
University of Wollongong
Research Online

Faculty of Engineering and Information Sciences -
Papers: Part A Faculty of Engineering and Information Sciences

2014

Mining mid-level features for action recognition
based on effective skeleton representation
Pichao Wang
University of Wollongong, pw212@uowmail.edu.au

Wanqing Li
University of Wollongong, wanqing@uow.edu.au

Philip O. Ogunbona
University of Wollongong, philipo@uow.edu.au

Zhimin Gao
University of Wollongong, zg126@uowmail.edu.au

Hanling Zhang
Hunan University

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library:
research-pubs@uow.edu.au

Publication Details
P. Wang, W. Li, P. Ogunbona, Z. Gao & H. Zhang, "Mining mid-level features for action recognition based on effective skeleton
representation," in 2014 International Conference on Digital Image Computing: Techniques and Applications, DICTA 2014, 2014, pp.
1-8.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online

https://core.ac.uk/display/37020819?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/eispapers
http://ro.uow.edu.au/eispapers
http://ro.uow.edu.au/eis


Mining mid-level features for action recognition based on effective
skeleton representation

Abstract
Recently, mid-level features have shown promising performance in computer vision. Mid-level features
learned by incorporating class-level information are potentially more discriminative than traditional low-level
local features. In this paper, an effective method is proposed to extract mid-level features from Kinect
skeletons for 3D human action recognition. Firstly, the orientations of limbs connected by two skeleton joints
are computed and each orientation is encoded into one of the 27 states indicating the spatial relationship of
the joints. Secondly, limbs are combined into parts and the limb's states are mapped into part states. Finally,
frequent pattern mining is employed to mine the most frequent and relevant (discriminative, representative
and non-redundant) states of parts in continuous several frames. These parts are referred to as Frequent Local
Parts or FLPs. The FLPs allow us to build powerful bag-of-FLP-based action representation. This new
representation yields state-of-the-art results on MSR DailyActivity3D and MSR ActionPairs3D.

Keywords
skeleton, effective, recognition, action, representation, features, mining, level, mid

Disciplines
Engineering | Science and Technology Studies

Publication Details
P. Wang, W. Li, P. Ogunbona, Z. Gao & H. Zhang, "Mining mid-level features for action recognition based on
effective skeleton representation," in 2014 International Conference on Digital Image Computing: Techniques
and Applications, DICTA 2014, 2014, pp. 1-8.

This conference paper is available at Research Online: http://ro.uow.edu.au/eispapers/3522

http://ro.uow.edu.au/eispapers/3522


Mining Mid-level Features for Action Recognition
Based on Effective Skeleton Representation

Pichao Wang, Wanqing Li, Philip Ogunbona and Zhimin Gao
University of Wollongong, Wollongong, NSW, Australia, 2522

pw212@uowmail.edu.au, {wanqing, philipo}@uow.edu.au, {zg126}@uowmail.edu.au
Hanling Zhang

Hunan University, P. R. China, jt hlzhang@hnu.edu.cn

Abstract—Recently, mid-level features have shown promising
performance in computer vision. Mid-level features learned by
incorporating class-level information are potentially more dis-
criminative than traditional low-level local features. In this paper,
an effective method is proposed to extract mid-level features
from Kinect skeletons for 3D human action recognition. Firstly,
the orientations of limbs connected by two skeleton joints are
computed and each orientation is encoded into one of the 27 states
indicating the spatial relationship of the joints. Secondly, limbs
are combined into parts and the limb’s states are mapped into
part states. Finally, frequent pattern mining is employed to mine
the most frequent and relevant (discriminative, representative
and non-redundant) states of parts in continuous several frames.
These parts are referred to as Frequent Local Parts or FLPs.
The FLPs allow us to build powerful bag-of-FLP-based action
representation. This new representation yields state-of-the-art
results on MSR DailyActivity3D and MSR ActionPairs3D.

I. INTRODUCTION

Human action recognition has been an active research topic
in computer vision due to its wide range of applications,
such as smart surveillance and human-computer interactions.
Despite remarkable research efforts and encouraging advances
in the past decade, accurate recognition of human actions is
still an open problem.

A common and intuitive method to represent human motion
is to use a sequence of skeletons. With the development of
the cost-effective depth cameras and algorithms for real-time
pose estimation [1], skeleton extraction has become more
and more robust and skeleton-based action representation is
becoming one of the most practical and promising approaches.
Up to date, the skeleton-based approach primarily focuses on
low-level features and models the dynamics of the skeletons
holistically, such as moving pose [2] and trajectories of human
joints [3]. The full skeletal description is highly subject to
the noise introduced during the extraction of the skeleton
and less effective in the cases where some actions involve
motion of the whole body and others are preformed using
only small number of body parts. A key fact we observed
is that during the temporal axis of actions, only a few body
parts in several continuous frames are activated during the
performance of the actions. These parts are more robust and
discriminative to represent an action. In our method we take
advantage of this observation to capture mid-level features for
action recognition.

Inspired by the mid-level features mining techniques [4]
for image classification, we propose a new scheme applying

pattern mining to obtain the most relevant combinations of
parts in several continuous frames for action recognition rather
than to utilize all the joints as most previous works did. In
particular, a new descriptor called bag-of-FLPs is proposed
to describe an action as illustrated in Fig. 1. The overall
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Fig. 1. The general framework of the proposed method.

process of our method can be divided into four steps: feature
extraction, building transactions, mining & selecting relevant
patterns and building Bag-of-FLPs & classification. We first
compute the orientations of limbs, i.e. connected joints, and
then encode each orientation into one of the 27 states indicating



the spatial relationship of the joints. Limbs are combined
into parts and limb’s states are mapped to part states. Local
temporal information is included by combining part states of
several, say, 5, continuous frames into one transaction for
mining, with each state as one item. In order to keep motion
information after frequent pattern mining, the unique states
of parts of the continuous frames are reserved, removing
the repeated ones, ensuring the pose information and motion
information be included in each transaction. The most relevant
patterns, which we referred to FLPs, are mined and selected o
represent frames and build bag-of-FLPs as new representation
for a whole action. The new representation is much robust to
the errors in the features, because the errors are usually not
frequent patterns.

Our main contributions include the following four aspects.
First, an effective and efficient method is proposed to extract
skeleton features. Second, a novel method is developed to
explore spatial and temporal information in skeleton data,
simultaneously. Third, an effective scheme is proposed for
applying pattern mining to action recognition by adapting the
generic pattern mining tools to the features of skeleton. Our
scheme is much robust to noise as most noisy data does not
form frequent patterns. In addition, our scheme has achieved
the state-of-the-art results on several benchmark datasets.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III presents our scheme in
detail. Section IV shows experimental results. Conclusion is
made in section V.

II. RELATED WORK

The process of action recognition can be generally divided
into two main steps, action representation and action classifi-
cation. Action representation consists of feature extraction and
feature selection. Features can be extracted from input sources
such as depth maps, skeleton and/or RGB images. Regardless
of the input source, there are two main approaches, space-time
approach and sequential approach [5], [6], [7], to the repre-
sentation of actions. The space-time approach usually extracts
local or holistic features from space-time volume, without
explicit modelling of temporal dynamics. By contrast, the
sequential approach normally extracts local features from each
frame of the input source and models the dynamics explicitly.
Action classification is the step of learning a classifier based
on action representation and classifying any new observations
using the classifier. For space-time approaches, discriminative
classifier, such as Support Vector Machine (SVM), is often
used for classification. For the sequential approach, generative
statistical models, such as Hidden Markov Model (HMM), are
commonly used. Our method belongs to the skeleton-based
space-time volume approach. In this section, we mainly review
the existing work of skeleton-based action representation for
action recognition.

For the skeleton-based sequential approach, Xia et al. [8]
proposed a feature called Histograms of 3D Joint Locations
(HOJ3D) as a representation of postures. The HOJ3D essen-
tially encodes spatial occupancy information relative to the root
joint, e.g. hip centre. A modified spherical coordinate system
is defined on the root joint and the 3D space is divided into
N bins. The HOJ3D is reprojected using Linear Discriminant

Analysis (LDA) to reduce dimensionality and then clustered
into K posture visual words which represent the prototypical
poses of actions. HMMs are adopted to model the visual
words and recognize actions. Radial distance is adopted in
this spherical coordinate system which makes the method to
some extend view-invariant.

Koppula et al. [9] explicitly modelled the motion hierarchy
to enable their method to handle simple human-object interac-
tions. The human activities and object affordances are jointly
modelled as a Markov Random Field (MRF) where the nodes
represent objects and sub-activities, and the edges represent the
relationships between object affordances, their relations with
sub-activities, and their evolution over time. Feature vectors
that represent the object’s location and the changing informa-
tion in the scene are defined by training a Structural Support
Vector Machine (SSVM). Similar to this approach, Sung et
al. [10] proposed a hierarchical two-layer Maximum Entropy
Markov Model (MEMM) to represent an activity. The lower
layer nodes represent sub-activities while higher level nodes
describe more complex activities, for example, “lifting left
hand” and “pouring water” can be described as a sub-activity
and a complex activity, respectively. Wang et al. [11] proposed
an Local Occupancy Patterns (LOP) feature calculated from
the 3D point cloud around a particular joint to discriminate
different types of interactions and Fourier Temporal Pyramid
(FTP) to represent the temporal structure. Based on above two
types of features, a model called Actionlet Ensemble Model
(AEM) is proposed which is a combination of the features for
a subset of the joints. Due to the numerous actionlets, data
mining technique is used to discover discriminative actionlets.
Both skeleton and point cloud information are utilized to
recognize human-objects interactions.

For the skeleton-based space-time volume approach, Yang
et al. [12] proposed a new feature descriptor called Eigen-
Joints features which contain posture features, motion features
and offset features. The pair-wise joint differences in current
frames and their consecutive frames are used to encode the
spatial and temporal information, which are called posture
features and motion features, respectively. The difference of
a pose with respect to the initial pose is called offset features.
The initial pose is generally assumed as a neutral pose.
The three channels are normalized and Principal Component
Analysis (PCA) is applied to reduce redundancy and noise
to obtain the EigenJoints descriptor. A Naive-Bayes-Nearest-
Neighbor (NBNN) classifier is adopted to recognize actions.
Gowayyed et al. [3] proposed a new descriptor called His-
tograms of Oriented Displacements (HOD) to recognize ac-
tions. The displacement of each joint votes with its length in a
histogram of oriented angles. Each 3D trajectory is represented
by the HOD of its three 2D projection. In order to reserve
temporal information, a temporal pyramid is proposed, where
trajectories are considered as a whole, halves and quarters and
then all the descriptors in these three levels are concatenated
to form the final descriptor. A linear SVM is used to classify
actions based on the histograms. Similar to this work, Hussein
et al. [13] proposed a descriptor called Covariance of 3D Joints
(Cov3DJ) for human action recognition. This descriptor uses
covariance matrix to capture the dependence of locations of
different joints on one another during an action. In order to
capture the order of motion in time, a hierarchy of Cov3DJs
is used, similarly to the work in [3].



Zanfir et al. [2] proposed a descriptor called moving pose
which is formed by the position, velocity and acceleration
of skeleton joints within a short time window around the
current fame. To learn discriminative pose, a modified k-
Nearest Neighbours (kNN) classifier is used that considers
both the temporal location of a particular frame within the
action sequence as well as the discrimination power of its
moving pose descriptor compared to other frames in the
training set. Thanh et al. [14] extracted key frames which are
the central frames in the short temporal segments of videos
and labelled each key frame as a pattern for a unit action.
An improved Term Frequency-Inverse Document Frequency
(TF-IDF) method is used to learn the discriminative patterns
and learned patterns is defined as local features for action
recognition. Wang et al. [15] first estimated human joints
positions from videos and then grouped the estimated joints
into five parts. Each action is represented by computing
sets of co-occurring spatial and temporal configurations of
body parts. The authors use a bag of words method with
the extracted features for classification. Ohn-Bar and Trivedi
[16] tracked the joint angles and built a descriptor based on
similarities between angle trajectories. This feature is further
combined with a double-HOG descriptor that accounts for the
spatio-temporal distribution of depth values around the joints.
Theodorakopoulos et al. [17] initially processed the skeleton
data from sensor coordinate to torso PCA frame in order to
gain robust and invariant pose representation. Sparse coding in
dissimilarity space is utilized to sparsely represent the actions.
Chaaraoui et al. [18] proposed to use an evolutionary algorithm
to determine the optimal subset of skeleton joints, taking into
account the topological structure of the skeleton.

To fuse depth-based features with skeleton-based features,
Althloothi et al. [19] presented two sets of features, features
for shape representation extracted from depth data by using a
spherical harmonics representation and features for kinematic
structure extracted from skeleton data by estimating 3D joint
positions. The shape features are used to describe the 3D
silhouette structure while the kinematic features are used to
describe the movement of the human body. Both sets of
features are fused at the kernel level for action recognition by
using Multiple Kernel Learning (MKL) technique. Similar to
this direction, Chaaraoui et al. [20] proposed a fusion method
to combine skeleton and silhouette-based features. The skeletal
features are obtained by normalising the 3D position of original
skeleton data while the silhouette-based features are generated
by extracting contour points of the silhouette. After feature
fusion, a model called bag of key poses is employed for
action recognition. The key poses are obtained by K-means
clustering algorithm and the words are made up of key poses.
In recognition stage, unknown video sequences are classified
based on sequence matching. Rahmani et al. [21] proposed
an algorithm combining the discriminative information from
depth maps as well as from 3D joints positions for action
recognition. To avoid the suppression of subtle discriminative
information, local information integration and normalization
are performed. Joint importance is encoded by using joint
motion volume. Random Decision Forest (RDF) is trained to
select the discriminant features. Because of the low dimen-
sionality of their features, their method turns to be efficient.

In above methods, most of them are based low-level
features and need the whole skeletal description which leads to

their weak adaptation to noise. In addition, most of them need
to explore the spatial and temporal information, separately, and
then combine them together. Besides, most of the methods used
to explore temporal information are subject to the neural poses,
which are shared by all actions. However, in our method, we
use a parts-based mid-level feature to represent actions and
explore the spatial and temporal information simultaneously.
This makes our method more robust.

III. PROPOSED METHOD

The overall process of the proposed method is illustrated
in Fig. 1. It can be divided into four steps: feature extraction,
building transactions, mining & selecting relevant patterns and
building Bag-of-FLPs & classification.

A. Feature Extraction

In our method, the orientations of human body limbs are
considered as low-level features and they can be calculated
from the two joints of the limbs. For Kinect skeleton data, 20
joint positions, as shown in Fig. 2, are tracked [1]. The skeleton
data is first normalized using Algorithm 1 in [2] to suppress
noise in the original skeleton data and to compensate for length
variations across different subjects and different body parts.
Each joint i has 3 coordinates, denoted as (xi, yi, zi) after
normalization.
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Fig. 2. The human joints tracked with the skeleton tracker [1].

For Kinect skeleton, it is found that the Hand Left, Hand
Right, Foot Left, Foot Right, and Spine joints are often not
reliable and, hence they are not used in our method. Thus,
there are 15 joints 14 limbs. The joint Head is considered as
the origin of the 15 points. For each limb, we compute a unit
difference vector between its two joints:

(∆xij ,∆yij ,∆zij) =
(xi, yi, zi)− (xj , yj , zj)

dij
(1)

where i and j represent the current joint and reference joint,
respectively; dij is the Euclidean distance between the two
joints. For example, as illustrated in Fig. 1, to compute the
orientation of the limb between joint Hand Right and Wrist
Right (highlighted in red), the Wrist Right joint is regarded
as the sphere center and Eq. (1) is used to compute the unit
difference vector.



Each element of the unit difference vector is quantized
into three states: −1, 0 and 1. If |∆xij | ≤ threshold then
q(∆xij) = 0; if ∆xij > threshold then q(∆xij) = 1; else
q(∆xij) = −1. Thus, there are 27 possible states for each unit
difference vector, and each state is encoded as one element
of a feature vector, so the dimension of the feature vector
for each pose is 14×27 = 378 after concatenating all feature
vectors of the 14 limbs. For each element of the feature vector,
if the corresponding orientation between two joints is bid to
one state, then the relative position is labelled to 1, otherwise,
it is 0. Therefore, the feature vectors are very sparse, only
14 positions in each feature vector are 1 (not zeros). The
threshold is an empirical value which is dependent on the noise
characteristics of the skeleton data.

For each frame of skeleton, a quantized 378 dimensional
feature vector is calculated as described above. This feature
vector is reduced to a 14 dimensional feature vector with each
element being the index to a non-zero element of the 378-
dimensional feature vector.

To extract mid-level features for action representation, the
14 limbs are combined into 7 body parts. As illustrated in
Fig. 1, the dotted line contains joints Hand Right, Wrist Right
and Elbow Right, and these three limbs form one part. In
this way, seven body parts are formed, namely, Head-Shoulder
Center, Should Center-Shoulder Left-Elbow Left-Wrist Left,
Shoulder Center-Shoulder Right-Elbow Right-Wrist Right,
Shoulder Center-Hip Center-Hip Left, Hip Left-Knee Left-
Angle Left,Shoulder Center-Hip Center-Hip Right and Hip-
Right-Knee Right-Angle Right. According to the Degree of
Freedom (DoF) of joints [22], each body part is encoded with
different number of states and the total number of states is
denoted as NDF , which is currently an empirical parameter.
It should be adjusted according to the complexity of the actions
to be recognized and noise level of the dataset.

To explore temporal information and keep motion infor-
mation at the same time after frequent data mining (generally,
frequent data mining can only mine the most frequent pattens
which can not be guaranteed as discriminative patterns), a
novel way is proposed. Seven states for each frame will be
obtained after combination, and the unique states of contin-
uous C frames, as illustrated in Fig. 1, where C = 3, are
counted and form a new mid-level feature vector, denoted as
{fi|i = 1, ..., nA}. This new feature vector contains both pose
information of the current frame and the motion information
in the continuous C frames, because the repeated states in the
continuous frames can be regarded as static pose information
and the different ones with other frames can capture the motion
information. This feature vector is used to build transactions
described in the next section. The pattens after mining can be
the combinations of several body parts in different frames, thus
the temporal order information can be easily maintained.

B. Building Transactions

Each instance of action A is represented by a set of above
mid-level features {fi|i = 1, ..., nA} and a class label c,
c ∈ {1...C}. The set of features for all the action samples
is denoted by Ω. The dimensionality of the feature vector is
denoted as W and in our case |W| ≥ 7.

1) Items, Transactions and Frequencies: Each element in
a feature vector for continuous C poses is defined as an item,
and an item is denoted as ω, where ω ∈ (0, NDF ] and ω ∈
N.

The set of transactions X from the set Ω is created next.
For each x ∈ Ω there is one transaction x (i.e. a set of items).
This transaction x contains all the items ωj . A local pattern
is an itemset t ⊆ Γ, where Γ represents the set of all possible
items. For a local pattern t, the set of transactions that include
the pattern t is defined as: X(t) = {x ∈ X|t ⊆ x}. The
frequency of t is |X(t)|, also known as the support of the
pattern t or supp(t).

2) Frequent Local Part: For a given constant T , also known
as the minimum support threshold, a local pattern t is frequent
if supp(t) ≥ T . A pattern t is said to be closed if there exists
no pattern t

′
that t ⊂ t

′
and supp(t) = supp(t

′
). The set

of frequent closed patterns is a compact representation of the
frequent patterns, and such a frequent and closed local part
pattern is referred to as Frequent Local Part of FLP.

C. Mining & Selecting Relevant FLPs

1) FLPs Mining: Given the set of transaction X , any
existing frequent mining algorithm can be used to find the
set of FLPs Υ. In our work, the optimised LCM algorithm
[23] is used as in [4]. LCM uses a prefix preserving closure
extension to completely enumerate closed itemsets.

2) Encoding a New Action with FLPs: Given a new action,
the features can be extracted according to the section A and
each feature vector can be converted into a transaction x and
for each FLP pattern t ∈ Υ it can be checked whether t ⊆ x.
If t ⊆ x is true, then x is an instance of the FLP pattern t. The
frequency of a pattern t in a given action Aj (i.e. the number
of instances of t in Aj) is denoted as F (t|Aj).

3) Selecting the Best FLPs for Action Recognition: The
FLPs set Υ is considered as a candidate set of mid-level
features to represent an action. Therefore, the most useful FLP
patterns from Υ is needed to be selected because i) the number
of generated FLP patterns is huge and ii) not all discovered
FLP patterns are equally important to the action recognition
task. Usually, relevant patterns are those discriminative and
non-redundant. On top of that, a new criterion, representativity
is also used. As a result, some patterns may be frequent and
appear to be discriminative but they may occur in very few
actions (e.g. noise pose). Such features are not representative
and therefore not the best choice for action recognition. A
good FLP pattern should be at the same time discriminative,
representative and non-redundant. In this section, how to select
such patterns is discussed.

The methods used in [4] are followed to find the most
suitable pattern subset χ, where χ ⊂ Υ, for action recognition.
To do this the gain of a pattern t is denoted by G(t) (s.t. t 6∈ χ
and t ∈ Υ) and defined as follows:

G(t) = S(t)−max
s∈χ
{R(s, t) ·min(S(t), S(s))} (2)

where S(t) is the overall relevance of a pattern t and R(s, t) is
the redundancy between two patterns s, t. In Eq. (2), a pattern
t has a higher gain G(t) if it has a higher relevance S(t) (i.e. it
is discriminative and representative) and if the pattern t is non



redundant with any pattern s in set χ (i.e. R(s, t) is small).
S(t) is defined as:

S(t) = D(t)×O(t), (3)

and R(s, t) is defined as:

R(s, t) = exp{−[p(t) ·DKL(p(A|t)||p(A|{t, s}))
+ p(s) ·DKL(p(A|s)||p(A|{t, s}))]}. (4)

Following a similar approach in [24] to find affinity between
patterns, two patterns t and s ∈ Υ are redundant if they follow
similar document distributions, i.e. if p(A|t) ≈ p(A|s) ≈
p(A|{t, s}) where p(A|{t, s}) is the document distribution
given both patterns {t, s}.

In Eq. (3), D(t) is the discriminability score. Following
the entropy-based approach in [25], and a high value of D(t)
implies that the pattern t occurs only in very few actions; O(t)
is the representativity score for a pattern t and it considers the
divergence between the optimal distribution for class c p(A|t∗c)
and the distribution for pattern t p(A|t), and then takes the best
match over all classes. They are defined as:

D(t) = 1 +

∑
c p(c|t) · log p(c|t)

logC
, (5)

O(t) = max
c

(exp{−[DKL(p(A|t∗c)||p(A|t))]}) (6)

where p(c|t) is the probability of class c given the pattern t,
computed as follows:

p(c|t) =

∑N
j=1 F (t|Aj) · p(c|Aj)∑N

j=1 F (t|Aj)
; (7)

DKL(.||.) is the Kullback-Leibler divergence between two
distributions; p(A|t) is computed empirically from the frequen-
cies F (t|Aj) of the pattern t:

p(A|t) =
F (t|A)∑
j F (t|Aj)

(8)

Here, Aj is the jth action and N is the total number of actions
in the dataset. p(c|A) = 1 if the class label of Aj is c and 0
otherwise; p(c|t∗c) is the optimal distribution with respect to
a class c. A pattern having an optimal distribution is called
an optimal pattern and denoted by t∗c for class c. This optimal
distribution is such that i) the pattern occurs only in actions of
class c, i.e. p(c|t∗c) = 1 (giving also a discriminability score of
1), and ii) the pattern instances are equally distributed among
all the actions of class c, i.e. ∀Aj , Ak in class c, p(Aj |t∗c) =
p(Ak|t∗c) = (1/Nc) where Nc is the number of samples of
class c.
In Eq. (4), p(t) is the probability of pattern t and it is defined
as:

p(t) =

∑
Aj
F (t|Aj)∑

tj∈Υ

∑
Aj
F (tj |Aj)

(9)

while p(A|{t, s}) is the document distribution given both
patterns {t, s} and it is defined as:

p(A|{t, s}) =
F (t|A) + F (s|A)∑
j F (t|Aj) + F (s|Aj)

(10)

To find the best K patterns the following greedy process is
used. First the most relevant pattern is added to the relevant

pattern set χ. Then the pattern with the highest gain (non
redundant but relevant) is searched out and this pattern is added
into the set χ until K patterns are added (or until no more
relevant patterns can be found). For more detailed discussions,
[4] is recommended to refer to.

D. Building Bag-of-FLPs & Classification

After computing the K most relevant and non-redundant
FLPs, each action can be represented by a new representation
called bag-of-FLPs by counting the occurrences of such FLPs
in the action. Let L be such a bag-of-FLPs for action AL and
M be the bag-of-FLPs for action AM .

An SVM [26] is trained to classify the actions. The SVM
uses the following kernel to calculate the similarities between
the bag-of-FLPs of L and M .

K(L,M) =
∑
i

min(
√
L(i),

√
M(i)) (11)

Here L(i) is the frequency of the ith selected pattern in
histogram L. It is a standard histogram intersection kernel
with non-linear weighting. This reduces the importance of
highly frequent patterns and is necessary since there is a large
variability in pattern frequencies.

IV. EXPERIMENTAL RESULTS

Two benchmark datasets, MSR-DailyActivity3D [27] and
MSR-ActionPairs3D [28], were used to evaluate the proposed
method and the results are compared with those reported in
other papers on the same datasets and under the same training
and testing configuration.

A. Experimental Setup

In our method, there are several parameters that need to
be tuned, the threshold T , the number of states NDF , the
number of relevant patterns K, the continuous frames C,
minimum support S and maximum support U . For different
datasets, different sets of parameters were learned through
cross-validation to optimise the performance. Specifically, two-
third of the entire training dataset was used as training and the
rest one-third was used for validation to tune the parameters.
The ranges of the parameters are empirical. In general, the
threshold T is dependent on the noise level of the dataset.
The higher the noise the larger its value. This is an important
parameter because it affects the states of limbs computed from
the skeleton data. However, such sensitivity can be reduced by
setting a large number, NDF (i.e. over 600) of states. The
number of relevant patterns K is dependent on the complexity
of the actions to be recognized, the more actions in the dataset,
the larger number it should be. The number of continuous
frames C is affected by the complexity of required temporal
information to encode the actions. If the dataset has pair
actions, for example, two actions of each pair are similar
in motion (have similar trajectories) and shape (have similar
objects), the value of C should be large. However, a large
C leads to high memory and post-processing requirement.
The values of the minimum support S and maximum support
U effect the number of generated patterns before pattern
selection. We observed that if S is large, U should also be
large; If S is small, U should also be small. Generally, S and
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U are set to reduce the computational time for post-processing.
In fact, there are many combinations of these two parameters
to get the best results. In the other words, the performance of
the proposed method is not much sensitive to the choice of S
and U .

B. MSR DailyActivity3D

The MSR DailyActivity3D dataset consists of 10 subjects
and 16 activities: drink, eat, read book, call cellphone, write
on a paper, use laptop, use vacuum cleaner, cheer up, sit still,
toss paper, play game, lay down on sofa, walk, play guitar,
stand up, sit down. Fig. 3 shows some sample frames for the
activities. Each subject performed each activity twice, once in

Fig. 3. Sample frames of the MSR DailyActivity3D dataset.

standing position and once in sitting position. In total, there are
320 samples. This dataset has large intra-class variations and
involves human-object interactions, which is challenging for
recognition only by 3D joints. Experiments were performed
based on cross-subject test setting described in [2], i.e. five
subjects (1, 2, 3, 4, 5) were used for training and the rest
5 subjects were used for testing. Table I shows the results
of our methods compared with other published results. For

TABLE I. COMPARISON ON MSR-DAILYACTIVITY DATASET

Methods Accuracy (%)
Dynamic Temporal Warping [29] 54.0

Moving Pose [2] 73.8
Actionlet Ensemble on Joint Features [11] 74.0

Proposed Method 78.8

this dataset, T = 0.15, NDF = 600,K = 30000, C =
3, S = 15, U = 180. As seen, although this dataset is quite
challenging, our method obtained promising results based only
on skeleton data. The confusion matrix is illustrated in Fig. 4.
From the confusion matrix, it can be seen that activities such
as “Drink”, “Cheer Up”, “Sit Still”, “Toss Paper” are relatively
easy to recognise, while “Eat” and “Use laptop” are relatively
difficult to recognise. The reason for the difficulties is that for
these human-object interactions, object information was not
available from skeleton data which makes these interactions

1.00

0.40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.40

 

 

0.10

 

 

 

 

 

 

 

 

 

 

 

 

 

0.60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.60

 

 

 

 

 

 

 

 

0.10

 

 

 

 

 

0.20

 

0.60

0.10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.90

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.00

 

 

 

 

 

 

 

 

 

0.10

0.10

0.30

0.20

 

 

 

1.00

 

 

 

 

 

 

0.10

 

0.10

0.10

0.10

0.10

0.50

0.10

 

 

1.00

0.30

0.10

 

0.10

 

 

 

 

 

 

 

 

 

 

 

 

0.70

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.90

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.90

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.90

 

 

 

 

 

 

 

 

 

 

 

 

0.10

 

 

0.10

0.90
Drink

Eat
Read Book

Call Cellphone

W
rite on Paper

Use laptop

Use Vaccum
 Clearner

Cheer Up

Sit Still

Toss Paper

Play G
am

e

Lay Down on Sofa

W
alking

Play G
uitar

Stand Up

Sit Down

Drink

Eat

Read Book

Call Cellphone

Write on Paper

Use laptop

Use Vaccum Clearner

Cheer Up

Sit Still

Toss Paper

Play Game

Lay Down on Sofa

Walking

Play Guitar

Stand Up

Sit Down

Fig. 4. The confusion matrix of our proposed method for MSR-
DailyActivity3D.

are almost the same in terms of motion reflected in the skeleton
data.

C. MSR ActionPairs3D

The MSR ActionPairs3D dataset [28] is a paired-activity
dataset captured by a Kinect camera. This dataset contains
12 activities (i.e. six pairs) of 10 subjects with each subject
performing each activity 3 times. The pair actions are: Pick up
a box/Put down a box, Lift a box/Place a box, Push a chair/Pull
a chair, Wear a hat/Take off hat, Put on a backpack/Take off
a backpack, Stick a poster/Remove a poster. Some sample
frames for the activities of this dataset are shown in Fig.
5. This dataset is collected to investigate how the temporal

Fig. 5. Sample frames of the MSR ActionPairs3D dataset.

order affects activity recognition. Experiments were set to the

TABLE II. COMPARISON ON MSR-ACTIONPAIRS DATASET

Methods Accuracy (%)
Skeleton + LOP [27] 63.33

Depth Motion Maps [30] 66.11
Proposed Method 75.56

same configuration as [28], namely, the first five actors are
used for testing, and the rest for training. For this dataset,
T = 0.11, NDF = 1000,K = 10000, C = 4, S = 3, U =
100. We compare our performance in this dataset with two
methods whose results were reported in [28]. Table II shows
the comparisons with other methods tested on this dataset.



The confusion matrix is shown in Fig. 6. From the con-
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Fig. 6. The confusion matrix of our proposed method for MSR-
ActionPairs3D.

fusion matrix, it can be seen that activities such as “Lift a
box”, “Place a Box”, “Push a Chair”, “Stick a Poster” are
easy for our method to recognise, while “Pich up a Box”
and “Take off Hat” are relatively difficult to recognise. The
results have verified that our method can distinguish temporal
orders in actions, however, it still can be confused with other
actions which were not paired. One possible reason for causing
the confusion between some actions, for instance, “Pick up a
Box” and “Push a Chair”, is the 3-state quantization of the unit
different vectors. This issue can be addressed by quantizing the
vector into more states.

V. CONCLUSION

In this paper, a new representation is proposed and effective
data mining method is adopted to mine the mid-level patterns
(different compositions of body parts) for action recognition.
A novel method to explore temporal information and mine
the different combinations of different body parts in different
frames is proposed. The strength of the proposed method has
been demonstrated through the state-of-the-art results obtained
on the recent and challenging benchmark datasets for activity
and action recognition. However, the proposed method can be
further improved by combining depth or RGB data to explore
the human-object interactions. With the increasing popularity
of Kinect-based action recognition and data mining methods
in computer vision, the proposed method has promising po-
tentialities in practical applications.
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