
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Engineering and Information
Sciences - Papers: Part A

Faculty of Engineering and Information
Sciences

1-1-2015

Efficient algorithms for secure outsourcing of bilinear pairings Efficient algorithms for secure outsourcing of bilinear pairings

Xiaofeng Chen
Xidian University

Willy Susilo
University of Wollongong, wsusilo@uow.edu.au

Jin Li
Guangzhou University

Duncan Wong
City University of Hong Kong, dwong@uow.edu.au

Jianfeng Ma
Xidian University

See next page for additional authors

Follow this and additional works at: https://ro.uow.edu.au/eispapers

 Part of the Engineering Commons, and the Science and Technology Studies Commons

Recommended Citation Recommended Citation
Chen, Xiaofeng; Susilo, Willy; Li, Jin; Wong, Duncan; Ma, Jianfeng; Tang, Shaohua; and Tang, Qiang,
"Efficient algorithms for secure outsourcing of bilinear pairings" (2015). Faculty of Engineering and
Information Sciences - Papers: Part A. 3262.
https://ro.uow.edu.au/eispapers/3262

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers?utm_source=ro.uow.edu.au%2Feispapers%2F3262&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers%2F3262&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers%2F3262&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers/3262?utm_source=ro.uow.edu.au%2Feispapers%2F3262&utm_medium=PDF&utm_campaign=PDFCoverPages

Efficient algorithms for secure outsourcing of bilinear pairings Efficient algorithms for secure outsourcing of bilinear pairings

Abstract Abstract
The computation of bilinear pairings has been considered the most expensive operation in pairing-based
cryptographic protocols. In this paper, we first propose an efficient and secure outsourcing algorithm for
bilinear pairings in the two untrusted program model. Compared with the state-of-the-art algorithm, a
distinguishing property of our proposed algorithm is that the (resource-constrained) outsourcer is not
required to perform any expensive operations, such as point multiplications or exponentiations.
Furthermore, we utilize this algorithm as a subroutine to achieve outsource-secure identity-based
encryptions and signatures.

Keywords Keywords
Cloud computing, Outsource-secure algorithms, Bilinear pairings, Untrusted program model

Disciplines Disciplines
Engineering | Science and Technology Studies

Publication Details Publication Details
Xiaofeng Chen, X., Susilo, W., Li, J., Wong, D., Ma, J., Tang, S. and Tang, Q. (2015). Efficient algorithms for
secure outsourcing of bilinear pairings. Theoretical Computer Science, 562 (January), 112-121.

Authors Authors
Xiaofeng Chen, Willy Susilo, Jin Li, Duncan Wong, Jianfeng Ma, Shaohua Tang, and Qiang Tang

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers/3262

https://ro.uow.edu.au/eispapers/3262

Efficient Algorithms for Secure Outsourcing of

Bilinear Pairings

Xiaofeng Chen a,Willy Susilo b,Jin Li c,Duncan S. Wong d,

Jianfeng Ma a,Shaohua Tang e,Qiang Tang f

aState Key Laboratory of Integrated Service Networks (ISN),

Xidian University, Xi’an, P.R.China

bCentre for Computer and Information Security Research (CCISR)

School of Computer Science and Software Engineering

University of Wollongong, Australia

cSchool of Computer Science and Educational Software

Guangzhou University, Guangzhou, P.R. China

dDepartment of Computer Science,

City University of Hong Kong, Hong Kong

eSchool of Computer Science and Engineering

South China University of Technology, Guangzhou, P.R. China

fAPSIA group, SnT, University of Luxembourg

6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg

Abstract

The computation of bilinear pairings has been considered the most expensive op-

eration in pairing-based cryptographic protocols. In this paper, we first propose an

efficient and secure outsourcing algorithm for bilinear pairings in the two untrusted

program model. Compared with the state-of-the-art algorithm, a distinguishing

Preprint submitted to Theoretical Computer Science 18 April 2014

property of our proposed algorithm is that the (resource-constrained) outsourcer

is not required to perform any expensive operations, such as point multiplications

or exponentiations. Furthermore, we utilize this algorithm as a subroutine to achieve

outsource-secure identity-based encryptions and signatures.

Key words: Cloud computing, Outsource-secure algorithms, Bilinear pairings,

Untrusted program model.

1 Introduction1

With the rapid development in availability of cloud services, the techniques2

for securely outsourcing the prohibitively expensive computations to untrusted3

servers are getting more and more attentions in the scientific community. In the4

outsourcing computation paradigm, the resource-constrained devices can enjoy5

the unlimited computation resources in a pay-per-use manner, which avoids6

large capital outlays in hardware/software deployment and maintenance.7

Despite the tremendous benefits, outsourcing computation also inevitably in-8

troduces some new security concerns and challenges. Firstly, the computation9

tasks often contain some sensitive information that should not be exposed to10

the untrusted cloud servers. Therefore, the first security challenge is the secrecy11

of the outsourcing computation: the cloud servers should not learn anything12

about the data (including the secret inputs and the outputs). We argue that13

the encryption can only provide a partial solution to this problem since it is14

very difficult to perform meaningful computations over the encrypted data.15

Note that fully homomorphic encryption could be a potential solution, but the16

∗ The corresponding author: Xiaofeng Chen (xfchen@xidian.edu.cn)

2

existing schemes are impractical. Secondly, the semi-trusted cloud servers may17

return an invalid result. For example, the servers might contain a software bug18

that will fail on a constant number of invocations. Moreover, the servers might19

decrease the amount of the computation due to financial incentives and then20

return a computationally indistinguishable (invalid) result. Therefore, the sec-21

ond security challenge is the checkability of the outsourcing computation: the22

outsourcer should have the ability to detect any failures if the cloud servers23

misbehave. Trivially, the test procedure should never need to perform other24

complicated computations since the computationally limited devices such as25

RFID tags or smartcard may be incapable to accomplish the test. At the very26

least, it must be far more efficient than accomplishing the computation task27

itself (recall the motivation for outsourcing computations).28

In the last decade, the bilinear pairings, especially the Weil pairing and Tate29

pairing of algebraic curves, have initiated some completely new fields in cryp-30

tography, making it possible to realize cryptographic primitives that were pre-31

viously unknown or impractical [11,15,34]. Trivially, implementing the pairing-32

based cryptographic protocols is dependent on the fast computation of pair-33

ings, and thus plenty of research work has been done to implement this work-34

load efficiently [10,13,15,33,36,42].35

The computation of bilinear pairings has been considered the prohibitive ex-36

pensive operation in embedded devices such as the RFID tag or smardcard37

(note that we even assume that the modular exponentiation is too expensive38

to be carried out on such devices). Chevallier-Mames et al. [20] presented the39

first algorithm for secure delegation of elliptic-curve pairings based on an un-40

trusted server model. Besides, the outsourcer could detect any failures with41

probability 1 if the server misbehaves. However, an obvious disadvantage of42

3

the algorithm is that the outsourcer should carry out some other expensive op-43

erations such as point multiplications and exponentiations. More precisely, on44

the one hand, we argue that these expensive operations might be too resource45

consuming to be carried out on a computationally limited device. On the other46

hand, the computation of point multiplications is even comparable to that of47

bilinear pairings in some scenarios [25,42] 1 . Therefore, it is meaningless if the48

client must perform point multiplications in order to outsource pairings since49

this contradicts with the aim of outsourcing computation. Therefore, the al-50

gorithm is meaningless for real-world applications in this sense. To the best51

of our knowledge, it seems that all of the following works on delegation of52

bilinear pairings [17,35,44] also suffer from the same problems.53

Our Contribution. In this paper, we propose the first efficient and se-54

cure outsourcing algorithm of bilinear pairings in the one-malicious version55

of two untrusted program model [32]. Compared with the state-of-the-art al-56

gorithm in [20], a distinguishing property of our proposed algorithm is that57

the (resource-constrained) outsourcer never needs to perform any expensive58

operations such as point multiplications and exponentiations. Hence, our pro-59

posed algorithm is very practical. Furthermore, we also utilize this algorithm60

as a subroutine to achieve outsource-secure Boneh-Franklin identity-based en-61

cryptions and Cha-Cheon identity-based signatures.62

1 As pointed out in [25,42], when the supersingular elliptic curve is defined over a

512-bit finite field with embedding degree 2, the computational overhead of a point

multiplication is almost the same as that of a standard Tate pairing.

4

1.1 Related Work63

Abadi et al. [2] proved the impossibility of secure outsourcing an exponential64

computation while locally doing only polynomial time work. Therefore, it is65

meaningful only to consider outsourcing expensive polynomial time computa-66

tions. The theoretical computer science community has devoted considerable67

attention to the problem of how to securely outsource different kinds of expen-68

sive computations. Atallah et al. [3] presented a framework for secure outsourc-69

ing of scientific computations such as matrix multiplications and quadrature.70

However, the solution used the disguise technique and thus allowed leakage of71

private information. Atallah and Li [4] investigated the problem of computing72

the edit distance between two sequences and presented an efficient protocol73

to securely outsource sequence comparisons to two servers. Recently, Blan-74

ton et al. proposed a more efficient scheme for secure outsourcing sequence75

comparisons [9]. Blanton and Aliasgari [6,7] proposed an efficient scheme for76

secure outsourcing DNA computations and biometric comparisons. Benjamin77

and Atallah [5] addressed the problem of secure outsourcing for widely appli-78

cable linear algebra computations. However, the proposed protocols required79

the expensive operations of homomorphic encryptions. Atallah and Frikken80

[1] further studied this problem and gave improved protocols based on the81

so-called weak secret hiding assumption. Recently, Wang et al. [45] presented82

efficient mechanisms for secure outsourcing of linear programming computa-83

tions.84

The problem of securely outsourcing expensive computations has been well85

studied in the cryptography community. In 1992, Chaum and Pedersen [21]86

firstly introduced the notion of wallets with observers, a piece of secure hard-87

5

ware installed on the client’s computer to perform some expensive computa-88

tions. Hohenberger and Lysyanskaya [32] proposed the first outsource-secure89

algorithm for modular exponentiations based on the two previous approaches90

of precomputation [16,41] and server-aided computation [29,39]. Very recently,91

Chen et al. [19] proposed more efficient outsource-secure algorithms for (si-92

multaneously) modular exponentiation in the two untrusted program model.93

Since the servers (or workers) are not trusted by the outsourcers, Golle and94

Mironov [31] first introduced the concept of ringers to solve the trust prob-95

lem of verifying computation completion. The following works focused on the96

other trust problem of retrieving payments [8,23,24,43]. Besides, Gennaro et97

al. [27] first formalized the notion of verifiable computation to solve the prob-98

lem of verifiably outsourcing the computation of an arbitrary functions, which99

has attracted the attention of plenty of researchers [14,28,30,37,38]. Gennaro100

et al. [27] also proposed a protocol that allowed the outsourcer to efficiently101

verify the outputs of the computations with a computationally sound, non-102

interactive proof (instead of interactive ones). Benabbas et al. [12] presented103

the first practical verifiable computation scheme for high degree polynomial104

functions. In 2011, Green et al. [26] proposed new methods for efficiently105

and securely outsourcing decryption of attribute-based encryption (ABE) ci-106

phertexts. Based on this work, Parno et al. [40] showed a construction of a107

multi-function verifiable computation scheme.108

1.2 Organization109

The rest of the paper is organized as follows. Some background and prelim-110

inaries that will be required throughout this paper are presented in Section111

6

2. The security definitions for outsourcing computation are provided in Sec-112

tion 3. The proposed new outsource-secure bilinear pairings algorithm and its113

security analysis are presented in Section 4. The proposed outsource-secure114

identity-based encryptions and signatures are given in Section 5. Finally, Sec-115

tion 6 concludes the paper.116

2 Preliminaries117

In this section, we will briefly describe the basic definition and properties of118

bilinear pairings [11,15,18,25] and then overview the algorithm for delegation119

of pairings [20].120

2.1 Bilinear Pairings121

Let G1 and G2 be two cyclic additive groups generated by P1 and P2, respec-122

tively. The order of G1 and G2 is a large prime order q. Define GT to be a123

cyclic multiplicative group of the same order q. A bilinear pairing is a map124

e : G1 ×G2 → GT with the following properties:125

(1) Bilinear: e(aR, bQ) = e(R,Q)ab for all R ∈ G1, Q ∈ G2, and a, b ∈ Z∗q.126

(2) Non-degenerate: There exists R ∈ G1 and Q ∈ G2 such that e(R,Q) 6= 1.127

(3) Computable: There is an efficient algorithm to compute e(R,Q) for all128

R,Q ∈ G1.129

The examples of such groups can be found in supersingular elliptic curves or130

hyperelliptic curves over finite fields, and the bilinear pairings can be derived131

from the Weil or Tate pairings. For more details, see [11,15,18,25].132

7

For the ease of simplicity, we use the above notations throughout this paper.133

2.2 Algorithm for Delegation of Elliptic-Curve Pairings134

The input of Chevallier-Mames et al.’s algorithm [20] is two random points135

A ∈ G1, B ∈ G2, and the output is e(A,B). Assume that the outsourcer T136

has been given the value of e(P1,P2).137

(1) The outsourcer T generates two random elements g1, g2 ∈ Zq, and queries

the following pairings to the server U :

α1 = e(A+ g1P1,P2), α2 = e(P1, B + g2P2), α3 = e(A+ g1P1, B + g2P2).

(2) The outsourcer T verifies that αi ∈ GT , by checking αq
i = 1 for i = 1, 2, 3.138

Otherwise, T outputs ⊥ and halts.139

(3) The outsourcer T computes e(A,B) = α−g21 α−g12 α3e(P1,P2)
g1g2 .140

(4) The outsourcer T generates four random elements a1, r1, a2, r2 ∈ Zq, and141

queries the following pairing to the server U :142

α4 = e(a1A+ r1P1, a2B + r2P2).

(5) The outsourcer T computes143

α′4 = e(A,B)a1a2αa1r2
1 αa2r1

2 e(P1,P2)
r1r2−a1g1r2−a2g2r1 .

T outputs e(A,B) if and only if α′4 = α4.144

Remark 1. We argue that the outsourcer T should perform some expensive145

operations such as point multiplications and exponentiations. In some cases,146

this contradicts with the motivation of the outsourcing computations.147

8

3 Formal Security Definitions148

In this section, we introduce some definitions for secure outsourcing of a cryp-149

tographic algorithm [32].150

Informally, we say that an honest but resources-constrained component T151

securely outsources some expensive work to an untrusted component U , and152

(T, U) is an outsource-secure implementation of a cryptographic algorithm Alg153

if (1) T and U implement Alg, i.e., Alg = TU and (2) suppose that T is given154

oracle access to a malicious U ′ (instead of U) that records all of its computation155

over time and tries to act maliciously, U ′ cannot learn anything interesting156

about the input and output of TU ′ . Besides, another part of the adversary157

A is the adversarial environment E that submits adversatively chosen inputs158

to Alg, i.e., A = (E,U ′). One fundamental assumption is that E and U ′ will159

not have a direct communication channel after they begin interacting with160

T (although E and U ′ may develop a joint strategy beforehand). That is, E161

and U ′ can only communicate with each other by passing messages through162

T . In the real world, a malicious manufacturer E might program its software163

U ′ to behave in an adversarial fashion. However, once U ′ has been installed164

behind the firewall of T , E is no longer able to send instructions to U ′. This165

implies that E may know something about the protected inputs to Alg that166

U ′ does not. For example, E can see all of its own adversarial inputs to Alg,167

while T might hide some of these from U ′. Otherwise, if U ′ could see any168

values chosen by E, then E and U ′ still can agree on a joint strategy that169

causes U ′ to terminate its tasks upon receiving some predefined message from170

E. As a result, no security guarantee can be provided. We illustrate this with171

the proposed outsourcing algorithm [19], if E could capture all of network172

9

traffic of T , then E can know which are the test queries (note that T must173

invoke the subroutine Rand and store all the results in its hard disk). As a174

result, U ′ can also know the facts by communicating with E. Consequently,175

when T sends the queries to U ′, U ′ only honestly computes the results for176

the test queries. For the remaining queries, U ′ terminates and just returns a177

random value. Therefore, U ′ can always cheat T without being detected and178

no security guarantees can be obtained.179

The inputs to Alg can be categorized into three logical divisions: (1) Secret:180

information is only available to T (e.g., a secret key or a plaintext) and re-181

mains hidden from E and U ′; (2) Protected: information is only available to182

T and E (e.g., a public key or a ciphertext) while remains hidden from U ′; (3)183

Unprotected: information is available to T , E and U ′ (e.g, the time-stamp).184

similarly, Alg has secret, protected, and unprotected outputs. Moreover, the185

divisions for inputs can be further categorized based on whether the inputs186

are generated honestly or adversarially except the case of adversarial, secret187

inputs (note that E cannot generate secret inputs which are only available to188

T). Therefore, Alg will take five types of inputs and produce three types of189

outputs.190

The formal definition of an algorithm with outsource-input/output is given as191

follows:192

Definition 1 (Algorithm with outsource-I/O) An algorithm Alg obeys193

the outsource input/output specification if it takes five inputs, and produces194

three outputs. The first three inputs are generated by an honest party, and are195

classified by how much the adversary A = (E,U ′) knows about them, where196

E is the adversarial environment that submits adversarially chosen inputs to197

10

Alg, and U ′ is the adversarial software operating in place of oracle U . The first198

input is called the honest, secret input, which is unknown to both E and U ′; the199

second is called the honest, protected input, which may be known by E, but is200

protected from U ′; and the third is called the honest, unprotected input, which201

may be known by both E and U . In addition, there are two adversarially-chosen202

inputs generated by the environment E: the adversarial, protected input, which203

is known to E, but protected from U ′; and the adversarial, unprotected input,204

which may be known by E and U 2 . Similarly, the first output called secret is205

unknown to both E and U ′; the second is protected, which may be known to E,206

but not U ′; and the third is unprotected, which may be known by both parties207

of A.208

The following definition of outsource-security means that if a malicious U ′209

can learn something secret or protected about the inputs to TU from being210

T ’s oracle instead of U , it can also learn without that. That is, there exists a211

simulator S that, when told that TU(x) was invoked, simulates the view of U ′212

without access to the secret or protected inputs of x. Similarly, the definition213

also ensures that the malicious environment E cannot gain any knowledge of214

the secret inputs and outputs of TU , even if T uses the malicious software U ′215

written by E. Also, there exists a simulator S ′ that, when told that TU(x) was216

invoked, can simulate the view of E without access to the secret inputs of x.217

Definition 2 (Outsource-security) Let Alg be an algorithm with outsource218

I/O. A pair of algorithms (T, U) is said to be an outsource-secure implemen-219

2 For any outsource-secure implementation in the real applications, the adversarial,

unprotected input must be empty. Even if it contains a single bit, then a covert

channel may be created from E and U ′. Then, a k bits of shared information can

be obtained after interacting k rounds.

11

tation of Alg if:220

(1) Correctness: TU is a correct implementation of Alg.221

(2) Security: For all probabilistic polynomial-time adversaries A = (E,U ′),222

there exist probabilistic expected polynomial-time simulators (S1, S2) such223

that the following pairs of random variables are computationally indistin-224

guishable.225

• Pair One. EVIEWreal ∼ EVIEWideal:226

· The view that the the adversarial environment E obtains by par-227

ticipating in the following real process:228

EVIEWi
real = {(istatei, xihs, x

i
hp, x

i
hu)← I(1k, istatei−1);229

(estatei, ji, xiap, x
i
au, stopi)← E(1k,EVIEWi−1

real, x
i
hp, x

i
hu);230

(tstatei, ustatei, yis, y
i
p, y

i
u)←231

TU ′(ustatei−1)(tstatei−1, xj
i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au) :232

(estatei, yip, y
i
u)}233

EVIEWreal = EVIEWi
real if stopi = TRUE.234

The real process proceeds in rounds. In round i, the honest (secret,235

protected, and unprotected) inputs (xihs, x
i
hp, x

i
hu) are picked using an236

honest, stateful process I to which the environment E does not have237

access. Then E, based on its view from the last round, chooses (0)238

the value of its estatei variable as a way of remembering what it did239

next time it is invoked; (1) which previously generated honest inputs240

(xihs, x
i
hp, x

i
hu) to give to TU ′ (note that E can specify the index ji of241

these inputs, but not their values); (2) the adversarial, protected input242

xiap; (3) the adversarial, unprotected input xiau; (4) the Boolean variable243

stopi that determines whether round i is the last round in this process.244

Next, the algorithm TU ′ is run on the inputs (tstatei−1, xj
i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au),245

12

where tstatei−1 is T ’s previously saved state, and produces a new state246

tstatei for T , as well as the secret yis, protected yip and unprotected yiu247

outputs. The oracle U ′ is given its previously saved state, ustatei−1, as248

input, and the current state of U ′ is saved in the variable ustatei. The249

view of the real process in round i consists of estatei, and the values yip250

and yiu. The overall view of E in the real process is just its view in the251

last round (i.e., i for which stopi = TRUE.).252

· The ideal process:253

EVIEWi
ideal = {(istatei, xihs, x

i
hp, x

i
hu)← I(1k, istatei−1);254

(estatei, ji, xiap, x
i
au, stopi)← E(1k,EVIEWi−1

ideal, x
i
hp, x

i
hu);255

(astatei, yis, y
i
p, y

i
u)← Alg(astatei−1, xj

i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au);256

(sstatei, ustatei, Y i
p , Y

i
u , repi)← S

U ′(ustatei−1)
1257

(sstatei−1, · · · , xj
i

hp, x
ji

hu, x
i
ap, x

i
au, y

i
p, y

i
u);258

(zip, z
i
u) = repi(Y i

p , Y
i
u) + (1− repi)(yip, y

i
u) :259

(estatei, zip, z
i
u)}260

EVIEWideal = EVIEWi
ideal if stopi = TRUE.261

The ideal process also proceeds in rounds. In the ideal process, we262

have a stateful simulator S1 who, shielded from the secret input xihs, but263

given the non-secret outputs that Alg produces when run all the inputs264

for round i, decides to either output the values (yip, y
i
u) generated by265

Alg, or replace them with some other values (Y i
p , Y

i
u). Note that this is266

captured by having the indicator variable repi be a bit that determines267

whether yip will be replaced with Y i
p . In doing so, it is allowed to query268

oracle U ′; moreover, U ′ saves its state as in the real experiment.269

• Pair Two. UVIEWreal ∼ UVIEWideal:270

· The view that the untrusted software U ′ obtains by participating in271

13

the real process described in Pair One. UVIEWreal = (ustatei, yiu)272

if stopi = TRUE.273

· The ideal process:274

UVIEWi
ideal = {(istatei, xihs, x

i
hp, x

i
hu)← I(1k, istatei−1);275

(estatei, ji, xiap, x
i
au, stopi)← E(1k, estatei−1, xihp, x

i
hu, y

i−1
p , yi−1u);276

(astatei, yis, y
i
p, y

i
u)← Alg(astatei−1, xj

i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au);277

(sstatei, ustatei)← S
U ′(ustatei−1)
2 (sstatei−1, xj

i

hu, x
i
au, y

i
u) :278

(ustatei, yiu)}279

UVIEWideal = UVIEWi
ideal if stopi = TRUE.280

In the ideal process, we have a stateful simulator S2 who, equipped281

with only the unprotected inputs/outputs (xihu, x
i
au, y

i
u), queries U ′. As282

before, U ′ may maintain state.283

Given an outsource-secure implementation of a cryptographic algorithm Alg =284

TU , we should compare the overhead of T with that for the fastest known285

implementation of Alg. Besides, if the algorithm Alg could not provide 100286

percent checkability, we should evaluate the probability that T could detect287

the misbehavior of U .288

Definition 3 (α-efficient, secure outsourcing) A pair of algorithms (T, U)289

is said to be an α-efficient implementation of Alg if (1) TU is a correct imple-290

mentation of Alg and (2) ∀ inputs x, the running time of T is no more than291

an α-multiplicative factor of the running time of Alg.292

Definition 4 (β-checkable, secure outsourcing) A pair of algorithms293

(T, U) is said to be an β-checkable implementation of Alg if (1) TU is a correct294

implementation of Alg and (2) ∀ inputs x, if U ′ deviates from its advertised295

functionality during the execution of TU ′(x), T will detect the error with prob-296

14

ability no less than β.297

Definition 5 ((α, β)-outsource-security) A pair of algorithms (T, U) is298

said to be an (α, β)-outsource-secure implementation of Alg if it is both α-299

efficient and β-checkable.300

4 New Outsource-Secure Algorithm of Bilinear Pairings301

4.1 Security Model302

Hohenberger and Lysyanskaya [32] first presented the so-called two untrusted303

program model for outsourcing cryptographic computations. In the two un-304

trusted program model, the adversarial environment E writes the code for305

two (potentially different) programs U ′ = (U ′1, U
′
2). E then gives this software306

to T , advertising a functionality that U ′1 and U ′2 may or may not accurately307

compute, and T installs this software in a manner such that all subsequent308

communication between any two of E, U ′1 and U ′2 must pass through T . The309

new adversary attacking T is A = (E,U ′1, U
′
2). Moreover, we assume that at310

most one of the programs U ′1 and U ′2 deviates from its advertised functionality311

on a non-negligible fraction of the inputs, while we cannot know which one312

and security means that there is a simulator S for both. This is named as the313

one-malicious version of two untrusted program model (i.e., “one-malicious314

model” for the simplicity) 3 . In the real-world applications, it is equivalent to315

3 Canetti, Riva, and Rothblum [22] introduced the refereed delegation of computa-

tion model, where the outsourcer delegates the computation to several servers under

the assumption that at least one of the servers is honest. Trivially, one-malicious

model can be viewed as a special case of refereed delegation of computation model.

15

buy the two copies of the advertised software from two different vendors and316

achieve the security as long as one of them is honest.317

Similar to [32], we also use a subroutine named Rand in order to speed up the318

computations. The inputs for Rand are the groups G1 and G2 with prime319

order q, the bilinear pairing e, and possibly some other (random) values,320

and the outputs for each invocation are a random, independent six-tuple321

(V1, V2, v1V1, v2V1, v2V2, e(v1V1, v2V2)), where v1, v2 ∈R Z∗q, V1 ∈R G1, and322

V2 ∈R G2. A naive approach to implement this functionality is for a trusted323

server to compute a table of random, independent six-tuple in advance and324

then load it into the memory of T . For each invocation of Rand, T just retrieves325

a new six-tuple in the table (the table-lookup method).326

4.2 Outsourcing Algorithm327

In this section, we propose a new secure outsourcing algorithm Pair for bi-328

linear pairings in the one-malicious model. In Pair, T outsources its pairing329

computations to U1 and U2 by invoking the subroutine Rand. A requirement330

for Pair is that the adversary A cannot know any useful information about331

the inputs and outputs of Pair.332

The input of Pair is two random points A ∈ G1, B ∈ G2, and the output333

of Pair is e(A,B). Note that A and B may be secret or (honest/adversarial)334

protected and e(A,B) is always secret or protected. Moreover, both A and335

B are computationally blinded to U1 and U2. We let Ui(Λ1,Λ2) → e(Λ1,Λ2)336

denote that Ui takes as inputs (Λ1,Λ2) and outputs e(Λ1,Λ2), where i = 1, 2.337

The proposed outsourcing algorithm Pair consists of the following steps:338

16

(1) To implement this functionality using U1 and U2, T firstly runs Rand339

to create a blinding six-tuple (V1, V2, v1V1, v2V1, v2V2, e(v1V1, v2V2)). We340

denote λ = e(v1V1, v2V2).341

(2) The main trick of Pair is to logically split A and B into random looking342

pieces that can be computed by U1 and U2. Without loss of generality, let343

α1 = e(A+v1V1, B+v2V2), α2 = e(A+V1, v2V2), and α3 = e(v1V1, B+V2).344

Note that345

α1 = e(A,B)e(A, v2V2)e(v1V1, B)e(v1V1, v2V2),

α2 = e(A, v2V2)e(V1, v2V2),

α3 = e(v1V1, B)e(v1V1, V2),

Therefore, e(A,B) = α1α
−1
2 α−13 λ−1e(V1, V2)

v1+v2 .346

(3) T then runs Rand to obtain two new six-tuple

(X1, X2, x1X1, x2X1, x2X2, e(x1X1, x2X2))

and

(Y1, Y2, y1Y1, y2Y1, y2Y2, e(y1Y1, y2Y2)).

(4) T queries U1 in random order as347

U1(A+ v1V1, B + v2V2)→ e(A+ v1V1, B + v2V2) = α1;348

U1(v1V1 + v2V1, V2)→ e(V1, V2)
v1+v2 ;349

U1(x1X1, x2X2)→ e(x1X1, x2X2);350

U1(y1Y1, y2Y2)→ e(y1Y1, y2Y2);351

Similarly, T queries U2 in random order as352

U2(A+ V1, v2V2)→ e(A+ V1, v2V2) = α2;353

U2(v1V1, B + V2)→ e(v1V1, B + V2) = α3;354

U2(x1X1, x2X2)→ e(x1X1, x2X2);355

17

U2(y1Y1, y2Y2)→ e(y1Y1, y2Y2);356

(5) Finally, T checks that both U1 and U2 produce the correct outputs, i.e.,357

e(x1X1, x2X2) and e(y1Y1, y2Y2) for the test queries. If not, T outputs358

“error”; otherwise, T can compute e(A,B) = α1α
−1
2 α−13 λ−1e(V1, V2)

v1+v2 .359

Remark 2. Given a random point P in G1 (or G2), T can compute the

inverse point −P easily. Therefore, T can query U2(A + V1,−v2V2) → e(A +

V1,−v2V2) = α−12 and U2(−v1V1, B+V2)→ e(−v1V1, B+V2) = α−13 . Similarly,

we can define the outputs of Rand be

(V1, V2, v1V1, v2V1, v2V2, e(v1V1, v2V2)
−1).

Therefore, T needs not to perform the inverse computation in GT .360

4.3 Security Analysis361

Theorem 1 In the one-malicious model, the algorithms (T, (U1, U2)) are an362

outsource-secure implementation of Pair, where the input (A,B) may be hon-363

est, secret; or honest, protected; or adversarial, protected.364

Proof. The proof is similar to [32]. The correctness is trivial and we only365

focus on security. Let A = (E,U ′1, U
′
2) be a PPT adversary that interacts with366

a PPT algorithm T in the one-malicious model.367

Firstly, we prove Pair One EVIEWreal ∼ EVIEWideal:368

Note that we only consider three types of input (A,B): honest, secret; or369

honest, protected; or adversarial, protected. If the input (A,B) is anything370

other than honest, secret (this means that the input (A,B) is either honest,371

protected or adversarial, protected. Obviously, neither types of input (A,B)372

18

is secret), then the simulation is trivial. That is, the simulator S1 behaves the373

same way as in the real execution. Trivially, S1 never requires to access the374

secret input since neither types of input (A,B) is secret.375

If (A,B) is an honest, secret input, then the simulator S1 behaves as follows:376

On receiving the input on round i, S1 ignores it and instead makes four ran-377

dom queries of the form (Pj, Qj) to both U ′1 and U ′2. S1 randomly tests two378

outputs (i.e., e(Pj, Qj)) from each program. If an error is detected, S1 saves379

all states and outputs Y i
p=“error”, Y i

u=∅, repi=1 (i.e., the output for ideal380

process is (estatei, “error”,∅)). If no error is detected, S1 checks the remain-381

ing two outputs. If all checks pass, S1 outputs Y i
p=∅, Y i

u=∅, repi=0 (i.e., the382

output for ideal process is (estatei, yip, y
i
u)); otherwise, S1 selects a random el-383

ement r and outputs Y i
p=r, Y i

u=∅, repi=1 (i.e., the output for ideal process384

is (estatei, r,∅)). In either case, S1 saves the appropriate states.385

The input distributions to (U ′1, U
′
2) in the real and ideal experiments are com-386

putationally indistinguishable. In the ideal experiment, the inputs are chosen387

uniformly at random. In the real experiment, each part of all queries that388

T makes to any one program in the step (4) of Pair is independently re-389

randomized and the re-randomization factors are also truly randomly gener-390

ated by using naive table-lookup method 4 . We consider the following three391

possible cases:392

Firstly, if (U ′1, U
′
2) behave honest in the round i, then EVIEWi

real ∼ EVIEWi
ideal393

(this is because T (U ′1,U
′
2) perfectly executes Pair in the real experiment and394

4 We argue that if v1, v2, V1, and V2 are random elements in Z∗q , Z∗q , G1, and

G2, respectively, then the output of Rand is also a random, independent six-tuple

(V1, V2, v1V1, v2V1, v2V2, e(v1V1, v2V2)).

19

S1 simulates with the same outputs in the ideal experiment, i.e., repi=0).395

Secondly, if one of (U ′1, U
′
2) is dishonest in the round i and it has been detected396

by both T and S1 (with probability 1
2
), then it will result in an output of397

“error”. Finally, we consider the case that the output of Pair is corrupted,398

i.e., one of (U ′1, U
′
2) is dishonest in the round i while it is undetected (with399

probability 1
2
) by T . In the real experiment, the four outputs generated by400

(U ′1, U
′
2) are multiplied together along with a random value λ−1 (see the step401

(5) of our algorithm Pair). Thus, the output of Pair looks random to the402

environment E. In the ideal experiment, S1 also simulates with a random403

value r ∈ GT as the output. Thus, EVIEWi
real ∼ EVIEWi

ideal even when one404

of (U ′1, U
′
2) is dishonest. By the hybrid argument, we conclude that EVIEWreal405

∼ EVIEWideal.406

Secondly, we prove Pair Two UVIEWreal ∼ UVIEWideal:407

The simulator S2 always behaves as follows: On receiving the input on round408

i, S2 ignores it and instead makes four random queries of the form (Pj, Qj) to409

both U ′1 and U ′2. Then S2 saves its states and the states of (U ′1, U
′
2). E can easily410

distinguish between these real and ideal experiments (note that the output in411

the ideal experiment is never corrupted). However, E cannot communicate this412

information to (U ′1, U
′
2). This is because in the round i of the real experiment, T413

always re-randomizes its inputs to (U ′1, U
′
2). In the ideal experiment, S2 always414

generates random, independent queries for (U ′1, U
′
2). Thus, for each round i we415

have UVIEWi
real ∼ UVIEWi

ideal. By the hybrid argument, we conclude that416

UVIEWreal ∼ UVIEWideal.417

Theorem 2 In the one-malicious model, the algorithms (T, (U1, U2)) are an418

(O(1
n
), 1

2
)-outsource-secure implementation of Pair, where n is the bit length419

20

of the order q of bilinear groups.420

Proof. The proposed algorithm Pair makes 3 calls to Rand plus 5 point421

addition in G1 (or G2), and 4 multiplication in GT in order to compute e(A,B).422

Also, the computation for Rand is negligible when using the table-lookup423

method. On the other hand, it takes roughly O(n) multiplications in resulting424

finite filed to compute the bilinear pairing 5 . Thus, the algorithms (T, (U1, U2))425

are an O(1
n
)-efficient implementation of Pair.426

On the other hand, U1 (resp. U2) cannot distinguish the two test queries from427

the two real queries that T makes. If U1 (resp. U2) fails during any execution428

of Pair, it will be detected with probability 1
2
.429

4.4 Comparison430

We compare the proposed algorithm with the algorithm in [20]. We denote431

by PA a point addition in G1 (or G2), by SM a point multiplication in G1432

(or G2), by M a multiplication in GT , by Inv an inverse in GT , by Exp an433

exponentiation in GT , and P a computation of the bilinear pairing. We omit434

5 The computation of bilinear pairings is closely related to the security parameters

(that determines the security levels), the kinds of curves (supersingular curves,

ordinary curves, or hyperelliptic curves), the kinds of bilinear pairings (the Weil

pairing, the Tate pairing, or the Eta pairing), the finite field (the characteristic

is 2, 3 or p) and embedding degree etc. Koblitz and Menezes [36] presented some

examples of the pairings evaluation under the various parameters. For example, it

takes roughly 22n multiplications in finite filed GF(p) to compute the Tate pairing

e(A,B) when E is a supersingular elliptic curve defined over GF(p) with embedding

degree k = 2, where p is a 512-bit prime in order to achieve 80-bit security level.

21

other operations such as modular additions in Zq.435

Table 1. Comparison of the two algorithms

Algorithm [20] Algorithm Pair

T 10 Exp + 2 Inv + 6 SM + 4 PA + 6 M 5 PA + 4 M

U 4 P (U) 4 P (U1) + 4 P (U2)

Table 1 presents the comparison of the efficiency between algorithm [20] and436

our proposed algorithm Pair. Compared with the algorithm [20], the proposed437

algorithm Pair is much superior in efficiency. More precisely, the outsourcer438

T does not require the prohibitively expensive operations SM and Exp in our439

algorithm Pair (note that a computationally limited device may be incapable440

to perform such operations at all). Moreover, the computation of SM (or Exp)441

is comparable to that of a pairing in some cases, and this will violate the442

motivation of the outsourcing computations.443

On the other hand, it takes the servers U to perform 8P in our algorithm444

Pair (4P for each server Ui). Besides, the computation for Rand is about445

3P + 3Exp + 9SM, while it is negligible due to the table-lookup method.446

Therefore, the proposed algorithm Pair requires more computation load in447

the server side compared with [20]. However, note that the server is much448

more computationally powerful, and thus the efficiency of our algorithm will449

not be affected in this sense.450

22

5 Secure Outsourcing Algorithms for Identity-based Encryptions451

and Signatures452

In this section, we utilize the proposed subroutine Pair to give two secure453

outsourcing algorithms for Boneh-Franklin identity-based encryption scheme454

[11] and Cha-Cheon identity-based signature scheme [18], where a special case455

of bilinear pairing e : G1 ×G1 → GT is used (i.e., G1 = G2).456

Note that the outsourcer T is assumed to be a computationally limited de-457

vice that cannot carry out the prohibitively expensive computations such as458

bilinear pairings, point multiplications, modular exponentiations, and so on,459

thus the proposed two algorithms requires an additional subroutine SM [19]460

for outsourcing the computations of point multiplications in G1.461

5.1 Outsource-secure Boneh-Franklin Identity-based Encryptions462

The proposed outsource-secure Boneh-Franklin encryption scheme consists of463

the following efficient algorithms:464

• Setup: Chooses a random s ∈ Z∗q and sets Ppub = sP . Define four cryp-

tographic hash functions H1 : {0, 1}∗ → G∗1, H2 : GT → {0, 1}n for some

n, H3 : {0, 1}n × {0, 1}n → Z∗q and H4 : {0, 1}n → {0, 1}n. The public

parameters of the system are

params = {G1,GT , e, q, P, Ppub, H1, H2, H3, H4}.

The master key is s.465

• Extract: On input an identity ID, run the extract algorithm to obtain the466

secret key SID = sH1(ID).467

23

• Encryption: On input the public key ID and a message m ∈ {0, 1}n, the468

outsourcer T runs the subroutine Pair and SM to generate the ciphertext469

C as follows:470

(1) T chooses a random σ ∈ {0, 1}n and computes r = H3(σ,m).471

(2) T runs SM to obtain C1 = rP and R = rH1(ID).472

(3) T runs Pair to obtain Pair(R,Ppub)→ ϕ.473

(4) T computes C2 = σ ⊕H2(ϕ) and C3 = m⊕H4(σ).474

(5) T outputs the ciphertext C = (C1, C2, C3).475

• Decryption: On input the secret key SID, and the ciphertext C = (C1, C2, C3),476

the outsourcer T ′ runs the subroutine Pair and SM to compute the message477

m as follows:478

(1) T ′ runs Pair to obtain Pair(SID, C1)→ ϕ.479

(2) T ′ computes σ = C2 ⊕H2(ϕ).480

(3) T ′ computes m = C3 ⊕H4(σ).481

(4) T ′ computes r = H3(σ,m) and then runs SM to obtain rP .482

(5) T ′ outputs m if and only if C1 = rP .483

Remark 3. Note that the outsourcer only needs to perform 6 hash and 4484

bitwise operations (instead of 2 pairings and 3 point multiplications) in the485

above encryption scheme.486

5.2 Outsource-secure Cha-Cheon Identity-based Signatures487

The proposed outsource-secure Cha-Cheon signature scheme consists of the488

following efficient algorithms:489

24

• Setup: Chooses a random s ∈ Z∗q and sets Ppub = sP . Define two crypto-490

graphic hash functions H1 : {0, 1}∗×G1 → Zq, H2 : {0, 1}∗ → G1. The pub-491

lic parameters of the system are params = {G1,GT , e, q, P, Ppub, H1, H2}.492

The master key is s.493

• Extract: On input an identity ID, run the extract algorithm to obtain the494

signing key SID = sH2(ID).495

• Sign: On input the singing key SID and a message m, the outsourcer T496

runs the subroutine SM to generate the signature σ as follows:497

(1) T chooses a random r ∈ Z∗q and runs SM to obtain U = rH2(ID).498

(2) T computes h = H1(m,U).499

(3) T runs SM to obtain V = (r + h)SID. The signature is σ = (U, V).500

• Verify: On input the verification key ID, the message m, and the signature501

σ = (U, V), the outsourcer T ′ runs the subroutine Pair and SM to verify502

the signature σ as follows:503

(1) T ′ computes h = H1(m,U).504

(2) T ′ runs SM to obtain hH2(ID) and computes T = U + hH2(ID).505

(3) T ′ runs Pair to obtain Pair(P, V)→ β1 and Pair(Ppub, T)→ β2.506

(4) T ′ outputs 1 if and only if β1 = β2.507

Remark 4. Note that the outsourcer only needs to perform 2 hash and 1508

point addition operations (instead of 2 pairings and 3 point multiplications)509

in the above signature scheme.510

6 Conclusions511

In this paper, we first proposed an efficient and secure outsourcing algorithm512

for bilinear pairings in the two untrusted program model. A distinguishing513

25

property of our proposed algorithm is that the (resources-limited) outsourcer514

never requires to accomplish some expensive operations such as point multi-515

plications and exponentiations.516

The security model of our outsourcing algorithm requires the outsourcer to517

interact with two untrusted while non-colluding cloud servers (the same as518

[32]). Therefore, an interesting open problem is whether there is an efficient519

algorithm for securely outsourcing bilinear pairings using only one untrusted520

cloud server.521

Acknowledgements522

We are grateful to the anonymous referees for their invaluable suggestions.523

This work is supported by the National Natural Science Foundation of China524

(Nos. 61272455 and 61100224), China 111 Project (No. B08038), Doctoral525

Fund of Ministry of Education of China (No.20130203110004), Program for526

New Century Excellent Talents in University (No. NCET-13-0946), and the527

Fundamental Research Funds for the Central Universities (No. BDY151402).528

The second author is supported by the Australian Reserach Council Future529

Fellowship (FT0991397) and also partly funded by the Australian Research530

Council Discovery Project DP130101383.531

References532

[1] Atallah M.J., Frikken K.B.: Securely outsourcing linear algebra computations.533

Proceedings of the 5th ACM Symposium on Information, Computer and534

Communications Security (ASIACCS). pp. 48-59 (2010).535

26

[2] Abadi M., Feigenbaum J., Kilian J.: On hiding information from an oracle.536

Proceedings of the 19th Annual ACM Symposium on Theory of Computing537

(STOC). pp. 195-203 (1987).538

[3] Atallah M.J., Pantazopoulos K.N., Rice J.R., Spafford E.H.: Secure outsourcing539

of scientific computations. Advances in Computers. vol.54, pp. 216-272 (2001).540

[4] Atallah M.J., Li J.: Secure outsourcing of sequence comparisons. International541

Journal of Information Security, 4(4), 277-287 (2005).542

[5] Benjamin D., Atallah M.J.: Private and cheating-free outsourcing of algebraic543

computations. Proceeding of the 6th Annual Conference on Privacy, Security and544

Trust (PST). pp. 240-245 (2008).545

[6] Blanton M., Aliasgari M.: Secure Outsourcing of DNA Searching via Finite546

Automata. Data and Applications Security and Privacy XXIV, LNCS 6166,547

Springer-Verlag, pp. 49-64 (2010).548

[7] Blanton M., Aliasgari M.: Secure outsourced computation of iris matching.549

Journal of Computer Security, 20(2-3), 259-305 (2012).550

[8] Blanton M.: Improved conditional e-payments. ACNS 2008. LNCS 5037,551

Springer-Verlag, pp. 188-206 (2008).552

[9] Blanton M., Atallah M.J., Frikken K.B., Malluhi Q.: Secure and efficient553

outsourcing of sequence comparisons. ESORICS 2012. LNCS 7459, pp. 505-522554

(2012).555

[10] Beuchat J., González-Díaz J.E., Mitsunari S., Okamoto E., Rodŕiguez-556

Henŕiquez F., and Teruya T.: High-Speed Software Implementation of the Optimal557

Ate Pairing over Barreto-Naehrig Curves, Pairing 2010. LNCS 6487, pp. 21-39558

(2010).559

[11] Boneh D., Franklin M.: Identity-based encryption from the Weil pairings.560

Advances in Cryptology-Crypto 2001. LNCS 2139, pp. 213-229 (2001).561

27

[12] Benabbas S., Gennaro R., Vahlis Y.: Verifiable delegation of computation over562

large datasets. Advances in Cryptology-Crypto 2011. LNCS 6841, pp. 111-131563

(2011).564

[13] Barreto P., Galbraith S., Ó’ hÉigeartaigh C., Scott M.: Efficient565

pairing computation on supersingular Abelian varieties. Designs, Codes and566

Cryptography, 42(3), 239-271 (2007).567

[14] Blum M., Luby M., Rubinfeld R.: Self-testing/correcting with applications to568

numerical problems. Journal of Computer and System Science, 47(3), 549-595569

(1993).570

[15] Boneh D., Lynn B., Shacham H.: Short signatures from the Weil pairings.571

Advances in Cryptology-Asiacrypt 2001. LNCS 2248, pp. 514-532 (2001).572

[16] Boyko V., Peinado M., Venkatesan R.: Speeding up discrete log and factoring573

based schemes via precomputations. Advances in Cryptology-Eurocrypt 1998.574

LNCS 1403, pp.221-232 (1998).575

[17] Chow S., Au M., Susilo W.: Server-aided signatures verification secure against576

collusion attack. Proceedings of the 6th ACM Symposium on Information,577

Computer and Communications Security (ASIACCS). pp. 401-405 (2011).578

[18] Cha J., Cheon J.H.: An identity-based signature from gap Diffie-Hellman579

groups. Public Key Cryptography-PKC 2003. LNCS 2567, pp. 18-30 (2003).580

[19] Chen X., Li J., Ma J., Tang Q., Lou W.: New algorithms for secure outsourcing581

of modular exponentiations. ESORICS 2012. LNCS 7459, pp. 541-556 (2012).582

[20] Chevallier-Mames B., Coron J., McCullagh N., Naccache D., Scott M.: Secure583

delegation of elliptic-curve pairing. CARDIS 2010. LNCS 6035, pp. 24-35 (2010).584

[21] Chaum D., Pedersen T.: Wallet databases with observers. Advances in585

Cryptology-Crypto 1992. LNCS 740, pp. 89-105 (1993).586

28

[22] Canetti R., Riva B., Rothblum G.: Practical delegation of computation using587

multiple servers. Proceedings of the 18th ACM Conference on Computer and588

Communications Security (CCS). pp. 445-454 (2011).589

[23] Carbunar B., Tripunitara M.: Conditioal payments for computing markets.590

CANS 2008. LNCS 5339, pp. 317-331 (2008).591

[24] Carbunar B., Tripunitara M.: Fair payments for outsourced computations.592

SECON 2010. pp. 529-537 (2010).593

[25] Galbraith S., Paterson K., Smart N.: Pairings for cryptographers. Discrete594

Applied Mathematics, 156(16), 3113-3121 (2008).595

[26] Green M., Hohenberger S., Waters B.: Outsourcing the decryption of ABE596

ciphertexts. Proceedings of the 20th USENIX conference on Security. The597

full version can be found at http://static.usenix.org/events/sec11/tech/full-598

papers/Green.pdf (2011).599

[27] Gennaro R., Gentry C., Parno B.: Non-interactive verifiable computing:600

Outsourcing computation to untrusted workers. Advances in Cryptology-Crypto601

2010. LNCS 6223, pp. 465-482 (2010).602

[28] Goldwasser S., Kalai Y.T., Rothblum G.N.: Delegating computation: interactive603

proofs for muggles. Proceedings of the ACM Symposium on the Theory of604

Computing (STOC). pp. 113-122 (2008).605

[29] Girault M., Lefranc D.: Server-aided verification: theory and practice. Advances606

in Cryptology-ASIACRYPT 2005. LNCS 3788, pp. 605-623 (2005).607

[30] Goldwasser S., Micali S., Rackoff C.: The knowledge complexity of interactive608

proof-systems. SIAM Journal on Computing, 18(1), 186-208 (1989).609

[31] Golle P., Mironov I.: Uncheatable distributed computations. CT-RSA 2001.610

LNCS 2020, pp. 425-440 (2001).611

29

[32] Hohenberger S., Lysyanskaya A.: How to securely outsource cryptographic612

computations. TCC 2005. LNCS 3378, pp. 264-282. The full version can be found613

at http://www.cs.jhu.edu/ susan/papers/HL05.pdf (2005).614

[33] Hess F., Smart N., Vercauteren F.: The Eta pairing revisited. IEEE Transactions615

on Information Theory, 52(10), 4595-4602 (2006).616

[34] Joux A.: A one round protocol for tripartite Diffie-Hellman. Algorithmic617

Number Theory Symposium-ANTS IV. LNCS 1838, pp. 385-394 (2000).618

[35] Kang B., Lee M., Park J.: Efficient Delegation of pairing computation.619

Cryptology ePrint Archive, Report 2005/259 (2005).620

[36] Koblitz N., Menezes A.: Pairing-based cryptography at high security levels.621

Cryptography and Coding 2005. LNCS 3796, pp. 13-36 (2005).622

[37] Kilian J.: Improved efficient arguments (preliminary version). Advances in623

Cryptology-Crypto 1995. pp. 311-324. (1995).624

[38] Micali S.: CS proofs. Proceedings of the 35th Annual Symposium on625

Foundations of Computer Science (FOCS). pp. 436-453 (1994).626

[39] Matsumoto T., Kato K., Imai H.: Speeding up secret computations with627

insecure auxiliary devices. Advances in Cryptology-Crypto 1988. LNCS 403, pp.628

497-506, (1988).629

[40] Parno B., Raykova M., Vaikuntanathan V.: How to delegate and verify in public:630

verifiable computation from attribute-based encryption. TCC 2012. LNCS 7194,631

pp. 422-439 (2012).632

[41] Schnorr C.P.: Efficient signature generation for smart cards. Journal of633

Cryptology, 4(3), 239-252 (1991).634

[42] Scott M., Costigan N., Abdulwahab W.: Implementing cryptographic pairings635

on smartcards. CHES 2006. LNCS 4249, pp. 134-147 (2006).636

30

[43] Shi L., Carbunar B., Sion R.: Conditional E-cash. FC 2007. LNCS 4886, pp.637

15-28 (2007).638

[44] Tsang P., Chow S., Smith S.: Batch pairing delegation. IWSEC, pp. 74-90639

(2007).640

[45] Wang C., Ren K., Wang J.: Secure and practical outsourcing of linear641

programming in cloud computing. Proceedings of the 30th IEEE International642

Conference on Computer Communications (INFOCOM). pp. 820-828, (2011).643

31

	Efficient algorithms for secure outsourcing of bilinear pairings
	Recommended Citation

	Efficient algorithms for secure outsourcing of bilinear pairings
	Abstract
	Keywords
	Disciplines
	Publication Details
	Authors

	tmp.1421643245.pdf.hCH7i

