratory which 

produced the data, as methods of calculating si vary between laboratories. 
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Ideally, the expectation of σb would be calculated on a sample-by-sample basis. In the 

absence of such information, a value of 0.20 (i.e., 20% overdispersion) could be a 

respectable approximation at the single grain level. This value is the mean 

overdispersion from a large number of single-grain studies on well-bleached samples 

Arnold and Roberts (2009). However, Arnold and Roberts (2009) also showed a 

significant amount of variation exists between different samples. In the bootstrap 

likelihood protocol presented here, uncertainty in σb can be incorporated in the 

likelihood profile by including stochastic variation in σb. For each bootstrap sample 

x*, a value of σb is drawn randomly from a normal distribution; we use a normal 

distribution with mean of 0.20 and standard deviation of 0.04 for the single-grain data. 

For multi-grain data, σb must be smaller than for single-grain data from the same 

sample. When there is more than one grain in an aliquot, grain-to-grain variation in De 

will tend to get averaged, reducing the overdispersion for a well-bleached sample. 

This process has been modelled by Cunningham et al. (2011b), who found that the 

extent of the averaging effect is dependent on the number of grains in the aliquot and 

the single-grain sensitivity distribution of the sample. Following the protocol of 

Cunningham et al. (2011b), σb for the multi-grain data in this study is estimated to be 

0.11 ± 0.04. 

 

Likelihood estimates  

Having obtained a bootstrap replicate  by running the MAM3ul with a bootstrap 

sample and stochastically generated σb, it is necessary to associate a likelihood with 

that value. The bootstrap partial likelihood approach estimates this with a nested 

bootstrap calculation (Davison et al., 1992; Efron and Tibshirani, 1993).  From each 

of M bootstrap samples x*
i
, (i=1:M), we generate N second-level bootstrap samples by 

sampling with replacement from x*
i
. The likelihood at  is estimated using a kernel 

density estimate of the second-level bootstraps: 
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where k(·) is the kernel density estimate with bandwidth h, and where is a second-

level bootstrap replicate. We use the standard normal kernel, with bandwidth h 

determined by the standard error on  when using the original data x. The bandwith is 

therefore roughly proportional to the age of the sample, and wider when  is uncertain. 

 A consequence of nested bootstrap calculations is a large computational 

burden. The total number of θ evaluations is M(N+1). For our purposes, reasonable 

values for M and N are about 2000 and 100, respectively, leading to ~200,000 calls to 

the MAM3ul. Because each evaluation of the MAM3ul is relatively expensive, the total 

computational burden is prohibitive. The bootstrap recycling procedure (Newton and 

Geyer, 1994) was developed to solve this problem, and is outlined succinctly by 

Davison et al. (1995). Rather than sampling the second-level bootstraps from each 

first-level bootstrap sample, they are drawn from one probability vector p
0
 of the 

original sample x. Weights are used to achieve the same effect as sampling from the 

first-level bootstrap probability vector p*. The likelihood equation under bootstrap 

recycling becomes 

 

where  is the frequency of data value xi in the m
th

 sample drawn from p
0
.  

 Using bootstrap recycling, the total number of θ evaluations is reduced to 

M+N, although the value of N should be much greater than with the nested bootstrap. 

The end result is a series of M bootstrap replicates of , each paired with a likelihood 

estimate L(θ). 

 

Unshared systematic error 
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There are sources of uncertainty in OSL dating that are systematic between aliquots, 

but random between samples. For example, a random error in the dose-rate 

measurement, or water content correction, will affect all aliquots within a single 

sample in the same way. Following Rhodes et al. (2003), we refer to this sort of error 

as unshared systematic (USS) error. However, while Rhodes et al. (2003) used the 

agreement within the chronological model to determine the USS, we prefer to 

estimate the USS independently. The USS is incorporated by randomising each 

bootstrap replicate , using a normal distribution with mean of  and standard deviation 

0.035 (i.e. 3.5% USS). 

 

 Polynomial smoothing 

The final step is to fit a smooth likelihood curve through the pairs [, L(θ)]. We use a 

polynomial function, which provides a reasonable fit (Fig. 1), although more 

advanced methods could also be used. The fitting is performed on the logged data to 

homogenize variability.To make full use of the likelihoods, the x-axis needs to be 

converted from dose to age. This can be done at any stage using the dose rate. This 

conversion implies that systematic uncertainty in the dose rates should be considered. 

However, since this would apply to all samples in the same way, it should be included 

after the chronological model has been constructed (but before comparison with 

independent ages). 

Figure 1 about here 

 

The bootstrap likelihood protocol described above does not produce a true likelihood: 

a function that is proportional to the probability of a fixed event in sample space 

(Efron & Tibshirani, 1993). The bootstrap likelihood is an analogue of a partial 

likelihood, with which it is possible to combine prior information using Bayes' 

Theorem (Davison et al., 1992). This combination is demonstrated in section 3. 

 

3. Results 
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Figure 2 about here 

 

We have applied the bootstrap likelihood protocol to the sequence of young fluvial 

samples. The resulting age distributions are informative, and are shown in 

stratigraphical order in Fig. 2, along with the profile likelihood of the MAM3ul age. 

For all samples, the bootstrap likelihoods are broader than the MAM3ul profile 

likelihood, due to the inclusion of additional sources of uncertainty. The MAM3ul is 

somewhat sensitive to the lowest precise De, resulting in non-normal or multi-modal 

bootstrap likelihoods. This sensitivity is picked up by the bootstrap likelihoods 

because some of the bootstrap samples do not contain the lowest De value.  

 Using OxCal v4.1 (Bronk Ramsey, 2008, 2009), the bootstrap likelihoods can 

be used to create a coherent chronology for the fluvial sediment. The likelihood 

functions were saved as text files in the OxCal directory, with the units as years AD, 

and the file suffix prior. OxCal provides a number of depositional models and 

constraints to help define the chronology. We used the P_Sequence mode of 

deposition, as it is most consistent with non-continuous floodplain deposition; we 

assumed an average of 10 depositional events per metre. We also included a 

Tau_Boundary at the top of the sequence, which formulates a prior model for an 

exponentially decreasing floodplain sedimentation rate over time. The validity of the 

sedimentation-rate model is discussed later, the precise command list was: 

 

Plot() 

 { 

  P_Sequence("Site1107",10) 

  { 

   Boundary("b_old"); 

   Prior(Sample7){ z=9.42; }; 

   Prior(Sample6){ z=3.55; }; 
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   Prior(Sample5){ z=1.64; }; 

   Prior(Sample4){ z=1.26; }; 

   Prior(Sample3){ z=0.77; }; 

   Prior(Sample2){ z=0.31; }; 

   Prior(Sample1){ z=0.13; }; 

   Tau_Boundary("b_young"); 

  }; 

 }; 

 

where e.g. 'Sample1' corresponds to a file named 'Sample1.prior' containing the 

bootstrap likelihood. We are aware that OxCal terminology used here may be 

confusing: the ‘prior’ files contain the measurement data and not the prior information 

on e.g. depth and order of the samples. After running the model, OxCal produces a 

new series of PDFs, referred to as Posteriors. These have been plotted according to 

depth in Fig. 3 (for single-grain data) and Fig. 4 (for multi-grain data), along with the 

likelihoods. OxCal also determines an ‘agreement index’ for each sample (Table 1), 

and for the overall model. The agreement index gives an objective score of the 

overlap between the modelled posteriors and the likelihoods. It is suggested that a 

lower threshold of 60% should be applied to the samples, i.e. data should be rejected 

if the agreement index for the sample is below 60% (Bronk Ramsey, 2008). For both 

the single-grain and multi-grain datasets, sample 5 gave an agreement score far below 

60%; the age models plotted in Figs 3 and 4 omit this sample.  

Figures 3 and 4 about here 

 

4. Discussion 

 

4.1 Advantages of using bootstrap likelihoods 
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The potential benefit of using Bayesian methods for fluvial sediments is large, but 

rests on a number of basic assumptions. The first of these is that the likelihood 

distribution is a good reflection of the uncertainty associated with the OSL 

measurements. If the likelihood distribution is too narrow, then the lack of coherence 

between the samples will make it difficult to fit a depositional model; too broad and 

the model will tend towards more uniform rate of deposition.  

 The bootstrap routine presented here provides a robust estimation of the 

minimum-age uncertainty. By testing the sensitivity of the minimum age to 

(plausible) variation in the input data, the width of the probability distribution is made 

dependent on the quality of the original data. In a given sequence of fluvial samples, it 

is probable that some samples will appear better bleached than others. With the 

Bayesian procedure described above, it should be possible to ‘anchor’ the chronology 

on these better-bleached samples.  

 The application of Bayesian statistics requires careful consideration of the 

sources of error. In the model discussed so far, systematic errors that are shared 

between the samples are not included, and must be added to the final (post-OxCal) 

age estimates. If independent age information is included in the deposition model, 

then the shared systematic errors should be added before the Bayesian modelling. 

However, the likely size of shared systematic errors (< 5%) may be insignificant 

compared to the width of the bootstrap uncertainty distributions. 

 

4.2 Validity of parameters used in the chronological model 

 

OxCal offers a variety of parameters which can be used to specify the prior 

information about the sedimentation process. The prior information that we have 

comes from principles of the sedimentation process on embanked floodplains. 

Sedimentary chronologies are ordinarily based on a P_Sequence model, which 

constrains each model iteration to appear in depth order, while allowing slight 
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variation in the sedimentation rate between samples. The degree of variation in 

sedimentation rate is governed by the parameter k, which specifies the average 

number of deposition events per depth unit. We used a low value of k=10, reflecting 

the sporadic distribution of deposition events (floods) over time. A Tau_Boundary at 

the top of the stratigraphic model forces a decreasing sedimentation rate, reflecting 

the reduction in accommodation space as the floodplain builds up.  

 A different choice of model parameters would lead to different posterior 

distributions. In particular, a higher k would lead to a more uniform model with lower 

agreement scores, but with the sedimentation rates largely the same. The purpose of 

using OxCal here is to demonstrate the potential of the bootstrap likelihoods; we have 

avoided sample rejection to facilitate comparison between single-grain and small-

aliquot data. 

 

4.3 Single grain or small aliquots? 

 

There is a great deal of similarity between the inferred ages from single-grain and 

small-aliquot data, both in the bootstrap likelihoods and the posterior distributions. 

For samples 1, 4 and 7, the bootstrap likelihoods are similar for both datasets. Sample 

5 produces an imprecise, bimodal likelihood for the single-grain data, and is in poor 

agreement with the rest of the chronology. In the single-grain data, the likelihood for 

sample 6 is also imprecise, and also has weak agreement with the inferred 

chronology. 

 The similarity of the two datasets conflicts with the received opinion that 

multi-grain aliquots can not be used to date partially bleached sediment. The 

argument for this is that averaging of the signal from different grains occurs when the 

OSL is measured on a multi-grain aliquot; a single, poorly bleached grain can 

therefore corrupt the whole aliquot. What is missing from this argument is an 

appreciation of the spread in OSL sensitivity between different grains. The OSL 

sensitivity varies dramatically between grains, and the sensitivity distribution varies 

dramatically between samples. Differences in sensitivity could reflect different crystal 
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characteristics, or sensitivity changes brought about through irradiation and bleaching. 

Quartz grains that have undergone repeated cycles of bleaching and deposition tend to 

become sensitized (e.g. Pietsch et al., 2008). As a consequence, for some samples a 

large fraction of quartz grains will yield a measurable OSL signal. For these samples, 

single-grain dating is efficient, because a significant fraction of the single-grain 

measurements provide useful data. If this type of sample is partially bleached then 

single-grain dating is essential. Small aliquots will contain many sensitive grains, 

leading to a high degree of averaging across the aliquot. 

In many locations, sensitivity of the quartz is far less ideal. Samples from any 

environment can show poor sensitivity (e.g. Fitzsimmons, 2011; Lukas et al., 2007), 

and highly-skewed sensitivity distributions (Duller, 2008). It is not uncommon for 

95% of the combined OSL signal to come from less than 5% of the grains. In our 

experience of dating quartz from the Netherlands, a single-grain disc of 100 grains 

typically contains about 1 or 2 sensitive grains. In a multi-grain aliquot of 100 grains, 

the number of bright grains on the disc can be estimated from the binomial 

distribution (with n=100 and p=0.015 in this case). For such samples, single-grain 

dating is very inefficient, because the vast majority of single-grain measurements are 

discarded. Furthermore, single-grain dating is not necessary for partially bleached 

samples of this type; a small aliquot contains very few sensitive grains, so the 

averaging effect will be weak. 

 For the present study, roughly 25700 single grains were initially measured, of 

which 340 grains (1.3%) were considered sensitive enough to be worth completing 

the measurements. Only 133 grains (0.5%) passed the acceptance criteria. For multi-

grain aliquots, 45% of the measurements yielded De values which passed the 

acceptance criteria. Given the similarity of results, and the greater efficiency of the 

multi-grain aliquot measurements, we can see little benefit in using currently available 

single-grain measurement protocols for samples such as these. Nevertheless, the 

averaging effect will always be present in small-aliquot data. The aliquot size should 

be restricted as much as feasible, with single grain measurements performed if the 

sensitivity distribution permits. A discussion on the averaging effect can be found in 

Duller (2008) and Cunningham et al. (2011b). 
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4.4 Implications for sampling 

 

The combination of bootstrap uncertainty distributions with Bayesian 

chronological modelling has the potential to greatly increase the accuracy and 

precision in dating fluvial deposits. However, for this potential to be realised there are 

two important requirements of the sampling strategy: 

1. High-resolution sampling. The use of Bayesian statistics is only beneficial when 

the uncertainty distributions of different samples overlap. It is therefore essential 

that sampling resolution is high.  

2. Collection of high-quality stratigraphic information. The more prior information 

that can be incorporated into the Bayesian modelling, the greater the precision of 

the chronological model.  

 

The importance of these points can be seen by considering the chronological model in 

Fig. 4. In the lower part of the sequence, the posterior distributions are almost 

identical to the prior distributions, because the poor sampling resolution has lead to 

prior likelihood distributions that do not overlap.  

 

 

6. Conclusions 

 

Bootstrap re-sampling can be used to create likelihood functions of age for partially 

bleached OSL data, incorporating uncertainty from two sources: the sensitivity of the 

age model to each aliquot or grain, and the assumed width in the well-bleached 

population of grains. The main advantages of bootstrap likelihoods are: 
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 An improved assessment of uncertainty in OSL ages derived from partially 

bleached samples. 

 The possibility of incorporating data from partially bleached OSL samples into 

chronological models using Bayes’ theorem. 

 

The bootstrap likelihood protocol provides a framework for attaching future 

improvements in OSL methods, e.g. a different age model, or better assessment of 

dose-rate variation between grains. Maximum benefit from this protocol will occur for 

sequences with high-resolution sampling and detailed stratigraphic information. This 

protocol is a new and promising approach that provides large benefits over presently 

used (non-bootstrap) methods, and we hope it will be further expanded and developed 

in the future. Finally we note that for our study site, single-grain OSL measurements 

were inefficient and added no value to the small-aliquot data. 
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Fig. 1. Construction of the bootstrap likelihood. (a) 2000 bootstrap replicates of the 

minimum age have been assigned a likelihood value using bootstrap recycling. The 

data is fitted with a 6-degree polynomial to estimate the likelihood as a function of 

age. (b) Fitting residuals. The curve was fitted on the logged data. 
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Fig. 2. Bootstrap likelihoods for a sequence of fluvial samples, using single-grain 

(left) and small-aliquot data (right). The samples come from a single core, and are 

plotted in stratigraphic order. Also plotted is the MAM3ul profile likelihood for each 

sample, which would ordinarily provide the confidence intervals, and the De for each 
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accepted aliquot or grain. The likelihoods are normalised by height. The x-axis has 

been converted to age using the sample-specific dose rates.  

 

 

 

 

 

Fig. 3. (a) Age-depth model for a sequence of fluvial samples using single grains of 

quartz. (b) enlargement of the upper part of the sequence. Bootstrap likelihoods were 

created using the procedure described in section 2.3. The likelihoods were combined 

with prior information using OxCal 4.1; model specifications are given in section 3. 

Sample 5 was omitted from the final OxCal model due to a poor agreement score. 

Age model 68% and 95% confidence regions are shown, using linear interpolation 
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between the posteriors. The sample number and agreement index for each sample is 

stated beside the curves.  

 

 

 

Fig. 4. (a) Age-depth model for a sequence of fluvial samples using small-aliquots 

(2-3 mm) of quartz. (b) enlargement of the upper part of the sequence. Bootstrap 

likelihoods were created using the procedure described in section 2.3. The likelihoods 

were combined with prior information using OxCal 4.1; model specifications are 

given in section 3. Sample 5 was omitted from the final OxCal model due to a poor 

agreement score. Age model 68% and 95% confidence regions are shown, using 

linear interpolation between the posteriors. The sample number and agreement index 

for each sample is stated beside the curves.  
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      Overdispersion   

Sample 
No. Lab code Depth (m) Single grains 

Small 
aliquots 

1 NCL-1107140 0.13 0.50 ± 0.10 0.73 ± 0.14 

2 NCL-1107141 0.31 0.52 ± 0.09 0.79 ± 0.11 

3 NCL-1107142 0.77 0.89 ± 0.15 0.58 ± 0.08 

4 NCL-1107143 1.26 0.73 ± 0.16 0.54 ± 0.08 

5 NCL-1107144 1.64 0.81 ± 0.14 0.76 ± 0.10 

6 NCL-1107146 3.55 0.56 ± 0.11 0.69 ± 0.07 

7 NCL-1107147 9.42 0.63 ± 0.11 0.37 ± 0.05 

 

Table 1. Overdispersion in the equivalent-dose data for each sample, calculated using 

the central-age model (Galbraith et al., 1999). 
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