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We here describe the extraordinary performance of NASICON Na3V2(PO4)3-carbon nanofiber (NVP-CNF) 
composites with ultra-high power and excellent cycling performance. NVP-CNFs are composed of CNFs 
at the center part and partly embedded NVP nanoparticles in the shell. We first report this unique 
morphology of NVP-CNFs for the electrode material of secondary batteries as well as for general energy 

conversion materials. Our NVP-CNFs show not only a high discharge capacity of approx. 88.9 mA h g-1 

even at a high current density of 50 C but also approx. 93% cyclic retention property after 300 cycles at 1 
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ABSTRACT  

We here describe a novel structure of Na3V2(PO4)3-carbon nanofibers (NVP-CNF) composites 

with ultra-high power and excellent cycling performance. NVP-CNFs are composed of CNFs at 

the center part and partly embedded NVP nanoparticles in the shell. We first report this unique 

morphology of NVP-CNFs for the electrode material of secondary batteries as well as general 

energy conversion materials. Our NVP-CNFs show not only a high discharge capacity of ~88.9 

mAh g-1 even at a high current density of 50 C but also ~93% cyclic retention property after 300 

cycles at 1C. The superb kinetics and excellent cycling performance of the NVP-CNFs are 

attributed to the facile migration of Na ions through the partly exposed regions of NVP 

nanoparticles that directly contact with an electrolyte as well as the fast electron transfer along 

the conducting CNF pathways.  
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Rapid advancements in renewable energy sources—including solar, wind, water, etc.—have 

encouraged the development of reliable energy storage systems (ESSs).1,2 Up to now, lithium ion 

batteries (LIBs) have been considered as one of the most attractive ESSs owing to their high 

energy/power densities and stable cycling performance. However, the growing concern about the 

exhaustion of lithium resources and the subsequent increase in their cost have restricted the 

application of LIBs to large-scale power sources including ESSs.3,4 On the contrary, Na ion 

batteries (NIBs) are a leading candidate for new energy storage and powering systems necessary 

for large appliances because of the higher abundance of Na resources (Na is the fourth most 

abundant element in the earth’s crust), their environmental benignity, and their similar 

intercalation chemistry to LIBs.5,6 However, the low ionic mobility of Na in the crystal structure 

of cathode materials for NIBs, induced by the larger ionic radius of Na compared with lithium, 

has limited the practical application of NIBs. In this regard, the development of high-

performance cathode materials for NIBs should be considered as a priority for the 

commercialization of NIBs. Various cathode materials (e.g., NaxCoO2,7 Na0.44MnO2,8,9 

NaFePO4,10 NaMn1/2Fe1/2PO4,11 and Na4Fe(CN)6/C12) have been reported, but they have suffered 

from low power densities and poor long-term cycling performance. In spite of these drawbacks, 

the interest in the cathode materials with 3-D open frameworks has increased owing to their large 

interstitial sites for accommodating Na ions during cycling.13 

Na3M2(XO4)3 with a Na super ionic conductor (NASICON) framework is a typical example of 

an open-structured cathode material for NIBs.14 In particular, Na vanadium phosphate, 

Na3V2(PO4)3 (NVP), has attracted great attention thanks to its inherently high ionic conductivity 

and high operating voltage (~3.4V vs. Na+/Na) that corresponds to V4+/V3+ redox couples. 

According to previous reports, however, the poor electronic conductivity and large particle size 
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of NVP tend to lower its electrochemical performance.15,16 Hence, a new strategy is required to 

realize ultra-high power NVP by enhancing its electronic conductivity and shortening the 

diffusion length of Na ions inside it. 

One of the most common and effective ways to improve the electronic conductivity of 

NASICON-structured cathode materials is to coat the conductive carbon layers on the surfaces of 

these materials.17-21 However, the migration of Na ions through interfaces between cathode 

materials and electrolyte could be hindered by the thick and uniform carbon layers.22,23 This 

double-sideness of carbon coating made us consider another structure for NVP-carbon 

composites. We have noticed that the structural characteristics of anode material-1D carbon 

composites based on carbon nanotube (CNT) and so on significantly contributed to their 

excellent electrochemical performances. Actually, the nano-sized anode materials well grown on 

the surface of CNT demonstrated greatly improved kinetic properties.24 So, in the viewpoint of 

high electron conduction and facile Na ion transport, this structure looks clearly fascinating when 

it is adopted for the electrode material of LIBs or NIBs. Because this structure has been made 

primarily through precipitation until now, it has been rarely reported for the cathode materials of 

LIBs or NIBs. 

Here, toward facile Na ion migration and rapid electronic conduction, we report on a 

distinctive composite structure in which NVP nanoparticles are partly embedded in carbon 

nanofibers (NVP-CNF). The opposite side of partly embedded NVP nanoparticles was directly 

exposed to an electrolyte. This unique morphology of NVP-CNF not only provides fast electron 

transfer channels along the CNF but also enables Na ions to readily come from the electrolyte 

through the regions of NVP exposed to the electrolyte. In addition, the short diffusion length of 

Na ions in the NVP nanoparticles can make a positive effect on the kinetics of NVP-CNF. 
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Resultantly, the CNF-induced high electronic transfer and facile Na ion migration through the 

partly embedded NVP particles enabled an impressive improvement in the electrochemical 

properties (capacity, rate capability, and cycling performance) of NVP-CNF cathode materials. 

NVP-CNF was prepared by electrospinning method followed by thermal treatment. Here, we 

could make a difference in its final morphology by changing the calcination time from 4h (NVP-

CNF-4h) and to 6h (NVP-CNF-6h).   
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RESULTS AND DISCUSSION 

The X-ray diffraction (XRD) patterns of the synthesized NVP-CNF composites are shown in 

Figure 1(a). All the diffraction peaks of NVP-CNF were well matched to the reference pattern 

for NVP with the rhombohedral R-3c space group.14,25 The crystal structure of NVP is depicted 

in Figure 1(b). The VO6 octahedron links via corners sharing with tetrahedral PO4 units, which 

leads to the 3D [V2(PO4)3]3- framework. Na ions are occupied in two different sites having 

different oxygen environments: Na(1) and Na(2) interstitial sites with six- and eight-fold 

coordination, respectively.26 As reported by Weixin’s group, the Na(2) sites are relatively weakly 

connected to surrounding oxygen atoms when compared with Na(1) sites. Thus, the Na ions 

located in Na(2) sites are primarily involved in the electrochemical properties of NVP.27 The 

stable and large Na(2) sites formed in the crystal structure of NVP suppress the stress/strain that 

occurs when Na ions are diffused into/out of NVP crystals. 

Figure 2 demonstrates the morphological characteristics of the NVP-CNF-6h investigated by 

electron microscopy. The field emission scanning electron microscope (FE-SEM) image of the 

NVP-CNF-6h showed a uniform distribution of NVP-CNF nanofibers (Figures 2a and S1). 

Moreover, from the transmission electron microscope (TEM) images shown in Figures 2b and 

2c, we found that the CNF networks constructed the main stream of NVP-CNF composites, and 

NVP nanoparticles (50–200 nm in diameter) were irregularly dangled onto the CNF stem. The 

high-resolution TEM (HRTEM) image of the NVP-CNF exhibited a distinct lattice fringe, 

indicative of single crystalline NVP (Figure 2d). The width of 6.19 Å between neighboring 

lattice fringes corresponds to (0 1 2) planes of NVP, while no periodic atomic arrangements 

were observed in CNF regions in the HRTEM image. However, the Raman spectroscopy of the 

NVP-CNF shown in Figure S2(a) revealed that the CNFs were comprised of crystalline carbon 
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(G-band) and disordered carbon (D-band).28 Specific signals for NVP were also observed in the 

Raman spectra.29 The amount of carbon in the NVP-CNF was ~8.34 wt%, as indicated by 

thermogravimetric analysis (Figure S2(b)). Herein, no carbon was found on the surfaces of NVP 

nanoparticles that were exposed to an electrolyte. Instead, NVP nanoparticles were partly 

embedded in the CNF networks (Figures 2c and 2d). Considering that a thick/dense carbon 

coating layer might hinder Na ion migration between the active material and an electrolyte, the 

unique morphology of our NVP-CNF can maximize the ionic conductivity without sacrificing 

its electronic conductivity by partial adhesion between NVP nanoparticles and CNFs. 

Figure 3a presents the schematic diagram for the formation process of the NVP-CNF 

composite, which was clearly arranged by comparing the morphological difference between 

NVP-CNF-4h and NVP-CNF-6h. Figure S3 shows the representative TEM images of NVP-

CNF-4h. Unlike NVP-CNF-6h (Figure 2), NVP-CNF-4h contained smooth nanofiber surface 

with little roughness. The morphological change of NVP-CNF depending on heating time 

demonstrated how the unique morphology NVP-CNF-6h was formed with a simple 

electrospinning route. At the initial stage for calcination, Figure 3b indicates that the outer thick 

layer with ~ 65 nm thickness is composed of NVP crystals that include ~6 nm carbon coating 

layer on its surface. Meanwhile, the inner part corresponding to the core of this composite 

nanofiber mostly consists of a carbon layer with ~ 50 nm thickness. Even if most of composite 

nanofibers had the above-mentioned structural characteristics after 4h calcination, some of them 

have already shown not only NVP layer agglomeration but also the following formation of 

uneven surface. This uneven distribution of NVP and carbon observed at NVP-CNF-4h was 

confirmed by energy dispersive X-ray spectroscopy (EDS) line scanning results given in Figure 

S4. This clearly proves that NVP-CNF starts to form NVP crystal and thereby the morphological 
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feature of our final NVP-CNF composites somewhat appears around 4h calcination (Figure 3c). 

Finally, the outer NVP region completely changed into the spherical NVP particles partly 

embedded in the inner CNF as a result of a phase separation after 6h heat treatment, and 

thereafter the advantageous structural feature of NVP-CNF for facile Na ion migration as well as 

fast electron conduction has been completed as shown in Figure 3d. 

The electrochemical properties of the NVP-CNF composites are shown in Figure 4, which 

were measured in a voltage range of 2.7–4.0 V vs. Na+/Na. The galvanostatic (0.1 C-rate) 

voltage profiles of the NVP-CNF-4h and NVP-CNF-6h featured a voltage plateau at ~3.4 V that 

corresponded to a V4+/V3+ redox reaction. (Figure 4a). In this voltage plateau region, the material 

undergoes two-phase reaction between Na3V2(PO4)3 and Na1V2(PO4)3 (Figure S5).30  Resultantly, 

NVP-CNF-6h showed much better electrochemical performance than NVP-CNF-4h in terms of 

initial discharge capacity, rate capability, and long-term cycling performance. The initial 

discharge capacity of NVP-CNF-6h was ~112.5 mAh g-1 at 0.1 C-rate, quite comparable to the 

theoretical capacity (117.6 mAh g-1) of NVP. In particular, the maintenance of high capacity 

(~88.9 mAh g-1) of NVP-CNF-6h even at an extremely high current density of 50 C-rate should 

be noted and emphasized, which coincided with ~79% of its initial capacity measured at 0.1 C-

rate (Figure 4b). In contrast, the discharge capacity of NVP-CNF-4h rapidly decreased as a 

function of the applied current density; it dropped to less than 20 mAh g-1 at a current density of 

30 C-rate. Here, we can suggest that the superior rate capability of NVP-CNF-6h to NVP-CNF-

4h is mainly attributable to the unique morphology of the NVP-CNF-6h, as previously discussed 

in Figures 2 and 3. As observed in Figure 4c, NVP-CNF-6h maintained ~93% of its initial 

discharge capacity cycled at 1 C even after 300 cycles. On the other hand, NVP-CNF-4h showed 

~78% retention of its initial capacity just after 100 cycles (see inset of Figure 4c). This stable 
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cycling performance of NVP-CNF-6h is very remarkable, because most of cathode materials for 

NIBs undergo serious capacity decay during cycling. Further evidence for the enhancement in 

kinetic properties of NVP-CNF-6h was provided by the galvanostatic intermittent titration 

technique (GITT) curves of NVP-CNF (Figure S6). The diffusion resistance of NVP-CNF could 

be estimated from the difference between the open circuit voltage (OCV) and the constant 

current voltage (CCV) obtained from GITT results. Resistance is known to be correlated with 

voltage polarization by Ohm’s law (R=ΔV/I). Herein, we excluded the voltage polarization 

linked to IR-drop resistances that related to internal resistance of the material (Figure. S6)  only 

to measure the change of diffusion resistance. The calculated diffusion resistances in figure 4(d) 

clearly demonstrates the kinetic difference between NVP-CNF-4h and NVP-CNF-6h. In the 

initial stage of charge reaction, NVP-CNF-4h looks like having a serious difficulty to extract Na 

ions from NVP structures. Actually, the calculated diffusion resistance of NVP-CNF-4h was 

three times higher than that of NVP-CNF-6h. Even though both samples showed similar 

diffusion behaviors during V4+/V3+ redox reaction, NVP-CNF-4h went through eight times 

higher diffusion resistance compared to NVP-CNF-6h to extract two formula units of Na ions 

completely in the last stage of charge reaction. The kinetic superiority of NVP-CNF-6h was also 

verified when Na ions re-inserted into NVP structure. Na ions easily migrated into not only 

NVP-CNF-4h but also NVP-CNF-6h in the initial stage of discharge. However, NVP-CNF-4h 

eventually underwent a sudden surge of diffusion resistance in the last stage of discharge 

reaction. Figure S7 proves that NVP-CNF-6h is much superior to NVP-CNF-4h also in terms of 

electronic conductivity. Hence, we believe that the improved electrochemical performance of 

NVP-CNF-6h can result from the facile migration of Na ions through its unique structure that 
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NVP nanoparticles are partly embedded into CNFs and fast electron supply along CNFs toward 

NVP nanoparticles. 

Conclusions 

In conclusion, we succeeded in realizing NVP-CNF composites with ultra-high power and 

excellent cycling performance by electrospinning process followed by the regulated heat 

treatment. The NVP-CNFs were comprised of CNFs at the center of the NVP-CNFs and partially 

embedded NVP nanoparticles onto the CNFs. In this characteristic morphology of NVP-CNFs, 

while CNFs acted as a backbone for providing electronic conducting pathways toward the 

partially embedded NVP nanoparticles, the opposite NVP region that were exposed to and 

directly contacted with an electrolyte improved the ionic conductivity of Na ions into/out of NVP 

nanocrystals. Thus, this unique shape of NVP-CNF exhibited extraordinary electrochemical 

performances, which have been unprecedented to date for the cathode materials of NIBs. Our 

NVP-CNF not only showed a high discharge capacity even at high current density of 50 C-rate 

but also maintained ~93% of its initial discharge capacity (1 C-rate) even after 300 cycles.  
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Figure 1. (a) XRD patterns of NVP-CNF-4h and NVP-CNF-6h (b) crystal structure of NVP with 

NASICON structure.  
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Figure 2. (a) FE-SEM, (b) TEM, and (c, d) HRTEM images of NVP-CNF composite observed 

from low to high magnifications.  
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Figure 3. (a) Schematic diagram of formation process of NVP-CNF composite. TEM images of 

(b, c) NVP-CNF-4h observed at two different points and (d) final NVP-CNF-6h.  
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Figure 4. (a) Initial galvanostatic (0.1 C) voltage profiles, (b) capacity retention of discharge 

capacities at various current rates (0.5 to 50 C-rates), (c) long-term cycling performance  (1 C) 

up to 300 cycles and (d) diffusion resistance of NVP-CNF-4h and NVP-CNF-6h calculated from 

GITT curves.  
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EXPERIMENTAL SECTION 

Preparation of NVP-CNF-4h and NVP-CNF-6h by electrospinning method. 

To prepare the electrospinning solution, stoichiometric amounts of NH4VO3, NH4H2PO4, and 

CH3COONa were mixed with 5 mL 14 wt% citric acid solution and stirred for 4 h at 70oC. 

Following this, the prepared NVP precursor solution was added to 4 mL of DI water solution 

containing 1 g of poly-(vinylpyrrolidone) (PVP, Mw = 1 300 000). The mixed solution then 

stirred for 4 h. The mixture was immediately loaded into a plastic syringe equipped with a 27-

gauge needle made of plastic. The needle was connected to a high-voltage supply that generated 

a DC voltage of 22.5 kV. The feeding rate for the precursor solution was 0.2 mL h-1 using a 

syringe pump, and the needle-to-collector distance was 7.5 cm. The electrospinning process was 

conducted in air. The electrospun fiber products were annealed at 800oC for 4 h and 6 h in an Ar 

atmosphere at a ramp rate of 2oC min-1 to yield NVP-CNF-4h and NVP-CNF-6h, respectively. 

Characterization  

The crystal structure of NVP-CNF-4h and NVP-CNF-6h were characterized by an X-ray 

diffractometer (Rigaku Ultima IV). The wavelength selected for the experiments was CuKα 

radiations. The diffractometry wavelength was calibrated with an external Si standard. Data were 

taken over the range 10-60° at a 2θ step of 0.02º. The morphological structure and microstructure 

of the NVP-CNF were observed by a field-effect scanning electron microscope (JEOL JSM-

6700F, operated at 15 kV) and a transmission electron microscope (JEOL JEM-3010, operated at 

300 kV). The carbon content of the composite and characteristics were determined by 

thermogravimetric analysis (Perkin Elmer, STA6000) and Raman spectroscopy (MonoRa 

750i/ELT10000), respectively. 

 15 



Electrochemical measurements  

Electrodes were fabricated by mixing active material (NVP-CNF-4h and NVP-CNF-6h, 

respectively), acetylene black, and polyvinylidene fluoride (PVDF) at a weight ratio of 75 : 10 : 

15 using N-methylpyrrolidone (NMP) as a solvent. The resulting slurries were pasted onto Al 

foils and then dried in a vacuum oven at 120oC for 5 h. After drying, the electrode foils were 

pressed and then punched into a rectangle shape. The electrochemical properties of the prepared 

electrodes were evaluated using CR 2032 coin-type cells assembled in an argon-filled box. Na 

metal foil was used as a counter electrode, and 1M NaPF6 in ethylene carbonate (EC) and diethyl 

carbonate (DEC) (1:1, v/v) was employed as the electrolyte. The electrochemical performance 

was tested by galvanostatic charge/discharge measurements conducted using a WonAtech system 

at room temperature in the potential range 2.7V–4.0 V (vs. Na+/Na).  
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