
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information
Sciences

1-1-2012

Chosen-ciphertext secure anonymous conditional proxy re-encryption with Chosen-ciphertext secure anonymous conditional proxy re-encryption with

keyword search keyword search

Liming Fang
Nanjing University of Aeronautics and Astronautics

Willy Susilo
University of Wollongong, wsusilo@uow.edu.au

Chunpeng Ge
Nanjing University of Aeronautics and Astronautics

Jiandong Wang
Nanjing University of Aeronautics and Astronautics

Follow this and additional works at: https://ro.uow.edu.au/engpapers

 Part of the Engineering Commons

https://ro.uow.edu.au/engpapers/5104

Recommended Citation Recommended Citation
Fang, Liming; Susilo, Willy; Ge, Chunpeng; and Wang, Jiandong: Chosen-ciphertext secure anonymous
conditional proxy re-encryption with keyword search 2012, 39-58.
https://ro.uow.edu.au/engpapers/5104

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/engpapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/engpapers?utm_source=ro.uow.edu.au%2Fengpapers%2F5104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Fengpapers%2F5104&utm_medium=PDF&utm_campaign=PDFCoverPages

Chosen-Ciphertext Secure Anonymous

Conditional Proxy Re-encryption with

Keyword Search

Liming Fang1 Willy Susilo2 ∗ Chunpeng Ge1 Jiandong Wang1

1College of Computer Science and Technology, Nanjing University of Aeronautics
and Astronautics, 29 Yudao Street, Nanjing, China

2Centre for Computer and Information Security Research (CCISR),
School of Computer Science and Software Engineering, University of Wollongong,

Northfields Avenue, NSW 2522, Australia

Abstract

Weng et al. introduced the notion of conditional proxy re-encryption (or C-PRE, for
short), whereby only the ciphertext satisfying one condition set by the delegator can
be transformed by the proxy and then decrypted by delegatee. Nonetheless, they left
an open problem on how to construct CCA-secure C-PRE schemes with anonymity.
Fang et al. answered this question by presenting a construction of anonymous condi-
tional proxy re-encryption (C-PRE) scheme without requiring random oracle. Nev-
ertheless, Fang et al.’s scheme only satisfies the RCCA-security (which is a weaker
variant of CCA-security assuming a harmless mauling of the challenge ciphertext is
tolerated). Hence, it remains an open problem whether CCA-secure C-PRE schemes
that satisfy both anonymity and full CCA-security can really be realized. Shao et al.
introduced a new cryptographic primitive, called proxy re-encryption with keyword
search (PRES), which is a combination of PRE and public key encryption with key-
word search (PEKS), and they left an open problem on how to design an efficient
unidirectional PRES scheme.

In this paper, we answer the above open problems by proposing a new crypto-
graphic primitive called conditional proxy re-encryption with keyword search (C-
PRES), which combines C-PRE and PEKS. We note that there are subtleties in
combining these two notions to achieve a secure scheme, and hence, the combination
is not trivial. We propose a definition of security against chosen ciphertext attacks
for C-PRES schemes with keyword anonymity, and thereafter present a scheme that
satisfies the definition. The performance of our scheme outperforms Weng et al.’s
construction, which has been regarded as the most efficient C-PRE scheme to date.

Key words: public key encryption with keyword search, conditional proxy
re-encryption with keyword search, anonymity, chosen-ciphertext security

Preprint submitted to Elsevier Science 3 June 2012

1 Introduction

Nowadays, more and more users store their private data in cloud. To ensure
the security of the remotely stored data, the user needs to encrypt the private
data under her public key. However, users usually do not retrieve all the en-
crypted data but part of them, which demands a searchable encryption scheme
supporting a keyword-based search on the ciphertext. Consider the following
scenario. Suppose all of the data of a company have been stored in the cloud.
Alice is the HR manager of this company. The content of Alice’s data comprises
a body of the data and a keyword that are encrypted under Alice’s public key.
In this case, the cloud provider cannot observe the information of the data
including the keyword and message since we need to ensure the privacy of
the shared data. Bob is the director of this company. He is only interested in
Alice’s data with the keyword w = “interview result” and furthermore, Alice
also only wants Bob to read her data (i.e., the ciphertexts) satisfying the key-
word w = “interview result” rather than all of her ciphertexts. Additionally,
both Alice and Bob do not want to let the cloud provider know that actually
they are somewhat sharing the data with the keyword w = “interview result”.
In other words, the privacy of the keyword itself is important, as exposing this
keyword may result in leaking the important information to the competitors
(for example, the cloud can be used by many other companies, including Alice
and Bob’s competitors).

To address this issue, Shao et al. [30] proposed a new cryptographic primitive,
called proxy re-encryption with keyword search (PRES), by combining the
notions of PRE and PEKS directly, which means

PRE(pkA,m)||PEKS(pkA, w)

where pkA is Alice’s public key, and w is the keyword with the message m.
On the one hand the cloud provider with a trapdoor can search the desirable
ciphertexts, while the cloud provider cannot obtain the keyword. On the other
hand, the cloud provider with a re-encryption key can re-encrypt the cipher-
text under Alice’s public key to create another ciphertext under Bob’s public
key, while the cloud provider cannot learn the plaintext and the keyword.

We note that although Shao et al.’s [30] solution for realizing PRES is elegant,
there remain some important issues regarding the use of PRES, which have
not been addressed in their paper. The issues are the following:

∗ Corresponding author. Tel: +61-2-4221-5535; Fax: +61-2-4221-4170
Email addresses: fangliming@nuaa.edu.cn (Liming Fang1),

wsusilo@uow.edu.au (Willy Susilo2), gecp@nuaa.edu.cn (Chunpeng Ge1),
aics@nuaa.edu.cn (Jiandong Wang1).

2

• First, Shao et al.’s work addresses only bidirectional cases, while it is more
desirable to find a solution for a unidirectional case. They also leave an open
problem on how to design an efficient unidirectional PRES scheme.

• Additionally, a proxy in Shao et al.’s scheme is too powerful as it has the
ability to encrypt all Alice’s emails to Bob once the re-encryption key is
provided.

• Furthermore, their scheme is bidirectional and hence, it inherently fails to
provide collusion-resistance. Consequently, the proxy with the bidirectional
re-encryption key rki,j = xj/xi and the delegatee with the private key skj =
xj can collude together to expose the delegator’s private key ski = xi. This
problem cannot be solved by a simple modification.

We note that Yau et al. [36] also proposed a proxy re-encryption with keyword
search scheme (Re-(d)PEKS) with a designated tester, but their scheme is
not collusion-safe and unidirectional, and it is difficult to integrate both Re-
(d)PEKS and PRE.

In this paper, instead of extending the notion of PRE, we incorporate the
notion of conditional proxy re-encryption (C-PRE) whereby the ciphertexts
satisfying a condition (i.e., a certain keyword) by Alice can be transformed by
the cloud provider and then, decrypted by Bob. In other words, we propose
a new cryptographic primitive, called conditional proxy re-encryption with
keyword search (C-PRES), by combining C-PRE and PEKS, which means

C − PRE(pkA,m, w)||PEKS(pkA, w)

where pkA is Alice’s public key, and w is the keyword with the message m. As
discussed in [3,38,39], it is noted that a trivial combination of these two notions
will result in an insecure scheme. For instance, a naive composition of a stand-
alone secure PEKS and a CCA secure C-PRE may lose data privacy due to
the chosen ciphertext attack: when an adversary observes a C-PRE/PEKS ci-
phertext CT = C−PRE(pkA,m, w)||PEKS(pkA, w), it can produce another
valid ciphertext CT ′ = C−PRE(pkA, m, w)||PEKS(pkA, w′). Querying CT ′

to a decryption oracle, the adversary obtains the plaintext m. Besides, C-PRE
may leak the information of keyword w since it does not satisfy keyword-
anonymity. Therefore, cautions must be exercised when combining these two
notions. Hence, we need to address the subtleties in combining the two.

By studying the definitions and security notions for previous C-PRE and
PRES, there remain some important issues to consider:

• (Keyword-anonymity.) In the previous C-PRE schemes, the ciphertext will
leak the information of the keyword, and therefore Weng et al. [32] left an
interesting open problem on how to construct CCA-secure C-PRE schemes
with anonymity. This is also essential for C-PRES scheme to keep the key-
word anonymity.

3

• (Chosen-Ciphertext Security.) Fang et al.’s [15] anonymous C-PRE scheme
only satisfies the RCCA-security which is a weaker variant of CCA-security
assuming a harmless mauling of the challenge ciphertext is tolerated. It is
even difficult to construct CCA-secure C-PRE scheme with anonymity, let
alone to create the CCA-secure C-PRES scheme.

• (First and second level ciphertext security.) Both of the security notions in
[32] and [31] only considered the second level ciphertext security, and do
not address the first level ciphertext security, while the work in [22,33] take
into account both the first and second level ciphertext security.

• (Unidirectionality.) In a bidirectional PRE, the proxy can transform from
a delegator to a delegatee and vice versa. In contrast, the proxy in the
unidirectional PRE cannot transform ciphertexts in the opposite direction.
The literature has demonstrated that a bidirectional scheme is much easier
to design. Thus, Shao et al. [30] left an open problem on how to design an
efficient unidirectional PRES scheme.

• (Non-interactivity.) The delegatee does not act in the delegation process.
• (Collusion-resistance.) It is impossible to export the delegator’s private key
when the dishonest proxy colludes with the delegatee.

1.1 Our Contributions

As discussed above, it is non-trivial to construct a C-PRES scheme since
a C-PRES scheme requires an anonymous IBE, and the ciphertext of the
anonymous IBE can be re-encrypted. It is much more difficult to achieve
chosen-ciphertext security while not jeopardizing the properties of keyword-
anonymity, unidirectionality, non-interactivity and collusion-resistance.

In this paper, we aim to address the open problems on how to construct
CCA-secure C-PRE schemes with anonymity and how to design an efficient
unidirectional PRES scheme. Concretely, we formalize the security model
of conditional proxy re-encryption with keyword search (C-PRES) scheme.
Then, we present an efficient construction of C-PRES scheme that offers sev-
eral advantages over previous such systems, including: chosen-ciphertext se-
curity; keyword-anonymity; unidirectionality; non-interactivity; and collusion-
resistance.

Our scheme outperforms Shao et al.’s PRES scheme in terms of both com-
putational and communicational costs. Furthermore, our scheme is collusion-
resistant and it is a conditional re-encryption scheme, while Shao et al.’s PRES
scheme is bidirectional only. Compared with Fang et al.’s anonymous C-PRE
[15], our scheme is also superior [15] in the following aspects: (i) In contrast
to Fang et al.’s scheme, our scheme provides CCA-security; (ii) Our scheme
has better overall efficiency in terms of both computation and communication

4

cost.

1.2 Related Work

Proxy Re-encryption.

The concept of proxy re-encryption (PRE) dates back to the work of Blaze et
al. [4] in 1998. The goal of such systems is to securely enable the re-encryption
of ciphertexts from one key to another, without relying on trusted parties.
PRE can be categorized into bidirectional PRE and unidirectional PRE. In a
bidirectional PRE, the proxy can transform from delegator to delegatee and
vice versa. In contrast, the proxy in a unidirectional PRE cannot transform
ciphertexts in the opposite direction. In 2005, Ateniese et al. [1] demonstrated
how to construct unidirectional schemes using bilinear maps and simultane-
ously prevent proxies from colluding with delegatees in order to expose the
delegator’s secret key. In 2006, Green and Ateniese [18] extended the above
notion to identity-based proxy re-encryption (IB-PRE), and proposed new
CCA secure scheme. In 2007, Canetti and Hohenberger [8] also proposed a
new CCA secure PRE scheme where the proxy can verify the validity of the
ciphertext prior to the transformation. In 2007, Chu and Tzeng [11] proposed a
multi-use, unidirectional ID-based PRE scheme, and claimed that it was CCA
secure in the standard model. In PKC 08, Libert and Vergnaud [22] presented
a replayable chosen-ciphertext (RCCA) secure single-hop unidirectional proxy
re-encryption scheme in the standard model. Hohenberger et al.[20] developed
an obfuscated re-encryption program which translates ciphertexts under pkA
to ciphertexts under pkB. Due to the fact that pairing computation is a costly
operation, the subsequent work [14,29,13,25] focused on PRE schemes con-
structed without bilinear pairings, especially in computation resource limited
settings.

Conditional Proxy Re-encryption.

Instead of converting all ciphertexts, Alice may only want the proxy to convert
the ciphertexts with a certain keyword, such as “business”. To address this
problem, Weng et al. [32] presented a notion of conditional proxy re-encryption
(C-PRE), whereby only ciphertexts satisfying a condition set by Alice can be
transformed by the proxy and then decrypted by Bob. They also proposed
an efficient CCA secure C-PRE scheme in the random oracle model. Unfor-
tunately, Weng et al. [33] demonstrated that Weng et al.’s C-PRE scheme
[32] failed to achieve the CCA-security, and they further formalized a more
rigorous definition and proposed a more efficient CCA secure C-PRE scheme
in the random oracle model. Tang et al. [31] introduced type-based proxy re-
encryption. Actually, the construction of conditional PRE scheme had already

5

been proposed [23] in 2008. In their work [23], Libert and Vergnaud suggested
a PRE scheme which provided warrant-based and keyword-based delegations
without random oracle. Recently, Chu et al. introduced a conditional proxy
broadcast re-encryption [12], in which the proxy can re-broadcast ciphertexts
for a set of users.

Furthermore, Weng et al. [32] left an interesting open problem on how to con-
struct CCA-secure C-PRE schemes with anonymity. To fill this gap, Fang et
al. first formalized the notion of anonymous conditional re-playable chosen-
ciphertext attacks (RCCA) secure PRE and presented a respective security
model [15]. Then, they presented a construction of anonymous C-PRE scheme
without requiring random oracle. Canetti, Krawczyk and Nielsen [10] intro-
duced an approach on how to generically turn any RCCA secure PKE scheme
into a CCA secure PKE scheme. Their idea is as follows.

Given a RCCA secure public-key encryption scheme (Gen,Enc,Dec) and
CCA secure symmetric encryption scheme (E,D), let the function (e, d) =
Gen(r), where r is the random bits used in generating (e, d), and let l be the
security parameter. Then the new CCA secure PKE scheme (Gen,Enc,Dec)
is

Ence(m) = [K ← {0, 1}l; c1 = Ence(K); c2 = EK(c1‖m) : (c1, c2)],

Decd(c1, c2) = [K ← Decd(c1); c
′
1‖m = DK(c2); if c

′
1 �= c1 then m← invalid : m].

This encryption of c1 functions as aMAC which protects against “mauling” of
c1. The user can check the validity of the ciphertext only when he can decrypt
the symmetric key K. But the transformation does not make sense while
to transform RCCA secure PRE scheme to CCA one, after transforming it,
the second level encryption would be CTi = (c1, c2) = (c1 = Enc2ski(K), c2 =
EK(c1‖m)) and the first level ciphertext CTj = (c3, c2) where c3 = ReEnc(c1).
When an adversary observes a new second level ciphertext CTi = (c1, c2),
it can produce another valid second level ciphertext CT ′

i = (c1, c
′
2) where

c′2 is randomly chosen. Clearly, the proxy can not check the validity of the
ciphertext CT ′

i = (c1, c
′
2) since he can not decrypt the symmetric key K.

Querying CT ′
i to a re-encryption oracle to get the first level ciphertext CT ′

j =
(c3, c

′
2), the adversary obtains the plaintext m after querying CT ′′

j = (c3, c2)
to a decryption oracle.

Public Key Encryption with Keyword Search.

Following Boneh et al.’s pioneering work [6], Waters et al. [34] demonstrated
that the PEKS scheme based on the bilinear pairing can be applied to build en-
crypted and searchable audit logs. Baek et al. [2] and Rhee et al. [26] improved
the public key encryption with keyword search scheme in [6]. Furthermore,

6

Golle et al. [19] and Park et al. [24] proposed schemes that allow conjunctive
keyword queries on encrypted data. Recently, Zhang et al. [37] proposed a
more efficient construction of public key encryption with conjunctive-subset
keywords search scheme. Moreover, the subsequent papers [3,38] investigated
the secure combination of public key encryption with keyword search (PEKS)
with public key data encryption (PKE). Because of the fact that keywords are
chosen from much smaller space than passwords and users usually use well-
known keywords for search, the research reported in [7,21,27,28,35] studied
the off-line keyword guessing attacks on PEKS.

1.3 Paper Organization

The rest of this paper is organized as follows. In Section 2, we will provide
the definitions and complexity assumption that will be used throughout this
paper, together with the security model of anonymous C-PRES schemes. In
Section 3, we present our anonymous C-PRES in the random oracle model.
In Section 4, we compare our scheme with previously reported C-PRE and
PRES schemes. Finally, Section 5 concludes the paper.

2 Definitions

In this section, we first review the complexity assumption required in our
schemes, and then provide the definition and security of a conditional proxy
re-encryption with keyword search (C-PRES) scheme.

2.1 Negligible Function

A function ε(n) : N �→ R is negligible in n if 1/ε(n) is a non-polynomially-
bounded quantity in n.

2.2 Bilinear Maps

Let G1 and G2 be multiplicative cyclic groups of prime order p, and g be a
generator of G1. We say e : G1×G1 → G2 is a bilinear map [5], if the following
conditions hold.

(1) e(ga1 , g
b
2) = e(g1, g2)

ab for all a, b ∈ Zp and g1, g2 ∈ G1.
(2) e(g, g) �= 1.

7

(3) There is an efficient algorithm to compute e(g1, g2) for all g1, g2 ∈ G1.

2.3 The DBDH Assumption

Let e : G1 × G1 → G2 be a bilinear map. We define the advantage function
AdvDBDH

G1,B (λ) of an adversary B as

|Pr[B(g, ga, gb, gc, e(g, g)abc) = 1]− Pr[B(g, ga, gb, gc, e(g, g)r) = 1]|

where a, b, c, r ∈ Zp are randomly chosen. We say that the decisional bilinear
Diffie Hellman assumption [5] relative to generator G1 holds if AdvDBDH

G1,B (λ)
is negligible for all PPT B.

2.4 The Truncated q-ABDHE Assumption

Let e : G1 ×G1 → G2 be a bilinear map. We define the advantage function
Advq−ABDHE

G1,B (λ) of an adversary B as

|Pr[B(g, gx, · · · , gxq

, gz, gzx
q+2

, e(g, g)zx
q+1

) = 1]−
Pr[B (g, gx, · · · , gxq

, gz, gzx
q+2

, e(g, g)r) = 1]|

where x, z, r ∈ Zp are randomly chosen. We say that the truncated q-ABDHE

assumption [17] relative to generator G1 holds if Adv
q−ABDHE
G1,B (λ) is negligible

for all PPT B.

2.5 One-Time Signatures

A one-time signature [9] comprises a triple of algorithms sig = (G,S,V) such
that, on input of a security parameter λ, G generates a one-time key pair
(ssk, svk) where k1 = |svk| while, for any message M , V(svk, σ,M) outputs
1 whenever σ = S(ssk,M) and 0, otherwise. We need strongly unforgeable
one-time signatures, which means that no PPT adversary can create a new
signature for a previously signed message.

sig = (G,S,V) is a strongly unforgeable one-time signature if the probability

AdvOTS = Pr[(ssk, svk) ← G(λ); (M,St) ← F (svk); σ ← S(ssk,M);

(M ′, σ′) ← F (M,σ, svk, St) : V(svk, σ′,M ′) = 1 ∧ (M ′, σ′) �= (M,σ)]

8

where St denotes the state information maintained by F between stages, is
negligible for any PPT forger F .

2.6 Conditional Proxy Re-encryption with Keyword Search

In the following, we will provide the definition of a conditional proxy re-
encryption with keyword search scheme and the game-based security defi-
nition.

Definition 1 (Conditional Proxy Re-encryption with Keyword Search)
A (single hop) conditional proxy re-encryption with keyword search scheme
comprises the following algorithms:

• GlobalSetup(λ): The GlobalSetup algorithm is run by a trusted party that
takes as input a security parameter λ. It generates the global parameters
PP .

• KeyGen(i): The key generation algorithm generates the public key pki and
the secret key ski for user i.

• RKeyGen(pki, ski, w, pkj): The re-encryption key generation algorithm, run
by user i, takes as input a public key pki, a secret key ski, a condition w
and another public key pkj. It outputs a re-encryption key rki,w,j.

• Trapdoor(pki, ski, w): The trapdoor generation algorithm, run by user i,
takes as input a public key pki, a secret key ski and a condition w. It
outputs a trapdoor Ti,w.

• Enc1(pk,m): The level 1 encryption algorithm takes as input a public key
pk, and a plaintext m ∈ M. It outputs a first level ciphertext CT under
public key pk. Here M denotes the message space.

• Enc2(pk,m,w): The level 2 encryption algorithm takes as input a public
key pk, a plaintext m ∈ M and a condition w. It outputs a second level
ciphertext CT associated with w under public key pk.

• Test(CTi, Ti,w): The Test algorithm, run by the proxy, takes as input a sec-
ond level ciphertext CTi associated with w′ under public key pki, and a
trapdoor Ti,w. It outputs “1” if w = w′ and “0” otherwise.

• ReEnc(CTi, rki,w,j): The re-encryption algorithm, run by the proxy, takes
as input a second level ciphertext CTi associated with w under public key
pki, and a re-encryption key rki,w,j. It outputs the first ciphertext (level 1)
CTj under the public key pkj, or an error symbol ⊥.

• Dec1(CTj, skj): The level 1 decryption algorithm takes as input a secret
key skj and a first level ciphertext CTj under public key pkj. It outputs a
message m ∈ M or an error symbol ⊥.

• Dec2(CTi, ski): The level 2 decryption algorithm takes as input a secret key
ski and a second level cipertext CTi. It outputs a message m ∈ M or an
error symbol ⊥.

9

Note that we omit the global parameters PP as the other algorithms’ input
for simplicity. The correctness of C-PRES means that, a correctly generated
ciphertext can be correctly decrypted by the user who has the correct secret
key, i.e., for any condition w, any message m, any (pki, ski) ← KeyGen(i),
(pkj, skj) ← KeyGen(j), and CTi = Enc2(pk,m,w),

Pr[Dec2(CTi, ski) = m] = 1

and

Pr[Dec1(ReEnc(CTi, RKeyGen(pki, ski, w, pkj)), skj) = m] = 1.

In the following, we provide the game-based security definition of C-PRES. As
in [30], we consider the privacy for message and privacy for keyword. For the
former, the adversary is allowed to get the plaintexts of almost all ciphertexts
except for a specified ciphertext. The latter security notion guarantees that
the adversary can acquire any trapdoors, except the ones that are associated
with the specified keywords, and further, it should not be able to decide which
keyword corresponds to the provided ciphertext. This security notion guaran-
tees that only the one who has the private key can decrypt ciphertexts. We
divide it into two level security: security of second level ciphertexts and secu-
rity of first level ciphertexts. For the latter, the adversary is allowed to get the
plaintext of any ciphertext, and almost all trapdoors except those which are
associated with the two specified keywords, however, it cannot decide which
keyword corresponds to the given ciphertext. This security notion guarantees
that only the one who has the trapdoor can do the test.

Additionally, our definition considers a challenger that produces a number
of public keys. As in [22], we let the corrupted users and the honest users be
determined at the beginning of the game. Furthermore, we allow the adversary
to adaptively query a re-encryption oracle and decryption oracles.

Definition 2 (C-PRES-IND-ANON-CCA game) Let λ be the security
parameter and A be the adversary. We consider the following two games.

Game 1: (IND-ANON game: Privacy for keyword.)

(1) Setup: The challenger C performs GlobalSetup(λ) to get the public pa-
rameter PP . Give the public parameter PP to A.

(2) Query phase 1. A makes the following queries:
• Uncorrupted key generation query 〈i〉: C first runs algorithm KeyGen(i)

to obtain a public/secret key pair (pki, ski), and then sends pki to A.
• Corrupted key generation query 〈j〉: C first runs algorithm KeyGen(j)

to obtain a public/secret key pair (pkj, skj), and then sends (pkj, skj)
to A.

10

• Re-encryption key query〈pki, w, pkj〉: C runs algorithm RKeyGen(pki, ski, w, pkj)
to generate a re-encryption key rki,w,j and returns it to A. Here, ski
is the secret key with respect to pki. Here, different from [30], we allow
the re-encryption key generation queries between a corrupted key and
an uncorrupted key.

• Trapdoor query〈pki, w〉: C runs algorithm Trapdoor(pki, ski, w) to gen-
erate a trapdoor Ti,w and returns it to A.

• Test query〈pki, w, CTi〉: C runs algorithm Test(CTi, T rapdoor(pki, ski, w))
where ski is the secret key corresponding to pki and returns the result
to A.

• Re-encryption query〈pki, pkj, (w,CTi)〉: C runs algorithm

CTj = ReEnc(CTi, RKeyGen(pki, ski, w, pkj))

and returns the resulting ciphertext CTj to A. It is required that pki
and pkj have been generated beforehand by algorithm KeyGen.

• Decryption query〈pki, (w,CTi)〉 : Here 〈pki, (w,CTi)〉 denotes the queries
on second level ciphertext(level 2). Challenger C returns the result of
Dec2(CTi, ski) to A. It is required that pki has been generated before-
hand by algorithm KeyGen.

• Decryption query 〈pkj, CTj〉: Here 〈pkj, CTj〉 denotes the queries on re-
encrypted ciphertext(level 1). Challenger C returns the result of Dec1(CTj,
skj) to A. It is required that pkj has been generated beforehand by al-
gorithm KeyGen.

(3) Challenge. Once A decides that Phase 1 is over, it outputs a target pub-
lic key pki∗, a condition pair (w0, w1) and a plaintext m. Challenger C
chooses a bit β ∈ {0, 1} and sets the challenge ciphertext to be CT ∗ =
Enc2(pki∗ ,m, wβ), which is sent to A.

(4) Query phase 2. A continues making queries as in the query phase 1.
(5) Guess. A outputs the guess β′. The adversary wins if β′ = β.

During the above game, adversary A is subject to the following restrictions
where w∗ ∈ {w0, w1}:

• (i). A can not issue corrupted key generation queries on 〈i∗〉 to obtain the
target secret key ski∗.

• (ii). A can not obtain the trapdoor query on 〈pki∗ , w∗〉. Otherwise, the ad-
versary can win the IND-ANON game trivially.

• (iii). A can not obtain the test query on 〈pki∗ , w∗, CT ∗〉.
• (iv). A can not issue decryption queries on neither 〈pki∗ , (w∗, CT ∗)〉 nor

〈pkj, CT ∗
j 〉 where 〈pkj, CT ∗

j 〉 is a re-encryption of the challenge pair 〈pki∗ , (w∗,
CT ∗)〉.

• (v). A can not issue re-encryption queries on 〈pki∗ , pkj, (w∗, CT ∗)〉 if pkj
appears in a previous corrupted key generation query.

• (vi). A can not obtain the re-encryption key rki∗,w∗,j, if pkj appears in a

11

previous corrupted key generation query.

We refer to the above adversary A as an IND-ANON adversary. His advantage
is defined as

SuccGame1
A (λ) = |Pr[β′ = β]− 1/2|.

Game 2: (IND-L2-CCA game: security of level 2 ciphertexts.)

(1) Setup: The challenger C performs GlobalSetup(λ) to get the public pa-
rameter PP . Give the public parameter PP to A.

(2) Query phase 1. Identical to that in the security model of Game 1.
(3) Challenge. Once A decides that Phase 1 is over, it outputs a target public

key pki∗, a condition keyword w∗ and two equal length plaintexts (m0,m1).
Challenger C chooses a bit β ∈ {0, 1} and sets the challenge ciphertext to
be CT ∗ = Enc2(pki∗ ,mβ, w

∗), which is sent to A.
(4) Query phase 2. A continues making queries as in the query phase 1.
(5) Guess. A outputs the guess β′. The adversary wins if β′ = β.

During the above game, adversary A is subject to the following restrictions:

• (i). A can not issue corrupted key generation queries on 〈i∗〉 to obtain the
target secret key ski∗.

• (ii). A can not issue decryption queries on neither 〈pki∗ , (w∗, CT ∗)〉 nor
〈pkj, CT ∗

j 〉 where 〈pkj, CT ∗
j 〉 is a re-encryption of the challenge pair 〈pki∗ , (w∗,

CT ∗)〉.
• (iii). A can not issue re-encryption queries on 〈pki∗ , pkj, (w∗, CT ∗)〉 if pkj
appears in a previous corrupted key generation query.

• (iv). A can not obtain the re-encryption key rki∗,w∗,j, if pkj appears in a
previous corrupted key generation query.

We refer to the above adversary A as an IND-L2-CCA adversary. His advan-
tage is defined as

SuccGame2
A (λ) = |Pr[β′ = β]− 1/2|.

Game 3: (IND-L1-CCA: Security of level 1 ciphertexts.) Next, we will consider
the definition of security of level 1 by providing the adversary with a level 1
ciphertext in the challenge phase. For single-hop schemes, the adversary is
provided with access to all re-encryption keys and trapdoors in this definition.
The re-encryption and test oracles thus become useless since A can re-encrypt
ciphertexts or test by himself when given all re-encryption keys and trapdoors.
Thus, a level 2 decryption is also unnecessary. As in [13], we not only

12

take into account the security of a non-transformable ciphertext
with a challenge defined as CT ∗ = Enc1(pki∗ ,mβ) (Non-transformable
Ciphertext Security), but also transformed ciphertext with a chal-
lenge defined as CT ∗ = ReEnc(Enc2(pki′ ,mβ, w), rki′,w,i∗)(Transformed
Ciphertext Security).

(1) Setup: The challenger C performs GlobalSetup(λ) to get the public pa-
rameter PP . Give the public parameter PP to A.

(2) Query phase 1. A makes the following queries:
• Uncorrupted key generation query 〈i〉: C first runs algorithm KeyGen(i)

to obtain a public/secret key pair (pki, ski), and then sends pki to A.
• Corrupted key generation query 〈j〉: C first runs algorithm KeyGen(j)

to obtain a public/secret key pair (pkj, skj), and then sends (pkj, skj)
to A.

• Re-encryption key query〈pki, w, pkj〉: C runs algorithm RKeyGen(pki, ski, w, pkj)
to generate a re-encryption key rki,w,j and returns it to A. Here, ski is
the secret key with respect to pki.

• Trapdoor query〈pki, w〉: C runs algorithm Trapdoor(pki, ski, w) to gen-
erate a trapdoor Ti,w and returns it to A.

• Decryption query 〈pkj, CTj〉: Here 〈pkj, CTj〉 denotes the queries on re-
encrypted ciphertext(level 1). Challenger C returns the result of Dec1(CTj,
skj) to A. It is required that pkj has been generated beforehand by al-
gorithm KeyGen.

(3) Challenge. Once A decides that Phase 1 is over, it outputs a target
public key pki∗ and two equal length plaintexts (m0,m1). Challenger C
chooses a bit β ∈ {0, 1} and sets the challenge ciphertext to be CT ∗ =
Enc1(pki∗ ,mβ) (Non-transformable Ciphertext Security) or CT ∗ =
ReEnc(Enc2(pki′ ,mβ, w), rki′,w,i∗) (Transformed Ciphertext Secu-
rity), which is sent to A.

(4) Query phase 2. A continues making queries as in the query phase 1.
(5) Guess. A outputs the guess β′. The adversary wins if β′ = β.

During the above game, adversary A is subject to the following restrictions:

• (i). A can not issue corrupted key generation queries on 〈i∗〉 to obtain the
target secret key ski∗.

• (ii). A can not issue decryption queries on 〈pki∗ , CT ∗〉.

We refer to the above adversary A as an IND-L1-CCA adversary. His advan-
tage is defined as

SuccGame3
A (λ) = |Pr[β′ = β]− 1/2|.

13

The C-PRES scheme is said to be C-PRES-IND-ANON-CCA secure if SuccGame1
A (λ),

SuccGame2
A (λ) and SuccGame3

A (λ) are all negligible.

3 Proposed CCA-Secure Anonymous C-PRES Scheme

In this section, inspired by Gentry’s IBE scheme [17], we will present our con-
struction of anonymous conditional proxy re-encryption with keyword search
scheme with CCA security. Recall that we wish to create a C-PRES scheme in
which a ciphertext created under condition w can be tested by the trapdoor
and then can be re-encrypted only by a re-encryption key for condition w.
In addition, our C-PRES must provide several advantages over previous such
systems, including: chosen-ciphertext security; keyword-anonymity; unidirec-
tionality; non-interactivity; and collusion-resistance.

3.1 Our Construction

Prior to presenting our scheme, we first present the intuition behind our con-
struction. We select Gentry’s IBE scheme in [17] as the initial scheme to
work with due to the following reason. After using the keyword to replace the
identity in Gentry’s IBE scheme in [17], we obtain the second level (original)
ciphertext ((Xig

−w)r, e(g, g)r, e(g, Yi,1)
r · m), and the user using the private

key ((Yi,1g
−s1)1/(xi−w), s1) under keyword w can decrypt the second level ci-

phertext. To re-encrypt the second level ciphertext, we change the private
key to re-encryption key ((Yj,1Y

−1
i,1 g

−s1)1/(xi−w), s1). Then, using this key as
the re-encryption key will result in the encrypted data under user j, say
((e(g, g)r, e(g, Yj,1)

r · m). There are two reasons why we select “Exponent
Inversion” IBE, such as the Gentry’s IBE scheme. The first reason is Gen-
try’s IBE has the advantage of the identity-anonymity property. The second
reason is for “Exponent Inversion” IBE, the principle is to obtain a session
key of the form e(g, Yi,1)

r based on a ciphertext gf(ID)r and a private key
(Yi,1g

−s1)1/f(ID), where f(ID) = xi − ID is a secret function of the recipi-
ent identity but gf(ID) is computable publicly. Actually, the re-encryption key
((Yj,1Y

−1
i,1 g

−s1)1/(xi−w), s1) is protected by 1/f(ID) where f(w) = xi −w, thus
the scheme is collusion-safe and unidirectional, and it is further non-interactive
because it cannot involve the private key of user j.

Chosen-Ciphertext Security. The biggest challenge would be how to
achieve the chosen-ciphertext security while not jeopardizing the properties of
keyword-anonymity, unidirectionality, non-interactivity and collusion-resistance.
To obtain the first level ciphertext chosen-ciphertext security, we use the
Fujisaki-Okamoto transformation [16] since the part of e(g, Yi,1)

r · R (which

14

needs to be re-encrypted) cannot be fixed, then the form of second level
(original) ciphertext is ((Xig

−w)r, e(g, g)r, e(g, Yi,1)
r · R,m ⊕ H2(R)) and the

form of first level (re-encrypted) ciphertext is (e(g, g)r, e(g, Yi,1)
r · R,m ⊕

H2(R)) where r = H1(m,R). To search for the keyword, we can add the term
e(g, Yi,3)

r to the second level ciphertext, thus the proxy with the trapdoor
((Yi,3g

−s3)1/(xi−w), s3) can search the keyword. Therefore, the form of second
level (original) ciphertext is

(C1, C2, C3, C4, C5) = ((Xig
−w)r, e(g, g)r, e(g, Yi,1)

r ·R,m⊕H2(R), e(g, Yi,3)
r).

To achieve the chosen-ciphertext security of the second level ciphertext, such
as [33], one can add the term H(C1, C2, C3, C4, C5)

r to ensure the public ver-
ifiability of the second level ciphertext. Unfortunately it does not work since
this will jeopardize the properties of keyword-anonymity. Another approach
is identical to Gentry’s CCA secure IBE. It uses a pair of keys to perform
ciphertext validity test, then the form of second level (original) ciphertext is

(C1, C2, C3, C4, C5) = ((Xig
−w)r, e(g, g)r, e(g, Yi,1)

r·R,m⊕H2(R), e(g, Yi,3)
rφe(g, Yi,4)

r),

where φ = H3(C1, C2, C3, C4). Clearly, the trapdoor would be

Ti,w = ((Yi,kg
−sk)1/(xi−w), sk)k∈{3,4},

and it can test the validity of ciphertext by C5 = e(C1, d
φ
3d4)C

s3φ+s4
2 .

Efficient but Weaker Scheme. If we add a new rule in game 2 of Defini-
tion 2, for example “(v). A can not obtain the trapdoor query on 〈pki∗ , w∗〉.”,
then we can prove the C-PRES-IND-ANON-CCA security of this efficient
scheme. We call this scheme

∏
1. The reason why we need rule (v) in game

2 is due to the fact that the proxy with the trapdoor can modify the second
level ciphertext. Actually, there are two kinds of CCA secure schemes: one is
where the user with the private key can not modify the ciphertext, the other is
the user with the private key can modify the ciphertext. The main drawback
of Gentry’s IBE is clearly demonstrated in the situation where the user can
use the ciphertext validity test key pair to modify the ciphertext to the new
ciphertext without knowing the plaintext, and the new ciphertext can pass the
validity test. Obviously, if we remove rule (v), the challenge ciphertext can be
modified by the adversary who has the trapdoor on 〈pki∗ , w∗〉. Further, the
normal proxy can not detect the modification.

Stronger Scheme.As discussed above, we can not useH(C1, C2, C3, C4, C5)
r

to ensure the public verifiability of the second level ciphertext since it will jeop-
ardize the keyword-anonymity. Therefore, we use strongly unforgeable one-
time signatures by selecting a one-time signature key pair (ssk, svk) ← G(λ)
and set C0 = svk. Then, we generate a one-time signature σ = S(ssk, (C1, C2, C3,

15

C4, C5)). Let φ = H3(C0, C1, C2, C3, C4) and φ′ = H0(C0, C2, C4), thus the
form of second level (original) ciphertext (C0, C1, C2, C3, C4, C5) is

(svk, (Xig
−w)r, e(g, g)r, e(g, Yi,1)

rφ′
e(g, Yi,2)

rR,m⊕H2(R), e(g, Yi,3)
rφe(g, Yi,4)

r).

When the adversary modifies the ciphertext, it must change the svk, which
entails that φ will be changed, and hence, it is impossible to modify C5 without
the trapdoor. Similarly, when φ′ is changed, C3 of the re-encrypted ciphertext
will become a random value, then the decryption algorithm will output ⊥
when decrypting this ciphertext.

The description of our anonymous conditional proxy re-encryption with key-
word search scheme is as follows.

• GlobalSetup(λ): Let λ be the security parameter and (p, g,G1,G2, e) be the
bilinear map parameters. Let the message space be M = {0, 1}k and the
condition space be W = Z

∗
p. Let H0 : {0, 1}∗ → Z

∗
p, H1 : {0, 1}∗ → Z

∗
p, H2 :

G2 → {0, 1}k, and H3 : {0, 1}∗ → Z
∗
p be three hash functions. Generate a

strongly unforgeable one-time signature scheme sig = (G,S,V). The global
system parameters are (p, g,G1,G2, e, k,H0, H1, H2, H3, sig).

• KeyGen(i): user i selects random xi, yi,1, yi,2, yi,3, yi,4 ∈ Z
∗
p, computes Xi =

gxi , Yi,1 = gyi,1 ,Yi,2 = gyi,2 , Yi,3 = gyi,3 and Yi,4 = gyi,4 , sets his public key as
pki = (Xi, Yi,1, Yi,2, Yi,3, Yi,4) and the secret key ski = (xi, yi,1, yi,2, yi,3, yi,4).

• RKeyGen(pki, ski, w, pkj): given user i’s pubic key pki and secret key
ski = (xi, yi,1, yi,2, yi,3, yi,4), a condition w, and user j’s public key pkj =
(Xj, Yj,1, Yj,1, Yj,2, Yj,3, Yj,4), selects two random s1, s2 ∈ Z

∗
p, computes dk =

(Yj,kY
−1
i,k g

−sk)1/(xi−w), sets the re-encryption key rki,w,j = (dk, sk)k∈{1,2}.
• Trapdoor(pki, ski, w): given user i’s pubic key pki and private key ski and a
condition w, selects two random s3, s4 ∈ Z

∗
p, computes dk = (Yi,kg

−sk)1/(xi−w),
sets the trapdoor Ti,w = (dk, sk)k∈{3,4}.

• Enc1(pki,m): To encrypt a message m ∈ M under the public key pki. Picks
random R ∈ G

∗
2 and svk ∈ {0, 1}k1 , sets C0 = svk and r = H1(m,R),

computes C2 = e(g, g)r, C4 = m⊕H2(R),

φ′ = H0(C0, C2, C4), C3 = e(g, Yi,1)
rφ′
e(g, Yi,2)

rR

outputs the first level ciphertext CTi = (C0, C2, C3, C4).
• Enc2(pki,m, w): To encrypt a message m ∈ M under the public key pki
and condition w ∈ W , do the following.

(1) Selects a one-time signature key pair (ssk, svk) ← G(λ) and sets C0 = svk.
(2) Picks R ∈ G

∗
2, computes r = H1(m,R), and

C1 = (Xig
−w)r, C2 = e(g, g)r, C4 = m⊕H2(R)

φ′ = H0(C0, C2, C4), C3 = e(g, Yi,1)
rφ′
e(g, Yi,2)

rR

φ = H3(C0, C1, C2, C3, C4), C5 = e(g, Yi,3)
rφe(g, Yi,4)

r.

16

(3) Generates a one-time signature σ = S(ssk, (C1, C2, C3, C4, C5)) on the
pair (C1, C2, C3, C4, C5).

(4) Then, outputs the second level ciphertext CTi = (C0, C1, C2, C3, C4, C5, σ).
• Test(CTi, Ti,w): on input of a trapdoor Ti,w = (dk, sk)k={3,4} and a sec-
ond level ciphertext CTi = (C0, C1, C2, C3, C4, C5, σ), it first computes φ =
H3(C0, C1, C2, C3, C4), tests if

V(C0, σ, (C1, C2, C3, C4, C5))= 1 (1)

C5 = e(C1, d
φ
3d4)C

s3φ+s4
2 . (2)

If one of the checks fails, outputs “0”, otherwise it outputs “1”.
To verify this, consider the following.

e(C1, d
φ
3d4)C

s3φ+s4
2 = e((Xig

−w)r, ((Yi,3g
−s3)1/(xi−w))φ((Yi,4g

−s4)1/(xi−w)))Cs3φ+s4
2

= e(g(xi−w)r, ((Yi,3g
−s3)φ(Yi,4g

−s4))1/(xi−w))Cs3φ+s4
2

= e(gr, (Yi,3g
−s3)φ(Yi,4g

−s4))Cs3φ+s4
2

= e(gr, (Yi,3)
φ(Yi,4))e(g

r, (g−s3)φ(g−s4))Cs3φ+s4
2

= e(g, Yi,3)
rφe(g, Yi,4)

r

=C5.

• ReEnc(CTi, rki,w,j): on input of a re-encryption key rki,w,j = (dk, sk)k∈{1,2}
and a second level ciphertext CTi = (C0, C1, C2, C3, C4, C5, σ). Test if

V(C0, σ, (C1, C2, C3, C4, C5))= 1 (3)

If equation (3) holds, it computes φ′ = H0(C0, C2, C4), CTi, is re-encrypted
by computing

C ′
3 = e(C1, d

φ′
1 d2)C

s1φ′+s2
2 · C3.

The re-encrypted ciphertext(level 1) is CTj = (C0, C2, C
′
3, C4).

To verify this, consider the following.

C ′
3 = e(C1, d

φ′
1 d2)C

s1φ′+s2
2 · C3

= e((Xig
−w)r, ((Yj,1Y

−1
i,1 g

−s1)1/(xi−w))φ
′
((Yj,2Y

−1
i,2 g

−s2)1/(xi−w)))Cs1φ′+s2
2 · C3

= e(g(xi−w)r, ((Yj,1Y
−1
i,1 g

−s1)φ
′
(Yj,2Y

−1
i,2 g

−s2))1/(xi−w))Cs1φ′+s2
2 · C3

= e(gr, ((Yj,1Y
−1
i,1 g

−s1)φ
′
(Yj,2Y

−1
i,2 g

−s2))Cs1φ′+s2
2 · C3

= e(gr, ((Yj,1Y
−1
i,1)φ

′
(Yj,2Y

−1
i,2))e(gr, (g−s1)φ

′
(g−s2))(e(g, g)r)s1φ

′+s2 · C3

= e(g, Yj,1)
rφ′
e(g, Yj,2)

r(e(g, Yi,1)
rφ′
e(g, Yi,2)

r)−1e(g, Yi,1)
rφ′
e(g, Yi,2)

rR

= e(g, Yj,1)
rφ′
e(g, Yj,2)

rR.

• Dec1(CTj, skj): On input a secret key skj and a first level ciphertext (re-
encrypted ciphertext) CTj = (C0, C2, C3, C4), it computes φ′ = H0(C0, C2, C4)
and R = C3/(C2)

yj,1φ
′+yj,2 ,m = C4 ⊕ H2(R), r = H1(m,R), and checks

whether C2
?
= e(g, g)r holds. If yes, it returns m; else it returns ⊥.

17

• Dec2(CTi, ski): On input a secret key ski and a second level ciphertext
CTi = (C0, C1, C2, C3, C4, C5, σ), it computes φ = H3(C0, C1, C2, C3, C4),
φ′ = H0(C0, C2, C4) and tests if

V(C0, σ, (C1, C2, C3, C4, C5))= 1 (4)

C5 =(C2)
yi,3φ+yi,4 (5)

If one of the checks fails, outputs ⊥. Otherwise, computes

R = C3/(C2)
yi,1φ

′+yi,2 ,m = C4 ⊕H2(R), r = H1(m,R)

and checks whether C2
?
= e(g, g)r holds. If yes, it returns m; else it returns

⊥.
To verify this, consider the following.

(C2)
yi,3φ+yi,4 =(e(g, g)r)yi,3φ+yi,4

=C5.

C3/(C2)
yi,1φ

′+yi,2 =(e(g, Yi,1)
rφ′
e(g, Yi,2)

rR)/(e(g, g)r)yi,1φ
′+yi,2

=R.

3.2 Security of Our C-PRES

In this subsection, we prove the C-PRES-IND-ANON-CCA security for our
scheme in the random oracle model. The analysis of Game 1, Game 2 and
Game 3 is as follows.

Theorem 1 If the q-ABDHE and DBDH assumptions hold, and sig = (G,S,V)
is a strongly unforgeable one-time signature, then the scheme is C-PRES-IND-
ANON-CCA secure in the random oracle model.

Lemma 1. If there exists an IND-ANON adversary A against our scheme,
then there exists an algorithm B which can solve the q-ABDHE problem for
q ≥ qk +1, where qk is the number of re-encryption key and trapdoor queries.

Proof.Our approach to proving lemma 1 closely follows the proof of security for
Gentry’s IBE scheme [17]. Suppose there exists a polynomial-time adversary,
A, that can attack our scheme in the random oracle model. Let qk be the
number of re-encryption key queries. We build a simulator B that can play a
q-ABDHE game for q ≥ qk +1. In the following, we call HU the set of honest
parties, and CU the set of corrupt parties. The simulation proceeds as follows:

We let the challenger set the groups G1 and G2 with an efficient bilinear
map e and a generator g of G1. Simulator B inputs a q-ABDHE instance

18

(g, gx, gx
2
, · · · , gxq

, gz, gzx
q+2
, T), and has to distinguish T = e(g, g)zx

q+1
from

a random element in G2.

Before describing B, we first define an event FOTS and bound its probability
to occur. Let C∗ = (svk∗, C∗

1 , C
∗
2 , C

∗
3 , C

∗
4 , C

∗
5 , σ

∗) denote the challenge cipher-
text given to A in the game. Let FOTS be the event that A issues a test
or re-encryption query for ciphertext C∗ = (svk∗, C1, C2, C3, C4, C5, σ) but
V(svk∗, σ, (C1, C2, C3, C4, C5)) = 1. In the “phase 1” stage, A has simply no
information on svk∗. Hence, the probability of a pre-challenge occurrence of
FOTS does not exceed qtθ if qt is the overall number of re-encryption and test
oracle queries and θ denotes the maximal probability (which by assumption
does not exceed 1/p) that any one-time verification key svk∗ is output by
G. In the “phase 2” stage, FOTS clearly gives rise to an algorithm breaking
the strong unforgeability of the one-time signature. Therefore, the probabil-
ity Pr[FOTS] ≤ qt/p + AdvOTS, where the second term accounts for the fact
that the probability of definition one time signature, must be negligible by
assumption.

The random oracles H0, H1, H2, and H3 are controlled by B as follows.

If A queries (C0, C2, C4) to the random oracle H0, B searches HList
0 for an

entry (C0, C2, C4, ψ
′). If it exists, return ψ′ as answer. Otherwise, it chooses

ψ′ ∈ Z
∗
p at random and returns it as the answer and places (C0, C2, C4, ψ

′)
into HList

0 .

If A queries (m,R) to the random oracle H1, B searches HList
1 for an entry

(m,R, r). If it exists, return r as answer. Otherwise, it chooses r ∈ Z
∗
p at

random and returns it as the answer and places (m,R, r) into HList
1 .

If A queries (R) to the random oracle H2, B searches HList
2 for an entry (R, ω).

If it exists, return ω as answer. Otherwise, it chooses ω ∈ {0, 1}k at random
and returns it as the answer and places (R, ω) into HList

2 .

If A queries (C0, C1, C2, C3, C4) to the random oracle H3, B searches HList
3

for an entry (C0, C1, C2, C3, C4, ψ). If it exists, return ψ as answer. Other-
wise, it chooses ψ ∈ Z

∗
p at random and returns it as the answer and places

(C0, C1, C2, C3, C4, ψ) into H
List
3 .

(1) Setup: Let λ be the security parameter and (p, g,G1,G2, e) be the bilinear
map parameters. Let message space be M = {0, 1}k and condition space
beW = Z

∗
p. The global system parameters are (p, g,G1,G2, e, k,H0, H1, H2,

H3, sig).
(2) Query phase 1. A makes the following queries:

• Uncorrupted key generation query 〈i〉: public keys of honest user i ∈
HU are defined as follows: B selects a random value ηi ∈ Z

∗
p, computes

Xi = gx+ηi , B picks four random degree q polynomials fi,k(X) where

19

k ∈ {1, 2, 3, 4}, and defines {Yi,k = gfi,k(x)}k∈{1,2,3,4}. This implicitly
defines the secret key value as xi = x + ηi, {yi,k = fi,k(x)}k∈{1,2,3,4}. B
sets target user’s public key as pki∗ = (Xi, {Yi,k}k∈{1,2,3,4}), and sends
public key to A.

• Corrupted key generation query 〈i〉: Public keys of corrupt user i ∈ CU
are the same as the key generation algorithm, this means the simulator
B can know both the public key and secret key of user i ∈ CU , and
then sends (pki, ski) to A.

• Re-encryption key query〈pki, w, pkj〉: B has to distinguish several situ-
ations:
(a) If i ∈ CU , since B can know the secret key part xi for user i, so B

can compute it correctly.
(b) If i ∈ HU and j ∈ CU , let Fi,j,k(X) = yj,k − fi,k(X), computes

sw,k = Fi,j,k(w − ηi), dw,k = g(Fi,j,k(x)−Fi,j,k(w−ηi))/(x+ηi−w)

(c) If i ∈ HU and j ∈ HU , let Fi,j,k(X) = fj,k(X) − fi,k(X), then B
computes

sw,k = Fi,j,k(w − ηi), dw,k = g(Fi,j,k(x)−Fi,j,k(w−ηi))/(x+ηi−w)

When q ≥ qk + 1, fi,k(w − ηi), fj,k(w − ηi) are random values from
A’s view, since fi,k(X) and fj,k(X) are random degree q polynomials.
Sends the re-encryption key rki,w,j = {dw,k, sw,k}k∈{1,2} to A.

• Trapdoor query〈pki, w〉: B has to distinguish several situations:
(a) If i ∈ CU , since B can know the secret key part xi for user i, so B

can compute it correctly.
(b) If i ∈ HU , then B computes

{sw,k = fi,k(w − ηi)}k∈{3,4}, dw,k = g(fi,k(x)−fi,k(w−ηi))/(x+ηi−w)

When q ≥ qk + 1, {fi,k(w − ηi)}k∈{3,4} are random values from A’s
view, since fi,k(X) where k ∈ {3, 4} are random degree q polynomials.
Sends the trapdoor Ti,w = {dw,k, sw,k}k∈{3,4} to A.

• Test query〈pki, w, CTi〉: A can adaptively ask B for the test query for
public key pki, any keyword w and any ciphertext of his choice. If FOTS

occurs, the process halts (an occurrence of FOTS in phase 1 is different
from that in phase 2 as discussed in the preparation phase). If FOTS

does not occur, B first queries a trapdoor query on 〈pki, w〉 to get the
trapdoor Ti,w and then responds the result Test(CTi, Ti,w) to A.

• Re-encryption query〈pki, pkj, w, CTi〉: If FOTS occurs, the process halts.
If FOTS does not occur, since B can compute unidirectional re-encryption
key rki,w,j for all user i and j, so B can compute it correctly.

• Decryption query〈pkj, CTj〉: If 〈pkj, CTj〉 denotes the queries on re-
encrypted ciphertext(first level ciphertext), CTj = (C0, C2, C3, C4). For
a user’s j ∈ CU , B can decrypt it correctly, since B knows the secret

20

key for user j ∈ CU . For a user’s j ∈ HU , then B searches HList
0 , HList

1

and HList
2 to see whether there exist a tuple (C0, C2, C4, φ

′), a tuple
(m,R, r) and a tuple (R, ω) such that

C2 = e(g, g)r, C3 = e(g, Yj,1)
rφ′
e(g, Yj,2)

rR,C4 = m⊕H2(R).

If yes, it outputs m to A; else outputs ⊥.
• Decryption query〈pki, w, CTi〉: If 〈pki, w, CTi〉 denotes the queries on
second level ciphertext CTi. B makes a re-encryption query on 〈pki, pkj,
w, CTi〉 to get the re-encrypted ciphertext(first level ciphertext) CTj,
then makes a decryption query on 〈pkj, CTj〉, and sends the result to
A.

(3) Challenge. Once A decides that Phase 1 is over, it outputs a target public
key pki∗ , a condition pair (w0, w1) and a plaintext m. B responds by
choosing a random β ∈ {0, 1}, sets {swβ ,k = fi∗,k(wβ − ηi∗)}k∈{1,2,3,4}, then
B computes

dwβ ,k = g(fi∗,k(x)−fi∗,k(wβ−ηi∗))/(x+ηi∗−wβ)

where k ∈ {1, 2, 3, 4}. B also selects a strongly unforgeable one-time sig-
nature key pair (ssk∗, svk∗) ← G(λ), and sets C∗

0 = svk∗.
Define the degree q + 1 polynomial

F ∗(X) = (Xq+2 − (wβ − ηi∗)
q+2)/(X + ηi∗ − wβ) =

q+1∑

i=0

(F ∗
i X

i).

Picks random R∗ ∈ G
∗
2 and computes

C∗
1 = gzx

q+2

(gz)−(wβ−ηi∗)q+2

C∗
2 =T F ∗

q+1e(gz,
q∏

i=0

(gx
i

)F
∗
i)

C∗
4 =m⊕H2(R

∗)
φ′∗ =H0(C

∗
0 , C

∗
2 , C

∗
4)

C∗
3 =R∗ · e(C∗

1 , (dwβ ,1)
φ′∗
dwβ ,2) · (C∗

2)
swβ,1φ′∗+swβ,2

φ∗ =H3(C
∗
0 , C

∗
1 , C

∗
2 , C

∗
3 , C

∗
4)

C∗
5 = e(C∗

1 , (dwβ ,3)
φ∗
dwβ ,4) · (C∗

2)
swβ,3φ∗+swβ,4

Generates a strongly unforgeable one-time signature σ∗ = S(ssk∗, (C∗
1 , C

∗
2 ,

C∗
3 , C

∗
4 , C

∗
5)). Sends the challenge ciphertext C

∗ = (C∗
0 , C

∗
1 , C

∗
2 , C

∗
3 , C

∗
4 , C

∗
5 , σ

∗)
to A.
To see this, implicitly let H1(m,R

∗) = r∗ = zF ∗(x), if T = e(g, g)zx
q+1

,
then C∗

1 = g(x+ηi∗−wβ)r
∗

= (Xi∗g
−wβ)r

∗
, C∗

2 = e(g, g)r
∗
, C∗

3 = R∗ ·
e(g, Yi∗,1)

φ′∗r∗e(g, Yi∗,2)
r∗ and C∗

5 = e(g, Yi∗,3)
φ∗r∗e(g, Yi∗,4)

r∗ .
(4) Query phase 2. A continues making queries as in the query phase 1.

21

(5) Guess. A outputs the guess β′, if β′ = β, then output 1 meaning T =
e(g, g)zx

q+1
; else output 0 meaning T = e(g, g)r.

Probability Analysis: When FOTS does not occur, if T = e(g, g)zx
q+1

, then the
simulation is perfect, and A will guess the bit β correctly with probability
1/2+ ε. Else, T is uniformly random, and thus (C∗

1 , C
∗
2) is a uniformly random

and independent element. In this case, the inequality C∗
2 �= e(C∗

1 , g)
1/(x+ηi∗−wβ)

holds with probability 1− 1/p. When this inequality holds, the value of

K∗ = e(C∗
1 , (dwβ ,1)

φ′∗
dwβ ,2) · (C∗

2)
swβ,1φ′∗+swβ,2 (6)

= e(C∗
1 , (Y

φ′∗
i∗,1Yi∗,2)

1/(x+ηi∗−wβ))(
C∗

2

e(C∗
1 , g)

1/(x+ηi∗−wβ))
)swβ,1φ′∗+swβ,2 (7)

is uniformly random and independent from A’s view (except for the value C∗
3),

since swβ ,k (when q ≥ qk + 1, {swβ ,k = fi,k(wβ − ηi∗)} is a random value from
A’s view). Thus, C∗

3 is uniformly random and independent, and (C∗
1 , C

∗
2 , C

∗
3 , C

∗
4)

can reveal no information regarding the random bit β. Similarly,

C∗
5 = e(C∗

1 , (Y
φ∗
i∗,3Yi∗,4)

1/(x+ηi∗−wβ))(
C∗

2

e(C∗
1 , g)

1/(x+ηi∗−wβ))
)swβ,3φ∗+swβ,4 (8)

thus C∗
5 will not leak the bit β.

Finally, we still need to explain why the re-encryption and test queries do
not jeopardize the security of the scheme. For the re-encryption query, we
need to prove the re-encryption query on 〈pki, pkj, w, CTi〉 where CTi =
(C0, C1, C2, C3, C4, C5, σ) and V(C0, σ, (C1, C2, C3, C4, C5)) = 1 is a mauling
of the challenge ciphertext may not leak the bit β. Querying valid ciphertexts
where C2 = e(C1, g)

1/(x+ηi−w) to re-encryption oracle does not help A distin-
guish between the simulation and the actual construction, because of the cor-
rectness of re-encryption. For invalid ciphertexts where C2 �= e(C1, g)

1/(x+ηi−w),
the ciphertext will be re-encrypted by

C ′
3 =C3 · e(C1, d

φ′
w,1dw,2)C

sw,1φ′+sw,2

2

=C3 · e(C1, ((Yj,1Y
−1
i,1)φ

′
(Yj,2Y

−1
i,2))1/(x+ηi−w))(

C2

e(C1, g)1/(x+ηi−w))
)sw,1φ′+sw,2

When C3 �= C∗
3 , since sw,k is uniformly random and independent from A’s

view, then the re-encryption result C ′
3 is a random value from A’s view. Thus

it will not leak the bit β.

When C3 = C∗
3 , we have

22

C ′
3 =R∗e(C∗

1 , (Y
φ′∗
i∗,1Yi∗,2)

1/(x+ηi∗−wβ))(
C∗

2

e(C∗
1 , g)

1/(x+ηi∗−wβ))
)swβ,1φ′∗+swβ,2

· e(C1, ((Yj,1Y
−1
i,1)φ

′
(Yj,2Y

−1
i,2))1/(x+ηi−w))(

C2

e(C1, g)1/(x+ηi−w))
)sw,1φ′+sw,2

If C1 �= C∗
1 or C2 �= C∗

2 or w �= wβ or ηi �= ηi∗ , since swβ ,k is uniformly random
and independent from A’s view, then the re-encryption result C ′

3 is a random
value from A’s view. Thus it will not leak the bit β.

If C1 = C∗
1 , C2 = C∗

2 , w = wβ, ηi = ηi∗ and C3 = C∗
3 , this situation can be

discussed in two cases:

• If C0 = svk ≡ svk∗ = C∗
0 , then

(C1, C2, C3, C4, C5, σ) �= (C∗
1 , C

∗
2 , C

∗
3 , C

∗
4 , C

∗
5 , σ

∗)

B is faced with an occurrence of FOTS and halts.
• If C0 = svk �= svk∗ = C∗

0 , we have φ �= φ∗ and φ′ �= φ′∗,

C ′
3 =R∗e(C∗

1 , (Y
φ′∗
i∗,1Yi∗,2)

1/(x+ηi∗−wβ))(
C∗

2

e(C∗
1 , g)

1/(x+ηi∗−wβ))
)swβ,1φ′∗+swβ,2

· e(C1, ((Yj,1Y
−1
i,1)φ

′
(Yj,2Y

−1
i,2))1/(x+ηi−w))(

C∗
2

e(C∗
1 , g)

1/(x+ηi∗−wβ))
)swβ,1φ′+swβ,2

Since φ′ �= φ′∗, then l = swβ ,1φ
′ + swβ ,2 is uniformly random and inde-

pendent from l∗ = swβ ,1φ
′∗ + swβ ,2. Then the re-encryption result C ′

3 is a
random value from A’s view. Thus it will not leak the bit β.

Similarly, we need to prove the test query on 〈pki, w, CTi〉 where CTi =
(C0, C1, C2, C3, C4, C5, σ) and V(C0, σ, (C1, C2, C3, C4, C5)) = 1 is a mauling
of the challenge ciphertext may not leak the bit β. If 〈pki, w〉 �= 〈pki∗ , w∗〉,
test querying on this will not help A since A can make the trapdoor query
on 〈pki, w〉. Querying valid ciphertexts where C2 = e(C1, g)

1/(x+ηi∗−w∗) to test
oracle does not help A to distinguish between the simulation and the ac-
tual construction, due to the correctness of test. For invalid ciphertexts where
C2 �= e(C1, g)

1/(x+ηi∗−w∗), the ciphertext will be verified by the following equa-
tion.

C5 = e(C1, d
φ′
w∗,3dw∗,4)C

sw∗,3φ′+sw∗,4
2

= e(C1, ((Yi∗,3g
−sw∗,3)1/(xi∗−w∗))φ

′
((Yi∗,4g

−sw∗,4)1/(xi∗−w∗)))C
sw∗,3φ′+sw∗,4
2

= e(C1, (Y
φ′
i∗,3Yi∗,4)

1/(x+ηi∗−w∗))(
C2

e(C1, g)1/(x+ηi∗−w∗))
)sw∗,3φ′+sw∗,4

Similarly from the challenge ciphertext, we have

23

C∗
5 = e(C∗

1 , d
φ′
wβ ,3

dwβ ,4)C
swβ,3φ′+swβ,4

2

= e(C∗
1 , ((Yi∗,3g

−swβ,3)1/(xi∗−wβ))φ
′
((Yi∗,4g

−swβ,4)1/(xi∗−wβ)))(C∗
2)

swβ,3φ′+swβ,4

= e(C∗
1 , (Y

φ′
i∗,3Yi∗,4)

1/(x+ηi∗−wβ))(
C∗

2

e(C∗
1 , g)

1/(x+ηi∗−wβ))
)swβ,3φ′+swβ,4

This scenario can be divided into two cases:

• If C0 = svk ≡ svk∗ = C∗
0 , then

(C1, C2, C3, C4, C5, σ) �= (C∗
1 , C

∗
2 , C

∗
3 , C

∗
4 , C

∗
5 , σ

∗)

B is faced with an occurrence of FOTS and halts.
• If C0 = svk �= svk∗ = C∗

0 , we have φ′ �= φ′∗. If w∗ �= wβ, since sw∗,3 and
sw∗,4 are uniformly random and independent from A’s view, then it will not
leak the bit β. If w∗ = wβ, then l = swβ ,3φ

′ + swβ ,4 is uniformly random and
independent from l∗ = swβ ,3φ

′∗ + swβ ,4. Then the test result will not leak
the bit β, since swβ ,3 and swβ ,4 are uniformly random and independent from
A’s view. Actually, the test query will always output ”0” since the valid C5

which is hidden by l = swβ ,3φ
′ + swβ ,4 is a random value from A’s view.

This completes the proof of lemma 1. �

Lemma 2. If there exists an IND-L2-CCA adversary A against our scheme,
then there exists an algorithm B which can solve the q-ABDHE problem for
q ≥ qk +1, where qk is the number of re-encryption key and trapdoor queries.

Proof. Our approach to proving lemma 2 closely follows the proof of lemma
1. Suppose there exists a polynomial-time adversary, A, that can attack our
scheme in the random oracle model. Let qk is the number of re-encryption
key queries. We build a simulator B that can play a q-ABDHE game for
q ≥ qk +1. In the following, we call HU the set of honest parties, and CU the
set of corrupt parties. The simulation proceeds as follows:

We let the challenger set the groups G1 and G2 with an efficient bilinear
map e and a generator g of G1. Simulator B inputs a q-ABDHE instance
(g, gx, gx

2
, · · · , gxq

, gz, gzx
q+2
, T), and has to distinguish T = e(g, g)zx

q+1
from

a random element in G2.

The random oracles H0, H1, H2, and H3 controlled by B are the same as in
lemma 1.

(1) Setup: Let λ be the security parameter and (p, g,G1,G2, e) be the bilinear
map parameters. Let message space be M = {0, 1}k and condition space
beW = Z

∗
p. The global system parameters are (p, g,G1,G2, e, k,H0, H1, H2,

H3, sig).

24

(2) Query phase 1. A makes the following queries:
• Uncorrupted key generation query 〈i〉: public keys of honest user i ∈
HU are defined as the following: B selects a random value ηi ∈ Z

∗
p,

computes Xi = gx+ηi , B picks four random degree q polynomials fi,k(X)
where k ∈ {1, 2, 3, 4}, and defines {Yi,k = gfi,k(x)}k∈{1,2,3,4}. This implic-
itly defines the secret key value as xi = x+ ηi, {yi,k = fi,k(x)}k∈{1,2,3,4}.
B sets target user’s public key as pki∗ = (Xi, {Yi,k}k∈{1,2,3,4}), and sends
public key to A.

• Corrupted key generation query 〈i〉: Public keys of corrupt user i ∈ CU
are the same as the key generation algorithm, this means the simulator
B can know the both the public key and secret key of user i ∈ CU , and
then sends (pki, ski) to A.

• Re-encryption key query〈pki, w, pkj〉: B has to distinguish several situ-
ations:
(a) If i ∈ CU , since B can know the secret key part xi for user i, so B

can compute it correctly.
(b) If i ∈ HU and j ∈ CU , let Fi,j,k(X) = yj,k − fi,k(X), computes

sw,k = Fi,j,k(w − ηi), dw,k = g(Fi,j,k(x)−Fi,j,k(w−ηi))/(x+ηi−w)

(c) If i ∈ HU and j ∈ HU , let Fi,j,k(X) = fj,k(X) − fi,k(X), then B
computes

sw,k = Fi,j,k(w − ηi), dw,k = g(Fi,j,k(x)−Fi,j,k(w−ηi))/(x+ηi−w)

When q ≥ qk + 1, fi,k(w − ηi), fj,k(w − ηi) are random values from
A’s view, since fi,k(X) and fj,k(X) are random degree q polynomials.
Sends the re-encryption key rki,w,j = {dw,k, sw,k}k∈{1,2} to A.

• Trapdoor query〈pki, w〉: B has to distinguish several situations:
(a) If i ∈ CU , since B can know the secret key part xi for user i, so B

can compute it correctly.
(b) If i ∈ HU , then B computes

{sw,k = fi,k(w − ηi)}k∈{3,4}, dw,k = g(fi,k(x)−fi,k(w−ηi))/(x+ηi−w)

When q ≥ qk + 1, {fi,k(w − ηi)}k∈{3,4} are random values from A’s
view, since fi,k(X) where k ∈ {3, 4} are random degree q polynomials.
Sends the trapdoor Ti,w = {dw,k, sw,k}k∈{3,4} to A.

• Test query〈pki, w, CTi〉: A can adaptively ask B for the test query for
public key pki, any keyword w and any ciphertext of his choice. B first
query a trapdoor query on 〈pki, w〉 to get the trapdoor Ti,w and then
responds the result Test(CTi, Ti,w) to A.

• Re-encryption query〈pki, pkj, w, CTi〉: Since B can compute unidirec-
tional re-encryption key rki,w,j and the trapdoor Ti,w = {dw,k, sw,k}k∈{1,2}
for all user i and j, so B can compute it correctly.

25

• Decryption query〈pkj, CTj〉: If 〈pkj, CTj〉 denotes the queries on re-
encrypted ciphertext(first level ciphertext), CTj = (C0, C2, C3, C4). For
a user’s j ∈ CU , B can decrypt it correctly, since B knows the secret
key for user j ∈ CU . For a user’s j ∈ HU , then B searches HList

0 ,
HList

1 and HList
2 to see whether there exist a tuple (C0, C2, C4, φ

′),
a tuple (m,R, r) and a tuple (R, ω) such that

C2 = e(g, g)r, C3 = e(g, Yj,1)
rφ′
e(g, Yj,2)

rR,C4 = m⊕H2(R).

If yes, it outputs m to A; else it outputs ⊥.
• Decryption query〈pki, w, CTi〉: If 〈pki, w, CTi〉 denotes the queries on
second level ciphertext CTi. B makes a re-encryption query on 〈pki, pkj,
w, CTi〉 to get the re-encrypted ciphertext(first level ciphertext) CTj,
then makes a decryption query on 〈pkj, CTj〉, and sends the result to
A.

(3) Challenge. Once A decides that Phase 1 is over, it outputs a target public
key pki∗ , a condition pair w∗ and two equal length plaintexts (m0,m1). B
responds by choosing a random β ∈ {0, 1}, sets {sw∗,k = fi∗,k(w

∗ − ηi∗)}k∈{1,2,3,4},
then B computes

dw∗,k = g(fi∗,k(x)−fi∗,k(w∗−ηi∗))/(x+ηi∗−w∗)

where k ∈ {1, 2, 3, 4}. B also selects a strongly unforgeable one-time sig-
nature key pair (ssk∗, svk∗) ← G(λ) , sets C∗

0 = svk∗.
Define the degree q + 1 polynomial

F ∗(X) = (Xq+2 − (w∗ − ηi∗)
q+2)/(X + ηi∗ − w∗) =

q+1∑

i=0

(F ∗
i X

i).

Picks random R∗ ∈ G
∗
2 and computes

C∗
1 = gzx

q+2

(gz)−(w∗−ηi∗)q+2

C∗
2 =T F ∗

q+1e(gz,
q∏

i=0

(gx
i

)F
∗
i)

C∗
4 =mβ ⊕H2(R

∗)
φ′∗ =H0(C

∗
0 , C

∗
2 , C

∗
4)

C∗
3 =R∗ · e(C∗

1 , (dw∗,1)
φ′∗
dw∗,2) · (C∗

2)
sw∗,1φ′∗+sw∗,2

φ∗ =H3(C
∗
0 , C

∗
1 , C

∗
2 , C

∗
3 , C

∗
4)

C∗
5 = e(C∗

1 , (dw∗,3)
φ∗
dw∗,4) · (C∗

2)
sw∗,3φ∗+sw∗,4

Generates a strongly unforgeable one-time signature σ∗ = S(ssk∗, (C∗
1 , C

∗
2 ,

C∗
3 , C

∗
4 , C

∗
5)). Sends the challenge ciphertext C

∗ = (C∗
0 , C

∗
1 , C

∗
2 , C

∗
3 , C

∗
4 , C

∗
5 , σ

∗)
to A.

26

To see this, implicitly letH1(mβ, R
∗) = r∗ = zF ∗(x), if T = e(g, g)zx

q+1
,

then C∗
1 = g(x+ηi∗−w∗)r∗ = (Xi∗g

−w∗
)r

∗
, C∗

2 = e(g, g)r
∗
,

C∗
3 = R∗ · e(g, Yi∗,1)φ′∗r∗e(g, Yi∗,2)

r∗ and C∗
5 = e(g, Yi∗,3)

φ∗r∗e(g, Yi∗,4)
r∗ .

(4) Query phase 2. A continues making queries as in the query phase 1.
(5) Guess. A outputs the guess β′, if β′ = β, then output 1 meaning T =

e(g, g)zx
q+1

; else output 0 meaning T = e(g, g)r.

Probability Analysis: Similar to the analysis in Game 1, when FOTS does not

occur, if T = e(g, g)zx
q+1

, then the simulation is perfect, and A will guess the
bit β correctly with probability 1/2+ε. Else, T is uniformly random, and thus
(C∗

1 , C
∗
2) is a uniformly random and independent element. In this case, the

inequality C∗
2 �= e(C∗

1 , g)
1/(x+ηi∗−w∗) holds with probability 1− 1/p. When the

inequality holds, the value of

K∗ = e(C∗
1 , (dw∗,1)

φ′∗
dw∗,2) · (C∗

2)
sw∗,1φ′∗+sw∗,2 (9)

= e(C∗
1 , (Y

φ′∗
i∗,1Yi∗,2)

1/(x+ηi∗−w∗))(
C∗

2

e(C∗
1 , g)

1/(x+ηi∗−w∗))
)sw∗,1φ′∗+sw∗,2 (10)

is uniformly random and independent from A’s view (except for the value C∗
3),

since sw∗,k (when q ≥ qk + 1, {sw∗,k = fi,k(w
∗ − ηi∗)} is a random value from

A’s view). Thus, C∗
3 is uniformly random and independent, and (C∗

1 , C
∗
2 , C

∗
3)

can reveal no information regarding the random value R∗. Thus, C∗
4 will not

leak the bit β. Similarly,

C∗
5 = e(C∗

1 , (Y
φ∗
i∗,3Yi∗,4)

1/(x+ηi∗−w∗))(
C∗

2

e(C∗
1 , g)

1/(x+ηi∗−w∗))
)sw∗,3φ∗+sw∗,4

thus C∗
5 will not leak the bit β. Finally, we need to prove the re-encryption

query on 〈pki, pkj, w, CTi〉 where CTi = (C0, C1, C2, C3, C4, C5, σ) and V(C0, σ,
(C1, C2, C3, C4, C5)) = 1 is a mauling of the challenge ciphertext may not leak
the bit β. Querying valid ciphertexts where C2 = e(C1, g)

1/(x+ηi−w) to re-
encryption oracle does not help A distinguish between the simulation and the
actual construction, because of the correctness of the re-encryption. For invalid
ciphertexts where C2 �= e(C1, g)

1/(x+ηi−w), the ciphertext will be re-encrypted
by

C ′
3 =C3 · e(C1, d

φ′
w,1dw,2)C

sw,1φ′+sw,2

2

=C3 · e(C1, ((Yj,1Y
−1
i,1)φ

′
(Yj,2Y

−1
i,2))1/(x+ηi−w))(

C2

e(C1, g)1/(x+ηi−w))
)sw,1φ′+sw,2

When C3 �= C∗
3 , since sw,k is uniformly random and independent from A’s

view, then the

27

re-encryption result C ′
3 is a random value from A’s view. Thus it will not leak

the bit β.

When C3 = C∗
3 , we have

C ′
3 =R∗e(C∗

1 , (Y
φ′∗
i∗,1Yi∗,2)

1/(x+ηi∗−w∗))(
C∗

2

e(C∗
1 , g)

1/(x+ηi∗−w∗))
)sw∗,1φ′∗+sw∗,2

· e(C1, ((Yj,1Y
−1
i,1)φ

′
(Yj,2Y

−1
i,2))1/(x+ηi−w))(

C2

e(C1, g)1/(x+ηi−w))
)sw,1φ′+sw,2

If C1 �= C∗
1 or C2 �= C∗

2 or w �= w∗ or ηi �= ηi∗ , since sw∗,k is uniformly random
and independent from A’s view, then the re-encryption result C ′

3 is a random
value from A’s view. Thus it will not leak the bit β.

If C1 = C∗
1 , C2 = C∗

2 , w = w∗, ηi = ηi∗ and C3 = C∗
3 , this situation can be

discussed in two cases:

• If C0 = svk ≡ svk∗ = C∗
0 , then

(C1, C2, C3, C4, C5, σ) �= (C∗
1 , C

∗
2 , C

∗
3 , C

∗
4 , C

∗
5 , σ

∗)

B is faced with an occurrence of FOTS and halts.
• If C0 = svk �= svk∗ = C∗

0 , we have φ �= φ∗ and φ′ �= φ′∗,

C ′
3 =R∗e(C∗

1 , (Y
φ′∗
i∗,1Yi∗,2)

1/(x+ηi∗−w∗))(
C∗

2

e(C∗
1 , g)

1/(x+ηi∗−w∗))
)sw∗,1φ′∗+sw∗,2

· e(C1, ((Yj,1Y
−1
i,1)φ

′
(Yj,2Y

−1
i,2))1/(x+ηi−w))(

C∗
2

e(C∗
1 , g)

1/(x+ηi∗−w∗))
)sw∗,1φ′+sw∗,2

Since φ′ �= φ′∗, then l = sw∗,1φ
′ + sw∗,2 is uniformly random and indepen-

dent from l∗ = sw∗,1φ
′∗ + sw∗,2. Thus it will not leak the bit β.

This completes the proof of lemma 2. �

Lemma 3. If there exists an IND-L1-CCA adversary A against our scheme,
then there exists an algorithm B, which can solve the DBDH problem.

Proof. In our scheme, the challenge ciphertext of non-transformable
ciphertext security is the same of transformed ciphertext security,
we only consider the proof of the non-transformable ciphertext se-
curity. We first let the challenger set the groups G1 and G2 with an efficient
bilinear map e and a generator g of G1. Simulator B inputs a DBDH instance
(g, ga, gb, gc, T), and has to distinguish T = e(g, g)abc from a random element
in G2.

28

The random oracles H0, H1, H2, and H3 controlled by B are the same as those
in Lemma 1.

(1) Setup: Let λ be the security parameter and (p, g,G1,G2, e) be the bilin-
ear map parameters. Let message space be M = {0, 1}k and condition
space be W = Z

∗
p. The global system parameters are (p, g,G1,G2, e, k,

H0, H1, H2, H3, sig).
(2) Query phase 1. A makes the following queries:

• Uncorrupted key generation query 〈i〉: public keys of honest user i ∈
HU are defined as the following: B selects a random value xi, ηi,1, ηi,2, yi,3, yi,4 ∈
Z

∗
p, computes Xi = gxi , Yi,k = ga+ηi,k . This implicitly defines the secret

key value as xi = xi, {yi,k = a+ηi,k}k∈{1,2,3,4}. B sets target user’s public
key as pki∗ = (Xi, {Yi,k}k∈{1,2,3,4}), and sends public key to A.

• Corrupted key generation query 〈i〉: Public keys of corrupt user i ∈ CU
are the same as the key generation algorithm, this means the simulator
B can know the both the public key and secret key of user i ∈ CU , and
then sends (pki, ski) to A.

• Re-encryption key query〈pki, w, pkj〉: since B can know the secret key
part xi for user i, B can compute it correctly. Sends the re-encryption
key rki,w,j = {dw,k, sw,k}k∈{1,2} to A.

• Trapdoor query〈pki, w〉: since B can know the secret key part xi for user
i, B can compute it correctly. Sends the trapdoor Ti,w = {dw,k, sw,k}k∈{3,4}
to A.

• Decryption query〈pkj, CTj〉: If 〈pkj, CTj〉 denote the queries on re-
encrypted ciphertext(second level ciphertext), CTj = (C0, C2, C3, C4).
For a user’s j ∈ CU , B can decrypt it correct, since B knows the secret
key for user j ∈ CU . For a user’s j ∈ HU , For a user’s j ∈ HU , then
B searches HList

0 , HList
1 and HList

2 to see whether there exist a
tuple (C0, C2, C4, φ

′), a tuple (m,R, r) and a tuple (R, ω) such
that

C2 = e(g, g)r, C3 = e(g, Yj,1)
rφ′
e(g, Yj,2)

rR,C4 = m⊕H2(R).

If yes, it outputs m to A; else it outputs ⊥.
(3) Challenge. Once A decides that Phase 1 is over, it outputs a target public

key pki∗ , and two equal length plaintexts (m0,m1). B responds by choos-
ing a random β ∈ {0, 1}, picks R∗ ∈ G

∗
2, C

∗
0 ∈ {0, 1}k1 and computes

C∗
2 = e(gb, gc), C∗

4 = mβ ⊕H2(R
∗).

φ′∗ = H0(C
∗
0 , C

∗
2 , C

∗
4), C

∗
3 = (T)(φ

′∗+1) · e(gb, gc)(ηi∗,1φ′∗+ηi∗,2)R∗

To see this, let H1(mβ, R
∗) = r∗ = bc, if T = e(g, g)abc, then

29

C∗
2 = e(gb, gc) = e(g, g)r

∗

C∗
3 = (e(g, g)abc)(φ

′∗+1) · e(gb, gc)(ηi∗,1φ′∗+ηi∗,2)R∗

= e(g, g)(a+ηi∗,1)bcφ′∗
e(g, g)(a+ηi∗,2)bcR∗ = e(g, Yi∗,1)

r∗φ′∗
e(g, Yi∗,2)

r∗R∗.

(4) Query phase 2. A continues making queries as in the query phase 1.
(5) Guess. A outputs the guess β′, if β′ = β, then output 1 meaning T =

e(g, g)abc; else output 0 meaning T = e(g, g)r.

Probability Analysis: Suppose there exists a polynomial-time adversary, A, in
Game 2 that can attack our scheme with an advantage ε. Now we provide the
probability of the simulator B:

When T = e(g, g)abc then A must satisfy |Pr[β′ = β] − 1/2| ≥ ε. When T
is uniform in G2, R

∗ and C∗
3 are uniformly random and independent, then

Pr[β′ = β] = 1/2. Therefore, when a, b, c are uniform in Z
∗
p and T is uniform

in G2, we have that

|Pr[B(g, ga, gb, gc, e(g, g)abc) = 1]- Pr[B(g, ga, gb, gc, e(g, g)r) = 1]| ≥ |(1/2 ±
ε)− 1/2| = ε as required. This completes the proof of lemma 3. �

4 Performance Comparison

In this section, we compare our schemes with Shao et al.’s proposed bidi-
rectional proxy re-encryption with keyword search scheme (we denote it as
SCLL) [30] and Weng et al.’s proposed CCA secure C-PRE (we denote it as
WYTDB) [33]. Since Weng et al.’s first C-PRE (WDCL) [32] is not CCA
secure and Weng et al.’s proposed CCA secure C-PRE is the most efficient
scheme in the known C-PRE, we only include WYTDB for our comparison.
Let |M|, |G1|, |G2|, |svk| and |σ| denote the bit-length of a plaintext, an el-
ement in groups G1 and G2, the verification key and signature of one-time
signature, respectively. We denote tp, te, ts, and tv as the computational cost
of a bilinear pairings, an exponentiation over a bilinear group, a one-time
signature and verification, respectively. Notice that encryption in our scheme
does not require any pairing computations once e(g, g) and e(g, Yi,k) have been
viewed as public key. Let G1 and G2 be the bilinear groups and svk and σ be
the one-time signatures public key and signature. The result of the comparison
is outlined in Table 1.

30

Scheme WYTDB [33] SCLL [30] Ours

Cost

Enc1 3te 4te + 2tp + ts 2.5te

Enc2 3te + 1tp 4te + 2tp + ts 5.5te + ts

ReEnc 3tp te + 4tp + tv 2te + tp + tv

Dec1 2te + 1tp te + 5tp + tv 2te

Dec2 2te + 3tp te + 5tp + tv 3te + tv

Length

pk 1|G1| + 1|G2| 1|G1| 5|G1| + 1|G2|
sk 1|Z∗

p| 1|Z∗
p| 5|Z∗

p|
Level1 2|G1| + |G2| + |M| |svk| + 3|G1| + 2|G2| + |σ| |svk| + 2|G2| + |M|
Level2 2|G1| + |G2| + |M| + |W| |svk| + 3|G1| + 2|G2| + |σ| |svk| + |G1| + 3|G2| + |M| + |σ|
ReKey 2|G1| |Z∗

p| 2|G1| + 2|Z∗
p|

Trapdoor – |G1| 2|G1| + 2|Z∗
p|

Security CCA CCA CCA

ROM Yes Yes Yes

Keyword Search No Yes Yes

Anonymity No Yes Yes

Unidirectionality Yes No Yes

Collusion-Resistant Yes No Yes

Table 1. Comparison Among Various C-PRE and PRES Schemes

From Table 1, it is observed that our C-PRES from Section 3 outperforms
Shao et al.’s PRES scheme (SCLL) in terms of both computational and com-
munication costs. Furthermore, ours is collusion resistant as well as it is a
conditional re-encryption scheme, while Shao et al.’s PRES scheme is bidirec-
tional only. Our C-PRE is also superior to Weng et al.’s scheme (WYTDB)
[33] in all terms of computation costs. More importantly, our scheme provides
anonymity, in contrast to Weng et al.’s scheme. However, like Weng et al.’s
scheme [33], our scheme is limited in that its security relies on the random
oracle.

5 Applications of C-PRES

In this section, we provide three applications for C-PRES schemes. We specif-
ically select these applications to demonstrate how C-PRES schemes can be
used to present solutions in these scenarios.

5.1 Application in Privacy-Preservation of Online Photo Sharing

Online photo sharing is an increasingly popular function of social-networking
services, allowing users to share their photos with family and friends privately.
By definition, photo sharing is the process of publishing or transfering a user’s
digital photos online, thus enabling the user to share them with others pri-
vately. This function is provided through both websites and applications that
facilitate the upload and display of images. The term can also be loosely ap-
plied to the use of online photo galleries that are set up and managed by
individual users. Sharing means that other users can view some of the pic-

31

tures according to the access right. It allows users to set up privacy policies to
control who can access their photos. With the increased popularity of mobile
devices, such as iPhone and Blackberry, users can comfortably update their
photos wherever they go and the service enables them to notify their peers
automatically, once the peers are authorized by sufficient access policies. The
service enables photo-sharing providers to disseminate users’ photo data in a
secure manner, since the data are actually encrypted. Further, the users can
control when or where the data can be viewed by their peers. And the photo
sharing provider can learn nothing about the data of the user including the
tag, keyword and content of the photo.

A naive solution could be provided as follows. A user, Alice, could encrypt her
photo prior to sending it to the photo sharing provider, and hence, protecting
it from the provider or other adversaries. To enable her peers, Bob and Carol,
to view her photo, Alice can securely disseminate her key to both Bob and
Carol. Rather than using a common shared key, Alice could establish pair-wise
secret keys with each of her friends or incorporate asymmetric keys, which both
require a great deal of additional storage, computation and communication
overheads. Hence, although this solution is feasible, this is impractical.

Furthermore, since the data are actually encrypted, it needs a searchable en-
cryption to ensure that the photo sharing provider can find the encrypted data
(tag or keyword of the photo). We can solve this problem using C-PRES to
provide the solution to the above problem, Alice sends a re-encryption key to
Bob to share her location with Bob. The re-encryption key is computed using
Bob’s public key and Alice’s private key, and then it is sent to the photo shar-
ing service provider. When Bob would like to acquire Alice’s location, he will
first send a request to the location sharing provider. Then, the photo sharing
provider will retrieve Alice’s last encrypted photo and apply the re-encryption
key and policies defined by Alice. Finally, the photo sharing provider will pro-
vide this information to Bob. Upon receiving this information, Bob can then
decrypt the photo.

Alice may only want her families (Charlie) to see her photo when traveling,
but she does not want others (David) to do so. To enable this kind of services,
we will do the following.

First, let keyword w = “Travel”, and sends the trapdoor TAlice,w and condi-
tional re-encryption key rkAlice,w,Charlie to the photo sharing provider. Then,
the ciphertext containing Alice’s photo, which is encrypted with the keyword
w = “Travel” can be re-encrypted by the provider to her families (Char-
lie) but not to her friends (David). Clearly, the provider can learn nothing
about the user’s data including the tag, keyword and content of the photo.
C-PRES, though very efficient, is still too time-consuming to encrypt large
volumes of data. To overcome this, the actual data is encrypted by a

32

more efficient hybrid encryption scheme, where a secure symmetric
encryption (SE−Enc, SE−Dec) is chosen to encrypt the photo data
under a random key K and the random key K is then encrypted
using the C-PRES scheme by Enc2(pki, K, w). Then the ciphertext
would be the form of C = C1||C2 = Enc2(pki, K, w)||SE−Enc(K,m). As
discussed in the introduction, if both encryptions are independent,
then the hybrid scheme may not anymore CCA secure. Clearly, if
the symmetric encryption is not linked to the second encryption,
then the adversary can get a new ciphertext by C ′ = C1||C3 where
C3 is randomly chosen. The adversary can ask for a re-encryption
query of C ′ = C1||C3 for a corrupted delegate, the proxy will re-
encrypt it since the proxy cannot check in this case all the validity
of the new ciphertext C ′ = C1||C3. To overcome this, we can include
the symmetric encryption of data on input to the hash function
φ′ = H0(C0, C2, C4, SE − Enc(K,m)) and the one time signature of the
symmetric encryption of data.

5.2 Application in Personal Health Record

Consider the scenario in a Personal Health Record (PHR) disclosure. A PHR
contains all kinds of health-related information about an individual (say, Al-
ice). For example, a PHR contains medical history that includes surgery, ill-
ness, laboratory test results, allergies, chronic diseases, vaccinations, imaging
(x-ray) reports, immunization records, etc. and the sensitive information pro-
vided by Alice including her age, weight, family, food statistics, contact infor-
mation and any other information related to her health. It is clear that a PHR
contains very sensitive data that must be protected. The remote PHR data
centers are responsible for storing users’ PHR data including the data need to
be protected. On the one hand, the remote data centers are usually assumed to
be semi-trusted, so the private data should be encrypted. On the other hand,
users usually do not retrieve all the encrypted data but part of them, which de-
mands the searchable encryption scheme supporting the keyword-based search
on the ciphertext.

To ensure Alice’s privacy, one may decide to encrypt her PHR and store only
the ciphertexts in the PHR database. Then, the database can be decrypted
on demand. This solution is not practical since Alice needs to be involved in
every request to conduct the decryption.

Incorporating a proxy re-encryption would be a viable solution in this situa-
tion. Nevertheless, the traditional proxy re-encryption is not suitable since the
proxy who has the re-encryption key can convert all ciphertext of PHR. Thus,
Ibraimi, Tang, Hartel, and Jonker uses Type-based Proxy Re-Encryption(same

33

as C-PRE) to get a more fine-grained PHR disclosure scheme. But the limi-
tation of C-PRE is the C-PRE will leak the information of keyword(or type)
to remote PHR data centers.

It will be great if we choose C-PRES, as the situation will change completely.
Suppose different categories of Alice’s encrypted PHR are accompanied with
a keyword, such as the encrypted PHR under the keyword “allergies”, or the
encrypted PHR under the keyword “imaging reports”. Then, Alice categorizes
her PHR according to her privacy concerns. For instance, she can send a
trapdoor TAlice,w and a re-encryption key rkAlice,w,Practitioner from Alice to a
general practitioner under the keyword w = “allergies” to the proxy P . By
doing this, for the encrypted PHR under the keyword “allergies”, it can be
searchable and re-encrypted by proxy P , then it can be decrypted by the
specifically authorized general practitioner.

5.3 Application in Wireless Sensor Networks

Recent advancements in wireless communications and electronics have enabled
rapid development of wireless sensor network(WSN). WSN has become the
most attractive technology for building automation, which allows users to
designate the building network and subsequently, control building appliances
depending on their needs. We assume that the data of building automation are
stored in remote data centers and that the user can access the data through
the Internet.

Nevertheless, messages exchanged through the WSN and remote data centers
must be protected to improve the safety of building automation. Further, its
importance is to provide various services to authorized users or would-be users,
such as visitors.

The remote data centers are responsible for storing users’ data including the
data need to be protected. On the one hand, the remote data centers are
usually assumed to be semi-trusted, so the private data should be encrypted.
On the other hand, users usually do not retrieve all the encrypted data but only
a part of them, which requires the searchable encryption scheme to support
the keyword-based search and keyword-based re-encryption on the ciphertext.

We intend to apply an anonymous conditional proxy re-encryption with key-
word search, which re-encrypts a ciphertext of the visitors to delegate the
capability of decryption to offer a practical and viable solution for WSN.

At first, visitors cannot control anything in the house due to the security
policy. For this reason, the owner needs to determine the delegation power
suitable for visitors to utilize the appliances. After authorization, appliances

34

(lights, electronic faucets) can now be controlled by visitors. All of the appli-
ances in the building can be managed by the owner and visitors in C-PRES
scheme. For example, the owner may want the visitor to control lights, but
not the electronic window curtains. We use C-PRES to solve this problem as
follows. First, let the keyword w = “lights” and send the trapdoor TOwner,w

and re-encryption key rkOwner,w,V isitor to the remote data centers. Then, the
ciphertext of lights data which is encrypted by keyword W = “lights” can
be searched and re-encrypted by remote data centers who has rkOwner,W,V isitor

and send to the visitor, and therefore, they can be decrypted by the visitor.
Nevertheless, the visitor can not re-encrypt the ciphertext of electronic win-
dow curtains data which are encrypted by keyword W = “curtains”. Clearly,
the provider can learn nothing about the user’s data such as the specific type
and location of the appliance that is being operated

6 Conclusion

In this paper, we present the first Chosen-Ciphertext Secure anonymous con-
ditional proxy re-encryption with keyword search (C-PRES) scheme, which
is an affirmative and effective answer to the open question posed in [32]
and [30]. Our scheme offers several advantages over previous such systems,
including: chosen-ciphertext security; keyword-anonymity; unidirectionality;
non-interactivity; and collusion-resistance.

This work motivates a few interesting questions. The first one is how to con-
struct a CCA-secure C-PRES scheme without random oracles. Actually, our
scheme is rely on the ROM since we use Fujisaki-Okamoto transformation to
ensure the CCA secure of first level security, it seems possible to adopt the
secure pseudo-random number generators instead of Fujisaki-Okamoto trans-
formation to avoid the ROM, we leave it as further work. Then, the second
question is how to construct C-PRES schemes without pairings.

References

[1] G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved proxy re-encryption
schemes with applications to secure distributed storage. In Proc. of the 12th
Annual Network and Distributed System Security Symposium, pp. 29-44. (2005)

[2] J. Baek, R. Safavi-Naini and W. Susilo. Public key encryption with keyword
search revisited. In Proc. of Applied Cryptography and Information Security 06
(ACIS 2006), LNCS, vol. 5072, pp. 1249 - 1259. Springer, Heidelberg (2008)

35

[3] J. Baek, R. Safavi-Naini and W. Susilo. On the Integration of Public Key Data
Encryption and Public Key Encryption with Keyword Search. In Proc. of ISC
2006, LNCS, vol. 4176, pp. 217 - 232. Springer, Heidelberg(2006)

[4] M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic proxy
cryptography. In Proc. of EUROCRYPT 1998, LNCS, vol. 1403, pp.127-144.
Springer, Heidelberg (1998)

[5] D. Boneh and X. Boyen. Efficient selective-ID based encryption without random
oracles. In Proc. of EUROCRYPT 2004, LNCS, vol. 3027, pp. 223-238. Springer,
Heidelberg (2004)

[6] D. Boneh, G. Di Crescenzo, R. Ostrovsky, G Persiano. Public key encryption with
keyword search. In Proc. of EUROCRYPT 2004. LNCS, vol. 3027, pp. 506-522.
Springer, Heidelberg (2004)

[7] J.W. Byun, H.S. Rhee, H. A. Park, D.H. Lee. Off-Line Keyword Guessing Attacks
on Recent Keyword Search Schemes over Encrypted Data. In Proc. of SDM 2006.
LNCS 4165, pp. 75-83, Springer-Verlag, 2006.

[8] R. Canetti and S. Hohenberger. Chosen-ciphertext secure proxy re-encryption.
In Proc. of the 14th ACM conference on Computer and communications security,
pp.185-194. ACM New York, NY, USA(2007)

[9] R. Canetti, S. Halevi, and J. Katz. Chosen-Ciphertext Security from Identity-
Based Encryption. In EUROCRYPT 2004, LNCS 3027, Springer, Heidelberg,
2004, pp. 202–222.

[10] R. Canetti, H. Krawczyk, and J.B. Nielsen. Relaxing chosen-ciphertext
security. In CRYPTO 2003, LNCS 2729, Springer, Heidelberg, 2003, pp.
565–582. Full version: Cryptology ePrint Archive, Report 2003/174 (2003),
http://eprint.iacr.org/.

[11] C. Chu and W. Tzeng. Identity-based proxy re-encryption without random
oracles. In Proc. of ISC 2007, LNCS, vol. 4779, pp.189-202. Springer, Heidelberg
(2007)

[12] C. Chu, J. Weng, S. Chow, J. Zhou, R. Deng. Conditional proxy broadcast
re-encryption. In Proc. of ACISP 2009, LNCS, vol. 5594, pp.327-342. Springer,
Heidelberg (2009)

[13] S. Chow, J. Weng, Y. Yang, and R. Deng. Efficient Unidirectional Proxy Re-
Encryption. In Proc. of AFRICACRYPT 2010, LNCS, vol. 6055, pp.316-332.
Springer, Heidelberg (2010)

[14] R. Deng, J. Weng, S. Liu, K. Chen. Chosen-cipertext secure proxy re-encryption
without pairings. In Proc. of CANS 2008. LNCS, vol. 5339, pp. 1-17. Springer,
Heidelberg (2008)

[15] L. Fang, W. Susilo, and J. Wang. Anonymous Conditional Proxy Re-encryption
without Random Oracle. In Proc. of ProvSec 2009. LNCS, vol. 5848, pp. 47-60.
Springer, Heidelberg (2009)

36

[16] E. Fujisaki, and T. Okamoto. Secure Integration of Asymmetric and Symmetric
Encryption Schemes. In Proc. of CRYPTO 1999. LNCS, vol. 1666, pp. 537-554.
Springer, Heidelberg (1999)

[17] C. Gentry. Practical identity-based encryption without random oracles. In Proc.
of EUROCRYPT 2006, LNCS, vol. 4004, pp. 457-464. Springer, Heidelberg (2006)

[18] M. Green and G. Ateniese. Identity-based proxy re-encryption. In Proc. of
ACNS 2007, LNCS, vol. 4521, pp. 288-306. Springer, Heidelberg (2007). Full
version: Cryptology ePrint Archieve: Report 2006/473.

[19] P. Golle, J. Staddon, and B. Waters. Secure Conjunctive Search over Encrypted
Data. In: Jakobsson, M., Yung, M., Zhou, J. (eds.), In Proc. of Second
International Conference on Applied Cryptography and Network Security, ACNS
2004. LNCS 3089,Springer-Verlag, 2004, pp. 31-45.

[20] S. Hohenberger, G. N. Rothblum, A. Shelat and V. Vaikuntanathan. Securely
Obfuscating Re-Encryption. Journal of Cryptology. Express, Vol. 24, No. 2, pp.
694-719, 2011.

[21] I. R. Jeong, J. O. Kwon, D. Hong, and D. H. Lee. Constructing PEKS schemes
secure against keyword guessing attacks is possible? Computer Communications.
Express, Vol. 32, No. 2, pp. 394-396, 2009.

[22] B. Libert, D. Vergnaud. Unidirectional chosen-ciphertext secure proxy re-
encryption. In Proc. of PKC 2008, LNCS, vol. 4939, pp. 360-379. Springer,
Heidelberg. (2008)

[23] B. Libert, D. Vergnaud. Unidirectional chosen-ciphertext secure proxy re-
encryption. IEEE Transactions on Information Theory. Vol. 57, No. 3, pp. 1786-
1802. (2011). Full version of [22]: http://hal.inria.fr/inria-00339530/en/

[24] D.J. Park, K. Kim, P.J. Lee. Public Key Encryption with Conjunctive Field
Keyword Search. In: Lim, C.H., Yung, M. (eds.), In Proc. of Information Security
Applications, 5th International Workshop, WISA 2004. LNCS 3325, Springer-
Verlag, 2005, pp. 73-86.

[25] T. Matsuda, R. Nishimaki, and K. Tanaka. CCA Proxy Re-Encryption without
Bilinear Maps in the Standard Model. In Proc. of PKC 2010, LNCS, vol. 6056,
pp. 261-278. Springer, Heidelberg (2010).

[26] H. S. Rhee, J. H. Park, W. Susilo, and D. H. Lee. Improved searchable public
key encryption with designated tester. In Proc. of the 4th international Symposium
on information, Computer, and Communications Security, ASIACCS 2009, ACM,
New York, NY, 2009, pp. 376-379.

[27] H. S. Rhee, W. Susilo and H-J. Kim. Secure searchable public key encryption
scheme against keyword guessing attacks. IEICE Electron. Express, Vol. 6, No. 5,
pp.237-243, (2009).

[28] H. S. Rhee, J. H. Park, W. Susilo, D. H. Lee. Trapdoor security in a searchable
public-key encryption scheme with a designated tester. Journal of Systems and
Software. Vol. 83, No. 5, pp.763-71. (2010).

37

[29] J. Shao and Z. Cao. CCA-secure proxy re-encryption without pairings. In Proc.
of PKC 2009, LNCS, vol. 5443, pp. 357-376. Springer, Heidelberg (2009)

[30] J. Shao, Z. Cao, X. Liang, H. Lin, Proxy re-encryption with keyword search,
Information Sciences. Express, Vol. 180, No. 13, pp. 2576-2587. (2010)

[31] Q. Tang. Type-based proxy re-encryption and its construction. In Proc. of
INDOCRYPT 2008, LNCS, vol. 5365, pp. 130-144. Springer, Heidelberg (2008)

[32] J. Weng, R. Deng, C. Chu, X. Ding, J. Lai. Conditional proxy re-encryption
secure against chosen-ciphertext attack . In Proc. of the 4th International
Symposium on ACM Symposium on Information, Computer and Communications
Security (ASIACCS 2009), pp. 322 - 332.(2009)

[33] J. Weng, Y. Yang, Q. Tang, R. Deng, and F. Bao. Efficient Conditional Proxy
Re-encryption with Chosen-Ciphertext Security. In Proc. of the 12th International
Conference on Information Security (ISC 2009), pp. 151-166.(2009)

[34] B. Waters, D. Balfanz, G. Durfee, D. Smetters. Building an Encrypted
and Searchable Audit Log. Proc. of Network and Distributed System Security
Symposium, NDSS 2004, (2004)

[35] W. C. Yau, S. H. Heng and B. Goi. Off-Line Keyword Guessing Attacks on
Recent Public Key Encryption with Keyword Search Schemes. In Proc. of ATC
2008, LNCS 5060, pp. 100-105, Springer-Verlag, 2008.

[36] W. C. Yau, R.Phan, S.H. Heng and B. Goi. Proxy Re-encryption with Keyword
Search: New Definitions and Algorithms, Journal of Security and Its Applications.
Express, Vol. 5, No. 2, pp. 149-160. (2011)

[37] B. Zhang, F. Zhang. An efficient public key encryption with conjunctive-subset
keywords search, Journal of Network and Computer Applications. Express, Vol.
34, No. 1, pp. 262-267. (2011)

[38] R. Zhang and H. Imai. Generic combination of public key encryption with
keyword search and public key encryption. Proc. of Cryptology and Network
Security, 6th International Conference, CANS 2007, LNCS, vol. 4856, pp. 159-174.
Springer, Heidelberg (2007)

[39] R. Zhang, G. Hanaoka, J. Shikata, and H. Imai. On the security of multiple
encryption or CCA-security+CCA-security=CCA-security? Proc. of PKC 2004,
LNCS, vol. 2947, pp. 360-374. Springer, Heidelberg (2004)

38

	Chosen-ciphertext secure anonymous conditional proxy re-encryption with keyword search
	Recommended Citation

	viewcontent.cgi

