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Emotion perception and electrophysiological correlates in Huntington's
disease

Abstract
Objective This study aimed to characterise, emotion perception deficits in symptomatic Huntington's disease
(HD) via the use of event-related potentials (ERPs). Methods ERP data were recorded during a
computerised facial expression task in 11 HD participants and 11 matched controls. Expression (scrambled,
neutral, happy, angry, disgust) classification accuracy and intensity were assessed. Relationships between ERP
indices and clinical disease characteristics were also examined. Results Accuracy was significantly lower for
HD relative to controls, due to reduced performance for neutral, angry and disgust (but not happy) faces.
Intensity ratings did not differ between groups. HD participants displayed significantly reduced visual
processing amplitudes extending across pre-face (P100) and face-specific (N170) processing periods, whereas
subsequent emotion processing amplitudes (N250) were similar across groups. Face-specific and emotion-
specific derivations of the N170 and N250 ('neutral minus scrambled' and 'each emotion minus neutral',
respectively) did not differ between groups. Conclusions Our data suggest that the facial emotion
recognition performance deficits in HD are primarily related to neural degeneration underlying 'generalised'
visual processing, rather than face or emotional specific processing. Significance ERPs are a useful tool to
separate functionally discreet impairments in HD, and provide an important avenue for biomarker application
that could more-selectively track disease progression.
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generic visual processing deficit 
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Abstract 

 

Objective: This study aimed to characterise, emotion perception deficits in symptomatic 

Huntington’s disease (HD) via the use of event-related potentials (ERPs).  

Methods: ERP data were recorded during a computerised facial expression task in 11 HD 

participants and 11 matched controls. Expression (scrambled, neutral, happy, angry, 

disgust) classification accuracy and intensity were assessed.  Relationships between ERP 

indices and clinical disease characteristics were also examined.  

Results: Accuracy was significantly lower for HD relative to controls, due to reduced 

performance for neutral, angry and disgust (but not happy) faces. Intensity ratings did not 

differ between groups. HD participants displayed significantly reduced visual processing 

amplitudes extending across pre-face (P100) and face-specific (N170) processing periods, 

whereas subsequent emotion processing amplitudes (N250) were similar across groups. 

Face-specific and emotion-specific derivations of the N170 and N250 (‘neutral minus 

scrambled’ and ‘each emotion minus neutral’, respectively) did not differ between groups. 

Conclusions: Our data suggest that the facial emotion recognition performance deficits in 

HD are primarily related to neural degeneration underlying ‘generalised’ visual processing, 

rather than face or emotional specific processing.  

Significance: ERP’s are a useful tool to separate functionally discreet impairments in HD, 

and provide an important avenue for biomarker application that could more-selectively 

track disease progression. 
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Introduction 

With the development of up and coming drug trials in Huntington’s disease (HD), there is 

an urgent need to identify potential biomarkers that can sensitively track disease 

progression and importantly that are functionally relevant (Georgiou-Karistianis et al., 

2013a, Georgiou-Karistianis et al., 2013b, Georgiou-Karistianis et al., 2013c). Previous 

studies have identified emotion perception deficits in premanifest HD (pre-HD) individuals 

15 years prior to estimated onset (and in the absence of cognitive change), suggesting 

that emotion alterations may be one of the earliest quantifiable behavioural changes 

observed preclinically (Gray et al., 1997, Stout et al., 2011). To this end further 

investigation of emotion perception in HD may offer new insights regarding early functional 

changes, which could provide an important avenue for biomarker development. 

Specific emotion perception deficits in HD were initially documented by 

Sprengelmeyer et al., (1996), who used six basic emotions (happiness, sadness, surprise, 

anger, disgust, fear) and showed that of these, perception of disgust was the most 

severely impaired. Other published studies have reported similar findings in HD 

(Hennenlotter et al., 2004, Montagne et al., 2006). However, studies with differing findings 

questioned the degree of impairment for disgust and implicated a universal deficit across 

basic negative emotions, primarily anger and fear (Calder et al., 2010, Henley et al., 2008, 

Milders et al., 2003, Snowden et al., 2008). Negative behavioural symptoms include 

apathy, irritability and an increased incidence of depression, whilst there is an additional 

decrease in self-care and personal hygiene (Rosenblatt, 2007, Snowden et al., 2008). 

These types of behavioural changes are likely the result of basal ganglia dysfunction 

together with alterations in prefrontal function (Georgiou-Karistianis et al., 2013a, 

Georgiou-Karistianis et al., 2013c, Gray et al., 2013). Conversely their origins may lie in 

the neural structures underlying perceptual and emotional processing of facial expression 

stimuli (Gray et al., 2007, Henson et al., 2003). Self-report questionnaires provide insight 
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into self-assessed emotional responsiveness, which in some HD studies have shown 

trends and significance for lower self-assessed emotion (Sprengelmeyer et al., 1996). 

Ratings of emotion intensities and perceived emotionality have not been previously 

investigated in HD and may further substantiate a broader emotional effect that is not 

specifically a perceptual problem.  

Further understanding of the neural substrates and circuitry involved in emotion 

perception may provide insight into the behavioural and psychiatric symptoms of HD. A 

sensitive technique that can examine emotion perception in HD is event related potential 

(ERP) methodology, a derivation of the electroencephalography (EEG). To our knowledge 

there are currently no published ERP emotion perception studies in HD. The use of ERPs 

has however been implemented in other areas of HD research (for review see Nguyen et 

al., 2010), where attenuated amplitudes (reduced coherent neural firing rates) across a 

range of ERP indices have been reported (e.g., Antal et al., 2003, Beste et al., 2008, 

Munte et al., 1997). Emotional faces can similarly be studied using ERPs. Of particular 

relevance is that following more generic visual processing (0-100ms), specific structural 

encoding of the face occurs at circa 170ms (termed the N170), followed by valance-

dependent processing of the face at circa 250ms (termed the N250). The N170 is primarily 

contributed to by fusiform area (FFA) and superior temporal gyrus (STG), whereas the 

N250 has less discreet sources (Bentin et al., 1996, Campanella et al., 2002, Henson et 

al., 2003). Assessment of the ERPs underlying emotional face processing can thus help 

delineate the disparate processes involved in this ecologically relevant function, and in 

particular can separate them from the motor-related functions required in performance 

measures such as reaction time and accuracy. 

This study aimed to investigate for the first time the relationship between emotion 

perception deficits and underlying neurophysiological indices in symptomatic HD 

participants. We adopted a similar behavioural paradigm to that used previously (see 
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Johnson et al., 2007), with negative (disgust and anger), neutral and positive (happy) 

emotion types to further substantiate whether deficits in emotion perception are disgust-

specific or generalise to another negative emotion (anger). Moreover, by measuring 

ERPs, this study also characterised the nature of the reported neurophysiological 

modulation in HD in response to emotional faces. Consistent with previous research it was 

hypothesised that HD participants would display decreased accuracy of facial expression 

identification, particularly for negative emotions (anger and disgust), compared with 

controls. Further, and based on the assumption that the poorer accuracy would 

correspond to ‘less’ emotional processing, it was hypothesised that the (subjective) 

emotional intensities of these expressions would be reduced in HD compared to controls, 

particularly for negative expressions. Finally, given that the literature suggests that the 

emotional face processing deficit in HD is specific to negative expressions, it was 

hypothesised that HD participants would display attenuated ERP amplitudes relative to 

controls for the emotional decoding index (N250) but not the structural encoding index 

(N170), particularly for negative expressions. 

  

Method 

Participants 

 Twenty-two right handed [Edinburgh Handedness Inventory, EHI (Oldfield, 1970)], 

individuals aged 40 to 70 participated in the study. There were 11 HD participants (eight 

male, three female), all clinically diagnosed by a qualified neurologist (A.C). Disease 

progression was assessed via the Unified Huntington’s Disease Rating Scale (UHDRS) 

motor examination (Huntington Study Group, 1996). Symptomatic HD participants1 had a 

UHDRS motor score of >5. HD participants had previously undertaken genetic testing and 

                                            
1 UHDRS motor scores for two HD participants were not available. 
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CAG repeat length ranged from 40-472. The HD sample was age, gender and IQ [National 

Adult Reading Test 2nd edition, NART-2 (Nelson et al., 1992)] matched to control 

participants. 

In order to characterise the groups, participants completed a battery of 

neurocognitive scales and questionnaires, which were compared using independent 

samples Mann-Whitney U tests [Beck Depression Inventory – 2nd Edition, BDI-II (Beck et 

al., 1961), with HD participants scoring higher than control (p < 0.001); Hospital Anxiety 

and Depression Scale, HADS (Zigmond et al., 1983), with HD participants scoring higher 

than control on  depression (p=0.036) but not the anxiety (p=0.17) subscale; Positive and 

Negative Affect Schedule, PANAS (Watson et al., 1988), with reduced Positive (PA.; 

p=0.03) and a trend to increased Negative Affect (NA; p=0.07 in the HD group); Olatunji et 

al. (2007) modification of the Disgust Scale-Revised (DS-R), with HD scoring higher on 

‘animal’ (p=0.03) and a trend towards higher scores on ‘contamination’ (p=0.060) subsets, 

but no difference on ‘core’ (p=0.188) compared to controls; Emotion Regulation 

Questionnaire, ERQ (Gross et al., 2003), where no group differences were found; and 

Orientations to Happiness Measure, OTH (Peterson et al., 2005), where no group 

differences were found]. See Table 1 for demographic, clinical data, and scores on all 

scales. 

The current study was approved by the Monash University Human Ethics Board 

and each participant gave informed, written consent.  

         _______________ 

Table 1 about here 

________________ 

Procedure 

                                            
2 CAG repeat length for one HD participant could not be confirmed.  
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 Participants were prepped for the EEG and then moved into the EEG recording 

facility, where they rested for 5 minutes and then completed the facial expression task 

followed by the questionnaires and scales. For the facial expression task participants were 

provided with a thorough explanation, including familiarisation with each of the questions 

and response choices available, followed by a 5-minute practice period during which care 

was taken to ensure understanding, and then the main task was given. 

 

Materials and Apparatus 

Facial Expression Task 

The emotional face perception task utilised three basic emotions, happiness, anger 

and disgust, and also included neutral as an emotion type (Ekman, 1999). These facial 

expressions were adapted from the Karolinska Directed Emotional Faces (KDEF) set 

(Lundqvist et al., 1998). The set consisted of 63 vivid faces, both male and female, with 

each face depicting all four facial expressions (see Figure 1). The KDEF has been 

validated as a reliable facial set and used in a number of emotion studies (Goeleven et al., 

2008). Additionally, 63 scrambled versions of the KDEF faces were used in the task as 

non-facial controls (Henson et al., 2003). Overall, the task consisted of 315 trials, 

substantially more than previous emotion perception studies, but a necessary requirement 

for ERP analyses, divided into 3 blocks of 105 trials each, with a brief break in between 

blocks. Given the requirement for extra stimuli, we did not use other typically-employed 

negative emotion types (i.e., fear and sadness) since this would have significantly 

increased the duration of the experiment. Therefore our results, concerning negative 

emotions, are restricted to emotion processing of disgust and anger, and do not 

necessarily generalise to all negative emotion types. The task was run through Cogent 

(Welcome Laboratory of Neurobiology, Queen Square, London; 

http://www.vislab.ucl.ac.uk/cogent.php) and Matlab 2006b software (Mathworks, 
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Massachusetts, USA; http://www.mathworks.com.au/products/matlab/index.html) and 

displayed on a 17” computer monitor that was approximately 45cm in front of the 

participant, with stimuli 17 x 13 cm. There were two pseudo-random orders of task stimuli, 

with the order counterbalanced across participant (and matched across groups). Each trial 

was initiated by a fixation cross presented for 500ms, followed by a KDEF stimulus 

(expressive or scrambled face) for 750ms, followed by a second fixation cross for 500ms. 

After cessation of the second fixation cross, participants were required to respond to two 

questions that were presented following the fixation cross. Each question was displayed 

for 1300ms, during which time participants were required to respond. Question one was 

“Which Emotion?”, where response options were, Happy, Neutral, Angry or Disgust. 

Question two was “How Emotional?” did participants find the stimulus, where participants 

had to respond on a Likert scale, from 1 (not very emotional) to 5 (very emotional); points 

2-4 were not labelled. Responses were made via computer keyboard. For scrambled 

faces participants were required to “Press Any Key”.  

__________________ 

Figure 1 about here 

__________________ 

EEG Acquisition 

A 64-electrode silver-silver chloride (Ag-AgCl) electroencephalography (EEG) elasticised 

Quik-cap (Compumedics) was used, configured in accordance with the international 10-20 

system. Electrodes were also placed above and below the left eye, and on the other 

canthus of each eye (for oculographic recordings), on each mastoid process and with 

ground on the forehead. Data were digitised at 1000Hz and impedances were below 10k 

at the start of the recording. Data were collected and analysed offline by Compumedics 

Neuroscan 4.5 software (Melbourne, Australia). 
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Data Analysis 

Behavioural: Accuracy was defined for each emotion type as correct, incorrect or no 

response, and in line with previous literature (Johnson et al., 2007) calculated as a 

percentage of the total number of stimuli for each emotion type. Intensity was defined as 

the average Likert response per emotion type. 

ERP: EEG data were digitally filtered with a band-pass zero phase-shift filter of 0.5-30Hz 

(24 dB roll-off), re-referenced to the digitally calculated mean of the mastoid processes, 

EOG corrected (Semlitsch et al., 1986), epoched -200ms pre-stimulus to 800ms post-

stimulus, baseline corrected, artefact rejected (EEG channels; > +/-75V), and averaged 

for each face type separately. Data were then converted to common average reference, 

and grand mean waveforms created across subjects for scrambled faces and face-specific 

types combined (‘Faces’; which omitted the scrambled ERPs), to establish the time range 

of the general visual processing (90-150 ms) and face-specific processing (136-216 ms) 

ERP peaks respectively, for the combined groups. 

Peak Picking: The P100 latency for each participant’s scrambled face ERP was then 

defined as the most positive point within the range of the grand mean P100 latency +/- 15 

ms, at POZ. N170 latency was similar defined, differing in that the grand mean N170 

latency was used from the Faces ERP, and that neutral, happy, angry and disgust faces 

were then scored for the individuals separately. The P100 amplitude for each subject and 

face type was then calculated as the difference between the amplitudes at PO7, POZ and 

PO8 (positive) and F7, FZ and F8 (negative), respectively, and for the N170 amplitude as 

the difference between the amplitudes at PO7, POZ and PO8 (negative) and F7, FZ and 

F8 (positive), respectively. To reduce the influence of latency variation on the P200 and 

N250 peak picking, for each individual and face (excluding scrambled) ERP separately; 1/ 

P200 latency was defined relative to the preceding N170 peak (as the most positive peak 

in the range of the ‘N170 latency + 70 ms’ to ‘N170 latency + 130 ms’, at POZ), with the 
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peak calculated as the difference between the amplitudes at PO7, POZ and PO8 

(positive) and F7, FZ and F8 (negative) respectively3; and 2/ N250 latency was defined 

relative to the preceding P200 peak (as the most negative peak in the range of the ‘P200 

latency + 0 ms’ to ‘P200 latency + 60 ms’, at POZ), with peak calculated as the difference 

between the amplitudes at PO7, POZ and PO8 (negative) and F7, FZ and F8 (positive), 

respectively. 

 

Statistical Analysis 

As sample sizes were small (N=11 per group), planned non-parametric comparisons were 

performed. These do not have the degree of flexibility that parametric tests have, and so 

the following simplified variables were computed to allow relevant hypotheses to be 

tested. For each participant: For the P100 index, peak amplitude data for Scrambled 

stimuli were averaged across the 3 levels of laterality (left, midline, right), creating the 

variable ‘S’. For the N170 index, peak amplitude data for each of the Scrambled and 

Neutral stimuli separately, were averaged across the 3 levels of laterality (left, midline, 

right), creating ‘S’ and ‘N’ respectively, and an index of ‘face specific processing’ was 

created by subtracting peak amplitude results for ‘S’ from ‘N’ (Face Effect) . For the N250 

peak amplitude, data for each of the Neutral, Angry, Disgust and Happy stimuli separately, 

were averaged across the 3 levels of laterality (left, midline, right), creating ‘N’, ‘A’, ‘D’ and 

‘H’ respectively, and indices of ‘emotion specific processing’ were created by subtracting 

peak amplitude results from each of ‘A’, ‘D’ and ‘H’, from ‘N’, creating ‘Angry Effect’, 

‘Disgust Effect’ and ‘Happy Effect’ respectively. The parallel derivation was computed for 

each of the behavioural measures (Accuracy and Intensity). Further, average behavioural 

measures were created across all face emotion types (N, A, D, H), for each of Accuracy 

and Intensity (‘Faces’), and for P100, averages across all face types were created (S, N, 

                                            
3 Note that the P200 peak was defined in order to determine the N250 latency, but was not further analysed. 
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A, D, H; All Faces). For each such variable, subscripts denote the dependent variable of 

interest (e.g., ‘Angry EffectP100’ for the P100 Angry Effect derivation). Due to the small 

sample size and exploratory nature of this study, no adjustment for Type I error was 

conducted. Statistics were conducted using SPSS v19. 

Behavioural 

A Wilcoxon’s Rank Sum tested for differences in each of Accuracy (percentage correct) 

and Intensity, for each of Faces, neutral, happy, angry and disgust faces separately, as 

well as for Angry Effect, Disgust Effect and Happy Effect. 

Electrophysiological 

Role of Visual Processing (Prior to Face-Specific Processing) in HD 

To determine whether general visual processing differed between the groups, a 

Wilcoxon’s Rank Sum test compared HD and control ‘All FacesP100’ values. 

Role of Facial Processing in HD 

1/ To verify that structural encoding of the faces resulted in enhanced processing of the 

N170, a Wilcoxon’s Sign Rank test was used to compare ‘SN170’ to ‘NN170’ for the whole 

sample; 2/ To determine whether the N170 to faces differed between the groups, a 

Wilcoxon’s Rank Sum test compared Control to HD ‘NN170’ amplitudes; 3/ To determine 

whether any enhanced N170 processing to ‘N’ (relative to ‘S’) differed between groups, a 

Wilcoxon’s Rank Sum test compared Control to HD ‘Face EffectN170’ values; 4/ To 

determine whether enhanced face (‘N’) processing occurred relative to ‘S’, within each 

group separately, a Wilcoxon’s Sign Rank test was used to compare ‘SN170’ to ‘NN170’
4.  

Role of Emotional Processing in HD 

                                            
4 Note that although analyses 3 and 4 are very similar, analysis 4 was added because although it has the 
limitation of not being able to compare the groups directly, it has the advantage of being fully within subject 
and thus more sensitive than Analysis 3 to face-related processing changes. 



	 13

1/ To determine whether emotional modulation of the N250 was achieved, Wilcoxon’s 

Sign Rank tests were used to compare ‘NN250’ to each of ‘AN250’ , ‘DN250’  and ‘HN250’, for 

the whole sample; 2/ To determine whether N250 processing differed between groups, a 

Wilcoxon’s Rank Sum test compared Control to HD ‘NN250’ values. 3/ To determine 

whether any enhanced N250 processing to the emotional faces differed between groups, 

Wilcoxon’s Rank Sum tests compared Control to HD ‘Angry EffectN250’, ‘Disgust EffectN250’ 

and ‘Happy EffectN250’ values. 4/ To determine whether emotional modulation of the N250 

were achieved, within each group separately, Wilcoxon’s Sign Rank tests were used to 

compare ‘NN250’ to each of ‘AN250’ , ‘DN250’  and ‘HN250’
4. 

Associations with Clinical Measures 

‘Spearman’s measure of association’ analyses were performed within the HD group to 

investigate possible relationships between clinical characteristics (CAG repeat length, 

years since diagnosis and UHDRS motor score), and any dependent variables that 

significantly differed between groups. Moreover, for HD participants, of the other 

scales/questionnaires that significantly differed between groups (i.e., BDI-II, PANAS-PA 

and Disgust-An) none correlated with the significant dependant variables in this study. 

 

Results 

Behavioural 

As can be seen in Table 2, accuracy (percentage) scores were lower in HD than controls 

for the combined Faces (p=0.006), with subsequent analyses showing that this was due to 

reductions in each of neutral (p=0.020), angry (p=0.006) and disgust (p<0.001) faces, with 

no difference for happy faces (p=0.792). There was a trend towards reduced Happy Effect 

(p=0.094) and greater Angry Effect (p=0.130) and Disgust Effect (p=0.063) in HD 
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participants. As can be seen in Table 3, intensity scores did not differ between the groups 

for any face nor emotion-effect type (p>0.341).  

Electrophysiological 

ERP waveforms for each of the five face types are shown for each group separately, in 

Figure 2. 

Role of Visual Processing (Prior to Face-Specific Processing) in HD 

As indexed by the All FacesP100 amplitude, HD patients (mean=1.94, SD=2.16, 

median=1.28) had smaller visual processing responses (prior to face-specific processing) 

than Controls (mean=4.06, SD=2.30, median=4.22; p=0.045). 

Role of Facial Processing in HD 

1/ Verifying that structural encoding of the faces resulted in enhanced N170 processing, 

for the combined group, FacesN170 (mean=-4.96, SD=3.39, median=-4.17) had larger 

amplitudes than scrambled faces (mean=-3.29, SD=4.37, median=-2.65; p=0.003). 2/ 

Demonstrating an impairment in facial processing, ‘FaceN170’ was reduced in HD (mean=-

3.31, SD=2.75, median=-2.59) relative to controls (mean=-6.61, SD=3.25, median=-7.48; 

p=0.017). 3/ No difference in face-specific processing (‘Face EffectN170’) was found 

between HD (mean=-1.09, SD=2.68, median=-2.66) and controls (mean=-2.26, SD=2.65, 

median=-1.51; p=0.491). 4/ However, suggesting that this lack of difference in face-

specific processing may have been affected by the small sample size, ‘SN170’ and 

‘FaceN170’ differed in controls (Faces: see above; Scrambled: mean=-4.35, SD=3.88, 

median=-3.33; p=0.010), but not HD patients (Faces: see above; Scrambled: mean=-2.23, 

SD=4.75, median=-0.16; p=0.182), using the more sensitive within-subjects comparison. 

Role of Emotional Processing in HD 
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1/ For the combined sample, relative to Neutral (mean=0.94, SD=2.79, median=0.79), 

there were reduced N250 amplitudes to Disgust (mean=0.37, SD=2.48, median=0.71; 

p=0.024) and a trend to reduced N250 amplitudes to Angry (mean=0.56, SD=2.63, 

median=0.63; p=0.082) faces, but no effect on Happy faces (mean=1.02, SD=2.76, 

median=1.43; p=0.884). 2/ No evidence of an ‘NN250’ amplitude group difference was 

found (i.e. independent of emotion; p=0.818). 3/ No difference in emotion-specific 

processing was found between HD and control groups for either ‘Angry EffectN250’ 

(p=0.768), ‘Disgust EffectN250’ (p=0.412) or ‘Happy EffectN250’ (p=0.577). 4/ However, 

suggesting that that the lack of group differences for the above Angry and Disgust  

emotion effects may have been related to the small sample size, for controls, ‘AN250’ 

(p=0.050) and ‘DN250’ (p=0.050) but not ‘HN250’ (p=0.722) were larger than ‘NP250’ 

amplitudes, whereas no differences were seen relative to ‘NP250’ for HD (‘AN250’, p=0.534; 

‘DN250’, p=0.213; ‘HN250’, p=0.859).  

Associations with Clinical Measures 

The only significant (p<0.05) association between the significant dependent variables 

described above and either CAG repeat length, years since diagnosis and UHDRS motor 

score, was between CAG repeat length and P100 amplitude to all faces (i.e., general 

visual processing; r=-0.67, p=0.031), with a further trend to a similar inverse relation 

between CAG repeat length and accuracy to neutral faces (r=-0.59, p=0.072); see Table 

4. 

 
 
Discussion 
 

The present study found that recognition of emotional faces was less accurate in 

HD patients relative to controls, an effect driven by poorer accuracy to each of neutral, 
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angry and disgust faces. This provides a replication of previous research reporting poorer 

recognition accuracy for disgust in HD (e.g., Hennenlotter et al., 2004, Montagne et al., 

2006, Sprengelmeyer et al., 1996). However, as impairment to angry faces was also 

observed, the present study does not support the notion that disgust (or the neural 

processes subserving its recognition) is qualitatively different to other negative emotions, 

but accords well with recent studies reporting deficits in other negative emotion processing 

(specifically anger). This suggests a more universal deficit in negative emotion processing 

(Calder et al., 2010, Dogan et al., 2013, Henley et al., 2008, Johnson et al., 2007, 

Snowden et al., 2008). It should be noted however that as the present study did not use 

sad or fearful faces, it was not able to determine the degree of generalizability. It is difficult 

to determine how this conclusion is affected by the neutral face impairment found in the 

present study. Snowden et al., (2008) failed to find impairments in neutral facial 

discrimination in HD. Moreover, impairments were not found in premanifest HD (Johnson 

et al., 2007) or in symptomatic HD using neutral video clips (Dogan et al., 2013). It is 

unclear what may be driving the difference in results between this study and that by 

Snowden et al., (2008) since there is limited information on the neutral face performance 

results provided by Snowden et al., (2008).  However, given that the control group in the 

Snowden et al., (2008) study were 10 years older than the manifest HD group (with the 

former similar in age to both the control and HD group of the present study), it is possible 

that age related decline may have obscured impairments in that study.  However, should 

the present result be replicated, it would suggest that the impairment in HD is present in 

all non-positive valanced stimuli, or alternatively that neutral stimuli are viewed as 

negatively valanced (with the latter perhaps due to a difficulty in delineating neutral from 

negatively valanced faces).  

Early visual processing (as indexed by the P100 amplitude) was reduced in HD 

compared to controls, regardless of face or emotion type. This finding is consistent with a 
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number of studies reporting impairments in early visual processing in HD (Antal et al., 

2003, Ellenberger et al., 1978, Josiassen et al., 1984, Oepen et al., 1981), although others 

have failed to identify such an impairment (Ehle et al., 1984, Munte et al., 1997, 

Rosenberg et al., 1985, Scott et al., 1972). Such an impairment provides another 

explanation for the results; it is possible that prior to face and facial emotion processing, 

there is a visual processing deficit in HD that makes subsequent processing more difficult. 

This is consistent with the reduced N170 measure of structural decoding of the faces that 

was also found in HD, as it was independent of whether the faces were real or scrambled 

(and thus not face-specific), and also the lack of N250 group difference, which indexes the 

valance-specific emotional decoding of the faces. That is, there was nothing specific about 

the emotional content of the faces that differentiated the groups. This interpretation is 

consistent with a recent study assessing emotional response to auditory sounds in HD 

participants (Robotham et al., 2011), which reported performance decrements in HD 

across all emotion types, including positive valence sounds. However, given the use of a 

different modality (auditory as opposed to visual), and the lack of comparison between 

emotional and non-emotional sounds, it is difficult to translate the relevance to emotional 

face processing. 

The difficulty with this hypothesis is that it does not appear to explain the differential 

accuracy of happy compared with neutral, angry and disgust faces. However, given that 

healthy controls are more accurate for neutral than angry faces, and angry than disgust 

faces (with the same pattern found in the present sample), the differential impairment 

within these face types in HD may merely be due to the relative difficulty. That is, given 

the impairment in visual processing, such faces may be somewhat difficult to process, and 

given the ‘normal’ hierarchy of difficulty for the faces (e.g., Harmer et al., 2004), in HD the 

impairment may merely be exaggerated for disgust relative to anger, and anger relative to 

neutral. 
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However, ‘happy’ faces did not fit this pattern, as they are typically more difficult 

than neutral stimuli to identify (as was the case in the present control group), and were not 

impaired in the present HD sample. This suggests that in addition to the general visual 

impairment in HD, emotional processing is also impaired but not observed in the present 

study. Particularly given the small sample size (11 versus 11), and the corresponding 

possibility of Type II error, we further explored this by comparing the N250 index of 

valance processing between neutral and each of happy, angry and sad faces, within each 

group separately. This represents a far more sensitive test as it is entirely ‘within-subject’ 

and thus less affected by between-subject variability. Here we found significant reductions 

in both angry and disgust (but not happy) faces relative to neutral, but only for controls. 

Similarly, the N170 index of structural encoding of the faces was larger for real than 

scrambled faces for controls, but not for HD. Thus the small sample size may have 

precluded the identification of differential emotional modulation for the groups, and the 

possibility of independent impairments in visual, facial and emotional processing cannot 

be ruled out. 

This sample size limitation argues strongly for the use of substantially larger 

samples in future investigations. However, it should be noted that the small sample size 

will not increase Type I error (but rather require larger effect sizes to detect significant 

differences), and so the positive findings in the present study are not susceptible to this 

limitation. Instead, this means that the significant impairments reported here (accuracy 

and general visual processing) are associated with larger effect sizes than, for instance, 

the above speculated emotional processing deficits (N250 for anger and disgust). This is 

an important outcome to inform the search for functional biomarkers, which suggest that 

behavioural measures of emotional processing were more robust than the 

electrophysiological (N250). However, whether this will correspond to greater biomarker 
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utility remains to be seen, as it would depend on the relative expression of these functions 

pre-symptomatically, and which of the measurements are more functionally relevant. 

In support of a visual processing deficit in HD (independent of facial or emotional 

processing), there was a strong inverse association between CAG repeat length and P100 

amplitude (r=-0.68), as well as a trend toward an association with overall accuracy (r=-

0.48; non-significant). This is an interesting finding in that it was independent of ‘Years 

Since Diagnosis’, and the associated ‘UHDRS’ motor scores, and thus may represent a 

core visual processing deficit that may have a different trajectory to the development of 

motor signs. Further exploration of this relationship is clearly warranted. 

Contrary to our hypothesis, intensity ratings did not differ between groups for any 

emotion type, nor for any emotion-effect. Further, this does not appear to be due to Type II 

error, as algebraic means were almost identical for the groups. However, it is difficult to 

determine what this in fact means for the experiential intensity of the HD participants, as 

the subjectivity of the rating makes comparisons difficult to interpret. For example, it may 

be that HD and control participants experienced the emotional faces similarly, or 

alternatively it may be that HD participants experience a generally flatter emotional 

landscape, and that they scored the emotion of the faces relative to their less intense 

emotional experiences more generally. The lack of objectivity of this metric questions its 

utility in the current search for HD biomarkers. 

It should be noted that the present ERP methodology differs from the behavioural 

research on emotional face processing HD. For example, the current method used shorter 

inter-stimulus intervals (ISI’s), as well as shorter periods allocated for evaluation and 

behavioural responses to the stimuli (1300ms each). This difference was due to the large 

number of stimuli required to obtain adequate ERP signals, but may have altered the task 

when compared to performance-based research by making it somewhat more difficult. 

However, the briefer ISI’s are sufficient to generate emotion-based differences in face 
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ERPs. Moreover, and as evidenced by the current performance data, all participants 

performed with a high degree of accuracy  (neutral: >75% correct, compared to the 

chance level of 25%) and group differences were found as a function of emotion type, in 

spite of the shorter evaluation and behavioural response periods in the present study. 

Another issue to consider is that, as per standard behavioural and ERP protocols, fixation 

was not required for the presentation of face stimuli. This raises the possibility that the 

visual processing deficits observed in the HD group were not due to poorer neural 

processing per se, but rather less visual stimulation reaching the brain. However, as both 

groups performed with a high degree of accuracy for happy faces, this suggests that 

fixation was adequate for successful discrimination in both groups. This therefore does not 

explain the reduced visual processing responses in the HD group. 

In summary the present study has replicated previous reports of impairments in 

behavioural measures of negative (but not positive) emotion processing in HD, as well as 

demonstrated impairments in neutral face processing. We also reported impaired visual 

processing in HD (P100; prior to face or emotion processing), without clear evidence of 

differences in face-specific (N170) or emotion-specific (N250) processing. This suggests 

that the reduced emotion recognition performance in HD reported in the literature (and 

here) is likely to represent a number of discreet impairments, and that electrophysiological 

methods offer new avenues for delineating such impairments. Further longitudinal 

investigation of such methods is required to assess their utility as sensitive biomarkers of 

disease progression for therapeutic trials. 
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Figure Legends 

Figure 1. Examples of the Karolinska Directed Emotional Faces set depicting the four emotional expressions (angry, neutral, happy and 

disgust) and a scrambled face (Lundqvist et al., 1998). 

 

Figure 2. Event-related potentials are displayed for Control (left hand column) and HD (right hand column) groups 

separately, for Fz (top row) and POz (bottom row) derivations separately, for each of the five face types (including 

‘scrambled’). 
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Table 1.  

Means (M), Standard Deviations (SD) and Ranges of Participant Demographic, Clinical Data 

and Questionnaire Scores. 

      Control      HD 

      (n=11)                                    (n=11) 

    M   SD   Range  M   SD   Range 

Age    55.64   7.06   40-65  56.82   9.81   42-70 

Disease duration#  -   -   -   5.30   4.42   0-14  

CAG repeats#  -   -   -   42.30   2.00   40-47 

UHDRS^   -   -   -   16.67   9.31   7-30  

BDI-II   2.73*   2.10   0-7   13.09*   8.17   0-30 

NART-R   17.91    5.70   8-27   21.10    7.22   9-33  

HADS-A   3.55   2.50   1-7   5.55   3.70   0-13  

PANAS-PA  36.27*   3.17   31-41  29.73*   8.80   12-40 

PANAS-NA  14.64   7.88   10-36  17.27   4.67   10-2  

ERQ-R   30.64   5.10   24-37  27.55   4.82   21-36 

ERQ-S   14.36   4.41   7-18   17.36   5.85   8-25  

OTHS-M   17.09   3.67   12-24  18.91   5.91   8-26  

OTHS-E   18.00   3.49   14-23  16.91   5.77   7-24  

OTHS-P   18.81   2.40   14-22  17.18   4.40   10-26 

Disgust-Core  1.59   .52   2.67-.83  2.07   .71   1.08-3.08 

Disgust-An  1.18*   .68   .63-2.75  2.12*   1.02   .5-4 

Disgust-Cont  .84   .71   0-2.6   1.56   .96   0-3.2 

Note. Each group comprised 8 males and 3 females. Disease characteristics (CAG repeat length and 
disease duration) for one HD participant and UHDRS scores for two HD participants were not 
available, reducing n to 10 and 9 for rows designated with # and ^ respectively. Dashes represent 
where descriptive information was not applicable. Age and Disease duration = years. CAG repeat 
length of the IT15 gene. UHDRS = Unified Huntington Disease Rating Scale, scores increase with 
motor symptoms severity. BDI-II = Beck Depression Inventory, 2nd Edition (score 0-13 minimal, 14-19 
mild, 20-28 moderate, 29-63 severe). NART-R = National Adult Reading Test- Revised (maximum 
score 50). HADS-A = Hospital Anxiety and Depression Scale, Anxiety subscale (maximum score 21). 
PANAS = Positive Affect (PA) and Negative Affect (NA) Scale (both maximum score 50). ERQ = 
Emotional Regulation Questionnaire, R = Reappraisal (maximum score 42), S = Suppression 
(maximum score 28). SWLS = Satisfaction With Life Scale (maximum score 35). OTHS = Orientations 
To Happiness Scale, M = Meaning, E = Engagement, P = Pleasure, (each subscale maximum score 
30). Disgust scale, Core, Animal and Contamination subscale (each subscale maximum score 4).  
* Significant (p<.05) difference between groups. 
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Table 2.   
Means (M), Standard Deviations (SD) and Percentages (%) for Correct, Errors and No 

Response Scores for HD and Control Participants During the Facial Expression Task. 

      Control          HD 
___________________________________________________________________ 
   M   SD      %   M   SD   % 

Happy  

Correct  53.45   13.16  84.84  52.73   10.18  83.70   

Errors   1.55    1.21    2.46   7.73   10.57  12.27  

No Response 8.00   12.96  12.70  2.45     2.84   3.89 

Neutral 

Correct  54.18   12.33  86.00  47.64   10.41  75.62 

Errors   3.45   6.65   5.48   10.91    8.56   17.32 

No Response 5.36   11.99  8.51   4.36   4.82    6.92 

Anger 

Correct   50.45   10.39  80.08  38.64   12.75  61.33  

Errors   7.55   4.25   11.98  20.18   9.39   32.03 

No Response 5.09   11.18  8.08   4.36   5.63   6.92 

Disgust 

Correct  48.18   13.10  76.48  24.73   15.58  39.25 

Errors   8.64   7.12   13.56  34.45   15.76  54.68 

No Response 6.18   10.97  9.81   3.73   4.88   5.92  
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Table 3 

Means (M) and Standard Deviations (SD) of Emotionality Intensity Scores for Control and 

HD groups. 

    Control   HD 

Happy    3.35 (0.46)   3.54 (0.71) 

Neutral   2.11 (0.77)   2.30 (0.87) 

Angry    3.11 (0.55)   3.30 (0.65) 

Disgust   3.56 (0.40)   3.69 (0.49) 
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Table 4 

Associations between Disease Characteristics and both Accuracy Scores and ERP 

Amplitudes in the HD group. 

 
  

CAG Repeat UHDRS Disease Duration 
r p-value r p-value r p-value 

Accuracy Scores (%)       

All Faces -0.48 0.162 -0.37 0.362 -0.27 0.455 
Neutral -0.59 0.072 0.22 0.606 -0.22 0.544 
Anger -0.23 0.522 -0.63 0.094 -0.18 0.619 
Disgust -0.32 0.372 -0.34 0.414 -0.13 0.713 

ERP (Amplitude)       

All Faces (P100) -0.68 0.031 -0.31 0.450 0.16 0.650 
All Faces (N170) -0.03 0.932 -0.39 0.346 -0.10 0.776 
Face Effect (N170) 0.03 0.932 0.63 0.096 0.26 0.476 
Anger Effect (N250) 0.22 0.546 -0.36 0.379 -0.16 0.663 
Disgust Effect (N250) -0.18 0.618 -0.45 0.268 0.28 0.434 
                    

 
Note. CAG length = CAG repeat length on chromosome 4; Disease Duration measured in 
years; ‘r’ is Spearman’s measure of association. 
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