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Introduction 20 

The bearing capacity of a bolted connection in cold-formed steel sheet is specified in the 21 

North American Specification for the Design of Cold-formed Steel Structural Members (AISI 22 

2012) and the European code EN-1993-1-3:2006 (ECS 2006). For the inside sheet of a 23 

double-shear bolted connection, the American code gives a much larger bearing capacity as 24 

the maximum effective bearing coefficient is 4.0, compared to 2.5 given in the Eurocode. It 25 

should be noted that the effective bearing coefficient only increased from 3.33 to 4.0 in the 26 

2001 AISI specification (AISI 2001).  27 

Irrespective of the significant difference in the effective bearing coefficient between the two 28 

major codes, the authors note that there have been very wide scatters of the ultimate test loads 29 

of specimens having seemingly similar configurations, and of the professional factors. This 30 

fact is evident from the test results published by Yu & Mosby (1981), Wallace et al. (2001), 31 

and Yan & Young (2013). Yu & Mosby (1981) believed the bearing capacity of a bolted 32 

connection to be significantly affected by the ratio of tensile strength to yield stress of the 33 

steel material. They also suggested that, for connections with a large ratio of bolt diameter to 34 

sheet thickness, the bearing capacity could be affected by the installation torque. 35 

The present work originally set out to investigate the reliability of the current AISI bearing 36 

strength equation for the inside sheet of a double-shear bolted connection, and to explore and 37 

explain the effects of material ductility and bolt tightening. In the process, the very significant 38 

effect of loading direction on the bearing capacity came to the authors’ attention. The present 39 

issue of loading direction is distinct from that of material ductility, as will be evident later. 40 

For the purpose of the present work, two types of cold-reduced sheet steels are used. The first 41 

is named G2, and the second G450. During manufacturing, both sheet steels undergo 42 

reduction in thickness through a milling process, which causes the grain structure to elongate 43 
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in the rolling direction leading to an increase in tensile strength but a decrease in ductility. 44 

However, G2 sheet steel is subsequently heat treated to return the grain structure almost to 45 

the original state, and is therefore much more ductile than G450 sheet steel. G2 is classified 46 

as a formability grade, while G450 is a structural grade (SA 2011).  47 

The present data comprise the test results of 51 double-shear bolted connection specimens, of 48 

which the inside sheet failed in pure bearing. There are a total of 40 configurations in terms 49 

sheet thickness, bolt diameter, material ductility, bolt tightening and loading direction.  50 

Bolt hole deformation at service load is not a concern in this technical note. The bearing 51 

capacity is defined as the ultimate test load achievable when the bearing failure mode governs 52 

the load-carrying capacity of the bolted connection. 53 

Code equations for ultimate bearing capacity  54 

The bearing capacity Pb of a bolt provided by the connected steel sheet is most commonly 55 

expressed as 56 

ubb FtdCP   (1) 57 

in which Cb is the effective bearing coefficient, d is the bolt diameter, t is the sheet thickness 58 

and Fu is the material tensile strength.  59 

According to Section J3-6b of the AISC Specifications for Structural Steel Buildings (AISC 60 

2010), Cb is invariably equal to 3.0 when bolt hole deformation at service load is not a 61 

concern, which is the case in the present work. However, for the inside sheet of a double-62 

shear bolted connection, Section E3.3.1 of the North American Specification for the Design 63 

of Cold-formed Steel Structural Members 2012 (AISI 2012) specifies a modification factor 64 

mf of 1.33, resulting in the following effective bearing coefficient  65 
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   22;1.0433.1,0.4min  tdtdCb
 (2) 66 

Equation (2) means that, for a double-shear connection in which the ratio d/t is less than or 67 

equal to 10, the effective bearing coefficient of the inside sheet is equal to 4.0. 68 

Test materials 69 

The G2 and G450 sheet steel materials used in the laboratory tests, which have trade names 70 

GALVABOND
® 

and GALVASPAN
®
, respectively, were manufactured and supplied by 71 

Bluescope Steel Port Kembla Steelworks, Australia. The average yield stresses Fy, tensile 72 

strengths Fu and elongations at fracture over 15 mm, 25 mm and 50 mm gauge lengths 15, 25 73 

and 50, and uniform elongation outside the fracture uo of the steel materials as obtained from 74 

12.5 mm wide tension coupons are shown in Tables 1 and 2 for the G2 and G450 sheet steels, 75 

respectively. The suffix “R” in the nominal thickness designation denotes the loading to be in 76 

the rolling direction of the sheet steel, and the suffix “T” denotes loading in the direction 77 

perpendicular to the rolling direction. 78 

Tables 1 and 2 show that G2 steel is considerably more ductile than G450 steel. The 1.9-mm 79 

and 2.4-mm G450 sheet steels just meet the requirements for being used without restriction 80 

according to Section A2.3.1 of the specification (AISI 2012), while the 1.5-mm and 3.0-mm 81 

ones marginally fail them. In design practice, steel materials not meeting the requirements 82 

shall have their yield stress and tensile strength reduced by 10%. However, in order to 83 

investigate the effect of material ductility, no such reduction is applied in the present work. 84 

It should be noted that, for the statutory purpose of determining the material properties of the 85 

structural grade G450 sheet steel, tension coupons shall be cut parallel to the direction of 86 

rolling (SA 2011). For each thickness of either G2 or G450 sheet steel, the tensile response in 87 

the rolling direction is somewhat more ductile than that in the perpendicular direction. 88 
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Specimen configurations and test arrangements 89 

All specimens were double-shear, single bolt connections, as shown in Figure 1. The 90 

concentrically loaded inner sheet, shown as the lower one in the figure, was the critical 91 

element since the two outer sheets had identical nominal properties. The geometry of each 92 

specimen was such that bearing was the governing failure mode, as illustrated in Figure 2. 93 

Two bolt diameters were used, 12 and 16 mm, resulting in the ratios d/t ranging from 4 to 11. 94 

Equation (2) is therefore applicable to all specimens tested in the present work. Each bolt 95 

hole was drilled with a diameter that was 1 mm larger than the bolt diameter. 96 

For each configuration, the specimens were alternately snug and finger tightened. Some 97 

repeat tests were conducted as denoted by the suffices “a” and “b” in the specimen labels. All 98 

specimens were tested at a stroke rate of 5 mm per minute. 99 

Laboratory test results and discussions 100 

Table 3 lists the dimensions, loading directions, bolt tightening conditions, effective bearing 101 

coefficients according to Equation (2), and test results of the G2 sheet steel specimens. An 102 

empty cell in the table indicates that the data in the above cell applies. The corresponding 103 

data for G450 sheet steel specimens are given in Table 4. 104 

The tables show the ratios of ultimate test load Pt to bearing capacity Pb predicted by using 105 

Equations (1) and (2), called the professional factors. The ultimate test loads Pt are also given 106 

to facilitate the discussion on the effect of loading direction. A difference of 15% or more 107 

between comparable specimens is considered to be parametrically significant. 108 

Effect of material ductility 109 
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Irrespective of the accuracy of Equation (2), and the effects of snug tightening and loading 110 

direction discussed in the next subsections, the results shown in Tables 3 and 4 indicate that 111 

material ductility has a significant effect on the bearing capacity of a bolted connection. For  112 

comparable geometries, the professional factors of the G2 sheet steel specimens are generally 113 

much higher than those of the G450 sheet steel specimens, ranging from -2% to 67%.  114 

The effect of material ductility on the bearing capacity is significantly more pronounced than 115 

its effect on the net section tension capacities found by Rogers & Hancock (1999) and Teh & 116 

Gilbert (2012), which typically resulted in some 5% differences only. This phenomenon can 117 

be explained by comparing the conclusion of Clements & Teh (2013) regarding shear strain 118 

hardening capability of low ductility steel sheets against that of Teh & Yazici (2013a) for 119 

ductile steel plates. Bolted connections composed of low ductility steel sheets are far from 120 

being able to achieve complete shear stress redistribution along the shear failure paths. On the 121 

other hand, those composed of ductile steel plates are able to achieve full strain hardening 122 

along the shear failure paths. The less able the shear stress is to be redistributed away from 123 

the bolt hole, the earlier bearing fracture will take place. 124 

The present finding is consistent with that of Yu & Mosby (1981), who viewed the results in 125 

terms of the ratio of tensile strength to yield stress of the sheet steel material. Although the 126 

authors believe the elongation at fracture to be the more important parameter for ductility, 127 

there is a correlation between the elongation at fracture and the ratio of tensile strength to 128 

yield stress, as evident from Tables 1 and 2. The finding is also consistent with that of Rogers 129 

& Hancock (1999) for single-shear specimens composed of G300 and G550 sheet steels.  130 

Effect of snug tightening 131 

Snug-tightened specimens are indicated by the letter “S” in the “Tightening” column, while 132 

finger-tightened ones by the letter F. It can be seen from Tables 3 and 4 that snug tightening 133 



6 
 

resulted in 10% to 25% higher bearing capacities for the 1.5 mm G2 and G450 sheet steel 134 

specimens. However, the effects were much less pronounced if at all for the thicker 135 

specimens. This finding is consistent with the suggestion of Yu & Mosby (1981) that the 136 

bearing capacity of connections with a large ratio of bolt diameter to sheet thickness, i.e. thin 137 

sheets, could be affected by the installation torque. 138 

In practice, the ratio of bolt diameter to sheet thickness rarely exceeds 8 for structural 139 

members. It can be surmised that tightening performed by different persons would not have a 140 

significant effect on the variability of bearing capacities of steel sheets thicker than 1.5 mm. 141 

This contention is also consistent with the finding of Yu & Mosby (1981) that the use of low 142 

torques did not degrade the bearing capacities of high-strength structural bolt connections. 143 

The fact that snug tightening had no effect on the bearing capacities of specimens thicker 144 

than 1.5 mm was likely due to the significant bulging of the material downstream of the bolt, 145 

as shown in Figure 2. This bulging loosened the contact between the two outer sheets and the 146 

inside sheet in the region immediately upstream, resulting in no friction resisting the applied 147 

load. The mechanism of bolt tightening (friction) contributing to the tension capacity of a 148 

bolted connection has been explained in Fig. 3 of Teh & Yazici (2013b). The friction 149 

between the outer sheets and the bulging material, which is located downstream from the 150 

bolt, does not contribute to the connection capacity.  151 

Effect of loading direction 152 

The letters “R” and “T” in the “Direction” column have the same meaning as the suffices in 153 

Tables 1 and 2, explained in the “Test materials” section. The professional factors Pt/Pb and 154 

the ultimate test loads Pt shown in Table 3 for the G2 sheet steel specimens, which can be 155 

used without restriction according to Section A2.3.1 of the design specification (AISI 2012), 156 

indicate that the effective bearing coefficients given by Equation (2) are only accurate for the 157 
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specimens loaded in the rolling direction of the sheet steel. It should be noted that the use of 158 

one nominal tensile strength for both directions in practice does not affect this conclusion.  159 

The ultimate test loads of specimens IB7 and IB8 shown in Table 3, which were loaded in the 160 

rolling direction, are 37% higher than those of specimens IB5 and IB6, which had the same 161 

geometry but were loaded in the perpendicular direction. This outcome is despite the fact that 162 

the tensile strength of the 1.5-mm G2 sheet steel is 7% lower in the rolling direction. 163 

A similar observation can be made for specimens IB13 through IB16, and for specimens 164 

IB39a through IB40 listed in Table 4, which were composed of 3.0-mm G450 sheet steel. 165 

Some effects can also be seen for other specimens in Tables 3 and 4, especially with regard to 166 

the professional factors. The exceptions are specimens IB9 through IB12 (2.4-mm G2 167 

specimens), and IB21 through IB24 (1.9-mm G450 specimens).  168 

The significantly lower bearing capacities of the specimens loaded in the perpendicular 169 

direction to rolling were due to at least two reasons. First, the material ductility was lower in 170 

this direction, meaning that stress redistribution prior to fracture was more limited. This 171 

indication is consistent with the results showing that the effect of loading direction is more 172 

pronounced for 16-mm bolt specimens than 12-mm ones. Second, the bearing fractures took 173 

place in planes more aligned with the tension fracture planes of coupons loaded in the rolling 174 

direction, which had lower tensile strengths. As shown in Figure 2, the propagation of 175 

bearing fractures was almost parallel to the loading direction.  176 

The failed specimens IB8 and IB6, respectively loaded in the rolling and perpendicular 177 

directions, are shown in Figure 3. The authors do not detect a visual explanation other than 178 

the two likely reasons mentioned in the preceding paragraph. More research is required to 179 

investigate the significant effect of loading direction on the bearing capacity of double-shear 180 

bolted connections in cold-reduced steel sheets, including its fracture mechanism. 181 
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In any case, it is evident from the results plotted in Figure 4 that the bearing strength 182 

provision for the inside sheet of a double-shear bolted connection given in Section E3.3.1 of 183 

the AISI specification (AISI 2012) is reasonably accurate when the load is applied in the 184 

rolling direction of the G2 sheet steel, but is over-optimistic in the perpendicular direction to 185 

rolling. For repeat specimens, only the average professional factor is plotted in Figure 4. 186 

Conclusions 187 

Laboratory test results of 51 double-shear bolted connections composed of G2 and G450 188 

sheet steels have been presented in this technical note. The inside sheet of each specimen 189 

failed in bearing. In total there were 40 configurations in terms sheet thickness, bolt diameter, 190 

material ductility, bolt tightening and loading direction. 191 

Material ductility was found to have a significant effect on the bearing capacity, more 192 

pronounced than its effect on the net section tension capacity. It is concluded that different 193 

levels of snug tightening would not cause significant variations in the bearing capacity of 194 

most structural bolted connections. The most important finding is that the absolute bearing 195 

capacity can be considerably lower in the direction perpendicular to the rolling direction of 196 

the sheet steel, even though the tensile strength is correspondingly higher. The bearing 197 

strength provision in the current AISI specification is over-optimistic for connections loaded 198 

in this direction. 199 

Plausible reasons for the three effects mentioned above have been offered in this technical 200 

note. However, more research is required to establish the effect of loading direction. 201 
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Figure 1 Configuration of test specimens 

 

 

 

Figure 2 Bearing failure  



 

Figure 3 Failed specimens IB6 and IB8 

 

 

 

 

 

 

Figure 4 Professional factors of G2 specimens loaded in the rolling (R) and perpendicular (T) 
directions 
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Table 1 Average material properties for G2 sheet steels 

Designation 
Fy 

(MPa) 

Fu 

(MPa) 
Fu / Fy 

ε15 

(%) 

ε25 

(%) 

ε50 

(%) 

εuo 

(%) 

1.5 mm T 390 430 1.10 58.1 47.8 32.2 17.3 

1.5 mm R 320 400 1.25 55.2 45.9 37.7 24.5 

2.4 mm T 345 395 1.14 68.5 53.8 40.4 24.1 

2.4 mm R 310 390 1.26 62.4 51.5 40.1 26.8 

 

 

Table 2 Average material properties for G450 sheet steels 

Designation 
Fy 

(MPa) 

Fu 

(MPa) 
Fu / Fy 

ε15 

(%) 

ε25 

(%) 

ε50 

(%) 

εuo 

(%) 

1.5 mm R 555 590 1.06 21.5 16.3 12.0 6.9 

1.9 mm T 600 630 1.05 22.6 17.2 9.9 5.0 

1.9 mm R 540 585 1.08 26.3 22.3 12.1 8.4 

2.4 mm T 580 620 1.07 25.3 17.2 10.7 5.8 

2.4 mm R 535 580 1.08 31.0 23.8 16.3 8.9 

3.0 mm T 570 610 1.07 27.5 18.0 10.9 6.3 

3.0 mm R 520 555 1.07 30.5 21.4 14.8 8.2 

 

  



Table 3 Test results for G2 sheet steel specimens 

Spec t (mm) d (mm) Direction Tightening Cb Pt (kN) Pt/ Pb 

IB1a 1.5 12 T F 4.0 21.6 0.72 

IB1b      20.0 0.67 

IB2a    S  22.0 0.74 

IB2b      23.9 0.80 

IB3a   R F  24.7 0.89 

IB3b      26.7 0.96 

IB4    S  29.6 1.07 

IB5  16 T F 3.9 28.1 0.73 

IB6    S  31.9 0.83 

IB7   R F  38.6 1.08 

IB8    S  43.8 1.23 

IB9 2.4 12 T F 4.0 46.1 1.04 

IB10a    S  42.1 0.95 

IB10b      48.3 1.09 

IB11a   R F  46.0 1.05 

IB11b      45.7 1.04 

IB12a    S  45.2 1.03 

IB12b      47.5 1.08 

IB13  16 T F  48.4 0.82 

IB14    S  47.2 0.80 

IB15   R F  65.3 1.12 

IB16    S  60.0 1.03 
 

  



Table 4 Test results for G450 sheet steel specimens 

Spec t (mm) d (mm) Direction Tightening Cb Pt (kN) Pt/ Pb 

IB17 1.5 12 R F 4.0 29.7 0.71 

IB18    S  37.1 0.89 

IB19a  16  F 3.9 34.1 0.63 

IB19b      36.1 0.67 

IB20a    S  41.4 0.76 

IB20b      46.1 0.85 

IB21 1.9 12 T F 4.0 44.3 0.81 

IB22    S  44.3 0.81 

IB23   R F  40.5 0.79 

IB24    S  42.9 0.84 

IB25  16 T   53.8 0.73 

IB26   R F  55.9 0.82 

IB27    S  57.3 0.84 

IB28 2.4 12 T F  49.5 0.71 

IB29    S  58.5 0.84 

IB30   R F  54.2 0.83 

IB31    S  61.2 0.93 

IB32  16 T   75.6 0.81 

IB33   R F  78.0 0.89 

IB34    S  74.2 0.85 

IB35a 3.0 12 T F  65.5 0.76 

IB35b      65.8 0.76 

IB36    S  75.9 0.88 

IB37   R   74.6 0.95 

IB38a  16 T F  81.3 0.71 

IB38b      87.7 0.76 

IB39a    S  79.5 0.69 

IB39b      77.9 0.68 

IB40   R   97.8 0.94 
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