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Abstract 
 

Free Viewpoint Video (FVV) aims to provide users with the ability to select arbitrary 

views of a dynamic scene in real-time. FVV systems widely adopt simplified plenoptic signal 

representations, in particular light field (LF). This is referred as an LF-based FVV system in this 

thesis. An LF-based FVV system consists of three main components: acquisition component, 

rendering component, and compression/transmission component. The efficacies of these 

components directly affect the quality of the output video.  

The main aim of this research is to propose a novel theory and mathematical framework 

for analytical comparison, evaluation, and optimization of the LF acquisition and rendering 

components for a realistic under-sampled LF and approximated depth information with errors in 

depth maps. In contrast, most of the current researches on LF analytical evaluation focus on 

perfect signal reconstruction and are adequate to objectively predict and assess the influences of 

imperfections of acquisition and rendering on the output video quality. 

In the core of the proposed theory there is the concept of effective sampling density 

(ESD). ESD is shown to be an analytically tractable metric that represents the combined impact 

of the imperfections of LF acquisition and rendering and can be used to directly predict/estimate 

output video quality from system parameters. The ESD for the commonly used LF acquisition 

configurations and rendering methods are derived and analyzed for evaluation and comparison. 

This claim is verified by extensive numerical simulations. Furthermore, an empirical 

relationship between the rendering quality (in PSNR) of a system and its ESD is established to 

allow direct prediction of the overall video quality without the actual implementation of the 

system. A small scale subjective user study is also conducted which indicates a high correlation 

between ESD and perceived quality. 

In addition to comparison and evaluation of LF acquisition and rendering components 

and objective quality assessment of LF-based FVV systems, ESD theory is also applied to 
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several other significant problems. The first problem is LF acquisition optimization. In 

particular for a simplified regular grid acquisition, this optimization leads to calculation of the 

number of cameras required to capture the scene. Existing methods calculate the Nyquist 

density by assuming a band-limited signal and perfect reconstruction of an arbitrary view using 

linear interpolation, which often results in an impractically high number of cameras. In contrast, 

by employing ESD to solve this problem, it is possible to study the problem for under-sampled 

LF under realistic conditions (non-Lambertian reflections and occlusions) and rendering with 

complex interpolations. Theoretical and numerical results show that the resulting number of 

cameras is significantly lower than what was reported in the previous studies with only a few 

percent reduction in the rendering quality. Moreover, it is shown that the previous methods are 

special cases of the one derived from ESD theory. 

The second problem is LF rendering optimization. The ESD theory is utilized to 

provide an estimation of the rendering complexity in terms of optimum number of rays 

employed in interpolation algorithm so as to compensate for the adverse effect caused by errors 

in depth maps for a given rendering quality. The proposed method is particularly useful in 

designing a rendering algorithm with inaccurate knowledge of depth to achieve the required 

rendering quality. 

The third problem is a joint optimization of both LF acquisition and LF rendering to 

achieve a desired output quality. In particular, the trade-off among acquisition camera density, 

ray selection, depth error and rendering quality is studied using ESD and methods are presented 

to optimize these parameters for a system with a desired output quality in terms of ESD or 

PSNR by applying a Lagrangean method to ESD. Employing the proposed method on a regular 

grid camera system shows that the number of cameras can be reduced by 8 times if 32 rays, 

instead of 8 rays, are employed during rendering to achieve a similar rendering quality for a 

typical 20% error in depth estimation. 
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While in original presentation of ESD, the scene complexity is assumed to be fixed, the 

fourth problem focuses on the scene complexity and how a non-uniform/irregular acquisition 

can lead to a higher output quality. LF acquisition is theoretically considered as a problem of 

plenoptic signal sampling. It is typically performed by using a regular acquisition such as a 

regular camera grid. While a regular acquisition itself results in non-uniform sampling density, 

this non-uniformity does not match the scene complexity and frequency variations. To give a 

solution to the fourth problem the ESD theory is superimposed with the scene complexity and 

an irregular acquisition method is proposed for optimum non-uniform LF sampling 

corresponding to the variations of the scene complexity. Specifically, scene complexity is 

measured through analyzing DCT coefficients of reference images of the scene, describing the 

frequency behavior of the plenoptic signal over the scene space. An optimization model is 

formulated to calculate the optimum configurations of the acquisition cameras including 

positions and orientations. The theoretical analysis and numerical simulations demonstrate that 

the rendered video quality can be significantly improved (around 20% in mean PSNR) by 

employing the proposed irregular acquisition compared with the regular camera grid. 

To validate the proposed theory, a simulation system is proposed. The simulator takes a 

3D model of a scene and generates both reference cameras images and ground truth images. The 

proposed simulation system is highly flexible and efficient to automatically generate different 

datasets and objectively compare and analyze any LF-based FVV systems for any given 

experiment design scheme. 

While the fundamentals of ESD theory is studied and reported in this thesis, the theory 

requires significant further research. The author is working on extending the ESD theory and 

applying it to more problems and will report the results in future publications. 
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𝒎  the number of pixels bounded by boundary rays 𝛽𝑖s 

𝒖𝒗 camera plane  

𝒔𝒕 image plane 

𝑵𝑵  LF rendering methods with Nearest Neighbourhood estimation  

𝑺𝑻  LF rendering methods using a 2D interpolation in image plane 𝑠𝑡  

𝑼𝑽  LF rendering methods using a 2D interpolation in camera plane 𝑢𝑣 

𝑼𝑽𝑺𝑻  LF rendering methods using a full 4D interpolation, e.g., quadlinear in both camera and 

image planes 

𝑼𝑽− 𝑫  LF rendering methods using focusing depth as geometric information for ray selection 

and employing UV interpolation 

𝑼𝑽𝑺𝑻 −𝑫  LF rendering methods using focusing depth as geometric information for ray 

selection and employing UVST interpolation 

𝑼𝑽− 𝑫𝑴  LF rendering methods using full depth maps as geometric information for ray 

selection and employing UV interpolation 

𝑼𝑽𝑺𝑻 −𝑫𝑴  LF rendering methods using full depth maps as geometric information for ray 

selection and employing UVST interpolation 

𝑼𝑽𝑫𝑴(𝒅,𝜟𝒅, 𝒌, 𝒍, |𝛚|)  a generic representation for UV-DM rendering method 

𝑴𝑺𝑬  Mean Square Error used for PSNR calculation 

𝑷𝑺𝑵𝑹  Peak Signal to Noise Ratio 

𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒅 𝑷𝑺𝑵𝑹  the PSNR observed from experiments 

𝑬𝑺𝑫𝒎𝒆𝒕𝒉𝒐𝒅   effective sampling density for a given rendering method 

𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝑴𝑺𝑬  the MSE expected from observed PSNR 

𝒇  the empirical function to map observed PSNR to calculated ESD 

𝒇𝑬𝑺𝑫𝒎𝒆𝒕𝒉𝒐𝒅  the empirical function 𝑓 for 𝐸𝑆𝐷𝑚𝑒𝑡ℎ𝑜𝑑 

𝑸  a parameter used to define 𝑓 

𝑷  a parameter used to define 𝑓 

 



xviii |   L i s t  o f  N o t a t i o n s  

  

 

 

Notations introduced in Chapter 4 and 5: 

 

𝒃(𝑢, 𝑣, 𝑠, 𝑡)  a continuous light field 

𝒒  the sampling pattern 

𝒘  a low-pass filtering and interpolation mechanism 

𝒓  
* 
the rendering output

 

𝑩(𝑼,𝑽, 𝑺, 𝑻)  corresponding spectra of 𝑏 in frequency domain (The Fourier transform of 𝑏) 

𝑸  
* 
corresponding spectra of 𝑞 in frequency domain 

𝑾  corresponding spectra of 𝑤 in frequency domain 

𝑹  
* 
corresponding spectra of 𝑟 in frequency domain 

𝒇  
* 
the focal length 

𝜹(. )  Dirac delta function 

 𝒄𝟏 , 𝒄𝟐 , 𝒄𝟑  and 𝒄𝟒   integer constants used to define q 

 𝒌𝒖   the distance between cameras in 𝑢 direction  

𝒌𝒗   the distance between cameras in 𝑣 direction 

𝒍𝒔  the horizontal pixel length. 

𝒍𝒕   the vertical pixel length. 

𝑩′(𝑺, 𝑻)  the 2D Fourier transform of the captured image 

𝑯  the scene complexity in frequency domain  

𝑵𝒅   depth layers  

𝒅𝒎𝒊𝒏  minimum depth of the scene 

𝒅𝒎𝒂𝒙  maximum depth of the scene 

𝒌𝒖
𝒎𝒂𝒙   maximum allowed k in 𝑢 direction to avoid aliasing 

𝒌𝒗
𝒎𝒂𝒙   maximum allowed k in 𝑣 direction to avoid aliasing 

𝐄𝐒𝐃̅̅ ̅̅ ̅̅   the average of ESD throughout the scene space 

𝐄𝐒𝐃𝑰𝒅𝒆𝒂𝒍   the ideal ESD with accurate depth estimation 𝛥𝑑 = 0 and  𝑛 rays interpolation 

𝒏   
* 
number of rays used for ideal rendering based on the scene reflection complexity 
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* Please note that these notations are used more than once in the thesis and should be interoperated based on the 

context 

 

Notations introduced in Chapter 6: 

 

𝑻   minimum required rendering quality as desired 𝐸𝑆𝐷̅̅ ̅̅ ̅̅   

𝜵(𝐄𝐒𝐃𝑼𝑽𝑫𝑴(𝒅,𝜟𝒅,𝒌,𝒍,|𝛚|))   the gradient of ESD𝑈𝑉𝐷𝑀(𝑑,𝛥𝑑,𝑘,𝑙,|ω|) 

𝑪(𝒌, |𝝎|)  the cost function to express the combined rendering and acquisition cost 

𝑪𝒌  the cost associated with each camera in camera grid 

𝑪𝝎  the rendering computational cost associated with |𝜔| 

𝜦 (𝒌, |𝝎|, 𝝀)  Lagrangean representation of 𝐶(𝑘, |𝜔|)   

𝝀  Lagrange multiplier 

𝑿  an auxiliary variable equal to √|𝜔| 

 

Notations introduced in Chapter 7: 

 

𝒉  a parameter representing the scene complexity 

𝑼𝒉(𝑬𝑺𝑫)  a set of utility functions of LF signal reconstruction accuracy vs. ESD  

𝒑𝒊  a small block in the 3D scene discretization 

𝜺𝒊  length of 𝑝𝑖 in 𝑋, 𝑌 and 𝑍 directions 

𝒉𝒊  complexity of 𝑝𝑖 in term of frequency variations 

𝒑𝒊(𝒙𝒊, 𝒚𝒊, 𝒛𝒊, 𝜺𝒊, 𝒉𝒊)  representation of 𝑝𝑖 with Cartesian position of (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) 

𝒎  
* 
number of 3D blocks 𝑝𝑖 in the scene  

𝒄𝒊  a camera in acquisition component 

𝒏  
* 
number of cameras in the acquisition 

𝑮𝒏  the acquisition component of n cameras {𝑐1, 𝑐2, … 𝑐𝑛} 

𝒄𝒊(𝒙𝒊, 𝒚𝒊, 𝒛𝒊, 𝜶𝒊, 𝜷𝒊, 𝜽𝒊, 𝒇𝒊)  representation of camera 𝑐𝑖 with Cartesian position of (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) 

𝜶𝒊  the camera 𝑐𝑖’s orientation in 𝑋 direction 

𝜷𝒊  
* 
the camera 𝑐𝑖’s orientation in 𝑌 direction 
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𝜽𝒊  the camera 𝑐𝑖’s orientation in 𝑍 direction 

𝒇𝒊  the camera 𝑐𝑖’s internal parameters 

𝑼𝒉𝒊(𝑬𝑺𝑫𝑹(𝑮𝒋, 𝒑𝒊))  the rendering accuracy for block 𝑝𝑖 for acquisition 𝐺𝑗  

𝑾(𝒉𝒊)  the weight of ℎ𝑖 based on 𝑈ℎ𝑖 

𝑶(𝑮𝒏)  objective function for non-uniform plenoptic sampling 

𝜹𝑼𝒉𝒊
  marginal utility 

𝜷𝟏  
* 
a parameter in describing 𝛿𝑈ℎ𝑖

  (𝛽1 ≥ 1) 

𝜷𝟐  
* 
a parameter in describing 𝛿𝑈ℎ𝑖

  (𝛽2 ≥ 𝑈ℎ𝑖) 

𝑸(𝒄𝒊)  a function which gives a set of scene blocks that can be seen/captured by camera 𝑐𝑖 

𝑬(𝑮𝒋, 𝒑𝒊)  a function which gives the number of cameras that are able to see/capture 𝑝𝑖 for a 

given acquisition 𝐺𝑗 

𝒅𝒖  camera grid discretization length, i.e., the minimum space required for a camera in 𝑢 

direction 

𝒅𝒗  camera grid discretization length, i.e., the minimum space required for a camera in 𝑣 

direction 

𝑶𝒖   possible number of discrete orientations in 𝑢 direction 

𝑶𝒗   possible number of discrete orientations in 𝑣 direction 

𝑵  all possibilities for positioning the cameras in a given camera grid 𝑢𝑣 

𝒔𝒓  one potential camera in the camera grid 

𝑺  a set of all potential cameras in 𝑢𝑣 plane. 

�̃�𝒊(�̃�𝒊, �̃�𝒊, �̃�𝒊)  approximated 2D scene blocks 

(�̃�𝒊, �̃�𝒊)   position of the projected scene over image plane 𝑠𝑡 

 

* Please note that these notations are used more than once in the thesis and should be interoperated based on the 

context 

 

 

Notations introduced in Appendices: 

 

𝑭𝑶𝑽𝒄𝒂𝒎𝒆𝒓𝒂  Camera’s Field of View



1 |   C h a p t e r 1     I n t r o d u c t i o n  

 

1 Chapter 1: Introduction 
 

 

Free Viewpoint Video (FVV) [1-5] aims to provide users with the ability to select 

arbitrary views of a dynamic scene in real-time. It allows the user to interactively control the 

viewpoint and generate new views from any 3D (three-dimensional) position and orientation. 

FVV systems widely adopt simplified plenoptic signal [6] representations, in particular, using 

all the rays reflected from every point of the scene in all directions, referred to as a light field 

(LF) [7, 8]. This is referred as an LF-based FVV system in this thesis. The conventional LF 

model assumed no geometric information about the scene and, hence, required a large number 

of cameras to capture the scene. However, recent extensions integrate the conventional model 

with geometric information, in particular depth maps of the scene [9-15], to improve the 

rendering quality with less number of cameras. Compared to the traditional depth image based 

rendering (DIBR) methods, these extensions are relatively insensitive to errors in depth maps 

[16, 17]. 

 An LF-based FVV system consists of three components: LF acquisition [18-23], LF 

rendering [9-14, 24, 25] and LF compression/transmission [1, 2, 26-29]. The efficacies of these 

components directly affect the quality of the output video. This research focuses on the 

analytical evaluation and optimization of the LF acquisition and rendering components, hence, 

for the remainder of the thesis, quality degradation as a result of compression and transmission 

is ignored. Figure 1.1 shows a general system diagram for an LF-based FVV system. The main 

research questions are also illustrated in Figure 1.1. Simplified transmission component is 

represented as a direct communication link between acquisition and rendering components. 

Acquisition component typically involves two processes, ray capturing and depth 

estimation. The light field is often sampled by multiple cameras through the ray capturing 

process, which results in a certain number of rays acquired per unit area of the convex hull of 
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the surface of the scene at a location, referred to as sampling density (SD). SD is typically not 

uniform across the scene even for a regular camera grid. In addition, the depth estimation 

process provides an estimation of depth (e.g. depth maps) to be used in rendering. This can be 

obtained by specialized hardware, such as depth cameras, or computed from the images 

obtained by the multiple cameras. In either case, the depth estimation will have some error. 

The rendering component aims to reconstruct an unknown ray 𝑟 from the acquired rays. 

In general, this component can be decomposed into two processes: (i) the ray selection process 

that chooses a subset of acquired rays, purported to be in the vicinity of 𝑟; and (ii) the 

interpolation process that estimates or computes 𝑟 from these selected rays. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1.1. LF-based FVV system schematic diagram 

 

The ray selection process, in particular, is often prone to error. For example, imperfect 

knowledge of depth may cause this process to miss some neighboring rays and choose others 

that are indeed sub-optimal (with respect to proximity to 𝑟) for interpolation. Also, constraints 
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on computational load (imposed due to, say, real-time rendering requirements) may necessitate 

this process to select only a subset of neighboring rays, less than what is available. In both 

cases, there is some loss of information and the output of this process represents an effective 

sampling density (ESD) [16, 30, 31] which is lower than the SD obtained by the acquisition 

component and distortion will inevitably introduced in the reconstructed video. ESD is defined 

as the number of rays per unit area of the scene that have been captured by acquisition 

component and chosen by ray selection process to be employed in the rendering. 

 

1.1 LF-based FVV Research Questions 

 

There are several research fields associated with light field (LF) and Free Viewpoint 

Video/TV (FVV/FTV) systems. The main research questions that this thesis is dealing with can 

be categorized based on the LF-based FVV system components as demonstrated in Figure 1.1. 

 

1.1.1 Scene    

 

The main research question dealing with the scene is that how the scene complexity can 

be acquired and represented. This includes geometric information of the scene, e.g., depth maps 

and complexity information of the scene in particular the geometric and texture frequency 

variations that can be employed for non-uniform acquisition. 

 

1.1.2 Acquisition  

  

There are several research questions dealing with acquisition component of an LF-based 

FVV system. In particular: 
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 Development of depth estimation mechanism for estimation of the depth of the 

scene. 

 Analytical evaluation of the acquisition component for prediction of the 

influence of the acquisition on the output video quality. This allows analytical 

comparison of different acquisition architectures and evaluation of the effect of 

acquisition parameters, e.g., camera density on the output quality. 

 Optimization of acquisition component for a given criteria on the output quality 

and acquisition cost. In particular acquisition optimization can be expressed in 

term of problems such as how many cameras are required in a regular camera 

grid to satisfy a given output quality? Or where to place the cameras in an 

irregular camera grid to produce the highest rendering quality for a given scene 

with known frequency variations. 

 

1.1.3 Rendering            

 

There are several research questions dealing with rendering component of an LF-based 

FVV system. In particular: 

 Analytical evaluation of rendering method for prediction of the influence of the 

rendering method on the output video quality. This allows analytical 

comparison of different LF rendering methods and evaluation of the effect of 

rendering parameters on the output quality. 

 Optimization of rendering component in particular ray selection process for a 

given criteria on the output quality and computational cost. For example how 

many rays should be selected by the ray selection process? And which rays? Or 

what type of interpolation method should be applied to these rays? 
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1.1.4 Output Video 

 

The main research question dealing with the output video is development of an 

analytical model for quality assessment of the video, allowing direct prediction of output quality 

from acquisition and rendering parameters. This can be employed for theoretical evaluation and 

optimization of the system. 

 

1.2 Current Approaches to the LF-based FVV Research Problems 

 

Most of the current researches on LF analytical evaluation focused on one of these main 

fields: signal processing theory, for calculating the minimum sampling rate by LF frequency 

analysis and computing the signal Nyquist density for perfect signal reconstruction and 

optimum signal filtering, optical analysis of the LF system by assuming LF as a discrete 

synthetic aperture and calculating the optimum filtering, geometric analysis of acquisition and 

rendering  to calculate the minimum number of cameras, and computer vision and computer 

graphics to design better rendering methods in term of efficacy and efficiency. On the other 

hand, more realistic under-sampled LF and approximated depth information with errors in depth 

map have not been investigated widely. As the result, most of the current analytical models are 

not adequate to objectively predict and assess the influences of imperfections of both acquisition 

and rendering on the output video quality. The details of these related works will be given later 

in chapter 2. 

   

1.3 Thesis Contributions 

 

The main aim of this research is to address the above research problems and to propose 

a theory for analytical comparison, evaluation, and optimization of the LF acquisition and 
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rendering components to overcome the limitations of other approaches in more realistic 

scenarios where (i) LF is under-sampled; and (ii) there is error in depth information. In the core 

of the proposed theory there is the concept of Effective Sampling Density (ESD) for LF-based 

FVV systems. ESD provides an analytically tractable way for evaluating the influence of the 

imperfections of both acquisition and rendering components on output quality. This has been 

demonstrated and verified in [31] and will be discussed later in chapter 3. 

In particular, it is shown that for a fixed scene complexity and a given interpolation 

algorithm, ESD can objectively determine the quality of an LF rendering method for a given LF 

acquisition configuration and, hence, can be potentially used as an effective indicator for the 

quality of video generated from a corresponding LF-based FVV system. 

According to the main research questions discussed before and refer to the proposed 

ESD, the main contributions of this thesis are discussed in this section. 

 

1.3.1 Analytical Quality Assessment of Output Quality  

 

 Introduction of the novel concept of effective sampling density (ESD) and an 

approach to calculate ESD for an LF-based FVV system. 

 Verification that ESD is an effective indicator for quality, which can be 

employed to quantify the impact of acquisition and rendering on the final video 

quality separately as well as jointly. Calculation of ESD requires neither a 

reference/ground truth nor the actual output images/video. It can be derived from 

the key parameters of the acquisition and rendering components,   

 Analytical evaluation and comparison of the widely used LF rendering methods 

with and without depth information for several LF acquisition configurations. 
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 Establishment of an empirical relationship between the estimated objective 

rendering PSNR as well as subjective perceived quality that can be used for 

predicting the output quality and/or optimizing system parameters. 

 

1.3.2 Acquisition Evaluation and Optimization without Considering the Scene 

Complexity  

 

 Study under-sampled LF under realistic conditions (non-Lambertian reflections 

and occlusions) and rendering with complex interpolations with ESD and 

discussing the relation of ESD with spectral analysis of light field. 

 Demonstrating that both rendering quality and tolerance to errors in depth can be 

improved significantly by increasing ESD. 

 Optimization of ESD with respect to the camera density for a given output 

quality and level of depth map estimation error. 

 Calculating the minimum number of required cameras for a simplified 

acquisition component – a regular camera grid – to achieve a desired rendering 

quality for a given depth estimation error. 

 Comparing the proposed method for calculating the minimum number of 

cameras with two well-known methods, Chai’s LF spectral analysis [18] and 

Lin’s LF geometric analysis [32] at different levels of errors in the depth 

estimation, and showing that the proposed method theoretically and numerically 

always results in a much lower number of required cameras with only a slight 

reduction  in rendering quality (3-4% in PSNR). Moreover, it is shown that both 

Chai’s and Lin’s methods are special cases of the proposed method. 
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1.3.3 Rendering Evaluation and Optimization 

 

 Proposing an analytical model based on ESD to study the impact of depth 

estimation errors on ray selection process and rendering quality. 

 Demonstrating that the degradation of rendering quality caused by the errors in 

depth estimation can, to some extent, be quantified by ESD and compensated for 

by selecting more rays during interpolation. 

 Optimization of ESD with respect to the number of rays within the interpolation 

area employed during rendering for a given output quality and depth estimation 

error. 

 Deriving a mathematical expression to calculate the optimal number of rays 

required to compensate for errors in depth map in order to meet the specified 

rendering quality and computational efficiency. 

 

1.3.4 Joint Optimization of Acquisition and Rendering Subsystems 

 

 Study the trade-off among acquisition camera density, ray selection, depth error 

and rendering quality using the concept of ESD and present methods to optimize 

these parameters for a system with a desired output quality in terms of ESD or 

Peak-to-Signal Noise Ratio (PSNR). 

 Joint optimization of ESD with respect to both variables, i.e., camera density and 

number of rays by using Lagrangean method. Notice that optimization with 

respect to density of the camera grid is associated with the system cost and 

optimization with respect to the interpolation reflects the computational 

complexity. 
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1.3.5 Acquisition Evaluation and Optimization with Consideration to the Scene 

Complexity 

 

 Non-uniform sampling of plenoptic signal based on the scene complexity variation 

by proposing an optimal irregular LF acquisition. 

 Formulating an optimization model from ESD by considering the scene complexity 

to calculate the optimum configurations of cameras, e.g., positions and orientations 

for an LF acquisition component. 

 Representing the scene complexity as scene complexity maps by analyzing the 

spatial frequencies of references images of the scene. 

 

1.4 List of Publications from This Thesis 

 

1.4.1 Published Papers 

 

[1] H. Shidanshidi, F. Safaei, and W. Li, "A Quantitative Approach for Comparison and 

Evaluation of Light Field Rendering Techniques," in IEEE International Conference on 

Multimedia & Expo (ICME), 2011, pp. 1-4 

[2] H. Shidanshidi, F. Safaei, and W. Li, "Objective Evaluation of Light Field 

Rendering Methods using Effective Sampling Density," in IEEE International 

Workshop on Multimedia Signal Processing (MMSP), 2011, pp. 1-6 

[3] H. Shidanshidi, F. Safaei, and W. Li, "A Method for Calculating the Minimum 

Number of Cameras in a Light Field Based Free Viewpoint Video System," in IEEE 

International Conference on Multimedia & Expo (ICME), 2013, pp. 1-6 
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[4] H. Shidanshidi, F. Safaei, A. Zamani-Farahani, and W. Li, "Non-uniform Sampling 

of Plenoptic Signal based on the Scene Complexity Variations for a Free Viewpoint 

Video System," in IEEE International Conference on Image Processing (ICIP), 2013, 

pp. 3147 – 3151 

 

1.4.2 Under Review Papers 

 

[5] “H. Shidanshidi, F. Safaei, and W. Li, "Estimation of Signal Distortion using 

Effective Sampling Density for Light Field based Free Viewpoint Video," IEEE 

Transactions on Multimedia, received a qualified accept in 2014 and is now under 

second revision. 

 

1.4.3 Ready to be Submitted 

 

[6] H. Shidanshidi, F. Safaei, and W. Li, "Optimization of Acquisition and Rendering 

Subsystems Using Effective Sampling Density for Light Field based Free Viewpoint 

Video," IEEE Transactions on Multimedia, TBA 

[7] H. Shidanshidi, F. Safaei, and W. Li, “On The Minimum Number of Cameras to 

Capture the Light Field for Free Viewpoint Video Systems,” TBA 

[8] H. Shidanshidi, F. Safaei, and W. Li, “Non-Uniform Light field Acquisition based 

on the Scene Complexity Variations for a Free Viewpoint Video System,” IEEE 

Transactions on Image Processing, TBA  
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[9] H. Shidanshidi, F. Safaei, and W. Li, “Optimization of the Number of Rays in 

Interpolation for Light Field Based Free Viewpoint Systems,” TBA 

 

1.5 Thesis Structure 

 

Chapter 2 summarizes the literature review and related works. Chapter 3 presents the 

main theory of ESD for LF based FVV systems, acquisition and rendering components 

comparison and evaluation, and objective quality assessment of output quality by using ESD. A 

simplified regular grid acquisition optimization for calculation of the minimum number of 

cameras to capture the light field for FVV systems is described in chapter 4. A simplified 

rendering component optimization in term of optimization of the number of rays during 

interpolation is demonstrated in chapter 5. Chapter 6 presents the joint optimization of 

acquisition and rendering subsystems by applying a Lagrangean method to ESD. Chapter 7 

superimposes the ESD theory with scene complexity and demonstrates a non-uniform/irregular 

light field acquisition based on the scene complexity variations. Chapter 8 concludes the thesis. 

Extensive mathematics and the quantitative analysis of LF based FVV systems is given 

separately as appendices. 

Following subsections give a summary for each main chapters of the thesis. 

 

1.5.1 The Theory of ESD for Evaluation and Comparison of Acquisition and 

Rendering Components and Analytical Assessment of Output Quality  

 

Quality assessment of a light field (LF) based free viewpoint video (FVV) system is 

usually confined to subjective evaluation of output since, typically, limited or no ground truth 

data is available. This chapter introduces the concept of effective sampling density (ESD). ESD 

is shown to be an analytically tractable metric that represents the combined impact of the 
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imperfections of LF acquisition and rendering. By deriving and analyzing ESD for the 

commonly used LF acquisition and rendering methods, it is shown that ESD is an effective 

indicator of quality determined by system parameters and can be used to directly estimate output 

video distortion without access to the ground truth. This claim is verified by extensive 

numerical simulations. Furthermore, an empirical relationship between the rendering quality (in 

PSNR) of a system and its ESD is established to allow direct prediction of the overall video 

quality without the actual implementation of the system. A small scale subjective user study is 

also conducted which indicates a high correlation between ESD and perceived quality. 

 

1.5.2 Acquisition Optimization and Calculation of the Minimum Density of 

Cameras for a Regular Grid 

 

Calculation of the number of cameras required to capture the scene is an essential 

problem in a practical light field based free viewpoint video (FVV) system. Existing methods 

calculate the Nyquist rate by assuming a band-limited signal and perfect reconstruction of an 

arbitrary view using linear interpolation, which often results in an impractically high number of 

cameras. This chapter proposes a new method based on the concept of effective sampling 

density (ESD). Specifically, the method assumes the availability of some depth information and 

explores the trade-off among the depth information accuracy, the required number of cameras, 

and the desired rendering quality. Theoretical and numerical results show that the resulting 

number of cameras is significantly lower than what was reported in the previous studies with 

only a few percent reduction in the rendering quality. Moreover, it is shown that the previous 

methods are special cases of the one presented in this chapter. 
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1.5.3 Rendering Optimization and Calculation of the Number of Rays in 

Interpolation 

 

Light field (LF) rendering is widely used in free viewpoint video systems (FVV). 

Different methods have been proposed to employ depth maps to improve the rendering quality. 

However, estimation of depth is often error-prone. In this Chapter, a new method based on the 

concept of effective sampling density (ESD) is proposed for evaluating the depth-based LF 

rendering algorithms at different levels of errors in the depth estimation. In addition, for a given 

rendering quality, an estimation of the rendering complexity is provided in terms of optimum 

number of rays employed in interpolation algorithm so as to compensate for the adverse effect 

caused by errors in depth maps. The proposed method is particularly useful in designing a 

rendering algorithm with inaccurate knowledge of depth to achieve the required rendering 

quality. Both the theoretical study and numerical simulations have shown that the proposed 

method is reliable and accurate. 

 

1.5.4 Joint Optimization of Acquisition and Rendering Subsystems by Applying 

Lagrangean Method to ESD 

 

Quality of output video is an important usability objective in Free Viewpoint Video 

(FVV) systems. As shown in previous chapters, the density of a camera grid for acquisition on 

one hand and the complexity of the rendering algorithm on the other hand directly influence the 

FVV output video quality. As shown before ESD is an analytically tractable metric that can be 

used to predict and evaluate the FVV video quality for a given acquisition and rendering. To 

increase ESD and hence improve the video quality, two parameters can be altered: (i) the 

density of cameras in the acquisition grid; and/or (ii) the density of rays within the interpolation 

area employed during rendering. While in previous chapters individual optimizations of these 

parameters are demonstrated, in this chapter, a method is presented to optimize these parameters 

jointly for a target output video quality using ESD. Study on a regular grid camera system has 
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shown that the number of cameras can be reduced by 8 times if 32 rays, instead of 8 rays, are 

employed during rendering to achieve the similar rendering quality for a typical 20% error in 

depth estimation. 

 

1.5.5 Non-Uniform/Irregular Acquisition based on the Scene Complexity 

Variations 

 

Acquisition of a free viewpoint video (FVV) system is theoretically considered as a 

problem of plenoptic signal sampling. It is typically performed by using a regular camera grid. 

While a regular acquisition itself results in non-uniform sampling density, this non-uniformity 

does not match the scene complexity and frequency variations. This Chapter shows how to 

superimpose the ESD theory with the scene complexity and proposes an irregular acquisition 

method for optimum non-uniform LF sampling corresponding to the variations of the scene 

complexity. Specifically, scene complexity is measured through analyzing DCT coefficients of 

reference images of the scene, describing the frequency behavior of the plenoptic signal over the 

scene space. An optimization model is formulated to calculate the optimum configurations of 

the acquisition cameras including positions and orientations. The theoretical analysis and 

numerical simulations demonstrate that the rendered video quality can be significantly improved 

(around 20% in mean PSNR) by employing the proposed irregular acquisition compared with 

the regular camera grid. 
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2 Chapter 2: Literature Review 
 

 

In this chapter, firstly, a brief review of the general background is given. Then a full 

review of the state of the art with respect to key research questions of this thesis is presented. 

 

2.1 General Background  

   

2.1.1 Free Viewpoint Video (FVV) Systems 

 

Free Viewpoint TV (FTV) or Free Viewpoint Video (FVV) [1-5] aims to provide users 

with the ability to select arbitrary views of a dynamic scene in real-time. It allows the user to 

interactively control the viewpoint and generate new views from any 3D position and 

orientation. The main idea behind FVV is to change the focus of attention and story-telling from 

director’s fixed chosen view to be controlled by the viewers, meaning that each viewer may be 

observing a unique viewpoint and can navigate the scene based on his preference. 

A practical scenario is a user sitting in front of a 3D TV which also has FVV capability. 

The user not only can watch a 3D movie or a 3D football match, but a head tracking device can 

detect his head and eyes movements and change the viewpoint of the movie/match to his desired 

viewpoint accordingly. For the football match scenario the viewer can navigate the stadium and 

watch the match from any position and direction even from their favourite player viewpoint or 

goalkeeper viewpoint, similar to a 3D computer game experience. FVV will overcome the 

current shortcomings of 2D TV and Cinema, which is becoming less attractive for modern 

generation used to computer games and the freedom to control their viewpoint of the scene. 
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An FVV system consists of three main components: acquisition component [18-22], 

rendering component [9-14, 24, 25], and compression/transmission component [1, 2, 26-29]. 

Figure 2.1 illustrates a sample FVV system. There are a limited number of cameras with 

predefined positions and orientations around a stadium to capture the scene from several 

viewpoints. This is called acquisition component of an FVV system. There are different 

architectures and parameterizations for an FVV acquisition component which will be discussed 

in detail later. For this basic example, let’s assume the cameras are located uniformly around the 

stadium placed in a number of parallel belts. 

Rendering component of an FVV system aims to reconstruct the scene for any 

arbitrary/virtual viewpoints from these limited samples captured by acquisition component. 

Several arbitrary viewpoints are illustrated with an eye symbol in Figure 2.1. There are different 

rendering methods proposed for FVV systems that again will be discussed later in the related 

work section. 

 

 

Figure 2.1. Overview of a sample FVV system 
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Since there are many users, simultaneously navigate the scene from their own desired 

perspective, FVV rendering method is aimed to be a client-side process. Hence all or a subset of 

captured video streams should be compressed and transmitted to the client side as a multi 

channel video. This would be carried out by compression/transmission component of an FVV 

system. 

One of the main research questions on FVV is how to reconstruct or synthesize the 

scene in a virtual viewpoint which is the main responsibility of rendering component. Figure 2.2 

shows the image reconstruction/synthesize process. A number of reference images captured by 

acquisition component cameras are employed to reconstruct the scene in an arbitrary virtual/ 

observation camera position and orientation.  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.2. Image reconstruction/synthesize process 

 

  Different methods have been proposed for this image/video reconstruction process 

under three main categories [33, 34]: 

a) Model based rendering, which employs explicit geometry based on computer vision 

techniques and scene geometry is described with 3D graphic elements such as meshes. 

Despite the advances in computer vision 3D reconstruction algorithms, reliable and 

accurate construction of full 3D scene models remains unsolved. Most of the proposed 
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methods are not real-time which is an important requirement in FVV systems. In 

addition, typically the rendering output is not photo realistic.  

b) Image based modelling (IBM), image based representation (IBR), or image based 

rendering (IBR) which do not explicitly employ any 3D geometry, but attempt to 

reconstruct the scene directly from given reference images as demonstrated in Figure 

2.2. The main advantage is that it can potentially produce high quality of synthesized 

views when dense sampling of the real world is obtained with sufficiently large number 

of cameras. 

c) Hybrid systems, which expand IBR with implicit geometric information such as depth 

or disparity map. The original two-dimensional image and the depth map forms 2.5D 

representation of the scene. When full depth information is available, 3D warping 

techniques can be used to synthesize virtual views [35]. However, the quality of the 

warped images is subject to the sampling resolution and degree of occlusion. 

 

2.1.2 Image Based Representation (IBR) 

 

Due to simplicity of data acquisition, photo realistic rendering and real-time 

computation, IBR has been widely used in FVV systems. Note that category (b) and (c) in 

previous section are both IBR methods which are distinguished here based on using no or some 

implicit geometric information during image/video synthesis process. IBR includes a variety of 

models, representations, and methods employing reference images as the primary elements from 

which arbitrary virtual views are synthesized without the full 3D model reconstruction. In IBR 

[6-8, 12, 33, 34, 36-44], novel views (also called rendered images or synthesized images) are 

generated/reconstructed from a set of sampled images or videos of the scene, called the 

references images/videos. Essentially, the novel view rendering is based on data prediction, 

estimation or interpolation of a multidimensional space which is densely sampled as represented 
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by the reference images. Typical IBR rendering techniques include the panoramas [38] , light 

field and its variants [7, 8, 12, 40, 41], and concentric mosaics [39]. 

 

2.1.2.1 IBR Spectrum based on the Geometry Information 

 

IBR methods employ different amounts of geometric information of the scene which 

can be demonstrated as a spectrum [45]. At one extreme, there are methods with no usage and 

representation of geometric information such as 2D panoramas[38], 3D concentric mosaics[39], 

5D McMillan and Bishop’s plenoptic modeling [37], 4D rays pace representation [42, 43], and 

4D conventional light fields [7] or lumigraph [8]. At the other extreme there are methods 

employing explicit geometry such as 3D computer graphics models and other more 

sophisticated representations [46-48]. In the middle of the spectrum, there are methods 

employing different extents of implicit geometric information from minimum information such 

as focusing depth to depth layers or object-based representations such as [12, 40, 49] to full 

depth map information such as depth-based image rendering (DIBR) [29]. It is obvious that 

methods with less geometry require higher number of reference images to compensate for 

inaccurate or lack of knowledge of scene geometry. 

 

2.1.3 Plenoptic Signal 

 

From the signal processing point of view, IBR can be mathematically modelled as a 

process of sampling and reconstruction of the complex 7D plenoptic signal [6], 𝑃7  =

 (𝑉𝑥 , 𝑉𝑦, 𝑉𝑧, 𝜃, 𝜑, 𝜆, 𝜏) , representing the radiant energy that is perceived at any 3D viewing point 

(𝑉𝑥 , 𝑉𝑦, 𝑉𝑧), from every possible angle (𝜃, 𝜑) for every wavelength 𝜆 and at any time 𝜏. FVV 

acquisition component is responsible to collect and record samples from plenoptic signal by 

mapping the reference images to the signal space. Note the term ray is used to demonstrate one 
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sample of the plenoptic signal.  Each pixel of reference images is considered as a sample of a 

ray reflected from the scene at the time of taking the image and received by the camera sensor. 

FVV rendering component is responsible to map the rendering image/video to the signal space 

and reconstruct the unknown values of the signal from acquired samples. Hence, usual signal 

processing methods for signal reconstruction can be customized for the rendering process. With 

the same approach, FVV compression/transmission is responsible for compression and 

transmission of the plenoptic signal. 

 

2.1.3.1 Plenoptic Signal Simplifications for Different IBR Methods 

 

Due to complexity associated with the high dimensions of the plenoptic signal, 

complete sampling of the function is impractical if not impossible. Hence, assumptions have 

been introduced to reduce the signal dimensions. Following are common assumptions to reduce 

the number of dimensions for plenoptic signal: 

1. The wavelength can be restricted to three digital RGB channels. Each channel 

represents a range of wavelength captured by the camera sensor. 

2. The radiance along a light ray in empty space remains constant. Hence, it is not required 

to record the radiance of a ray on different points on its path, but just one value for the 

whole line for each ray leaving the convex hull of a bounded scene. The plenoptic 

signal can be represented by its values along an arbitrary surface surrounding the scene 

or a set of lines which can reduce the plenoptic function by one dimension.  

3. By assuming the scene to be static, the time dimension could be eliminated. This 

assumption is still valid for video as each frame in the video can be considered as an 

image. 

4. The viewer is restricted to move on a surface rather than freedom of moving in the 3D 

space which makes the viewer space as desired values of plenoptic function become 2D. 
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5. By introducing more restriction similar to assumption 4, the viewer movement could be 

restricted to a certain path. The user can move forward or backward but not out of the 

path.  

6. Assuming fixed position for the viewer.  

Table I summarizes different IBR representations, the assumptions applied and the 

space dimension for each simplified plenoptic signal [34, 36, 45]. Comprehensive reviews of the 

problems of sampling, rendering, and compression of IBR methods and representations are 

available in [33], [34] and [36]. 

 

Table 2.1  

IBR representations and plenoptic signal space simplification [34] 

Dimension Representation Assumptions 

7D Plenoptic Function Nothing 

6D Surface Plenoptic Function [23, 50] 2 

5D Plenoptic Modelling [37] 1,3 

5D Light Field Video [51] 1,2 

4D Light Field/Lumigraph [7, 8, 42, 43] 1,2,3 

3D Concentric Mosaics [39] 1,2,3,4 

3D Panoramic Video [52-54] 1,6 or 1,3,5 

3D Branch Movies [55, 56] 1,3,5 

3D Normal Video 1,6 

2D Image Mosaicing [38] 1,3,6 

2D Normal Image 1,3,6 
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Though in an ideal world, the 7D plenoptic signal is the best IBR representation but due 

to several limitations and most importantly acquisition restrictions, the best practical simplified 

plenoptic signal representation for FVV systems is light field (LF) or ray space representation. 

By using a typical FVV acquisition component which captures the scene outside of the scene 

convex hull and by digitizing the wavelength to RGB channels, each pixel in the reference 

images corresponds to one ray (a sample of plenoptic signal). LF is a simplified 5D plenoptic 

signal or with ignoring the time a 4D signal (by assuming a static scene or by time freezing in 

each frame of the video) that can be geometrically defined as a set of oriented lines (rays) in 

Cartesian 3D space. There are several acquisition architecture and parameterizations for 4D LF 

that will be discussed later. 

  

2.1.4 Light Field 

 

Light field can be expressed as a simplified four dimensional plenoptic signal [6], first 

introduced by Levoy and Hanrahan [7] and Gortler et al [8] (as Lumigraph) in the mid-1990s. 

LF acquisition aims to sample the plenoptic signal by using a limited number of cameras 

configured in 3D space. Several parameterization schemes have been proposed to represent the 

camera configurations and the rays captured by the cameras. For instance, Levoy and Hanrahan 

[7] employed a regular grid of cameras and represented the rays by using their intersection 

points with two parallel planes/slabs defined by variables (𝑠, 𝑡, 𝑢, 𝑣) respectively, where (𝑠, 𝑡) 

represents the image plane and (𝑢, 𝑣) represents the camera plane. The 4D space is then 

represented as a set of oriented lines, i.e., rays in 3D space. The parallel planes parameterization 

has been enhanced by more complicated representations or parameterization schemes such as 

Two-Sphere Parameterizations (2SP) , Sphere-Plane Parameterizations (SPP) and a Direction 

and Point Parameterizations (DPP) [57, 58]. 
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2.1.5 Light Field Acquisition 

 

As discussed before, in IBR the acquisition usually consists of a number of cameras 

located in predefined positions and orientations with a specific architecture. Generally the 

cameras in the acquisition are normal digital cameras/video cameras, however, recently with the 

advances in computational photography and light field cameras [51, 59, 60], the cameras in the 

acquisition component, can be replaced by light field cameras. Several pre-processing methods 

should be applied to the raw images of the acquisition cameras before mapping them to the LF 

signal samples/rays (or as some literature call ray space). These pre-processing includes 

common computer graphic and vision methods such as multi-camera calibration and colour 

correction as well as signal processing pre-filtering.  

Regular camera grids are widely used for LF acquisition due to their simplicity, low 

setup cost and computationally effective mapping between the output images and LF 

samples/rays. The well-known 2PP LF representation (two parallel planes/slabs) can also be 

easily employed in a regular camera grid acquisition. The regular camera grid or multi camera 

array has been employed in many studies such as Stanford multi-camera array [61] which 

consists of 128 cameras and is intended for large-environment applications by using low-cost 

CMOS sensors and dedicated hardware for real-time compression, the 3D rendering system of 

Naemura et al. [62], and the (8 𝑥 8) light field camera of Yang et al. [63]. There are also some 

studies on  dynamic rearrangement of the grid such as  (8 𝑥 6) self reconfigurable camera array 

of Zhang and Chen [64] which for a given virtual view point, moves the cameras on a set of 

rails to perform active rearranged capturing to improve the rendering quality. Figure 2.3 shows 

the Stanford regular camera grid [65] as an example. 

Other architecture for acquisition are also used, such as multi camera ring which is 

mainly used for bullet-effect generation [40] , locating the cameras in a semi-cylinder or semi-

sphere topology [66], moving the cameras by robots [8] or hand-held cameras[67]. 
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Figure 2.3. Stanford regular camera grid 
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2.1.6 Light Field Rendering 

 

To synthesize the image in a virtual camera position, a Light field rendering method is 

required. The synthesized image would be directly rendered from acquired light field and depth 

information of the scene. Figure 2.4 demonstrates a very simple mechanism of the rendering 

with no depth information. 

 

 

 

 

 

 

Figure 2.4. A simple light field rendering mechanism 

 

The rendering process starts by posing a virtual camera in 3D space. The position, 

orientation and other parameters of this virtual camera is calculated from the user preferred view 

point. Each pixel in the synthesized image corresponds to one ray in the space. One example of 

an unknown ray is shown in Figure 2.4. In a simplified 2-planes representations, this unknown 

ray will intersect both camera plane 𝑈𝑉 at (𝑢, 𝑣), and image plane 𝑆𝑇 at (𝑠, 𝑡). In this simple 

representation, there are 16 rays as immediate neighbours of this unknown ray sourcing from 4 

neighbouring real cameras in 𝑈𝑉 and for each camera passing through 4 known neighbouring 

pixels in 𝑆𝑇. Four of these rays are illustrated in Figure 2.4. At least four different interpolations 

can be employed to estimate the unknown ray from these captured rays. Neighbourhood 

estimation (NN) method estimates the unknown ray with the closet ray among this 16 rays. 𝑈𝑉 

interpolation selects 4 rays – from each neighbouring cameras to the closest known pixel in 𝑆𝑇 

– , and apply a 2D interpolation such as a bilinear interpolation to estimate the unknown ray. 𝑆𝑇 

interpolation selects the closest camera in 𝑈𝑉 and applies a bilinear pixel interpolation to the 4 

Virtual camera 

Synthesized image 

4 neighbour cameras in 𝑈𝑉 plane 

represented by blue circles 

A sample unknown ray 

4 neighbour pixels in 𝑆𝑇 plane 

represented by green circles 

 

Four rays from each of the camera 
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neighbouring pixels in 𝑆𝑇. UVST method applies a 4D interpolation such as quadlinear 

interpolation to all 16 immediate neighbouring rays to estimate the unknown ray. 

The mechanism of ray selection and interpolation can be more complex and more 

intelligent compared with this simplified rendering method, in particular by superimposing the 

rendering method with geometric information of the scene such as depth maps. The full 

mathematical formulation of a generic light field rendering method will be discussed later in 

chapter 3 of the thesis. 

By superimposing the rendering method with depth information specially in under-

sampled regime different LF rendering methods have been developed to generate images for 

arbitrary viewpoints from the captured rays by implicitly or explicitly using geometric 

information about the scene [15]. These include layered light field [9], surface light field [10] , 

scam light field [11], pop-up light field [12], all-in-focused light field [13], dynamic 

reparameterized light field [14], and unstructured light field [68, 69]. 

The effect of under-sampling and amount of depth information and computational 

efficiency restrictions on the rendering quality will be discussed later in the thesis. 

 

2.1.7 LF Compression and Transmission 

 

The light field compression and transmission is out of the scope of this thesis. However 

extensive research has been carried out on multi-view video and multi-view video coding 

(MVC) such as [2, 28]. The standardization of MVC is also carried out as an amendment to 

H.264/MPEG-4 AVC video compression standard. 

This concludes the introduction of the general background. The remaining of this 

chapter will demonstrate the state of the art and related work on each research questions 

discussed before in the Introduction chapter. 
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2.2 Quality Assessment of LF-based FVV Systems 

 

As discussed before FVV [1, 2] aims to provide users with the ability to select arbitrary 

views of a dynamic scene in real-time. FVV systems widely use simplified plenoptic signal [6] 

representations, in particular, light field (LF) [7, 8]. Quality assessment of LF-based FVV 

systems is usually concerned with the quality of the rendered scene in comparison with the 

ground truth. Clearly, this is an important consideration in evaluating the effectiveness of 

rendering algorithms and acquisition configurations and is a key objective for optimizing the 

system. While subjective and objective empirical evaluation of output, with limited or no 

ground truth data, has been widely used, to the best of our knowledge, no analytical evaluation 

framework has been reported so far. 

Light field is often represented as a simplified four-dimensional (4D) plenoptic signal 

[6]. Acquisition is to sample the signal and the rendering process is to reconstruct the signal 

from the acquired samples. Therefore, assuming a band-limited signal and linear interpolation, a 

perfect signal reconstruction would require sampling the rays from the scene at the Nyquist 

density. Several studies on LF acquisition analysis, such as [18-21, 23], have mainly focused on 

this minimum sampling density of such a perfect acquisition system. In practice, however, it is 

often infeasible to deploy sufficient number of cameras to capture the rays in all positions and 

directions at the Nyquist density (the term ray is used in LF to denote a sample of plenoptic 

signal). Thus, a realistic LF acquisition almost always results in an under-sampled signal, which 

may result in imperfect reconstruction with visual artefacts and signal aliasing. To overcome 

this problem, several LF rendering methods such as [9-14] have been proposed to work 

specifically in the under-sampled regime with additional auxiliary information about the scene. 

Most of these methods employ certain scene geometric information, such as depth map, to 

compensate to some extent for the insufficiency of samples. 

Accordingly, an analytical evaluation of an LF system in the under-sampled regime that 

captures the impact of both acquisition and rendering is crucial for assessing the overall quality 
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of an LF-based FVV system. Nevertheless, the existing assessment methods are mainly based 

on subjective evaluation and comparison with the ground truth [70-73] and are limited to case-

based studies. Typically, after discussing the new method, the method is applied to several test 

cases for validation. The rendering output then demonstrated with some sample images. To 

show the method improvement over older methods, some primitive real or artificial objects are 

chosen. Then the rendering outputs for some viewpoints for new and old methods are given for 

a limited subjective visualized comparison. The evaluation methodology is therefore primarily 

subjective, which is highly related to observer and test cases and therefore may not be reliable. 

In addition, a main hurdle in conducting this comparison is the unavailability of ground truth 

data to compare and validate the rendered/synthesized images. 

 

2.3 Evaluation of the LF Acquisition Component 

 

Existing approaches for evaluating LF acquisition mainly focus on the minimum 

required sampling density by assuming an ideal and perfect signal reconstruction. Two major 

approaches have been studied so far. The first one is based on plenoptic signal spectral analysis 

[18, 23] and, more specifically, the light field spectral and frequency analysis [19, 20]. In this 

approach the spectral analysis is applied to a surface plenoptic function (SPF) representing the 

light rays starting from the object surface and the minimum sampling density is estimated based 

on the sampling theory by computing the Fourier transform of the light field signal. However, 

the spectrum of a light field is usually not band-limited due to non-Lambertian reflections, depth 

variations and occlusions. Therefore, the first-order approximation is often applied to the signal 

by assuming that the range of depth is limited. 

The second approach is based on the view interpolation geometric analysis rather than 

frequency analysis. This approach is based on blurriness and ghost (shadow)-effect error 

measurements and elimination in rendered images. In [21] the artifact of “double image” (a 
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geometric counterpart of spectral aliasing) is proposed to measure the ghost effect for a given 

acquisition configuration. This artifact is geometrically measured by calculating the intensity 

contribution of rays employed in interpolation. Finally, the minimum sampling density is 

calculated to avoid this error for all points in the scene. This approach can be used to derive the 

minimum sampling curve against scene depth information, showing how the adverse effect of 

errors in depth information can be compensated for by increasing the number of images or 

effectively the sampling density. This method is more flexible, especially for irregular capturing 

and rendering configurations, and leads to a more accurate and smaller sampling density 

compared with the first approach. 

In addition to these two approaches, optical analysis by considering light field as a 

virtual optical imaging system is also employed in acquisition analysis [74, 75]. The original 

light field [7] shows that the distance between two adjacent cameras can be considered as the 

aperture for ray filtering. This concept is generalized in [14] by introducing a “discrete synthetic 

aperture”, encompassing of several cameras. It is also shown in [14] that the size of this 

synthetic aperture can change the field of view very similar to an analog aperture. This optical 

analysis is mostly used to calculate the optimum light field filtering [76]. 

Due to the assumption of perfect signal reconstruction, all of these approaches result in 

very high sampling densities, which are hardly achievable in practice. For instance [18] shows 

that for a typical scenario a camera grid with more than 10,000 cameras is required. They also 

assume general Whittaker–Shannon interpolation method for signal reconstruction. However, 

having some geometric information about the scene, such as estimated depth map, could enable 

more sophisticated interpolation for signal reconstruction and rendering. Consequently, an 

indicator to measure signal distortion without any reference or ground truth, that works in the 

under-sampled regime, is desirable. 

For a simplified camera grid acquisition, the problem of LF acquisition evaluation 

would reduce to a more familiar problem: what is the minimum number of cameras required to 
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capture the scene for a desired output video quality? Above three approaches have been 

addressed this question from a number of perspectives [18-21, 74, 75]. Please note that these 

studies refer to this problem as “LF minimum sampling rate” rather than “minimum number of 

cameras”. In this thesis, the two terms will be used interchangeably hereafter since cameras are 

usually the basic sampling devices. These studies can be categorized into three different 

approaches. 

However, these approaches are essentially based on several common unrealistic 

assumptions and also often suggest an impractically high number of cameras.  Specifically, 

 They assume a simple Lambertian scene with no occlusions to make the light field 

signal band-limited for frequency analysis.  In real applications, these assumptions are 

seldom valid. 

 They often assume a linear interpolation over 4 rays in the camera plane or 16 rays in 

both camera and image planes in the rendering process. However, in a practical 

scenario, there are usually more rays available for interpolation. In addition, by 

employing nonlinear interpolation techniques or incorporation of auxiliary information, 

such as depth, the quality of rendering could be enhanced further. Employing more rays 

in rendering can improve the rendering quality even without increasing the number of 

cameras. 

 They aim for perfect signal reconstruction and calculate the Nyquist sampling rate. This 

typically results in a very high sampling rate which is not feasible in most of real FVV 

systems. In contrast it is a common practice to employ controlled under-sampling with 

additional processing such as anti-aliasing filtering and lossy signal reconstruction, to 

attain a desired output quality with significantly reduced number of samples. 

Therefore, an analytical model to study under-sampled LF under realistic conditions 

(non-Lambertian reflections and occlusions) and rendering with complex interpolations is 

required to calculate the minimum number of cameras.  
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In this thesis, a method is derived from the proposed ESD  [16, 30] to calculate the 

minimum number of required cameras to achieve a desired rendering quality by taking into 

consideration the possible error in depth estimation. 

 

2.4 Evaluation of the LF Rendering Methods 

 

Along with the acquisition configurations and parameterization schemes, different LF 

rendering methods have been developed to generate images for arbitrary viewpoints from the 

captured rays by implicitly or explicitly using geometric information about the scene [15]. 

Previous works on FVV evaluation and quality assessment are mainly based on the methods 

proposed for Image based Rendering (IBR) and they are not specifically for LF rendering. Often 

pixel-wise error metrics with respect to ground-truth images are employed for quality 

assessment [40]. Ground-truth data is provided by employing a 3D scanner for a real scene or 

virtual environments such as [77]. In [78], two scenarios are analysed: human performance in a 

studio environment and sports production in a large-scale environment. A method was 

introduced to quantify error at the point of view synthesis. This method is used as a full-

reference metric to measure the fidelity of the rendered images with respect to the ground-truth 

as well as a no-reference metric to measure the error in rendering. In the no-reference metric, 

without explicitly having the ground truth, a virtual viewpoint is placed at the mid-point 

between the two cameras in camera grid. From this viewpoint, two images are rendered, each 

using one set of the original cameras. These images are then compared against each other with 

the same metrics as before. 

Quality evaluation has also been carried out with two different categories of metrics, 

modelling the human visual system (HVS) and employing more direct pixel fidelity indicators. 

HVS-based measures of the fidelity of an image include a variety of techniques such as 

measuring mutual information in the wavelet domain [70], contrast perception modelling [71] 
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and modelling the contrast gain control of the HVS [72]. However, HVS techniques and 

objective evaluation of a visual system are not able to fully model the human perception as 

discussed in [79-81]. Pixel-wise fidelity metrics such as MSE and PSNR are simple fidelity 

indicators but with a low correlation with visual quality [82]. In [73] a full review of pixel-wise 

fidelity metrics is discussed.  Also [83] shows a statistical analysis of pixel metrics and HVS-

based metrics. 

While the need for analytical quality evaluation of FVV systems are highlighted in 

several studies such as [84, 85], the current research on LF rendering evaluation and quality 

assessment is focused mostly on case-based study of applying these metrics. Little development 

has been reported on an analytical model that can evaluate LF rendering methods. In contrast, 

the proposed ESD in this thesis provides an analytical evaluation of the effect of LF rendering 

methods as well as LF acquisition on the final video quality. 

 

2.4.1 Scene Geometric Information Representation and Application 

 

While most of the conventional LF representations did not use much geometric 

information, recent studies proposed models for superimposing depth information [41, 52, 61-

64, 86] and more dynamic LF representations to achieve higher rendering quality with less 

number of cameras. The idea initiated from the early work on the panoramic videos [52] and 

extended to construct LF video for different applications with employing geometric information 

about the scene. Below some of these studies are reviewed. 

A simplified light field for dynamic environments (SDLF) [41] which also referred to as 

“plenoptic videos” employs a regular camera grid to capture the videos and uses the depth 

information for both LF dynamic representations and the rendering process. Despite the 

simplifications in their model, their experiments show that it can provide an acceptable video 

quality with no discontinuity of viewpoints as well as tolerating the lighting changes. 
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  The main issue of SDLF representation is lack of tolerance to depth discontinuity and 

occlusions which results in aliasing and artifacts in the output video. SDLF assumes no 

occlusion and simplified Lambertian scene reflection and uses plenoptic sampling [18] to 

determine the number of cameras. Unfortunately, these assumptions are rarely the case in real 

applications.  

To overcome SDLF limitations, LF representations by employing the full depth maps 

and object segmentation information [12, 40, 49, 86] have been proposed to reduce rendering 

artifacts at depth discontinuities. To integrate the depth information in LF rendering, methods 

such as [86] has been used. In [86], the Stanford camera grid is used for LF acquisition and 

warping techniques used for rendering. However it was shown that it is difficult to produce 

accurate depth maps with less than one pixel error at the boundaries which again results in 

errors in warping outputs. 

  In another study [40], an eight-camera [6] video capturing system is employed by 

using high resolution FireWire PtGrey cameras to capture 15 frames per second (fps) video with 

resolution of 1024x768. For rendering they used layered depth images [49] generated with 

stereo matching methods and Bayesian matting [87]. 

Another interesting work is object-based LF representation [49, 88], where the depth 

and shape information is only required for each object in the scene in each time frame. The main 

advantage of this representation is that it allows user interaction with each object in the scene. 

  Another extension to LF modeling with depth information is the concept of pre-

computed radiance transfer (PRT) [89] and pre-computed shadow fields [90] which allows 

effective interactive visualization with low complexity for real-time relighting and soft-shadow 

computation. 
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2.4.2 Optimization of the Number of Rays in Interpolation for Rendering 

 

Many LF rendering methods have been developed so far. Some of them assume that the 

light field has been sampled sufficiently and employ a simple view interpolation process. Recent 

studies [9-14] have shown that implicit or explicit use of geometric information, such as a depth 

map of the scene, can significantly improve the rendering quality since in most practical cases, 

the light field is highly under-sampled. However, none of these methods address the impact of 

depth map estimation error on the rendering quality and how the rendering method can 

compensate for the error in depth estimation  

A typical approach to compensating for the errors in depth maps is to increase the 

number of cameras of acquisition component [18-21] to increase the SD. It has also been shown 

that the adverse effect caused by the depth errors can be to some extent compensated for by 

increasing the number of cameras used in acquisition, which may not be affordable in practice.   

However, we are not aware of any results on the role of rendering component in the 

more realistic under-sampled regime on output quality and how the adverse effect caused by 

errors in depth maps can be compensated for by employing optimal number of rays in the ray 

selection process for a fixed acquisition camera grid. The current LF rendering methods often 

assume a linear interpolation over 4 rays in the camera plane or 16 rays in both camera and 

image planes in the rendering process, despite the fact that more rays may be available. 

 

2.5 Non-Uniform/Irregular LF Acquisition based on the Scene 

Complexity Variations 

 

Typically, regular acquisition such as a regular 2D camera grid, regular two-sphere 

(2SP) and regular sphere-plane parameterizations (SPP) [57] are employed in an FVV system. 

LF rendering methods that make use of this regularity are employed for view reconstruction. 
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While a regular LF acquisition itself results in non-uniform sampling density, this non-

uniformity usually does not match the scene complexity and frequency variations. Instead, often 

homogeneous frequency variations throughout the scene space is assumed despite the fact that, 

in reality, plenoptic signal has significant spatial frequency variations. Hence, an irregular/non-

uniform signal sampling and reconstruction is likely to be more appropriate. 

The theory of irregular/non-uniform signal sampling has been widely investigated and it 

has been shown that irregular sampling can reduce the number of required samples for perfect 

reconstruction of the signal [91-93]. However to the best of our knowledge, this property has 

not been explored for LF acquisition and rendering. Several studies have been reported to 

address the plenoptic sampling by computing the Nyquist rate [18-21, 74, 75], all assuming 

regular/uniform acquisition. To address this problem, one of the main contributions of this 

thesis is to propose an optimal irregular LF acquisition.  
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3 Chapter 3: The Theory of ESD for Evaluation and 

Comparison of Acquisition and Rendering Components and 

Analytical Assessment of Output Quality 
 

 

3.1 Summary 

 

Quality assessment of a light field (LF) based free viewpoint video (FVV) system is 

usually confined to subjective evaluation of output since, typically, limited or no ground truth 

data is available. This chapter introduces the concept of effective sampling density (ESD). ESD 

is shown to be an analytically tractable metric that represents the combined impact of the 

imperfections of LF acquisition and rendering. By deriving and analyzing ESD for the 

commonly used LF acquisition and rendering methods, it is shown that ESD is an effective 

indicator determined by system parameters and can be used to directly estimate output video 

quality without access to the ground truth. This claim is verified by extensive numerical 

simulations. Furthermore, an empirical relationship between the rendering quality (in PSNR) of 

a system and the calculated ESD is established to allow direct prediction of the overall video 

quality without the actual implementation of the system. A small scale subjective user study is 

also conducted which indicates a correlation of .91 between ESD and perceived quality. 

The rest of the chapter is organized as follows. Section 2 describes the problem 

statement and motivation. Section 3 describes the concept of ESD. Section 4 presents the 

application of ESD to analyze the commonly used LF rendering methods. Numerical simulation 

and validations are presented in section 5. Section 6 describes the empirical relationship 

between the ESD and overall video quality in PSNR. Section 7 reports the subjective test and its 

correlation with ESD. Section 8 concludes the chapter. 
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3.2 Problem Statement and Motivation 
 

By assuming a simplified transmission component represented as a direct 

communication link between the acquisition and rendering components, a general FVV system 

diagram that utilizes the information of scene geometry can be illustrated as Figure 3.1. 

The light field is often sampled by multiple cameras through the ray capturing process 

of the acquisition component, which results in a certain sampling density (SD). SD at a given 

location can be defined as the number of rays acquired per unit area of the convex hull of the 

surface of the scene in that location. SD is typically not constant across the scene even for a 

regular camera grid. The acquisition can have a variety of configurations, such as 

regular/irregular 2D or 3D camera grids or even a set of mobile cameras at random positions 

and orientations. 

In addition, the depth estimation process provides an estimation of depth (e.g. depth 

map) to improve rendering. This could be obtained by specialized hardware, such as depth 

cameras, or computed from the images obtained by multiple cameras. In either case, the depth 

estimation will have some error. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.1. The schematic diagram of a typical LF-based FVV system that utilizes scene geometric information 
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The rendering component is responsible for estimating/reconstructing an unknown ray 𝑟 

from the acquired rays and depth information. In general, this component is composed of two 

processes: (i) the ray selection process that chooses a subset of acquired rays, purported to be in 

the vicinity of 𝑟, for the purpose of interpolation; and (ii) the interpolation process that provides 

an estimate of 𝑟 from these selected rays. 

The ray selection process, in particular, is often prone to error. For example, imperfect 

knowledge of depth may cause this process to miss some neighboring rays and choose others 

that are indeed sub-optimal (with respect to proximity to 𝑟) for interpolation. Also, constraints 

on computational load (imposed due to, say, real-time rendering requirements) may necessitate 

this process to select only a subset of neighboring rays, less than what is available. In both 

cases, there is some loss of information and the output of this process represents an effective 

sampling density (ESD) which is lower than the SD obtained by the acquisition component and 

distortion is inevitably introduced in the reconstructed video. ESD is defined as the number of 

rays per unit area of the scene that have been captured by acquisition component and chosen by 

ray selection process to be employed in the rendering. Clearly, ESD ≤  SD with equality 

holding only for a perfect rendering component with complete knowledge of the scene and 

sufficient computational resources. Not surprisingly, ESD is the true indicator of output quality, 

not SD, and its key advantage is that it provides an analytically tractable way for evaluating the 

influence of the imperfections of both acquisition and rendering components. In this thesis, we 

analytically derive ESD for a number of well-known rendering algorithms for a regular grid of 

cameras and verify that ESD is an effective indicator of output quality. Extension to irregular 

camera configuration is also discussed in chapter 7 of the thesis. 
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3.3 Effective Sampling Density (ESD) 

 

To illustrate the concept of ESD, consider the case shown in Figure 3.2, where the 

actual surface is at depth 𝑑 and the unknown ray 𝑟 intercepts the object at point 𝑝. There are 

four rays 𝑟1, 𝑟2, 𝑟3, and 𝑟4 captured by the cameras that lie within the interpolation 

neighbourhood of 𝑝, shown as a solid rectangle, and could be used to estimate 𝑟. However, 

since the estimation of depth is in error by ∆𝑑, the algorithm selects four other rays, 𝑟1
′, 𝑟2

′, 𝑟3
′, 

and 𝑟4
′ as the closest candidates for interpolation. As a result, the sampling density has been 

effectively reduced from 4/𝐴 to 4/𝐴′, where 𝐴 and 𝐴′ are the areas of solid and dashed 

rectangles in the Figure respectively. In addition, the rendering algorithm may not be able to use 

all available rays for interpolation due to computational constraint. In typical Depth Image 

Based Rendering (DIBR), for example, only a single ray (supposedly, the closest) may be 

utilized even though more rays have been acquired. 

 

 

Figure 3.2. Selection of rays in an LF rendering and the concept of ESD 
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Let Ѳ be the set of all known rays captured by the cameras, that is, the samples of the 

scene obtained during the LF acquisition phase. A rendering method has a ray selection 

mechanism 𝑀 to choose a subset ω of rays from Ѳ, purported to be surrounding the unknown 

ray 𝑟. Subsequently, an interpolation function 𝐹 is applied to ω to estimate the value of the 

unknown ray 𝑟. Assume that 𝑟 intersects with the scene at point 𝑝 at depth d. 𝐴 is an imaginary 

convex hull area around 𝑝 which intersects with all the rays in ω at depth 𝑑. The size of 𝐴 

would depend on the choice of ω, hence, the rendering method. Since each squared pixel in an 

image sensor integrates light rays coming within a squared-based pyramid extending towards 

the scene. The cut area (square) of this pyramid at distance 𝑑 is roughly 𝑙𝑑 × 𝑙𝑑, where 𝑙 is the 

size of the pixel determined by camera resolution. Therefore, the minimum length of the sides 

of 𝐴 is 𝑙𝑑, which is referred to as the system resolution in this thesis. 

There are usually more rays from Ѳ passing through 𝐴, but are not selected by the 

rendering process. However, using them could potentially enhance the interpolation and the 

rendering quality. Let all the captured rays passing through 𝐴 be denoted by Ω. Selection 

mechanism 𝑀 chooses a subset of rays ω from Ω to estimate the unknown ray 𝑟. Clearly:  

ω ⊆ Ω ⊆ θ                                                                                                                   (3.1) 

Both 𝑀 and 𝐹 may or may not use some kind of scene geometric information 𝐺 such as 

focusing depth (average depth of the scene computed from automatic focusing algorithms or 

camera distance sensors) or depth map. Mathematically, the LF rendering can be formulated as 

(3.2) and (3.3) below. Different LF rendering methods differ in their respective 𝑀 and 𝐹 

functions and their auxiliary information 𝐺.  

ω = 𝑀(Ѳ, 𝐺)                                                                                                                (3.2) 

𝑟 = 𝐹(ω, 𝐺)                                                                                                                 (3.3) 

Sampling Density (SD) is defined as the number of acquired rays per unit area of the 

scene space (number of rays in Ω divided by the area 𝐴) and Effective Sampling Density (ESD) 
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as the number of rays per unit area of the scene that has been acquired and is employed during 

the interpolation process to estimate the unknown ray (number of rays in ω divided by the area 

𝐴), that is, 

SD =
|Ω|

𝐴
                                                                                      (3.4)                         

ESD =
|ω|

𝐴
=
|𝑀(Ѳ,𝐺)|

𝐴
                                                                                                   (3.5) 

where |Ω| and |ω| are the number of elements in Ω and ω respectively. 𝐴 is the area of 

interpolation convex hull, and can be calculated by deriving the line equations for the boundary 

rays 𝛽𝑖’s and finding the vertexes of convex hull 𝐴 at depth 𝑑. Figure 3.3 shows this process for 

a simplified 2D light field generated by applying a 2D projection to a 3D light field with 2 

planes parameterization, that is, camera plane 𝑢𝑣 and image plane 𝑠𝑡 over (𝑢, 𝑠). However, the 

approach can be generalized to 3D light field and any parameterization models [57]. 

 

 

                                  𝑠𝑚𝑎𝑥                                                 𝑝                                            

             𝑢𝑚𝑎𝑥                               𝛽2                        𝐴                                                                         

                     𝑢𝑥    𝑠𝑗+𝑚(1, 𝑦𝑠 +𝑚𝑙)    𝒓    

𝑢𝑖+𝑛(0, 𝑦𝑢 + 𝑛𝑘)                        𝑠𝑗(1, 𝑦𝑠)           𝛽1                                                                                                                                               

           𝑢𝑖(0, 𝑦𝑢)                                                                                                                                                   

                     𝑢0                     𝑠0 

                         𝑢          1         𝑠                                                                                                     

                                                           𝑑
 

Figure 3.3. ESD calculation for a simplified 2D light field system 

 

Figure 3.3 illustrates that 𝑟, the unknown ray, intersects the imaginary scene on point 𝑝 

and 𝐴 is the area of interpolation surrounding 𝑝. The set Ω is determined by all the rays in the 

system that flow through 𝐴 and potentially could be employed in a rendering method to estimate 
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𝑟. However, practically, only ω, a subset of them would be used to interpolate the unknown ray 

𝑟. Let us assume that rays in ω are surrounded by the boundary rays 𝛽1 and 𝛽2. The rays in ω 

are selected by the selection method 𝑀 of a rendering method and potentially auxiliary 

information 𝐺 and are bounded by 𝑛 + 1 cameras in 𝑢 (𝑢𝑖 to 𝑢𝑖+𝑛) and 𝑚 + 1 pixels in 𝑠 (𝑠𝑗 to 

𝑠𝑗+𝑚). As it can be seen, 𝐴 is at least a function of 𝑘, 𝑙 , 𝑛, 𝑚 and 𝑑, where 𝑘 is the distance 

between the cameras, 𝑙 is the pixel length, 𝑛 and 𝑚 are the number of cameras and pixels 

bounded by boundary rays respectively, and 𝑑 is the depth of 𝑝. The rays intersect with 𝐴 from 

these  𝑛 + 1 cameras are the rays employed by rendering method, i.e., ω set.  However, as it is 

shown in Figure 3.3, there are more than 𝑛 + 1 cameras in the grid, (in addition to cameras 

bounded between 𝑢𝑖 to 𝑢𝑖+𝑛 ) that are able to see area 𝐴. 𝑢𝑥 is shown as an example of these 

cameras. The rays from these cameras to 𝐴, make the difference between Ω and ω sets. 

In 3D light field, boundary rays create a vicinity convex hull 𝐴 (the area of 

sampling/interpolation) around the intersection point 𝑝. The area of 𝐴 in 3D light field is the 

square of the length shown in the 2D model above if the configuration of the system is 

symmetrical or the product of vertical and horizontal sampling lengths for an asymmetrical 

system. 

SD defined in (3.4) provides the upper bound of ESD. SD is a parameter to quantify the 

acquisition component. ESD is to quantify the combined effect of acquisition and rendering. 

Since ω ⊆ Ω in any point of the scene space, ESD is less or at best equal to SD. For a given LF 

acquisition configuration, it is possible to calculate SD on any point over the scene space. 

Importantly, SD is generally not uniform across the field of view of the LF system, even when a 

regular camera grid is used in capturing. Figure 3.4.a shows the SD contour maps at different 

depths, 𝑑 = 30𝑚, 60𝑚, and 90𝑚, for a regular camera grid of 30𝑥30 with 𝑘 = 2𝑚, camera 

field of view of 30°, image resolution of 100𝑥100 pixels, i.e., 𝑙 = 0.53𝑐𝑚 in image plane 𝑠𝑡, 

and ideal area 𝐴 = (𝑙𝑑)2, i.e., LF system resolution. Figure 3.4.b shows a 2D slice, i.e., a 2D 
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light field of the same system with one row of 30 cameras and one row of 100 pixels for all 𝑑 

within [2𝑚, 100𝑚]. 

Notice from Figure 3.4 that SD of a point in the scene decreases when it moves further 

from the camera grid and away from the centre of the scene, hence, rendering quality would 

possibly decrease as well. To have a desired rendering quality from any viewpoint for any 

proportion of the scene, the acquisition component should be designed in a manner to produce 

the required SD for every point of the scene. The rendering method can then be designed in such 

a way to provide optimum ESD at each point of the scene from this SD. 

For the purpose of this thesis, it is assumed that the scene is located in the centre and 

not the boundary areas and the camera grid density and size is enough to provide sufficient SD 

at each point of the scene, that is, always higher than the required ESD for that point. 

Based on the discussion above, it can be speculated that the output quality of an 

arbitrary view is determined by three key factors as outlined below: 

1. The ESD in each area A, the vicinity of the unknown rays that compose the view, 

which could be mathematically derived for a given acquisition configuration and rendering 

method.   

2. The scene complexity in each area 𝐴, which could be measured in terms of its spatial 

frequency components. 

3. The accuracy and effectiveness of the interpolation function 𝐹 employed for the 

estimation of the unknown rays. 

In particular, for a fixed scene complexity and a given interpolation algorithm, ESD can 

objectively determine the quality of the LF rendering using equations (3.2) and (3.3) for a given 

LF acquisition configuration and, hence, can be potentially used as an objective indicator for the 

quality of video generated from a corresponding LF-based FVV system. 
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Depth d 

 

 

Figure 3.4. a) SD contour maps at different depths in 3D; b) SD contour map in 2D 
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It should be noted that ESD works in under-sampled regime and signal reconstruction 

accuracy cannot be improved indefinitely by increasing ESD [94]. For high values of ESD, the 

number of samples may reach the Nyquist density and further increase would not lead to any 

quality improvement. The maximum quality of the reconstructed signal is determined by many 

factors including, for instance, error in depth estimation. 

 

3.4 ESD Analysis of LF Rendering Methods 

 

According to its definition, ESD for an LF rendering method can be calculated from the 

ray selection mechanism 𝑀 of that rendering method to choose ω and the LF acquisition 

parameters such as the camera configuration. In this section, we analyse ESD associated with a 

number of commonly used LF rendering methods. Without loss of generality, 2-plane 

parameterization scheme is adopted for the analysis. This can be extended to other 

parameterization schemes if needed. The selected LF rendering methods are divided into two 

main classes according to whether the methods utilize any depth information. 

 

3.4.1 Rendering Methods without the Depth Information 

 

All the LF rendering methods without the depth information (hereafter referred to as 

blind methods) can be categorized into four main groups based on their ray selection mechanism 

𝑀, that is, methods using the Nearest Neighbourhood estimation (NN), methods using a 2D 

interpolation in camera plane (UV), methods using a 2D interpolation in image plane (ST) and 

methods using a full 4D interpolation in both camera and image planes (UVST). For the 

interpolation function 𝐹, a bilinear interpolation is often used for the 2D interpolation and a 

quadrilinear interpolation for the 4D interpolation. However, when |ω| > 4 for UV and ST and 

when |ω| > 16 for UVST, the convex hull 𝐴 may not be a grid anymore and other types of 2D 
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and 4D interpolation could be employed as function 𝐹. Considering the regular geometry of the 

cameras shown in Figure 3.3, analytical form of ESD for these rendering algorithms can be 

derived.  Table 3.1 summarizes the ESD derivation for the NN, ST, UV, and UVST methods 

where |ω| = 4 for UV and ST and |ω| = 16 for UVST. For each one of these rendering 

methods, the details of selection mechanism 𝑀 and interpolation function 𝐹 are given in the 

second and third columns. The fourth column summarizes the sampling /interpolation length 𝐴. 

Notice that A is a segment in the chosen 2D LF system whereas it is an area in 3D. The fifth 

column lists the corresponding ESD.   

 

Table 3.1  

ESD for the LF rendering methods without using depth information 

 

Rendering 

method 

Selection Mechanism 𝑀 Interpolation Function 𝐹 

Sampling length 

𝐴 in 2D LF 

ESD for 

symmetric 3D 

light field 

NN 

Select the nearest ray in 4D space, 

|ω| = 1 

No interpolation, 

neighbourhood estimation 

𝐴𝑁𝑁

= ( 
𝑙 + 𝑘

2
)𝑑 −

𝑘

2
 

𝐸𝑆𝐷𝑁𝑁

=  
1

𝐴𝑁𝑁 
2 

ST 

Select 4 or more rays from the 

neighbourhood pixels in 𝑠𝑡 plane to 

the nearest camera in 𝑢𝑣 plane, 

|ω|  ≥ 4 

Any type of 2D interpolation, 

e.g., bilinear interpolation for 

2D grid selection of rays 

𝐴𝑆𝑇

= (𝑙 + 
𝑘

2
)𝑑 −

𝑘

2
 

𝐸𝑆𝐷𝑆𝑇 =
4

𝐴𝑆𝑇 
2 

UV 

Select 4 or more rays from the 

neighbourhood cameras in 𝑢𝑣 plane to 

the nearest pixel in the 𝑠𝑡 plane, 

|ω|  ≥ 4 

Any type of 2D interpolation, 

e.g., bilinear interpolation for 

2D grid selection of rays 

𝐴𝑈𝑉

= (𝑘 + 
𝑙

2
)𝑑 − 𝑘 

𝐸𝑆𝐷𝑈𝑉 =
4

𝐴𝑈𝑉
2

 

 

UVST 

Select 16 or more rays from four 

neighbourhood cameras in 𝑢𝑣 to four 

neighbourhood pixels in 𝑠𝑡, |ω|  ≥ 16 

Any type of 4D interpolation, 

e.g., quadrilinear interpolation 

for grid selection of rays 

𝐴𝑈𝑉𝑆𝑇

= (𝑙 + 𝑘)𝑑 − 𝑘 

𝐸𝑆𝐷𝑈𝑉𝑆𝑇

=
16

𝐴𝑈𝑉𝑆𝑇
 

2 

 



47 |   C h a p t e r  3     T h e o r y  o f  E S D  f o r  E v a l u a t i o n ,  C o m p a r i s o n ,  

a n d  A n a l y t i c a l  Q u a l i t y  A s s e s s m e n t  o f  L F - b a s e d  F V V  S y s t e m s  

 

With the analytical ESD forms shown in Table 3.1, it is possible to objectively compare 

these rendering methods in terms of the output quality for the same acquisition. The higher the 

ESD is, the higher output quality is expected. Since when |ω| is fixed, ESD is a function of the 

sampling/interpolation area 𝐴. The ratio 𝛾 of 𝐴 between two rendering methods is used as a 

factor for comparison.  

Table 3.2 summarizes the comparison. The first column shows a pair of rendering 

methods to be compared, the second column is the ratio 𝛾, the third column gives the 

relationship between the corresponding ESDs, the fourth column is the minimum value of 𝛾 for 

each pair. Specifically, three particular scenarios are analysed and their corresponding 𝛾 are 

shown in the fifth column of Table 3.2. 

Scenario one: 𝑑
 
→∞ and 𝑘 ≫ 𝑙, which represents a typical low density camera grid and 

a scene that is very far from the grid. In this case, the analysis shows that, 4ESDNN <

 4ESDUV < ESDST  < 𝐸𝑆𝐷UVST . In other words, UVST has the highest ESD and is expected to 

produce the best video quality. NN has the lowest ESD and therefore would generate the lowest 

quality output. 

Scenario two:  𝑑
 
→∞ and  𝑘 ≅ 𝑙, a hypothetical very high density camera grid for a 

scene that is very far from the grid, the analysis shows that, 1.7ESDNN < ESDUV < ESDST  , 

4ESDNN < 𝐸𝑆𝐷UVST, and 2.2ESDUV < 2.2ESDST  < 𝐸𝑆𝐷UVST. This shows the same order as 

first scenario, but both NN and UV methods work much better in comparison with ST, though 

still UVST has the best performance. 

Scenario three:  𝑑 ≅ 1, a hypothetical scene very close to the image plane, the analysis 

shows that, 4ESDNN <  4ESDST < ESDUV  < 𝐸𝑆𝐷UVST . This shows that UV outperforms ST 

in such a scenario with ESD more than four times higher than ST. Hence, for a scene close to 

the grid, UV is a better choice for rendering method compared with ST, which is intuitively 

appealing. 
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Similar analysis can be applied to other scenarios, which can offer a choice of rendering 

algorithms for a given acquisition system. In addition, for a given camera system, the analytic 

expression of ESD can be derived from the geometry of the camera system and used, in turn, to 

estimate, tune or optimize system parameters. 

 

Table 3.2  

Comparison of ESD of the LF rendering methods without using depth information 

 

Methods 

Sampling length 

comparison 

ESD comparison 𝛾 (the ratio of ESD’s) 𝛾 Analysis 

NN vs. ST 𝐴𝑁𝑁. 𝛾 > 𝐴𝑆𝑇 𝐸𝑆𝐷𝑁𝑁.
4

𝛾2
< 𝐸𝑆𝐷𝑆𝑇 𝛾 > 1 +

𝑙𝑑

(𝑙 + 𝑘)𝑑 − 𝑘
 

𝑑
 
→∞ 𝑎𝑛𝑑 𝑘 ≫ 𝑙 

 
⇒ 𝛾 = 1 

𝑑
 
→∞ 𝑎𝑛𝑑 𝑘 ≅ 𝑙 

 
⇒ 𝛾 = 1.5 

𝑑 ≅ 1 
 
⇒ 𝛾 = 2 

NN vs. UV 𝐴𝑁𝑁. 𝛾 > 𝐴𝑈𝑉 𝐸𝑆𝐷𝑁𝑁.
4

𝛾2
< 𝐸𝑆𝐷𝑈𝑉 𝛾 > 1 +

𝑘𝑑 − 𝑘

(𝑙 + 𝑘)𝑑 − 𝑘
 

𝑑
 
→∞ 𝑎𝑛𝑑 𝑘 ≫ 𝑙 

 
⇒ 𝛾 = 2 

𝑑
 
→∞ 𝑎𝑛𝑑 𝑘 ≅ 𝑙 

 
⇒ 𝛾 = 1.5 

𝑑 ≅ 1 
 
⇒ 𝛾 = 1 

NN vs. UVST 𝐴𝑁𝑁. 𝛾 > 𝐴𝑈𝑉𝑆𝑇 𝐸𝑆𝐷𝑁𝑁.
16

𝛾2
< 𝐸𝑆𝐷𝑈𝑉𝑆𝑇 𝛾 > 2 𝛾 > 2 

ST vs. UVST 𝐴𝑆𝑇 . 𝛾 > 𝐴𝑈𝑉𝑆𝑇 𝐸𝑆𝐷𝑆𝑇 .
4

𝛾2
< 𝐸𝑆𝐷𝑈𝑉𝑆𝑇 𝛾 > 1 +

𝑑 − 1

(
2𝑙
𝑘
+ 1)𝑑 − 1

 

𝑑
 
→∞ 𝑎𝑛𝑑 𝑘 ≫ 𝑙 

 
⇒ 𝛾 = 2 

𝑑
 
→∞ 𝑎𝑛𝑑 𝑘 ≅ 𝑙 

 
⇒ 𝛾 = 1.33 

𝑑 ≅ 1 
 
⇒ 𝛾 = 1 

UV vs. UVST 𝐴𝑈𝑉 . 𝛾 > 𝐴𝑈𝑉𝑆𝑇  𝐸𝑆𝐷𝑈𝑉 .
4

𝛾2
< 𝐸𝑆𝐷𝑈𝑉𝑆𝑇 

𝛾

> 1 +
𝑙𝑑

(𝑙 + 2𝑘)𝑑 − 2𝑘
 

𝑑
 
→∞ 𝑎𝑛𝑑 𝑘 ≫ 𝑙 

 
⇒ 𝛾 = 1 

𝑑
 
→∞ 𝑎𝑛𝑑 𝑘 ≅ 𝑙 

 
⇒ 𝛾 = 1.33 

𝑑 ≅ 1 
 
⇒ 𝛾 = 2 

ST vs. UV 𝐴𝑈𝑉 > 𝛾. 𝐴𝑆𝑇 𝐸𝑆𝐷𝑈𝑉 . 𝛾
2 < 𝐸𝑆𝐷𝑆𝑇 

𝛾

< 1 +
(𝑘 − 𝑙)𝑑 − 𝑘

(2𝑙 + 𝑘)𝑑 − 𝑘
 

𝑑
 
→∞ 𝑎𝑛𝑑 𝑘 ≫ 𝑙 

 
⇒ 𝛾 = 2 

𝑑
 
→∞ 𝑎𝑛𝑑 𝑘 ≅ 𝑙 

 
⇒ 𝛾 = 1 

𝑑 ≅ 1 
 
⇒ 𝛾 = 0.5 
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3.4.2 Rendering Methods with the Depth Information 

 

Utilization of depth information 𝐺 in rendering can compensate to some extent for 

insufficient number of samples acquired in an under-sampling situation [17]. It can make the 

ray selection mechanism 𝑀 more effective compared with blind rendering methods. The amount 

of depth information 𝐺 could vary from a crude estimate, such as the focusing depth, to the full 

depth map or even full 3D geometric model of the scene. A mechanism 𝑀 in this case may 

choose a number of rays intersecting the scene in the vicinity of point 𝑝 at depth 𝑑. A rendering 

method whose interpolation function 𝐹 is a 2D interpolation over 𝑢𝑣 plane and utilizes the 

focusing depth is referred to as UV-D (UV+Depth) and the one with a full depth map is referred 

to as UV-DM (UV+Depth Map). By extending the selection mechanism 𝑀 and interpolation 

function 𝐹 to a full 4D interpolation over both 𝑢𝑣 and 𝑠𝑡 planes, the rendering methods are 

referred to as UVST-D (UVST+Depth) and UVST-DM (UVST+Depth Map) respectively, the 

former using focusing depth only. Many LF rendering methods with depth information can be 

mathematically expressed in the form of one of these 4 groups. The simplest forms of these 

methods are with |ω| = 4 and bilinear interpolation as 𝐹 for UV-D and UV-DM and |ω| = 16 

and quadrilinear interpolation as 𝐹 for UVST-D and UVST-DM. The unknown ray 𝑟 can be 

estimated as 𝑟 =  𝐹(ω, 𝐺) = 𝐹(𝑀(Ѳ, 𝐺), 𝐺).    

Figure 3.5 illustrates the rendering methods with depth information. If the exact depth 𝑑 

at point 𝑝, the intersection of unknown ray 𝑟 with the scene, is known, applying a back 

projection could easily find a subset of known rays Ω intersecting the scene at the vicinity of 𝑝. 

Subsequently, an adequate subset ω of these rays can be selected by mechanism 𝑀 to be 

employed in interpolation method 𝐹. Mechanism 𝑀 selects rays required for a neighbourhood 

estimation or bilinear interpolation over image plane 𝑠𝑡, if rays intersecting the scene at the 

vicinity of 𝑝 don’t pass through known pixel values. 

 However, in practice, the estimated depth of 𝑝 is unknown and the estimated depth has 

an error Δ𝑑. Again, the same procedure can be employed to form the Ω and ω sets by 
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𝑝′ 
𝑝 

employing the estimated depth of 𝑝. Though, this time the depth estimation error Δ𝑑, makes the 

rays intersect in an imaginary point 𝑝′ in the space and going through the vicinity of area 𝐴 on 

the scene instead of intersecting with the exact point 𝑝 on the scene surface. Subsequently, this 

estimation error Δ𝑑 would result in reduction of ESD and a lower rendering quality. 

 

                                                                                                                                      

                                                                                                                                            

                                                                                                                                                                                           

 

     𝑈𝑖+1(0, 𝑢 + 𝑘)               𝑆𝑗+𝑛(1, 𝑠 + 𝑛𝑙) 

                           𝑌1                  𝑌11                                                       

                                𝐿𝑆          𝑌12         𝑌21                                𝐴𝑈𝑉𝐷  / 𝐴𝑈𝑉𝑆𝑇𝐷                                                       

                   𝑟                  𝐴𝑆                       𝑌22 

                        𝑌2                                                                   Scene  

           𝑈𝑖(0, 𝑢)                        𝑆𝑗(1, 𝑠)                                                                                                                                                                                                                                                                                

                                                            

        

 

  𝑢              1                𝑠               

                                           

                                       𝑑                                              Δ𝑑 

 

Figure 3.5. UV-D/UV-DM and UVST-D/UVST-DM rendering methods with depth error 𝚫𝒅 

 

Note that forming Ω by applying a back projection to the imaginary point 𝑝 is a 

simplification for effective estimation of Ω, in fact Ω has more rays passing through 𝐴 but are 

not passing through vicinity of 𝑝. Hence, to compute the exact Ω, back projection should be 

applied to the vertexes of 𝐴 and not 𝑝 to find all the rays passing through 𝐴. The SD calculated 

from the simplified calculation of Ω is a lower bound estimate of the exact SD. 

The size of area 𝐴 depends on Δ𝑑 and as Δ𝑑 gets larger, it also increases. As the exact 

value of Δ𝑑 error is not known, calculating the precise area of 𝐴 is not possible. Usually only 

the upper bound of the error is known and therefore in this thesis, the worst-case scenario, i.e., 

largest 𝐴 is computed in the LF analysis which corresponds to the lower bound of ESD.  

Considering  a simplified scenario in Figure 3.5, 𝑌1 and 𝑌2 are two immediate neighbour 

rays, intersecting with the desired ray 𝑟 at depth 𝑑 on object surface. If these two rays don’t pass 

through the known 𝑠 values in image plane, 𝑌1 from 𝑌11 and 𝑌12 and 𝑌2 from 𝑌21 and 𝑌22 can be 
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estimated. Finally, a bilinear interpolation in 𝑢𝑣 plane (or a linear interpolation over 𝑢 in this 

2D example) is applied to estimate 𝑟 from 𝑌1 and 𝑌2. 

In the simple 2D example demonstrated in Figure 3.5, ω includes only two samples for 

UV-D/UV-DM and four samples for UVST-D/UVST-DM. In fact, all the samples that intersect 

the object surface at point 𝑝 in vicinity 𝐴 at depth 𝑑 can be employed in the rendering (ω =  Ω) 

to achieve a better quality. 𝑌12 and 𝑌21 are boundary rays used for interpolation. In an ideal 

scenario, the depth estimation has no error, i.e., Δ𝑑 = 0. It is obvious that in this case: 𝐴𝑆 =

𝐿𝑆 +
𝑙

2
+
𝑙

2
=
𝑘(𝑑−1)+𝑙𝑑

𝑑
 , 𝐴𝑈𝑉𝐷/𝑈𝑉𝐷𝑀 = 𝑙𝑑 and 𝐴𝑈𝑉𝑆𝑇𝐷/𝑈𝑉𝑆𝑇𝐷𝑀 = 2𝑙𝑑 . In a realistic scenario 

when Δ𝑑 > 0, 𝑝 is somewhere in the range of 𝑑 ±  Δ𝑑, and the sampling area 𝐴 would be 

increased as: 

𝐴 = 𝑚𝑎𝑥[ |𝑌11(𝑑 + Δ𝑑) − 𝑌22(𝑑 + Δ𝑑)|, |𝑌12(𝑑 + Δ𝑑) − 𝑌21(𝑑 + Δ𝑑)| ] =

 𝑙(𝑑 + Δ𝑑) +
Δ𝑑.𝑘

𝑑
                                                                                                                      (3.6) 

Using this approach, the difference between the rendering methods with focusing depth 

(UV-D/UVST-D) and the rendering methods with full depth map (UV-DM/UVST-DM) is in 

the scale of Δ𝑑. For focusing depth, a fixed depth is given for all points on the scene. This 

makes the depth estimation error, Δ𝑑 =
𝑜𝑏𝑗𝑒𝑐𝑡 𝑙𝑒𝑛𝑔𝑡ℎ  

2
+ 𝑓𝑜𝑐𝑢𝑠𝑖𝑛𝑔 𝑑𝑒𝑝𝑡ℎ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟. 

When the full depth map of the scene is provided as 𝐺, the depth of each point 𝑝 of the scene 

possibly with some estimation error Δ𝑑 is known. This error is usually much less than the 

focusing depth error and makes the UV-DM/UVST-DM rendering more accurate than UV-

D/UVST-D. 

In UV-DM/UVST-DM, the scene depth information can be in the form of one or 

several separate depth maps on the camera plane or, in the best-case scenario, 𝑛 depth maps for 

𝑛 cameras. For any unknown ray, either the closest depth camera information or an interpolation 

of several close depth points with the aim of reducing Δ𝑑 , can be employed to estimate the 

depth of 𝑝. 
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3.4.2.1 General case of Rendering Methods with the Depth Information 

 

Figure 3.6 demonstrates an LF rendering method with 2 plane parameterization using a 

depth map as the auxiliary information 𝐺. Ray 𝑟 is the unknown ray that needs to be estimated 

for an arbitrary viewpoint reconstruction. 𝑟 is assumed to intersect the scene on point 𝑝 at depth 

𝑑. 

In Figure 3.6, seven rays from all rays intersecting imaginary 𝑝 are selected by 𝑀, i.e., 

|ω| = 7, assuming these rays pass through known pixel values or if neighbourhood estimation 

is used. In the case of bilinear interpolation, 28 rays are chosen by 𝑀 to estimate these 7 rays. 

The chosen cameras in 𝑢𝑣 plane are bounded by a convex hull 𝐴’. It is easy to show that 

interpolation convex hull 𝐴 is proportional to 𝐴’. 

Finally a 2D interpolation 𝐹 over convex hull 𝐴’ on 𝑢𝑣 plane can be applied to estimate 

unknown ray 𝑟 from the rays in ω. This rendering method with depth information is referred to 

as UV-DM when 2D interpolation is performed over neighbouring cameras in the 𝑢𝑣 plane and 

neighbourhood estimation, i.e., choosing the closest pixel in the 𝑠𝑡 plane. The rendering method 

is called UVST-DM in the case of 2D interpolation over neighbouring cameras in the 𝑢𝑣 plane 

and bilinear interpolation over neighbouring pixels in the 𝑠𝑡 plane. 

In a simple form of UV-DM and UVST-DM, the rays in ω are selected in a way that 

𝐴’ becomes rectangular, i.e., 2D grid selection and therefore 2D interpolation over 𝐴’ can be 

converted into a familiar bilinear interpolation. 

Notice that all the existing LF rendering methods such as [9-14], in which depth map is 

utilized, are a special case of UV-DM and UVST-DM methods. The ESD for the UV-DM and 

UVST-DM demonstrated in Figure 3.6 can be derived as: 

ESDUVDM =
|ω|

𝐴
=

|ω|

Δ𝑑
𝑑
𝐴′ + μ(𝑙(𝑑 + Δ𝑑), 𝐴′)

                                                                  (3.7) 
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ESDUVSTDM =
|ω|

𝐴
=

|ω|

Δ𝑑
𝑑
𝐴′ + μ(2𝑙(𝑑 + Δ𝑑), 𝐴′)

                                                           (3.8) 

where μ is a function to calculate the effect of pixel interpolation over 𝑠𝑡 plane on the 

area 𝐴. 𝐴 is mainly determined by 𝐴′, but the pixel interpolation μ which is added to (3.7) and 

(3.8) also has small effect on 𝐴. The pixel interpolation over 𝑠𝑡 even when Δ𝑑 = 0 makes 

𝐴 = (𝑙𝑑)2. 

 

 

Figure 3.6. General light field rendering method using depth information (UV-DM /UVST-DM) with 𝚫𝒅 error 

in depth estimation 

 

A simple form of UV-DM and UVST-DM can be formulated with employing a regular 

camera grid and 2D grid selection of rays, i.e., 𝐴’ as a rectangular area with 4 and 16 samples in 

|ω| respectively. Subsequently (3.7) and (3.8) become: 
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ESDUVDM =
4

(
Δ𝑑. 𝑘
𝑑
+ 𝑙(𝑑 + Δ𝑑))

2                                                                                     (3.9) 

ESDUVSTDM =
16

(
Δ𝑑. 𝑘
𝑑
+ 2𝑙(𝑑 + Δ𝑑))

2                                                                             (3.10) 

where 𝑘 is the distance between the two neighbouring cameras in the cameras grid and 𝑙 

is the length of the pixel in the image plane as illustrated in Figure 3.6. Note that the edge of 𝐴’ 

rectangular is equal to 𝑘 and that is how (3.9) and (3.10) are derived from (3.7) and (3.8). 

It has to be pointed out that most existing rendering methods with depth information are 

equivalent to these simple versions of UV-DM and UVST-DM and choose only a very small 

subset of Ω, typically 4 or 16 rays, as ω. When the depth map is accurate, a small number of 

rays, say 4, would be sufficient, but for the case of less accurate depth maps, employing more 

rays in ω for interpolation could compensate for the adverse effect of errors in depth to some 

degree and improve the rendering quality since ESD is increased as can be seen from (3.7) and 

(3.8). This does not necessarily mean to increase the number of cameras, as there are already |Ω| 

rays passing through area 𝐴 of the scene and potentially can be chosen as ω. These samples are 

already captured so if using more can result in rendering quality improvement, the added 

complexity of the rendering algorithm may be justifiable.   

For the rest of this thesis the analysis is only carried out for UV-DM, which can easily 

be extended to UVST-DM. Consider the simple form of UV-DM described above (i.e., the rays 

in ω are selected in a way that 𝐴’ becomes rectangular). Mathematically, a general 

representation of this simplified UV-DM rendering method is 𝑟 = UVDM(𝑑, Δ𝑑, 𝑘, 𝑙, |ω|), 

where 𝑘 is the distance between two neighbouring cameras and 𝑙 is the length of the pixel, 𝑑 and 

Δ𝑑 are the estimated depth and its error and |ω| refers to the number of rays employed in 

interpolation. 
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3.4.2.2 ESD for 𝑼𝑽𝑫𝑴(𝒅,𝜟𝒅, 𝒌, 𝒍, |𝛚|) 

 

By extending (3.9), the ESD could be calculated for UVDM(𝑑, Δ𝑑, 𝑘, 𝑙, |ω|) as follows: 

ESDUVDM(𝑑,Δ𝑑,𝑘,𝑙,|ω|) =
|ω|

(𝑙(𝑑 + Δ𝑑) +
Δ𝑑. 𝑘
𝑑
(√|ω| − 1))

2                                         (3.11) 

Equation (3.11) assumes that the rays are chosen for interpolation symmetrically around 

the vertical and horizontal axes, such as 4𝑥4 samples. In this case, √|ω|  would be an integer. 

For an asymmetrical choice of rays, (3.11) could be rewritten as follow: 

ESDUVDM(𝑑,Δ𝑑,𝑘,𝑙,|ω|𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙,|ω|ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙) =

 
|ω|𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙.|ω|ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙

(𝑙(𝑑+Δ𝑑)+
Δ𝑑.𝑘

𝑑
(|ω|𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙−1))(𝑙(𝑑+Δ𝑑)+

Δ𝑑.𝑘

𝑑
(|ω|ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙−1)) 

                                                             (3.12)  

ESDUVDM(𝑑,Δ𝑑,𝑘,𝑙,|ω|) predicts the rendering quality as shown in [30]. In the above 

expression, 𝑑 is given by scene geometry and Δ𝑑 is determined by the depth estimation method 

and cannot be altered by us. Changing the other three parameters could potentially improve the 

rendering quality. By assuming a given camera resolution, i.e., a fixed value of 𝑙, two other 

parameters can be tuned to compensate for the depth estimation error while maintaining the 

rendering quality. These parameters include 𝑘 as a measure of density of cameras during 

acquisition and |ω| as an indicator of complexity of rendering method. ESD is proportional to 

|ω|  and inversely proportional to 𝑘. It means higher camera density in camera grid (smaller 𝑘) 

and employing more rays for interpolation results in higher ESD. The influence of these two 

parameters on output quality and the ESD optimization based on them, individually and jointly 

will be discussed in detail in chapters 4, 5, and 6. 

More discussion on ω, Ω, and Ѳ sets can be found in appendix I. Further discussion on 

SD calculation for a regular camera grid is presented as appendix II. In addition, appendix III 

demonstrates the details of ESD calculation. 
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3.4.2.3 ESD Analysis for Rendering Methods with Depth Information 

 

ESD for the rendering methods using either focusing depth or depth maps can be 

analytically derived based on the geometry of the regular grid camera system as described in 

Figure 3.5 and Figure 3.6 and Equations (6) to (11). Table 3.3 summarizes derivation. The first 

column shows the rendering methods: UV-D and UVST-D methods that use focusing depth and 

UV-DM and UVST-DM that use depth maps, with |ω| = 4 𝑜𝑟 16 and |ω| >  4 𝑜𝑟 16. The 

second and third columns describe the selection mechanism 𝑀 and interpolation function 𝐹 

respectively. The fourth and fifth column give the sampling/interpolation length 𝐴 and ESD 

respectively. 

 

Table 3.3 

ESD for the LF rendering methods with depth information 

Rendering 

method 

category 

Selection Mechanism 𝑀 

Interpolation 

Function 𝐹 
Sampling length in 2D 

ESD for symmetric 3D 

light field 

UV-D 

|ω|  = 4 

Select 4 rays sourcing 

from neighbourhood 

cameras in 𝑢𝑣 and 

intersecting with 

expected 𝑝 

Neighbourhood 

estimation in 𝑠𝑡 and 

2D interpolation 

over 𝑢𝑣 

𝐴𝑈𝑉𝐷 = 𝑙(𝑑 + 𝛥𝑑) +
𝛥𝑑. 𝑘

𝑑
 𝐸𝑆𝐷𝑈𝑉𝐷 =

4

𝐴𝑈𝑉𝐷
2 

UVST-D 

|ω|  = 16 

Select 16 rays sourcing 

from neighbourhood 

cameras in 𝑢𝑣, through 

known pixels in 𝑠𝑡 and 

intersecting with 

expected 𝑝 

4D interpolation 

over  

𝑠𝑡 and 𝑢𝑣 planes, 

e.g., quadlinear 

interpolation 

𝐴𝑈𝑉𝑆𝑇𝐷 = 2𝑙(𝑑 + 𝛥𝑑) +
𝛥𝑑. 𝑘

𝑑
 𝐸𝑆𝐷𝑈𝑉𝑆𝑇𝐷 =

4

𝐴𝑈𝑉𝑆𝑇𝐷
2 
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UV-DM 

|ω|  = 4 

The same as UV-D but 

with more accurate 

depth estimation of 𝑝 

employing depth maps. 

The same as UV-D 𝐴𝑈𝑉𝐷𝑀 = 𝑙(𝑑 + 𝛥𝑑) +
𝛥𝑑. 𝑘

𝑑
 𝐸𝑆𝐷𝑈𝑉𝐷𝑀 =

4

𝐴𝑈𝑉𝐷𝑀
2 

UVST-DM 

|ω|  = 16 

The same as UVST-D 

but with more accurate 

depth estimation of 𝑝 

employing depth maps. 

The same as  

UVST-D 
𝐴𝑈𝑉𝑆𝑇𝐷𝑀 = 2𝑙(𝑑 + 𝛥𝑑) +

𝛥𝑑. 𝑘

𝑑
 

𝐸𝑆𝐷𝑈𝑉𝑆𝑇𝐷𝑀

=
16

𝐴𝑈𝑉𝑆𝑇𝐷𝑀
2 

UV-DM 

|ω|  > 4 

Select |ω| rays sourcing 

from neighbourhood 

cameras in 𝑢𝑣 and 

intersecting with 

expected 𝑝 

2D interpolation 

over chosen rays in 

ω and estimate each 

ray from closest 

known pixel in 𝑠𝑡 

𝐴𝑈𝑉𝐷𝑀(𝑑,𝛥𝑑,𝑘,𝑙,|ω|) =

𝑙(𝑑 + 𝛥𝑑) +
𝛥𝑑.𝑘

𝑑
(√|ω| − 1)* 

𝐸𝑆𝐷𝑈𝑉𝐷𝑀(𝑑,𝛥𝑑,𝑘,𝑙,|ω|)

=
|ω|

𝐴𝑈𝑉𝐷𝑀(𝑑,𝛥𝑑,𝑘,𝑙,|ω|)
2 

UVST-DM 

|ω|  > 16 

Select |ω| rays sourcing 

from neighbourhood 

cameras in 𝑢𝑣, through 

known pixels in 𝑠𝑡 and 

intersecting with 

expected 𝑝 

4D interpolation 

over chosen rays in 

ω in both 𝑢𝑣 and 𝑠𝑡 

planes 

𝐴𝑈𝑉𝑆𝑇𝐷𝑀(𝑑,𝛥𝑑,𝑘,𝑙,|ω|) =

2𝑙(𝑑 + 𝛥𝑑) +
𝛥𝑑.𝑘

𝑑
(√|ω| − 1)* 

𝐸𝑆𝐷𝑈𝑉𝑆𝑇𝐷𝑀(𝑑,𝛥𝑑,𝑘,𝑙,|ω|)

=
|ω|

𝐴𝑈𝑉𝑆𝑇𝐷𝑀(𝑑,𝛥𝑑,𝑘,𝑙,|ω|)
2 

 

*
This is calculated by assuming that chosen rays form a rectangular grid in 𝑢𝑣 plane for 

simplification 

 

Table 3.4 summarizes comparison of the ESD among UVST, UV-D, and UVST-D. It is 

clear from Table 3.3 that (UV-DM and UV-D) and (UVST-DM and UVST-D) have the same 

ESD, the difference between them being the scale of ∆𝑑, thus UV-DM and UVST-DM are 

omitted in Table 3.4. Similar to the analysis of the blind methods, ratio 𝛾 is used and two special 

scenarios, one with 𝑑
 
→∞ , 𝑘 ≅ 𝑙 𝑎𝑛𝑑 𝛥𝑑 ≪ 𝑑 and the other with 𝑑

 
→∞ , 𝑘 ≫ 𝑙 𝑎𝑛𝑑 𝛥𝑑 ≪ 𝑑  

are analysed. 

The second scenario corresponds to a typical FVV system where the scene is far from 

the camera grid, depth estimation error is small compared with the depth and there are a finite 

number of cameras. 
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The 𝛾 values allows us to compare the rendering methods with and without using depth 

information.  Table 3.2 and Table 3.4 have shown that: 4ESDNN < 4ESDUV < ESDST <

ESDUVST ≪ ESDUVD/UVDM < ESDUVSTD/UVSTDM ,i.e., for a given acquisition, the NN 

rendering method has the lowest ESD and hence results in the lowest video quality following by 

UV, ST, UVST, UV-D/UV-DM, and UVST-D/UVST-DM respectively. The experimental 

validation in next section will not only confirm this, but also show that ESD is highly correlated 

with PSNR. 

 

Table 3.4 

Comparison of the UVST, UV-D/UV-DM and UVST-D/UVST-DM methods 

Methods 

Sampling 

length 

comparison 

ESD comparison 𝛾 Ratio 𝛾 Analysis 

UVST vs. UV-

D 

𝐴𝑈𝑉𝑆𝑇

> 𝛾. 𝐴𝑈𝑉𝐷 

𝐸𝑆𝐷𝑈𝑉𝑆𝑇
𝛾2

4

< 𝐸𝑆𝐷𝑈𝑉𝐷 

𝛾 <
(𝑘 + 𝑙)𝑑2 − 𝑘𝑑

𝑙𝑑2 + 𝑙Δdd + kΔd
 

𝑑
 
→∞ , 𝑘 ≅ 𝑙 𝑎𝑛𝑑 𝛥𝑑 ≪ 𝑑  

 
⇒ 𝛾 = 2 

𝑑
 
→∞ , 𝑘 ≫ 𝑙 𝑎𝑛𝑑 𝛥𝑑 ≪ 𝑑  

 
⇒ 𝛾 = ∞ 

UVST vs. 

UVST-D 

𝐴𝑈𝑉𝑆𝑇

> 𝛾. 𝐴𝑈𝑉𝑆𝑇𝐷 

𝐸𝑆𝐷𝑈𝑉𝑆𝑇𝛾
2

< 𝐸𝑆𝐷𝑈𝑉𝑆𝑇𝐷 
𝛾 <

(𝑘 + 𝑙)𝑑2 − 𝑘𝑑

2𝑙𝑑2 + 2𝑙Δdd + kΔd
 

𝑑
 
→∞ , 𝑘 ≅ 𝑙 𝑎𝑛𝑑 𝛥𝑑 ≪ 𝑑  

 
⇒ 𝛾 = 1 

𝑑
 
→∞ , 𝑘 ≫ 𝑙 𝑎𝑛𝑑 𝛥𝑑 ≪ 𝑑  

 
⇒ 𝛾 = ∞ 

UV-D vs. 

UVST-D 

𝐴𝑈𝑉𝐷

> 𝛾. 𝐴𝑈𝑉𝑆𝑇𝐷 

𝐸𝑆𝐷𝑈𝑉𝐷4𝛾
2

< 𝐸𝑆𝐷𝑈𝑉𝑆𝑇𝐷 
𝛾 < 1 −

𝑙𝑑2 + 𝑙Δdd

2𝑙𝑑2 + 2𝑙Δdd + kΔd
 𝑑

 
→∞ 

 
⇒ 𝛾 =

1

2
 

 

Equations shown in Table 3.3 and Table 3.4 can be used in LF based FVV system 

analysis and design. In addition to LF system evaluation and comparison, by knowing the upper 

bound of the depth estimation error, optimum system parameters such as camera density 𝑘, 

cameras resolution in terms of 𝑙 , and rendering complexity in terms of number of rays 

employed in interpolation |ω| can be theoretically calculated. For example, in [16], we have 

used the above relationships to obtain the minimum camera density for capturing a scene. We 

will show in following three chapters of the thesis (chapter 4, 5, and 6) that how ESD can be 
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used to optimize the acquisition and rendering parameters of an LF system individually and 

jointly [95] for a target output video quality. 

 

3.5 Theoretical and Simulation Results 

 

To verify the effectiveness of ESD as an objective quality indicator of an LF-based 

FVV system, a computer simulation system employing a 3D engine has been developed to 

generate the ground truth data [96]. The details of the simulation model will be discussed later 

in appendix V . The system takes a 3D model of a scene and generates the sampling of the scene 

(reference images) for a given configuration of cameras. For any virtual views to be 

reconstructed by an LF rendering method, the system generates its ground truth image as a 

reference for quantitative comparison. Figure 3.7 illustrates a simulated regular-camera grid for 

acquisition. Virtual views were randomly generated as the ground truth and used to evaluate the 

performance of ESD as a distortion indicator. 

In addition, since 3D models were used to represent the scene, a full precise depth map 

was available for rendering. Controlled amount of depth map error is simulated and added to the 

depth map in order to evaluate ESD when inaccurate depth is employed in the rendering. In the 

following, details on the depth error model and experimental settings are presented. 
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Figure 3.7. a) A simulated regular camera grid; b) Random virtual viewpoints. 

 

3.5.1 Depth Error Model 

  

There are two commonly used approaches to obtain depth information for FVV systems 

[97]: triangularization-based through either stereoscopic vision or structure light, and time-of-

flight (ToF) based. When depth is estimated using the former approach, the error Δ𝑑 is 

normally distributed whose standard deviation is proportional to the square of distance 𝑑2, i.e. 

∆𝑑 ≈ 𝜏. 𝑑2, where 𝜏 depends on the system parameters [98]. For ToF, the error tends to be 

approximated coarsely as ∆𝑑 ≈ 𝜏. 𝑑 [99]. The linear model is adopted for the experimental 

validation in this chapter. 

In the experiments, the exact depth map is known from the simulator. Based on the 

prescribed depth estimation error, for each pixel of the exact depth map, a random error with 

(a) 

(b) 
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normal distribution and standard deviation of ∆𝑑 = 𝜏. 𝑑 is introduced to create a noisy depth 

map with average of 𝜏% error. 

 

3.5.2 ESD of Scenes 

 

The ESD equations summarized in Table I and Table III are all for a small vicinity of 

scene around a given point 𝑝. Clearly, ESD varies over the scene, depending on the depth. On 

the other hand, the overall distortion of output in addition to ESD is also scene dependent. 

Estimation of overall distortion for a given scene requires integration of ESD over the entire 

scene and at each point considering the scene texture complexity. In this section, an 

approximation is adopted by using the average depth of the scene. This allows analysing 

acquisition configurations or rendering methods based on ESD independently of the scene 

complexity. To compare acquisition configurations and rendering methods an ESD̅̅ ̅̅ ̅ for each 

configuration/method is calculated for comparison using an average depth of the scene �̅� with 

an average ∆𝑑̅̅̅̅  of absolute depth error. 

 

3.5.3 Simulation Settings 

 

For the experiments reported in this section, the LF engine is customized for the eight 

LF rendering methods: NN, UV, ST, UVST, UV-D, UVST-D, UV-DM and UVST-DM with 

|ω| = 1, 4, 4, 16, 4, 16, 4 and 16 respectively with default rectangular grid ray selection for 𝑀 

and bilinear and quadrilinear interpolations for 𝐹. 

To assess the effect of scene complexity on output distortion, four 3D models, a 

“room”, a “chess board”, “blender monkey”, and “Stanford bunny”, as shown in Figure 3.8, 

were selected, where the complexity decreases in this order. In the simulation, the centre of the 

3D model was placed at 𝑑 = 10𝑚 by default, if depth is not given in the experiment. A 16𝑥16 
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regular camera grid were placed for acquisition and the image resolution was originally set to 

1024𝑥768 pixels, i.e., 𝑙 = 0.05𝑐𝑚. However, for experiments reported in Figure 3.11, to 

evaluate the effect of the 3D model depth in output PSNR, �̅� is changed between [10𝑚, 50𝑚], 

in Figure 3.17 to evaluate the effect of the camera grid density in output PSNR, 𝑘 is changed 

between [0.1𝑚, 0.9𝑚], and in Figure 3.18 to evaluate the effect of the reference cameras 

resolution on output PSNR 𝑙 is changed between [0.02𝑐𝑚, 0.1𝑐𝑚], to analyse the effects of 

these factors on the output distortion. 

Please note that the term pixel size in the following experiments refers to 𝑙, the 

projected pixel size on image plane 𝑠𝑡 at depth 𝑑 = 1. Hence, 𝑙 = 0.02𝑐𝑚 on 𝑠𝑡 plane 

corresponds to a real pixel size equal to 4.8𝑥10−4𝑐𝑚 for a typical 1 2⁄
"
camera sensor or 

capturing resolution of 2560𝑥1920. With the same assumptions, 𝑙 = 0.5𝑐𝑚 corresponds to 

capturing resolution of 1024𝑥768 and 𝑙 = 0.1𝑐𝑚 to resolution of 512𝑥384. 

For each 3D model, 1000 random virtual cameras at different distances from the scene 

were generated and average PSNR between the rendering images and the ground truth was 

calculated for comparison. 

Figure 3.8 shows the four 3D models used in the simulation. 
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Figure 3.8. Four 3D scenes chosen for experimental validation 

 

In the following, the theoretical expectations in terms of calculated ESD̅̅ ̅̅ ̅ and the actual 

measurement of output video distortion in PSNR are reported and compared for different 

rendering methods and different acquisition configurations.  

 

3.5.4 Results on Rendering Methods 

 

3.5.4.1 Theoretical Expectation 

 

Figure 3.9 shows the ESD for the above-mentioned LF rendering methods in addition to 

the ideal rendering (Δ𝑑 = 0) where 𝑘 = 0.4𝑚, 𝑙 = 0.05𝑐𝑚, 𝑑 ∈  [10𝑚, 50𝑚], the object 

length is 5𝑚 and Δ𝑑 = 0.1𝑑 i.e., ten percent error in depth estimation. The ideal case is when 

there is no error in the depth map and refers to the maximum value for ESD at depth 𝑑. The 
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vertical axis is logarithmic. For UV-D and UVST-D the actual error is  
𝑜𝑏𝑗𝑒𝑐𝑡 𝑙𝑒𝑛𝑔𝑡ℎ

2
 +  Δd, 

which in this example is equal to 2.5𝑚 +  0.1𝑑. 

 

 

Figure 3.9. Theoretical 𝐄𝐒𝐃̅̅ ̅̅ ̅̅  for different LF rendering methods based on object depth �̅� for 𝒌 = 𝟎. 𝟒𝒎 and 

𝒍 = 𝟎. 𝟎𝟓𝒄𝒎 (i.e., camera resolution of 𝟏𝟎𝟐𝟒𝒙𝟕𝟔𝟖) 

 

It can be seen from Figure 3.9 that, for all depths, the expected relative relationship of 

ESD among the eight LF rendering methods is maintained. A quadrilinear interpolation over 

UVST makes UVST-D and UVST-DM perform slightly better than their corresponding UV-D 

and UV-DM, especially for small 𝑑. For large depths, UV-D/UVST-D performance approaches 

that of UV-DM/UVST-DM, because the object length is small compared to depth error in this 

case. 

Figure 3.10 demonstrates a bar chart of theoretical ESD values for different rendering 

methods for 𝑘 = 0.4𝑚, 𝑙 = 0.05𝑐𝑚, for a point 𝑝 with 𝑑 = 10𝑚  and Δ𝑑 = 1𝑚. 
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Figure 3.10. Theoretical 𝐄𝐒𝐃̅̅ ̅̅ ̅̅  for different rendering methods for 𝒌 = 𝟎. 𝟒𝒎, 𝒍 = 𝟎. 𝟎𝟓𝒄𝒎, �̅� = 𝟏𝟎𝒎, and 

𝚫𝒅̅̅ ̅̅ = 𝟏𝒎 

 

3.5.4.2 Simulation Results 

 

Figure 3.11 shows the simulated results, where the object depth 𝑑 is changed from 10𝑚 

to 50𝑚 with steps of 5𝑚 to analyze the effect of 𝑑 on rendering output distortion in PSNR for 

different rendering methods. The acquisition parameters are: 𝑘 = 0.4𝑚 and 𝑙 = 0.05𝑐𝑚 (i.e., 

camera resolution of 1024𝑥768). Notice that all the parameters for camera configuration and 

rendering algorithm were set the same as those used to obtain the theoretical results shown in 

Figure 3.9. 10% depth error was added in the experiments. Figure 3.11 shows the average 

results calculated from 288,000 experiments for 9 depths, 8 rendering methods, four 3D models 

and 1000 virtual viewpoints for each experiment. 

As it can be seen, rendering methods with full depth information UVST-DM and then 

UV-DM performed the best with the least distortion (in PSNR) followed by rendering methods 

with focusing depth information UVST-D and then UV-D. Not surprisingly, the blind rendering 

methods with no depth information had the highest distortion with UVST performing the best 
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among blind methods followed by ST, UV and NN. The distance of the scene to the camera grid 

had a direct effect on output distortion, where further distance caused higher distortion for all 

methods, more significantly for methods with depth information and less pronounced for blind 

methods. More importantly, the results show the same trends with the theoretical ESD values 

shown in Figure 3.9. 

 

Figure 3.11. Experimental rendering quality in PSNR for different LF rendering methods vs. object depth �̅� 

 

Figure 3.12 shows the average PSNR values over 32,000 simulations at 𝑑 = 10𝑚. NN 

interpolation performs the worst; UVST-DM is the best while UVST is the best blind rendering 

method. This order is consistent with the theoretically calculated ESD shown in Figure 3.10. 

Figure 3.13 shows the mean PSNR from 144,000 experiments for different rendering 

methods, categorized based on the complexity of the scene. As can be seen, more complex 

scenes result in reduced rendering quality. This can be explained due to fixed ESD for different 
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scenes with different complexities in term of higher spatial frequency components. 

Nevertheless, ESD provides the right ranking on the performance amongst the various methods. 

 

Figure 3.12. Experimental rendering quality in PSNR for different rendering methods 

 

 

Figure 3.13. Rendering quality and scene complexity 
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Figure 3.14 shows the rendering distortion from 144,000 experiments based on the 

distance of the virtual camera to the scene. As it is shown, far navigation results in higher 

rendering quality compared with closer observations. Again, this can be explained as a 

consequence of reduction in the required high frequency components to be sampled. Note that 

this experiment is different from experiments demonstrated in Figure 3.11 and that is why the 

results are different. In this experiment, the light field system was fixed and the depth of virtual 

cameras was changed. In the previous experiment, the object depth is changed and the PSNR is 

calculated as the mean of 1000 random virtual cameras. 

 

Figure 3.14. Rendering quality and observation distance 

 

Figure 3.14 demonstrates the rendering quality based on the distance of the virtual 

camera to the scene. As it is shown, far navigation results in higher rendering quality compared 

with closer observations. Again, this can be explained as a consequence of reduction in the 

required high frequency components to be sampled. Note that this experiment is different from 

experiments demonstrated in Figure 3.11 and that is why the results are different. In this 

experiment, the light field system was fixed and the depth of virtual cameras was changed. In 
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the previous experiment, the object depth is changed and the PSNR is calculated as the mean of 

1000 random virtual cameras. 

 

3.5.5 Results on Acquisition Configurations 

 

By changing 𝑙 and 𝑘 respectively, various LF acquisition configurations were 

simulated. 

 

3.5.5.1 Theoretical Expectations 

 

Figure 3.15 demonstrates the theoretical relationship between 𝑘, the distance between 

the cameras in the camera grid, and ESD. As expected, for all methods, dense camera grid 

(small 𝑘) results in high ESD and therefore high rendering quality. In this Figure, 𝑑 = 50𝑚, 

𝑙 =  0.05𝑐𝑚 (camera resolution of 1024𝑥768), and 𝑘 ∈  [0.1𝑚, 0.9𝑚] with the same 

assumption for depth error as the case shown in Figure 3.9. 

As it can be seen, changing the value of 𝑘 has limited effects on UV-D/UVST-D and 

UV-DM/UVST-DM, though at large 𝑘, UV-D and UV-DM performance gets worse compared 

to UVST-D and UVST-DM respectively. Also ESD of the ideal case (when there is no error in 

depth) is independent of 𝑘 as demonstrated before. However, for blind methods, 𝑘 has a 

significant effect on ESD values. NN, UV, ST and UVST all perform poorly especially for a 

large 𝑘. This confirms the view that by utilizing depth information, the cost of acquisition 

system can be significantly reduced. 
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Figure 3.15. Theoretical 𝐄𝐒𝐃̅̅ ̅̅ ̅̅  for different LF rendering methods based on camera distance 𝒌 between 𝟎. 𝟏𝒎 

to 𝟎. 𝟗𝒎 for 𝒍 = 𝟎. 𝟎𝟓𝒄𝒎 

 

Figure 3.16 presents the theoretical relationship between 𝑙, the pixel size and ESD. It is 

clear that for all methods, high resolution (small 𝑙) results in high ESD and therefore high 

rendering quality. In this Figure, 𝑑 = 50𝑚, 𝑘 = 0.4𝑚 and 𝑙 ∈  [0.02𝑐𝑚, 0.1𝑐𝑚], i.e., camera 

resolution of 2560𝑥1920 to 512𝑥384 respectively,  with the same assumption for depth error 

as the case shown in Figure 3.9. 

As it can be seen, changing 𝑙 has a direct effect on all methods. This effect is much 

more significant for UV-D, UVST-D, UV-DM, UVST-DM and the ideal case and less 

significant for blind methods. NN/UV and also ST/UVST performed similarly especially for a 

small 𝑙 (high resolution). 
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Figure 3.16. Theoretical 𝐄𝐒𝐃̅̅ ̅̅ ̅̅  for different LF rendering methods based on pixel length 𝒍 between 𝟎. 𝟎𝟐𝒄𝒎 

(camera resolution of 𝟐𝟓𝟔𝟎𝒙𝟏𝟗𝟐𝟎) to 𝟎. 𝟏𝒄𝒎 (camera resolution of 𝟓𝟏𝟐𝒙𝟑𝟖𝟒) 

 

3.5.5.2 Simulation Results 

 

Experiments were carried out to see the effect of 𝑘 in rendering distortion in term of 

PSNR so as to make a comparison to the theoretical ESD values. In first experiment, 𝑑 = 50𝑚, 

object length = 5𝑚, 𝑙 = 0.05𝑐𝑚 and 𝑘 ∈  [0.1𝑚, 0.9𝑚] and 10% depth error was added. 

Figure 3.17 shows the results calculated from random 288,000 trials. As it can be seen, large 

separation between the cameras decreases the rendering PSNR as expected. However, the 

impact of increasing 𝑘 is less significant for UV-D, UVST-D, UV-DM and UVST-DM 

compared to the blind methods. 
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Figure 3.17. Experimental rendering quality in PSNR for different LF rendering methods vs. camera distance 

𝒌 

 

The second experiment shows the relationship between the resolution of cameras (in 

term of pixel length 𝑙) and the rendering distortion in term of PSNR. In this experiment 

𝑑 = 50𝑚, object length = 5𝑚, 𝑘 = 0.4𝑚 and 𝑙 ∈  [0.02𝑐𝑚, 0.1𝑐𝑚], i.e., camera resolution of 

2560𝑥1920 to 512𝑥384 respectively, and 10% depth error. Figure 3.18 illustrates the results 

calculated from 288,000 trials. As it can be seen, high resolution (i.e. smaller value of 𝑙) 

increases the rendering PSNR as expected. However, 𝑙 has less impact on the blind rendering 

methods and more on UV-D, UVST-D, UV-DM and UVST-DM. 
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Figure 3.18. Experimental rendering quality in PSNR for different LF rendering methods vs. pixel length 𝒍 

 

Therefore, the theoretical expectations based on ESD analysis are confirmed by the 

empirical results. This can be seen more obviously by comparing Figure 3.15 with 3.17 and 

Figure 3.16 with 3.18. Notice that the theoretical expectation is shown in ESD while the 

simulation results are shown in PSNR, and their relationship will be examined in the next 

section. 

It should be noted that ESD is a function of 𝑑, the depth of a point in the scene space. 

Hence, it has different values at different points of the scene. Theoretical expectations 

demonstrated in Figures 3.9, 3.10, 3.15, and 3.16 show the mean  ESD̅̅ ̅̅ ̅ for the entire scene by 

assuming the average depth of the scene/object �̅� and average error in depth  Δ𝑑̅̅̅̅ . In other 

words, the scene is sampled and rendered with ESD̅̅ ̅̅ ̅. 
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A summary of all the theoretical expectations and experimental results are demonstrated 

in Figure 3.19 for easy pair to pair comparison. 

 

 
Theoretical 𝐄𝐒𝐃̅̅ ̅̅ ̅̅  for different LF rendering methods 

based on object depth �̅� for 𝒌 = 𝟎. 𝟒𝒎 and 𝒍 =
𝟎. 𝟎𝟓𝒄𝒎 (i.e., camera resolution of 𝟏𝟎𝟐𝟒𝒙𝟕𝟔𝟖) 

 
Experimental rendering quality in PSNR for different 

LF rendering methods vs. object depth �̅� 

 
Theoretical 𝐄𝐒𝐃̅̅ ̅̅ ̅̅  for different rendering methods for 

𝒌 = 𝟎. 𝟒𝒎, 𝒍 = 𝟎. 𝟎𝟓𝒄𝒎, �̅� = 𝟏𝟎𝒎, and 𝚫𝒅̅̅ ̅̅ = 𝟏𝒎  
Experimental rendering quality in PSNR for different 

rendering methods 

 
 

Theoretical 𝐄𝐒𝐃̅̅ ̅̅ ̅̅  for different LF rendering methods 

based on camera distance 𝒌 between 𝟎. 𝟏𝒎 to 𝟎. 𝟗𝒎 

for 𝒍 = 𝟎. 𝟎𝟓𝒄𝒎 

 

Experimental rendering quality in PSNR for different 

LF rendering methods vs. camera distance 𝒌 
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Theoretical 𝐄𝐒𝐃̅̅ ̅̅ ̅̅  for different LF rendering methods 

based on pixel length 𝒍 between 𝟎. 𝟎𝟐𝒄𝒎 (camera 

resolution of 𝟐𝟓𝟔𝟎𝒙𝟏𝟗𝟐𝟎) to 𝟎. 𝟏𝒄𝒎 (camera 

resolution of 𝟓𝟏𝟐𝒙𝟑𝟖𝟒) 

 

Experimental rendering quality in PSNR for different 

LF rendering methods vs. pixel length 𝒍  
 

   

Figure 3.19. A summary of LF theoretical expectation and experimental results for pair to pair comparison   

 

3.5.6 Discussions 

 

Figures 3.9 to 3.18 present the theoretical expectations in term of ESD and experimental 

results in term of PSNR for different scenarios. To verify whether ESD is a good distortion 

indicator, an analysis was conducted of ESD vs. its counterpart of PSNR, i.e. pairs of Figures 

(3.9, 3.11), (3.15, 3.17) and (3.16, 3.18). Figure 3.20 shows the average observed experimental 

PSNR vs. �̅� from Figure 3.11 vs. theoretical calculated ESD vs. �̅� from Figure 3.9, both 

obtained by changing the object depth �̅�. The trendline, covariance, and correlation of PSNR vs. 

ESD are also shown in Figure 3.20. 
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Figure 3.20. Theoretical calculated ESD from Figure 3.9 vs. experimental PSNR from Figure 3.11, both 

obtained by changing the object depth (�̅� from 𝟏𝟎𝒎 to 𝟓𝟎𝒎) 

 

Similarly, Figure 3.21 demonstrates the observed PSNR from Figure 3.17 vs. calculated 

ESD from Figure 3.15, both obtained by changing the camera density. Again, the trendline, 

covariance, and correlation of PSNR vs. ESD are shown. 

 

Figure 3.21. Theoretical calculated ESD from Figure 3.15 vs. experimental PSNR from Figure 3.17, both 

obtained by changing the camera density (𝒌 from 𝟎. 𝟏𝒎 to 𝟎. 𝟗𝒎) 
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Finally, Figure 3.22 demonstrates the observed PSNR from Figure 3.18 vs. calculated 

ESD from Figure 3.16, both obtained by changing the camera resolution. 

 

Figure 3.22. Theoretical calculated ESD from Figure 3.16 vs. experimental PSNR from Figure 3.18, both 

obtained by changing the resolution (𝒍 from 𝟎. 𝟎𝟐𝒄𝒎 to 𝟎. 𝟏𝒄𝒎) 

 

Figure 3.20, Figure 3.21, and Figure 3.22 show a high correlation between theoretically 

calculated ESD and observed PSNR. In addition, as the trendlines demonstrate, there is an 

empirical relationship that can be used to estimate output distortion in PSNR directly from 

calculated ESD without experiments. This will be explored in the next section. 

 

3.6 Prediction of Output Quality 

 

As shown in the previous Section, there is an explicit conformity between theoretical 

ESD and the experimental results. This similarity suggests that it may be possible to establish an 

empirical relationship between the theoretical ESD and PSNR. 

As discussed before, the rendering quality is a function of scene frequency components 

in interpolation area 𝐴, ESD in that area and effectiveness of interpolation function 𝐹. By 
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assuming a fixed scene and a fixed interpolation algorithm, it can be argued that overall 

rendering quality measured in PSNR is a function of ESD̅̅ ̅̅ ̅ for a given LF rendering method. As 

the only variable determining PSNR is MSE (Mean Squared Error) so it can be said that MSE is 

a function of ESD̅̅ ̅̅ ̅ for each given LF rendering method, denoted by ESD𝑚𝑒𝑡ℎ𝑜𝑑, for a given fixed 

scene, i.e., MSE = 𝑓(ESD𝑚𝑒𝑡ℎ𝑜𝑑) . If function 𝑓 is known, then the PSNR of a given LF 

rendering method and LF acquisition configuration can be directly estimated from its ESD.  

To find 𝑓, a subset of existing data is chosen as the training set for curve fitting and the 

rest of the data as a validation set to test the accuracy of the empirical model 𝑓. To generate the 

curve fitting data, a map between observed PSNR and expected MSE is calculated as follows: 

𝑓(ESD𝑚𝑒𝑡ℎ𝑜𝑑) = Expected MSE =
2552

10
(
Observed PSNR

10
)
                                                 (3.13) 

By feeding the observed PSNR from the training set to equation 3.13, the expected MSE 

is calculated. We used the data presented in Figures 3.9 and 3.11 (theoretical and experimental 

results based on changing the object depth) as the training set and data demonstrated in Figures 

(3.15, 3.17) and (3.16, 3.18) for validation. Figure 3.23 demonstrates the curve fitting for the 

training set for different LF rendering methods. This curve fitting is done on all the data and 

without clustering the data based on the LF rendering methods. Figure 3.24 shows the curve 

fitting for each LF rendering method separately (method-dependent). The optimum value for 

𝑓(𝐸𝑆𝐷𝑚𝑒𝑡ℎ𝑜𝑑) for best estimation is when it is equal to expected MSE.  In both figures ESD̅̅ ̅̅ ̅ is 

drawn with respect to expected MSE. 

 

 



79 |   C h a p t e r  3     T h e o r y  o f  E S D  f o r  E v a l u a t i o n ,  C o m p a r i s o n ,  

a n d  A n a l y t i c a l  Q u a l i t y  A s s e s s m e n t  o f  L F - b a s e d  F V V  S y s t e m s  

 

 

Figure 3.23. A general curve fitting for 𝒇(𝐄𝐒𝐃 ) estimation based on calculated 𝐄𝐒𝐃̅̅ ̅̅ ̅̅  vs. expected 𝐌𝐒𝐄 

 

 

Figure 3.24. Method-dependent curve fittings for 𝒇(𝐄𝐒𝐃𝒎𝒆𝒕𝒉𝒐𝒅) 

 

Figure 3.25 shows a summary of curve fitting and validation errors of PSNR estimation 

for all LF rendering methods. As it can be seen from Figure 3.25, the estimation error for 
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validation tests for the case when the method is known is less than 3%. If the method-dependent 

equations are not available, the estimation error for general equation is less than 12%. This 

shows that empirical equations for 𝑓(ESD𝑚𝑒𝑡ℎ𝑜𝑑) are accurate to predict the rendering quality 

in term of PSNR. These equations offer a way to directly estimate the overall rendering quality 

of an LF-based FVV system from calculated ESD without implementation and experiments. 

 

Figure 3.25. Summary of curve fitting training and validation errors of PSNR estimation 

 

By applying the analytical ESD equations to the proposed empirical equations, a direct 

model to estimate the rendering quality in PSNR from LF system parameters can be formulated. 

This helps the system designers to optimize the LF acquisition and LF rendering components 

without exhaustive experimental implementation of each configuration. For instance, for a 

general UVDM(𝑑, Δ𝑑, 𝑘, 𝑙, |ω|) method, by applying the ESD from Table 3.3, the rendering 

quality can be directly calculated as: 

PSNRUVDM(𝑑,Δ𝑑,𝑘,𝑙,|ω|) ≅ 20 𝑙𝑜𝑔10
255

√3.4545(
|ω|

[𝑙(𝑑+Δ𝑑)+
𝛥𝑑.𝑘
𝑑
(√|ω|−1)]2

)−𝟎.𝟐𝟓𝟔
                       (3.14) 

In general, empirical 𝑓 can be formulated as (3.15),  

      𝑓(𝐸𝑆𝐷𝑚𝑒𝑡ℎ𝑜𝑑) = 𝑄. 𝐸𝑆𝐷𝑚𝑒𝑡ℎ𝑜𝑑
𝑃                                                                     (3.15) 
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Table 3.5 summarizes the empirical boundaries of 𝑄 and 𝑃 for different LF rendering 

methods, estimated for different scenes and acquisitions. 

 

Table 3.5 

Empirical boundaries of 𝑷 and 𝑸 

LF rendering method type 
LF rendering 

method 
𝑄 𝑃 

LF rendering methods with no 

depth information 

10 < 𝑄 < 300 

−0.3 < 𝑃 < −0.1 

NN 50 < 𝑄𝑁𝑁 < 300 −0.3 < 𝑃𝑁𝑁 < −0.2 

ST 20 < 𝑄𝑆𝑇 < 200 −0.2 < 𝑃𝑆𝑇 < −0.1 

UV 20 < 𝑄𝑈𝑉 < 250 −0.25 < 𝑃𝑈𝑉 < −0.1 

UVST 10 < 𝑄𝑈𝑉𝑆𝑇 < 200 −0.2 < 𝑃𝑈𝑉𝑆𝑇 < −0.1 

LF rendering methods with 

focusing depth information 

10 < 𝑄 < 40 

−1.0 < 𝑃 < −0.15 

UV-D 10 < 𝑄𝑈𝑉𝐷 < 40 −1.0 < 𝑃𝑈𝑉𝐷 < −0.15 

UVST-D 10 < 𝑄𝑈𝑉𝑆𝑇𝐷 < 40 −1.0 < 𝑃𝑈𝑉𝑆𝑇𝐷 < −0.15 

LF rendering methods with full 

depth information 

1 < 𝑄 < 15 

−0.9 < 𝑃 < −0.2 

UV-DM 1 < 𝑄𝑈𝑉𝐷𝑀 < 15 −0.9 < 𝑃𝑈𝑉𝐷𝑀 < −0.2 

UVST-DM 1 < 𝑄𝑈𝑉𝑆𝑇𝐷𝑀 < 15 −0.9 < 𝑃𝑈𝑉𝑆𝑇𝐷𝑀 < −0.2 

 
General 

Method 
1 < 𝑄 < 10 −1.4 < 𝑃 < −0.2 

 

As discussed before, the differences in 𝑓(ESD𝑚𝑒𝑡ℎ𝑜𝑑)  equations can be directly 

explained due to differences in the scene complexities and interpolation methods.  Despite these 

differences, the general model offers a good indication on what the overall quality in terms of 

PSNR should be expected by a given ESD̅̅ ̅̅ ̅. 

 

3.7 Subjective Validation 
 

While previous section discussed the correlation between ESD and output video 

objective distortion in term of PSNR, this section demonstrates that ESD is also highly 

correlated with subjective assessment of the perceived video quality. A subjective quality 
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assessment based on ITU-T standardization and guidelines on “subjective video quality 

assessment methods for multimedia applications” [100] and using degradation category rating 

(DCR) method was carried out. The test procedure is based on recommendations proposed in 

VQEG reports [101, 102].  Three rendering method, UVST as a candidate of rendering methods 

with no depth information, UV-D with focusing depth and UV-DM with full depth information 

were selected for subjective test. The ground truth from the simulator and Stanford light field 

archive [103] was used as reference image. The original Stanford camera grid to capture real 

scenes is 17𝑥17, i.e., 289 reference images. To provide the ground truth for real scenes with 

real depth values, a subset of these reference images as a sparse 8𝑥8 camera grid was selected 

for acquisition component and a subset of other cameras were used as ground truth. 18 subjects 

participated in the test. For each of three candidate rendering methods, eight rendering outputs 

from different viewpoints for four different scenes, “chess board” and “room” from simulator 

and “eucalyptus flowers” and “ Lego knights” from Stanford real data were generated. These 

96 test sequences as a pair of reference and rendering output were presented to each subject with 

the recommended time pattern and experiment conditions as proposed in [100, 104]. The 

subjects were asked to rate the impairment of the second stimulus in relation to the reference 

into one of the five-level scales: 5:Imperceptible, 4:Perceptible but not annoying, 3:Slightly 

annoying, 2:Annoying, and 1:Very annoying. 

The ESD is also calculated for each pair of scene and rendering method using the 

equations presented in Table 3.1 and 3.3. There are totally 12 values for ESD (4 scenes and 3 

rendering methods). Each value of ESD is corresponded to 8 different views. 

Figure 3.26 shows samples of the test sequences, presented to the subject panel. Note 

that Figure 3.26 shows 12 different pairs out of 96 test sequences which were presented to each 

subject. 
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Figure 3.26. Samples of test sequences used in subjective assessment 

 

Figure 3.27 illustrates the results of the subjective test for each rendering method. The 

average and variance of the impairment for each rendering method was calculated from 576 

collected scores (32 test sequences among 18 subjects). 
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Figure 3.27. Subjective assessment of three LF rendering methods by using degradation category rating 

(DCR), showing the Mean and Variance of rating from 576 collected scores for each method (32 test sequences 

among 18 subjects) with a five-level scale for rating the impairment 

 

To validate the relationship between ESD and subjective DCR rating, the procedure for 

specifying accuracy and cross-calibration of video quality metrics proposed in VQEG reports 

[101, 102] were employed. Figure 3.28 shows the scatter plot for the ESD-DCR couples for all 

96 test sequences. Please note that for each 8 test sequences for different views, there is only 

one calculated ESD. To obtain the empirical relationship between DCR impairment rating and 

ESD, a polynomial curve fitting, as one of the candidates in VQEG reports, is applied over the 

data. The Pearson correlation coefficient is calculated as 0.91 which demonstrates a high 

relationship among ESD and DCR. The curve fitting has a root mean square error of 0.34 

which demonstrate around 10% error of prediction DCR from calculated ESD which is 

technically satisfactory. 
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Figure 3.28. DCR impairment rating for subjective quality assessment vs. theoretical ESD and the empirical 

relationship between these two parameters 

 

3.8 Discussion and Conclusion 

 

This chapter introduced a novel theory based on the concept of ESD. Using ESD 

different LF rendering methods and LF acquisition configurations can be theoretically evaluated 

and compared. Eight well-known rendering methods with different acquisition configurations 

have been analyzed through ESD and simulation. The results have shown that ESD is an 

effective indicator of output distortion and quality that can be obtained directly form system 

parameters and that takes into consideration both acquisition and rendering. In addition, an 

empirical relationship between the theoretical ESD and achievable PSNR has been established. 

Furthermore, a subjective quality assessment has confirmed that ESD is highly correlated with 

the perceived output quality.  Although this chapter focuses on the overall distortion of an LF-

based FVV system, the concept is readily extended to measure the rendering quality at a specific 

location or part of the scene. A further study on the impact of depth estimation errors on ESD 
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and optimization of ESD with respect to the camera density and ray selection complexity for a 

given output quality will be discussed in the following chapters. 
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4 Chapter 4: Acquisition Optimization and Calculation of the 

Minimum Density of Cameras for a Regular Grid 
 

 

4.1 Summary 

 

Calculation of the number of cameras required to capture the scene is an essential 

problem in a practical light field based free viewpoint video (FVV) system. Existing methods 

calculate the Nyquist rate by assuming a band-limited signal and perfect reconstruction of an 

arbitrary view using linear interpolation, which often results in an impractically high number of 

cameras. This chapter proposes a new method based on the concept of effective sampling 

density (ESD). Specifically, the method assumes the availability of some depth information and 

explores the trade-off among the depth information accuracy, the required number of cameras, 

and the desired rendering quality. Theoretical and numerical results show that the resulting 

number of cameras would be significantly lower than what was reported in the previous studies 

with only a few percent reduction in the rendering quality. Moreover, it is shown that the 

previous methods are special cases of the one presented in this chapter. 

This rest of the chapter is organized as follows. Section 2 reviews the LF spectral 

analysis and the LF lossy reconstruction with controlled amount of under sampling. Section 3 

describes the proposed method by introducing LF analysis based on ESD and optimization of 

camera density by employing ESD. Experimental validation and simulation results are presented 

in Section 4. Section 5 describes the comparison of the proposed method with Chai’s LF 

spectral analysis and Lin’s LF geometric analysis. Section 6 concludes the chapter. 
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4.2 Overview of LF Spectral Analysis 
 

This section presents the essence of LF spectral analysis introduced in [18-20] with a 

consistent terminology and notation and shows how this analysis has been employed to 

calculate the minimum number of cameras for LF acquisition. 

Typical approach to the problem of calculating the minimum sampling rate of a signal is 

to derive the Fourier transform of the signal and compute the Nyquist rate for the signal. 

Without loss of generality, let’s assume the LF acquisition can be parameterized using two 

parallel planes, that is, camera plane 𝑢𝑣 and image plane 𝑠𝑡. Light field rendering in spatial 

domain can be expressed as: 

𝑟(𝑢, 𝑣, 𝑠, 𝑡) =  𝑤(𝑢, 𝑣, 𝑠, 𝑡) ∗ [ 𝑏(𝑢, 𝑣, 𝑠, 𝑡)𝑞(𝑢, 𝑣, 𝑠, 𝑡)]                                                   (4.1) 

where 𝑏 is a continuous light field, 𝑞 represents the sampling pattern, 𝑤 describes a 

low-pass filtering and interpolation mechanism, 𝑟 is the rendering output, i.e., the intensity of 

unknown ray 𝑟 and ∗ represents convolution operation. Let 𝐵, 𝑄, 𝑊 and 𝑅 be their 

corresponding spectra in frequency domain, thus: 

𝑅(𝑈, 𝑉, 𝑆, 𝑇) =  𝑊(𝑈, 𝑉, 𝑆, 𝑇)( 𝐵(𝑈, 𝑉, 𝑆, 𝑇) ∗ 𝑄(𝑈, 𝑉, 𝑆, 𝑇))                                        (4.2) 

Assume that the depth of each ray is known and denoted as 𝑑(𝑢, 𝑣, 𝑠, 𝑡). By applying 

image disparity to the light field representation 𝑏, the intensity of rays captured by camera 

position (𝑢, 𝑣) can be calculated based on camera position (0,0) as: 

𝑏(𝑢, 𝑣, 𝑠, 𝑡) = 𝑏 (0, 0, 𝑠 −
𝑓𝑢

𝑑(𝑢, 𝑣, 𝑠, 𝑡)
 , 𝑡 −  

𝑓𝑣

𝑑(𝑢, 𝑣, 𝑠, 𝑡)
)                                                           (4.3) 

where 𝑓 is the focal length  of the cameras. Note that ray (𝑠, 𝑡) is assumed to be seen by 

camera (0,0). 𝐵, the Fourier transform of 𝑏, can be represented as: 

𝐵(𝑈, 𝑉, 𝑆, 𝑇) = ∫ ∫ ∫ ∫ 𝑏(𝑢, 𝑣, 𝑠, 𝑡)𝑒−2𝜋𝑖(𝑆𝑠+𝑇𝑡)𝑑𝑠𝑑𝑡
∞

−∞

∞

−∞

∞

−∞

∞

−∞

𝑒−2𝜋𝑖(𝑈𝑢+𝑉𝑣)𝑑𝑢𝑑𝑣           (4.4) 
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Analytical computing of (4.4) is usually not available unless several simplifications and 

assumptions about the light field are made as discussed later. 

By assuming rectangular sampling lattice, 𝑞 can be represented as: 

𝑞(𝑢, 𝑣, 𝑠, 𝑡) =∑ 𝛿(𝑢 − 𝑐1𝑘𝑢)
𝑐1 ,𝑐2 ,𝑐3 ,𝑐4 ∈𝑍

𝛿(𝑣 − 𝑐2𝑘𝑣)𝛿(𝑠 − 𝑐3𝑙𝑠)𝛿(𝑡 − 𝑐4𝑙𝑡)               (4.5) 

where  𝛿(. ) is a Dirac delta function,  𝑐1 , 𝑐2 , 𝑐3  and 𝑐4  are integers, 𝑘𝑢  and 𝑘𝑣  are the 

distance between cameras in 𝑢 and 𝑣 directions and 𝑙𝑠 and 𝑙𝑡  are the horizontal and vertical pixel 

lengths. 

Discrete Fourier transform of 𝐵 ∗ 𝑄 is: 

𝐵(𝑈, 𝑉, 𝑆, 𝑇) ∗ 𝑄(𝑈, 𝑉, 𝑆, 𝑇)

=  ∑ 𝐵 (𝑈 −
2𝜋𝐶1 
𝑘𝑢

, 𝑉 −
2𝜋𝐶2 
𝑘𝑣

, 𝑆 −
2𝜋𝐶3 
𝑙𝑠

, 𝑇 −
2𝜋𝐶4 
𝑙𝑡
)

𝐶1 ,𝐶2 ,𝐶3 ,𝐶4 ∈𝑍
         (4.6) 

Equation (4.6) shows that discrete sampling of the light field signal creates replicas of 𝐵 

shifted to a 4D cube. These replicas are alias components of original signal value of 

𝐵(𝑈, 𝑉, 𝑆, 𝑇) where 𝐶1 = 𝐶2 = 𝐶3 = 𝐶4 = 0 in 4D space.  As normally 𝐵 is not bandlimited, 

and if bandlimited the practical sampling rate is less than the Nyquist frequency of the signal, 

these replicas might overlap and create aliasing artefacts in rendering images/videos. To 

eliminate aliasing artefacts, it has been suggested to oversample the light field or apply a low 

frequency filter, e.g., Gaussian filter, Mean filter or Median filter. As in most practical 

applications oversampling is not feasible, most of LF systems adopt some kind of filtering. 

Several studies have been reported on optimum filtering of the LF signal such as [76]. 

For a simple Lambertian scene with a constant depth 𝑑0, 𝐵 is band-limited and can be 

calculated as [18]: 

𝐵(𝑈, 𝑉, 𝑆, 𝑇) = 4𝜋2𝐵′(𝑆, 𝑇)𝛿 (
𝑓

𝑑0
𝑆 + 𝑈) 𝛿 (

𝑓

𝑑0
𝑇 + 𝑉)                                                (4.7) 
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where 𝐵′(𝑆, 𝑇) is the 2D Fourier transform of the captured image by the camera 

positioned at (0,0). The frequency analysis of this simplified scene can be illustrated by the 2D 

projection of the spectral support of the 4D continuous signal 𝐵 over (𝑈, 𝑆) or (𝑉, 𝑇) planes. 

For projection over (𝑈, 𝑆), the spectral support of 𝐵(𝑈, 𝑆) is a line: 
𝑓

𝑑0
𝑆 + 𝑈 = 0 and for 

projection over (𝑉, 𝑇), the spectral support of 𝐵(𝑉, 𝑇) is a line: 
𝑓

𝑑0
𝑇 + 𝑉 = 0. However, due to 

discrete sampling pattern q of the light field signal, replicas of 𝐵(𝑈, 𝑆) and 𝐵(𝑉, 𝑇) emerge at 

intervals (
2𝜋𝐶1 

𝑘𝑢
,
2𝜋𝐶2 

𝑘𝑣
,
2𝜋𝐶3 

𝑙𝑠
,
2𝜋𝐶4 

𝑙𝑡
) in the 𝑈, 𝑉, 𝑆 and 𝑇 directions. 

Figure 4.1 illustrates 𝐵(𝑈, 𝑆) and its replicas. As it is shown, the original signal in 

frequency domain is only dependent on 𝑘𝑢 , the distance between cameras in 𝑈 axis and has a 

width of 
2𝜋

𝑘𝑢
. In 𝑆 axis, it depends on 𝑙𝑠, the pixel length in 𝑆 as well as 𝐻, the scene highest 

frequency component. The signal width in 𝑆 axis is the minimum of 
2𝜋

𝑙𝑠
 and 2𝜋𝐻. The ideal 

signal sampling requires the light field signal to be filtered to remove all the replicas, but 

preserve the whole frequency band of the original signal. The red rectangular in Figure 4.1 

demonstrates this ideal filtering. 
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Figure 4.1. Illustration of 2D light field spectrum 

 

Figure 4.2 illustrates a simplified 2D light field system, where a slice of the scene is 

bounded between 𝑑𝑚𝑖𝑛 to 𝑑𝑚𝑎𝑥 and its spectral support is a region bounded by 2 lines. The 

optimum filter for perfect reconstruction of the signal with no aliasing artefacts is shown as a 

blue dashed parallelogram. 
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Figure 4.2. A simplified 2D light field and its spectral support 
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The distance between these 2 lines in 𝑈 direction determines the maximum 𝑘𝑢, i.e., 

minimum sample rate. This easily can be calculated as shown in [18] : 

2𝜋

𝑘𝑢
𝑚𝑎𝑥 = 𝑓.𝑚𝑖𝑛 (

𝜋

𝑙𝑠
, 𝜋𝑆) (

1

𝑑𝑚𝑖𝑛
−

1

𝑑𝑚𝑎𝑥
) → 𝑘𝑢

𝑚𝑎𝑥 =
1

𝑓.𝑚𝑖𝑛 (
1
2𝑙𝑠
, 2𝐻) (

1
𝑑𝑚𝑖𝑛

−
1

𝑑𝑚𝑎𝑥
)
      (4.8) 

Assume that the scene complexity, in terms of 𝐻, is not considered, the focal length 

𝑓 = 1, 𝑘 is used as an abbreviation for both 𝑘𝑢
𝑚𝑎𝑥 and 𝑘𝑣

𝑚𝑎𝑥 and 𝑙 for both 𝑙𝑠 and 𝑙𝑡 by 

considering a symmetric system configuration, and the depth of the scene is approximated with 

𝑁𝑑  depth layers from 𝑑𝑚𝑖𝑛 to 𝑑𝑚𝑎𝑥. It is possible to derive Chai’s equation [18] as: 

𝑘 =
2𝑙𝑁𝑑

(
1
𝑑𝑚𝑖𝑛

−
1

𝑑𝑚𝑎𝑥
)
                                                                                                                (4.9) 

Without going into the details, the ideal minimum sampling rate can also be calculated 

with geometric analysis of view interpolation. It is shown that anti-aliasing rendering is 

equivalent to eliminating the “double image” artefacts caused by view interpolation [32] and 𝑘 

can be calculated as: 

𝑘 =
𝑙(𝑁𝑑 + 1)

(
1
𝑑𝑚𝑖𝑛

−
1

𝑑𝑚𝑎𝑥
)
                                                                                                               (4.10) 

Nevertheless, (4.9) and (4.10) often lead to a very high sampling rate. Thus, many 

practical LF systems accept some kind of under-sampling. However, to the best of our 

knowledge, no analytical model has yet been proposed to be able to deal with the under-sampled 

LF by allowing controlled amount of under-sampling for a desirable rendering quality as will be 

proposed in the next section. 
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4.3 LF Acquisition Analysis Based On ESD 

 

In this chapter the acquisition analysis and optimization is carried out for a simplified 

LF-based FVV system with regular camera grid acquisition, 2-planes representation, symmetric 

ray selection, and by employing estimated depth maps during rendering. However, the same 

approach can be used to employ ESD to analyse, evaluate and optimize different LF acquisition 

configurations and rendering methods. As shown in previous chapter, the generic rendering 

method for this simplified LF system with employing 2D interpolation in camera plane 𝑢𝑣 and 

neighbourhood estimation in image plane 𝑠𝑡 can be represented as UVDM(𝑑, Δ𝑑, 𝑘, 𝑙, |ω|) and 

its ESD can be calculated as follows: 

ESDUVDM(𝑑,Δ𝑑,𝑘,𝑙,|ω|) =
|ω|

(𝑙(𝑑 + Δ𝑑) +
Δ𝑑. 𝑘
𝑑
(√|ω| − 1))

2                                         (4.11) 

While the following analysis is carried out for UV-DM method but the same approach 

can be generalized to UVST-DM as discussed before in chapter 3. ESDUVDM(𝑑,Δ𝑑,𝑘,𝑙,|ω|) predicts 

the rendering quality as shown in chapter 3. In the above expression, 𝑑 is given by scene 

geometry and Δ𝑑 is determined by the depth estimation method and cannot be altered by us. 

Changing the other three parameters could potentially improve the rendering quality. By 

assuming a given camera resolution, i.e., a fixed value of 𝑙, two other parameters can be tuned 

to compensate for the depth estimation error while maintaining the rendering quality. These 

parameters include 𝑘 as a measure of density of cameras during acquisition and |ω| as an 

indicator of complexity of rendering method. ESD is proportional to |ω|  and inversely 

proportional to 𝑘. It means higher camera density in camera grid (smaller 𝑘) and employing 

more rays for interpolation results in higher ESD. 
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4.3.1 The Relationship of ESD and Number of Rays in |𝛚| 

 

Figure 4.3 shows the theoretical calculation of mean ESD̅̅ ̅̅ ̅ for UVDM(𝑑, Δ𝑑, 𝑘, 𝑙, |ω|), 

for a given light field system with regular camera grid with 𝑘 = 5 and 𝑙 = 0.01, average depth 

of scene �̅� = 100, relative depth map error 
𝛥𝑑

𝑑
  between 0% to 20%, for three different values 

of |ω|  = 4, 16 and 32. Notice that the estimation error for depth map in most real application is 

around 10% to 20%. 

 

Figure 4.3. Theoretical 𝐄𝐒𝐃̅̅ ̅̅ ̅̅  for 𝐔𝐕𝐃𝐌(𝒅, 𝚫𝒅, 𝒌, 𝒍, |𝛚|) for �̅� = 𝟏𝟎𝟎, depth map with relative error 
𝚫𝐝

𝐝
 in the 

range of [𝟎%, 𝟐𝟎%], 𝒍 = 𝟎. 𝟎𝟏, 𝒌 = 𝟓, for |𝛚| = 𝟒, 𝟏𝟔 and 𝟑𝟐 

 

As it can be observed from Figure 4.3, higher errors in depth estimation result in less 

ESD and subsequently less rendering quality when |ω| is fixed. The reason is that error in depth 

Δ𝑑 increases the area 𝐴 for a given |ω| and therefore decreases ESD. However, choosing more 
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rays for interpolation could increase the ESD and consequently rendering quality. For example, 

the ESD for 16 samples with errors less than 7% is still better than 4 samples with 1% error. 

This analysis shows that increasing the number of rays for interpolation could 

compensate for the adverse effect of depth map estimation errors on ESD to some degree, at 

least when the depth error is not very large. Chapter 5 demonstrates the detail of ESD 

optimization based on |ω| which is a rendering parameter. In this chapter, fixed optimum |ω| is 

assumed and the effect of 𝑘, which is the density of cameras as a main parameter of regular grid 

LF acquisition, on ESD is investigated. Chapter 6 discusses a joint optimization of both 

parameters by applying a Lagrangean method to ESD. 

 

4.3.2 The Relationship of ESD and Density of Cameras 𝐤 

 

Figure 4.4 shows the theoretical calculation of mean ESD̅̅ ̅̅ ̅ for UVDM(𝑑, Δ𝑑, 𝑘, 𝑙, |ω|), 

for a given light field system with regular camera grid with 𝑙 = 0.01, |ω| = 4, average depth of 

scene �̅� = 100, relative depth map error 
𝛥𝑑

𝑑
  between 0% to 20%, for four different values of 

𝑘 = 5, 10, 20 and 50. 

As it can be observed from Figure 4.4, higher errors in depth estimation result in less 

ESD and subsequently less rendering quality when 𝑘 is fixed, because area 𝐴 increases for the 

same reason as described before. However, small 𝑘 (that is, a denser camera grid), reduces 𝐴 

and could increase the ESD and consequently rendering quality. For example, the ESD for 

𝑘 = 5 with depth estimation error less than 17% is still better than 𝑘 = 50 with only 2% error. 

Obviously, increasing the density of cameras, i.e. decreasing the distance between the 

neighbouring cameras could compensate for the adverse effect of depth map estimation errors 

on ESD to some degree. Of course, increasing the number of cameras results in higher 
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acquisition cost. Thus in an LF rendering with a prior knowledge of the depth map estimation 

error, minimum number of cameras can be calculated in advance. 

 

 

Figure 4.4. Theoretical ESD for 𝐔𝐕𝐃𝐌(𝒅, 𝚫𝒅, 𝒌, 𝒍, |𝛚|) at different camera densities 𝒌 = 𝟓, 𝟏𝟎, 𝟐𝟎 and 𝟓𝟎, for 

�̅� = 𝟏𝟎𝟎, depth map relative error 
𝜟𝒅

𝒅
 in the range of [𝟎%, 𝟐𝟎%], 𝒍 = 𝟎. 𝟎𝟏, and |𝛚| = 𝟒  

 

4.3.3 The Proposed Method for Optimization of 𝒌 
 

To avoid quality deterioration due to errors in depth maps, an optimum sampling rate or 

optimal k should be calculated. In this section, a theoretical maximum distance between 

neighbouring cameras is derived which can be mapped to the minimum number of required 

cameras.   

In an ideal scenario, where there are no errors in depth map estimation and there is a 

depth map for each camera in the system, according to the scene reflection complexity one or 
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more rays would be enough for an accurate rendering. In this case, 

ESDIdeal = ESDUVDM(𝑑,0,𝑘,𝑙,𝑛) =
𝑛

(𝑙𝑑)2
 and 𝑛 ≥ 1                                                          (4.12)          

where 𝑛 = 1 is for the pure Lambertian reflection scene. Higher value of 𝑛 can be used 

to model non-Lambertian reflection.  

So, the optimization problem is posed as follows: what would be the maximum 𝑘 (i.e., 

the minimum density of cameras) for any given UVDM(𝑑, Δ𝑑, 𝑘, 𝑙, |ω|) with known depth map 

error Δ𝑑 to have the same ESD as the ideal case? 

ESDUVDM(𝑑,𝛥𝑑,𝑘,𝑙,|𝜔|) = ESDIdeal → 
|ω|

(𝑙(𝑑 + Δ𝑑) +
Δ𝑑. 𝑘
𝑑
(√|ω| − 1))

2 =
𝑛

(𝑙𝑑)2
→ 

𝑘 =
𝑙𝑑(𝑑√

|ω|
𝑛 − 𝑑 − Δ𝑑)

Δ𝑑(√|ω| − 1)
=

𝑙 ((√
|ω|
𝑛 − 1)𝑑

2 − 𝑑Δ𝑑)

Δ𝑑(√|ω| − 1)
                                                         (4.13) 

where Δ𝑑 > 0 and |ω| > 𝑛(
𝑑+Δ𝑑

𝑑
)2  

Equation (4.13) shows the maximum k for a light field acquisition system to avoid 

quality deterioration due to errors in depth maps.  

The first condition states that this equation is only valid for Δ𝑑 > 0. For an ideal 

scenario when Δ𝑑 = 0, ESD is calculated from the ideal case, shown in (4.12) and 𝑘 cannot be 

determined. The second condition explains that for a given Δ𝑑, a minimum |ω| is required to 

compensate for the effect of Δ𝑑 in ESD. In other words, decreasing 𝑘 alone is not sufficient. For 

the purpose of this chapter, it is assumed that this minimum |ω| which can be mapped to a 

minimum required |Ω| and thus SD is always available in each point of the scene. This 

assumption implies that for the calculated 𝑘 from (4.13), the cameras field of view is sufficient 

to provide enough |Ω| and thus SD in each point 𝑝.   
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It should be noted that ESD is a function of d, the depth of a point in the scene space 

(see Figure 3.4 for SD). Hence, it has different values at different points of the scene. Therefore, 

typically for a given scenario, (4.13) is applied to the mean  ESD̅̅ ̅̅ ̅ for the entire scene by 

assuming the average depth of the scene �̅� and average error in depth  Δ𝑑̅̅̅̅  to calculate average 

|𝑘|̅̅ ̅̅ . Positioning the cameras according to this |𝑘|̅̅ ̅̅  guarantees the scene to be sampled and 

rendered with average  ESDIdeal̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ . 

  If the design criteria requires the scene to be sampled and reconstructed by a minimum 

ESDIdeal instead of average  ESDIdeal̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ , (4.13) should be applied to all 𝑑 ranging between 

(𝑑𝑚𝑖𝑛, 𝑑𝑚𝑖𝑛) , the minimum and maximum depths of the scene with corresponding Δ𝑑. This 

gives optimum 𝑘 for each depth 𝑑 and the minimum 𝑘 can be chosen for camera density.  

Figure 4.5 shows, the same system demonstrated in Figure 4.4, but this time for any 

given depth estimation error Δ𝑑 < 20%, 𝑘 is calculated directly from (4.13) to maintain ESD̅̅ ̅̅ ̅ at 

4.00, the ideal ESD calculated for 𝑛 = 4. Figure 4.6 shows the calculated 𝑘 in such a scenario, 

where |ω| is calculated as follow to satisfy the condition of (4.13): |ω| > 4(
100+20

100
)2 > 5.76 →

 |ω| = 6. In addition to ESD for optimum k calculated from (4.13), the ESD for fixed 𝑘 = 14.4 

is also demonstrated in Figure 4.5 for comparison. 

The corresponding point for 10% error in depth estimation is highlighted in Figure 4.5 

and Figure 4.6, respectively, to show the relation of these two Figures. The calculated maximum 

𝑘 keeps the ESD at a fixed rate 4.00 for any error in the depth map. To compensate for just 5% 

error in depth map as demonstrated in Figure 4.6, the camera distance 𝑘 decreases by almost 6 

times, i.e., 36 times higher camera density, and 15% error in depth estimation needs almost 

1900 times higher camera density compared with just 1% error in depth estimation. Note that 

these small values of 𝑘 to compensate for high error in depth only occurs when |ω| is fixed. 

ESD cannot be increased indefinitely by only decreasing 𝑘 because the curve of ESD vs. 𝑘 is 

saturating as 𝑘 decreases: lim𝑘→0(ESDUVDM(𝑑,𝛥𝑑,𝑘,𝑙,|ω|)) =
|ω|

(𝑙𝑑+𝑙Δ𝑑)2
  . Hence, in general, the 
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error in depth map should be compensated for with altering both |ω| and 𝑘 as will be discussed 

in chapter 5 and 6. 

 

Figure 4.5. Theoretical impact of depth estimation error on rendering quality (𝐄𝐒𝐃̅̅ ̅̅ ̅̅ ) for fixed 𝒌 = 𝟏𝟒. 𝟒 and 

calculated 𝒌 from (4.13)  

 

Figure 4.6. Theoretical calculation of 𝒌 from (4.13) for different levels of errors to maintain the rendering 

quality (𝐄𝐒𝐃̅̅ ̅̅ ̅̅ ) at a constant value of 4.00  
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4.4 Experimental Validation 

 

As discussed before, the main issue in quantitative analysis of LF rendering methods is 

the lack of ground truth data. To address this, we utilized our simulation system [96] to validate 

the optimization method proposed in this chapter. The details of the simulation model can be 

found in Appendix V. The simulator takes a 3D model of a scene and generates both reference 

cameras images and ground truth images. It also provides the depth maps for the following 

experiments. Controlled amount of depth map error is introduced to study how the rendering 

would be impacted when the depth map is noisy or inaccurate. 

Figure 4.7 illustrates the UV-DM rendering quality for four depth map error levels 

𝛥𝑑

𝑑
= 5%, 10%, 15%, and 20% and for each error level, different 𝑘 = 0.5, 1, 2, 5, and 10. 

Thus, 20 different combinations of UVDM(𝑑, Δ𝑑, 𝑘, 𝑙, |ω|) are demonstrated. Rendering quality 

is reported in terms of PSNR. Four different 3D scenes were chosen and a regular camera grid 

based on the value of 𝑘 was simulated. For each experiment, 1000 random virtual cameras were 

produced. Each reported PSNR is averaged among all 1000 virtual cameras for all four 3D 

scenes. Therefore 80,000 experiments were conducted by the simulator. 

 

 

Figure 4.7. Experimental 𝐔𝐕𝐃𝐌(𝒅, 𝚫𝒅, 𝒌, 𝒍, |𝛚|) rendering quality in PSNR for 
𝜟𝒅

𝒅
= ( 𝟓%,𝟏𝟎%, 𝟏𝟓% 𝐚𝐧𝐝 𝟐𝟎%) and 𝒌 =  (𝟎. 𝟓, 𝟏, 𝟐, 𝟓, 𝐚𝐧𝐝 𝟏𝟎) 
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As it can be seen in Figure 4.7, the same pattern expected from the proposed model is 

achieved, as smaller 𝑘 improves the PSNR, e.g. 𝑘 = 1 and 15% error in depth performs better 

than 10% error in depth with 𝑘 = 2. 

 

4.4.1 Rendering with Desired PSNR 

 

Assume the desired rendering quality is given as an average PSNR value. This section 

shows how the proposed optimization model can be used to calculate k and amount of filtering 

required to produce the rendering quality at the desired PSNR value.   

As shown in chapter 3, to be able to directly predict rendering PSNR from theoretical 

ESD, an empirical relationship between calculated ESD and rendering PSNR values has been 

established: 

PSNRUVDM(𝑑,Δ𝑑,𝑘,𝑙,|ω|) ≅ 20 𝑙𝑜𝑔10
255

√𝑄. ESDUVDM(𝑑,Δ𝑑,𝑘,𝑙,|ω|)
𝑃

                                  (4.14) 

where 1 < 𝑄 < 15   and − 0.9 < 𝑃 < −0.2                                                                                

Equation (4.14) is employed to calculate corresponding ESD for a given PSNR value. 𝑄 

and 𝑃 for a given scene were approximated through experiments. Then (4.13) is applied to find 

the maximum 𝑘 to maintain the ESD and the corresponding PSNR at a prescribed value (for 

instance 50 dB), as shown in Figure 4.8. Figure 4.8 also shows the average PSNR for fixed 

𝑘 = 14.4, calculated 𝑘 is demonstrated in Figure 4.9. 

Figure 4.8 shows that for high error rates, changing 𝑘 using (4.13) results in significant 

improvements over the fixed camera density and can maintain the rendering quality around 

prescribed 50 dB. Figure 4.8 and Figure 4.9 are the experimental results corresponding to the 

theoretical predictions presented in Figure 4.5 and Figure 4.6. 
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Figure 4.8. Experimental rendering quality for fixed 𝒌 = 𝟏𝟒. 𝟒 vs. calculated maximum 𝒌 demonstrated in 

Figure  4.9 for different levels of depth errors 

 

Figure 4.9. Maximum k from (4.13) and (4.14) to maintain the mean PSNR at a prescribed value of 50 dB for 

different levels of errors in depth estimation 
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4.5 Comparison with Other Methods 

 

4.5.1 The Simplified Case of the Proposed Method 

 

Table 4.1 shows the comparison of a simplified version of the proposed method based 

on ESD analysis, Chai’s method based on spectral analysis and Lin’s method based on 

geometric analysis. The simplification is aimed at matching the underlying assumptions of all 

models. 

 

Table 4.1 

ComparisonoftheproposedmethodwithChai’sandLin’smethods 

Method Original equation to compute k 

Simplified 

equation I 
1
 

Simplified 

equation II 
2
 

Chai’sspectral

analysis 

𝑘 =
2𝑙𝑁𝑑

(
1
𝑑𝑚𝑖𝑛

−
1

𝑑𝑚𝑎𝑥
)
 

𝑘 =
2𝑙𝑑𝑚𝑖𝑛𝑑𝑚𝑎𝑥

𝛥𝑑̅̅̅̅
 𝑘 ≈

2𝑙�̅�2

𝛥𝑑̅̅̅̅
 

Lin’sgeometric

analysis 

𝑘 =
𝑙(𝑁𝑑 + 1)

(
1
𝑑𝑚𝑖𝑛

−
1

𝑑𝑚𝑎𝑥
)
 

𝑘 ≈
𝑙𝑑𝑚𝑖𝑛𝑑𝑚𝑎𝑥

𝛥𝑑̅̅̅̅
 𝑘 ≈

𝑙�̅�2

𝛥𝑑̅̅̅̅
 

Proposed 

method based on 

ESD analysis 
𝑘 =

𝑙 ((√
|ω|
𝑛 − 1)𝑑

2 − 𝑑𝛥𝑑)

Δ𝑑(√|ω| − 1)
 

𝑘 =
𝑙�̅�2

Δ𝑑̅̅̅̅
− 𝑙�̅� 𝑘 =

𝑙�̅�2

Δ𝑑̅̅̅̅
− 𝑙�̅� 

 

1
  𝛥𝑑̅̅̅̅ =

𝑑𝑚𝑎𝑥−𝑑𝑚𝑖𝑛

𝑁𝑑
, |ω| = 4 and = 1 ,  

 
2
  𝑑𝑚𝑖𝑛 ≅ 𝑑𝑚𝑎𝑥 ≅ �̅� 

 

The second column of table 4.1 states the key equations of all three methods for 

calculating 𝑘. To compare these methods, Chai’s and Lin’s methods are rewritten based on Δ𝑑 
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instead of number of depth layers 𝑁𝑑. The third column, shows the modified Chai’s and Lin’s 

methods based on Δ𝑑 and simplified version of the proposed method for Lambertian scene and 

4 rays bilinear interpolation, i.e., 𝑛 = 1 and |ω| = 4. Fourth column illustrates another 

simplification when 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥 are very close. As 𝑙�̅� is typically small, it can be seen that 

the proposed method leads to a similar result as Lin’s method, while Chai’s is only different in a 

constant factor of 2 with other two methods. Therefore, simplified version of the proposed 

method is reduced to Chai’s and Lin’s methods, if several simplifications such as Lambertian 

scene, no under-sampling and 4-ray bilinear interpolation are adopted. 

 

4.5.2 General Case Comparison 

 

Section A shows that by applying several simplifications, the proposed method leads to 

the same results as Chai’s and Lin’s methods. However, for general case, the proposed method 

always results in less camera density. Figure 4.10 demonstrates the theoretical results of these 

three methods for the minimum number of cameras for an LF system with 𝑙 = 10−4 , 𝑑𝑚𝑖𝑛 =

100, 𝑑𝑚𝑎𝑥 = 600, 𝑛 = 1, |ω| = 4, Δd in the range of [1% ,20%], i.e., 𝑁𝑑 in the range of 

[25 ,500] and uv plane size is 50𝑥50.  

Figure 4.10 shows that the proposed method always calculates much less number of 

cameras compared with both Chai’s and Lin’s methods. On average the proposed method 

calculated more than 5 times less than Chai’s and more than 20 times less than Lin’s. In 

Particular, for high errors in depth estimation, Chai’s and Lin’s results in a very high number of 

cameras compared with the proposed method. 
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Figure 4.10. Theoretical minimum sampling rate in term of number of cameras, proposedmethodvs.Chai’s

andLin’smethods 

 

Figure 4.11 shows the experimental rendering quality in term of PSNR for three 

different 𝑘 calculated from these methods as demonstrated in Figure 4.10. Note that the 

simulation was limited to maximum 10% error in depth estimation. 

As demonstrated in Figure 4.11, it is not surprising that the very small 𝑘 computed by 

Lin’s method always has the highest rendering quality followed by Chai’s and the proposed 

method respectively. However, on average the rendering improvement of Chai’s and Lin’s 

methods over the proposed method is negligible as Chai’s 5 times more and Lin’s 20 times 

more number of cameras only result in less than 3% and 4% improvement in PSNR 

respectively. 

This comparison shows how the proposed method is effective to calculate the minimum 

camera density for a desirable rendering quality with allowing controlled amount of under-

sampling. 
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Figure 4.11. Experimental rendering quality for three different calculated number of cameras as shown in 

Figure  4.10. 

 

4.6 Discussion and Conclusion 

 

The theory of ESD is employed to optimize a regular grid LF acquisition. As a result, a 

method for calculating the minimum number of cameras and evaluating the impact of depth map 

errors on output quality for LF-based FVV systems is proposed in this chapter. It is shown that 

higher camera density can compensate for the adverse effect of depth map errors on the 

rendering quality. To employ the proposed method in LF based FVV system design, the desired 

rendering quality of the system in PSNR can be mapped to the corresponding ESD by 

employing the empirical model given as (4.14). This ESD with depth estimation error is applied 

to (4.13) to calculate the camera density in the grid and hence the minimum number of cameras.
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5 Chapter 5: Rendering Optimization and Calculation of the 

Number of Rays in Interpolation 
 

 

5.1 Summary 

 

Light field (LF) rendering is widely used in free viewpoint video systems (FVV). 

Different methods have been proposed to employ depth maps to improve the rendering quality. 

However, estimation of depth is often error-prone. In this Chapter, a new method based on the 

concept of effective sampling density (ESD) is proposed for evaluating the depth-based LF 

rendering algorithms at different levels of errors in the depth estimation. In addition, for a given 

rendering quality, we provide an estimation of the rendering complexity in terms of optimum 

number of rays employed in interpolation algorithm so as to compensate for the adverse effect 

caused by errors in depth maps. The proposed method is particularly useful in designing a 

rendering algorithm with inaccurate knowledge of depth to achieve the required rendering 

quality. Both the theoretical study and numerical simulations have shown that the proposed 

method is reliable and accurate. 

This rest of the chapter is organized as follows. Section 2 describes the proposed 

method by introducing LF rendering analysis based on ESD and optimization of the number of 

rays in interpolation by employing ESD. Experimental validation and simulation results are 

presented in Section 3. Section 4 concludes the chapter. 
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5.2 The Relationship between ESD and Number of Rays in |𝛚| 
 

With the same assumptions as previous chapter (Chapter 4), the analysis for LF 

rendering evaluation and optimization is only given for a simplified LF-based FVV system with 

regular camera grid acquisition, 2-planes representation, symmetric ray selection, and by 

employing estimated depth maps during rendering for UV-DM method. However, the same 

approach can be used to employ ESD to analyse, evaluate and optimize different LF acquisition 

configurations and rendering methods. 

In chapter 4, it is demonstrated that ESD for UVDM(𝑑, Δ𝑑, 𝑘, 𝑙, |ω|) is proportional to 

|ω|  and inversely proportional to 𝑘. It means higher camera density in camera grid (smaller 𝑘) 

and employing more rays for interpolation results in higher ESD. Chapter 4 demonstrated a 

method to optimize 𝑘 as a main parameter of regular grid LF acquisition. This chapter presents 

the optimization of |ω|, the number of rays selected by LF rendering method and employed in 

interpolation. |ω|  is chosen as a candidate in this thesis to show how the ESD theory can be 

used for LF rendering evaluation and optimization. However, it is possible to generalize the 

approach and use ESD for any other types of rendering method evaluation and optimization. 

   The effect of |ω| on ESD has been previously demonstrated in chapter 4 (Figure 4.3). 

However the same Figure is demonstrated again here to emphasise the concept for further 

analysis. Figure 5.1 shows the theoretical calculation of mean ESD̅̅ ̅̅ ̅ for UVDM(𝑑, Δ𝑑, 𝑘, 𝑙, |ω|), 

for a given light field system with regular camera grid with 𝑘 = 5 and 𝑙 = 0.01, average depth 

of scene �̅� = 100, relative depth map error 
𝛥𝑑

𝑑
  between 0% to 100%, for three different values 

of |ω|  = 4, 16 and 32. Notice that the estimation error for depth map in most real application is 

around 10% to 20%. 
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Figure 5.1. Theoretical 𝐄𝐒𝐃̅̅ ̅̅ ̅̅  for 𝐔𝐕𝐃𝐌(𝒅, 𝚫𝒅, 𝒌, 𝒍, |𝛚|) for  �̅� = 𝟏𝟎𝟎, depth map with relative error 
𝚫𝐝

𝐝
 in the 

range of [𝟎%, 𝟐𝟎%], 𝒍 = 𝟎. 𝟎𝟏, 𝒌 = 𝟓, for |𝛚| = 𝟒, 𝟏𝟔 and 𝟑𝟐 

 

As can be observed from Figure 5.1, higher errors in depth estimation result in less ESD 

and subsequently less rendering quality when |ω| is fixed. The reason is that error in depth Δ𝑑 

increases the area 𝐴 for a given |ω| and therefore decreases ESD. However, choosing more rays 

for interpolation could increase the ESD and consequently rendering quality. For example, the 

ESD for 16-rays interpolation with errors less than 7% is still better than 4-rays interpolation 

with 1% error or ESD for 32-rays interpolation with errors less than 2% is still better than 16-

rays interpolation with 1% error. However, for a very high level of errors in depth estimation, 

the ESDs in all three cases are declining rapidly to a very small value and consequently the 

rendering quality may become inadequate. 

This analysis shows that increasing the number of rays for interpolation could 

compensate for the adverse effect of depth map estimation errors on ESD to some degree, at 
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least when the depth error is not very large. Of course, when more rays are employed in the 

interpolation, more computation is required. Thus in an LF rendering with a prior knowledge of 

the error bound in the depth map, the optimum number of rays |ω| could be calculated in 

advance to maintain the quality. 

 

5.2.1 Optimization of |𝛚| 

 

As discussed before, ESD is proportional to |ω|. On the other hand, the complexity of 

interpolation is increased significantly with large |ω|. Thus |ω| should be set at an optimum 

value to satisfy both the rendering quality and efficiency requirements. In this section, a 

theoretical minimum |ω| to compensate for the effect of errors in depth maps is derived. It is 

assumed that camera density is such that there is always enough number of rays in Ω to be used 

for interpolation. 

Refer to chapter 4, ESDIdeal can be calculated as 5.1: 

 ESDIdeal = ESDUVDM(𝑑,0,𝑘,𝑙,𝑛) =
𝑛

(𝑙𝑑)2
 and 𝑛 ≥ 1                                                           (5.1)           

where 𝑛 = 1 is for the pure Lambertian reflection scene. Higher value of 𝑛 can be used 

for non-Lambertian reflection.  

Denote that this is corresponding to an ideal scenario, where there are no errors in depth 

map estimation and there is a depth map for each camera in the system, and depending on the 

complexity of reflectivity of surfaces in the scene, one or more rays would be enough for an 

accurate rendering. 

So, the optimization problem is posed as follows: what would be the minimum |ω| (i.e., 

the minimum number of rays selected for interpolation by the ray selection process 𝑀) for any 
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given UVDM(d, 𝛥𝑑, k, l, |ω|) with known depth map error Δ𝑑 to have the same ESD as the ideal 

case? 

ESDUVDM(𝑑,𝛥𝑑,k,l,|ω|) = ESDIdeal → 
|ω|

(𝑙(𝑑 + 𝛥𝑑) +
Δ𝑑. 𝑘
𝑑
(√|ω| − 1))

2 =
𝑛

(𝑙𝑑)2
→        

|ω| = (
𝑙(𝑑 + 𝛥𝑑) −

𝛥𝑑. 𝑘
𝑑

𝑙𝑑

√𝑛
−
𝛥𝑑. 𝑘
𝑑

)

2

                                                                                              (5.2) 

where 𝑘 <
𝑙𝑑2

Δ𝑑√𝑛
 

Equation (5.2) gives the minimum |ω| required for interpolation in rendering process to 

avoid quality deterioration due to errors in depth maps. 

For the purpose of this chapter, it is assumed that available |Ω| and thus SD is always 

large enough to provide this minimum |ω| in each point of the scene. 

It should be noted that ESD is a function of 𝑑, the depth of a point in the scene space. 

Hence, it has different values at different points of the scene. Therefore, typically for a given 

scenario, (5.2) is applied to the mean  ESD̅̅ ̅̅ ̅ for the entire scene by assuming the average depth of 

the scene �̅� and average error in depth  Δ𝑑̅̅̅̅  to calculate average |ω|̅̅ ̅̅ . Employing |ω|̅̅ ̅̅  rays in 

interpolation, guarantees the scene to be sampled and rendered with average  ESDIdeal̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ . 

If the design criteria requires the scene to be sampled and reconstructed by a minimum 

ESDIdeal instead of average  ESDIdeal̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ , (5.2) should be applied to all 𝑑 ranging between 

(𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥) , the minimum and maximum depths of the scene with corresponding Δ𝑑. This 

gives optimum |ω| for each depth 𝑑 and the maximum |ω|can be chosen by ray selection 

mechanism 𝑀 of a rendering method.             

Figure 5.2 shows the same system demonstrated in Figure 5.1, but this time for any 

Δ𝑑 < 20%, |ω| is calculated directly from (5.2) to maintain ESD̅̅ ̅̅ ̅ at 4.00, the ideal ESD 
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calculated for 𝑛 = 4. 𝑘 is calculated as follows to satisfy the condition of (5.2): 𝑘 <
0.01𝑥1002

20√4
<

2.5 → 𝑘 = 2.2. Figure 5.3 shows the actual number of rays |ω|, employed in interpolation in 

such a scenario. The corresponding point for 10% error in depth estimation is highlighted in 

Figure 5.2 and Figure 5.3, respectively, to show the relation of these two Figures. 

Note that ESD cannot be increased indefinitely by only increasing |ω| because: a) The 

curve of ESD vs.|ω| is saturating as |ω| increases: lim|ω|→∞(ESDUVDM(𝑑,Δ𝑑,𝑘,𝑙,|ω|)) = (
𝑑

Δ𝑑𝑘
)
2
, 

b) |ω| is bounded by |Ω| and cannot be increased indefinitely, i.e., ESD cannot be increased 

more than SD on any point of the scene because both |Ω| and thus SD are predetermined by the 

acquisition configuration, and c) Increasing |ω| would also increase the complexity of 

rendering/interpolation process significantly. Hence, in practice, the error in depth map can be 

compensated for by judicious alteration of both |ω| and 𝑘, i.e., higher rendering complexity and 

camera density. 
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Figure 5.2 Theoretical impact of depth estimation error on rendering quality (𝐄𝐒𝐃̅̅ ̅̅ ̅̅ ) for fixed |𝛚| = 𝟒 and 

calculated |𝛚| from (5.2) 

 

Figure 5.3. Theoretical calculation of |𝛚| form (5.2) for different levels of errors to maintain the rendering 

quality (𝐄𝐒𝐃̅̅ ̅̅ ̅̅ ) at a constant value of 𝟒. 𝟎𝟎  
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5.3 Experimental Validation 

 

The simulation system [96] is employed to validate the optimization method proposed 

in this chapter. The details of the simulation model can be found in Appendix V. The simulator 

takes a 3D model of a scene and generates both reference cameras images and ground truth 

images. It also provides the depth maps for the following experiments. Controlled amount of 

depth map error is introduced to study how the rendering would be impacted when the depth 

map is noisy or inaccurate. 

Figure 5.4 illustrates the UV-DM rendering quality for four depth map error levels 

𝛥𝑑

𝑑
=  5%, 10%, 15%, and 20%, and for each error level, different |ω|  =  4, 9, 16, 25, and 36. 

Thus, 20 different combinations of UVDM (𝑑, Δ𝑑, 𝑘, 𝑙, |ω|) are demonstrated. Rendering quality 

is reported in terms of PSNR. Four different 3D scenes were chosen and a regular camera grid 

of 20𝑥20 was simulated as the LF acquisition component. For each experiment, 1000 random 

virtual cameras were produced. Each reported PSNR is averaged among 80,000 experiments for 

1000 virtual cameras and four all 3D scenes.  

As can be seen in Figure 5.4, the same pattern expected from the proposed model is 

achieved, i.e., increasing the number of rays in interpolation improves the PSNR, e.g. |ω| = 25 

and 15% error performs better than |ω| = 9 and 10% error. 
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Figure 5.4. Experimental 𝐔𝐕𝐃𝐌 (𝒅, 𝚫𝒅, 𝒌, 𝒍, |𝛚|) rendering quality in PSNR for 
𝜟𝒅

𝒅
= ( 𝟓%,𝟏𝟎%, 𝟏𝟓%, 𝐚𝐧𝐝 𝟐𝟎%)  and |𝛚| = (𝟒, 𝟗, 𝟏𝟔, 𝟐𝟓, 𝐚𝐧𝐝 𝟑𝟔) 

 

5.3.1 Rendering with Desired PSNR 

 

Assume the desired rendering quality is given as an average PSNR value. This section 

shows how the proposed optimization model can be used to calculate |ω| to produce the 

rendering quality at the desired PSNR value.   

As shown in chapter 3, to be able to directly predict rendering PSNR from the 

theoretical ESD, an empirical relationship between calculated ESD and rendering PSNR values 

has been established: 

PSNRUVDM(𝑑,Δ𝑑,𝑘,𝑙,|ω|) ≅ 20 𝑙𝑜𝑔10
255

√𝑄.ESDUVDM(𝑑,Δ𝑑,𝑘,𝑙,|ω|)
𝑃
                                              (5.3)  

where 1 < 𝑄 < 15 and −0.9 < 𝑃 < −0.2  
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Equation (5.3) is employed to calculate the corresponding ESD for a given PSNR value. 

𝑄 and 𝑝 for a given scene were approximated through experiments. Then (5.2) is applied to find 

the optimum number of rays |ω| to maintain the ESD and the corresponding PSNR at a 

prescribed value (for instance 50 dB), as shown in Figure 5.5. Figure 5.5 also shows the average 

PSNR for conventional fixed 4 rays interpolation, calculated number of rays |ω| is 

demonstrated in Figure 5.6. 

Figure 5.5 shows that for high error rate, the use of optimum |ω| using (5.2) results in 

significant improvements over the conventional fixed 4 rays interpolation and can maintain the 

rendering quality around prescribed 50 dB. Figure 5.5 and Figure 5.6 are the experimental 

results corresponding to the theoretical predictions presented in Figure 5.2 and Figure 5.3. 
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Figure 5.5. Experimental rendering quality for conventional fixed 4 rays interpolation (|𝛚| = 𝟒) vs. calculated 

optimum number of rays |𝛚| demonstrated in Figure 5.6 for different levels of depth errors 

 

 

Figure 5.6. Optimum |𝛚| from (5.2) and (5.3) to maintain the mean PSNR at a prescribed value of 50 dB for 

different levels of errors in depth estimation 
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5.4 Discussion and Conclusion 

 

In this Chapter a method is developed from the ESD model to calculate the optimum 

number of rays required for interpolation to compensate for the adverse effect of depth map 

errors on the rendering quality. To employ the proposed method in LF based FVV system 

design, the desired rendering quality of the system in PSNR can be mapped to the corresponding 

ESD by employing the empirical model given as (5.3). This ESD with depth estimation error is 

applied to (5.2) to calculate the optimum number of rays required for interpolation in rendering 

process. 
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6 Chapter 6: Joint Optimization of Acquisition and Rendering 

Subsystems by Applying Lagrangean Method to ESD 
 

 

6.1 Summary 

 

Quality of output video is an important usability objective in Free Viewpoint Video 

(FVV) systems. As shown in previous chapters, the density of a camera grid for acquisition on 

one hand and the complexity of the interpolation/rendering algorithm on the other hand directly 

influence the FVV output video quality. As shown before ESD is an analytically tractable 

metric that can be used to predict and evaluate the FVV video quality for a given acquisition 

and rendering. To increase ESD and hence improve the video quality, two parameters can be 

altered: (i) the density of cameras in the acquisition grid; and/or (ii) the density of rays within 

the interpolation area employed during rendering. While in chapters 4 and 5 individual 

optimizations of these parameters are demonstrated, in this chapter, we present a method to 

optimize these parameters jointly for a target output video quality using ESD. Study of a system 

with a regular camera grid has shown that the number of cameras can be reduced by 8 times if 

32 rays, instead of 8 rays, are employed during rendering to achieve the similar rendering 

quality for a typical 20% error in depth estimation. 

The rest of this chapter is organized as follows. Section 2 presents an overview of the 

problem discussed in this chapter. Section 3 reviews chapter 4 and 5 and how the system can be 

optimized individually with respect to the camera density and number of rays employed during 

interpolation. Section 4 describes the proposed joint optimization methods by applying 

Lagrangean method to ESD in a realistic context that error in depth maps is inevitable. Section 5 

concludes the chapter. 
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6.2 Overview of the Problem 

 

Let’s consider the situation depicted in Figure 6.1. The unknown ray 𝑟 intersects the 

scene at point 𝑝. To estimate 𝑟, the ray selection process will choose a number of rays captured 

by cameras within the interpolation neighbourhood of 𝑟 denoted by 𝐴. In this Figure, the SD in 

vicinity of 𝑟 is shown to be 4/𝐴 (because four rays, 𝑅1, 𝑅2, 𝑅3, 𝑅4 in this neighbourhood are 

captured by cameras in the acquisition grid). However, the ray selection process may only select 

the rays from the closest cameras to 𝑟 in the 𝑢𝑣 (camera) plane. In this case only 𝑅1 and 𝑅2 are 

selected for interpolation, which reduces the effective sampling density, ESD, to 2/𝐴. If higher 

quality output is required, then the ESD has to increase. One way to do this is to keep the same 

ray selection process and reduce the spacing between the cameras 𝑘 in the acquisition grid. This 

will result in higher acquisition cost. The second approach is to use more advanced algorithms 

for ray selection and select more rays in 𝐴 (in this example 𝑅3 and 𝑅4). 

Of course the above discussion assumes that the depth of point 𝑝 is exactly known. As 

shown in chapter 3, ESD is also affected by the inaccuracy in estimation of depth, denoted by 

∆𝑑, because the ray selection process may select rays that are not the closest captured rays to 𝑟. 

This has the effect of increasing the area of interpolation 𝐴 and reducing ESD. 

Chapter 4 proposed an individual optimization for camera density 𝑘, by focusing on the 

first approach and chapter 5 proposed an individual optimization for the number of rays selected 

for interpolation |ω|, by considering the second approach. However, as demonstrated in 

chapters 4 and 5, individual optimizations of 𝑘 and |ω|  have limitations. In addition, by 

analyzing the conditions of equations (4.13) and (5.2), it is clear that individual optimizations of 

these two parameters are strongly inter-related, i.e., individual optimization based on 𝑘 requires 

a minimum |ω| and vice versa. Hence, the optimization of an LF-based FVV system should 

utilize both approaches to give an optimum output quality. In other words, acquisition 

component and rendering component should be optimized jointly for a target output quality. 
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This chapter studies the trade off among acquisition camera density, ray selection, depth 

error and rendering quality using the concept of ESD and presents methods to optimize these 

parameters jointly for a system with a desired output quality in terms of ESD or Peak-to-Signal 

Noise Ratio (PSNR). 

 

Figure 6.1. The effect of acquisition camera density and ray selection process on ESD 

 

6.2.1 Relation between ESD, Depth Estimation Error 𝚫𝒅, 𝒌 and |𝛚|  

 

Figure 6.2 shows how ESD can be influenced by 𝑘, |ω|, and Δ𝑑. Figure 6.2.a shows a 

3D surface of ESD for different 𝑘 and |ω|. It is assumed that �̅� = 100, Δ𝑑̅̅̅̅ = 10 and 𝑙 = 0.01. 

Figure 6.2.c and Figure 6.2.e demonstrate the effect of depth estimation error Δ𝑑̅̅̅̅  (in the range 

of [0%, 20%]) on ESD and how 𝑘 and |ω| can compensate for Δ𝑑 to some extent. Notice that in 

each of these figures, one parameter is fixed and the effect of the other parameter on ESD is 

shown. Figures 6.2.b and 6.2.d illustrate a few 2D slices of the ESD surface demonstrated in 

6.2.a in |ω| and 𝑘 directions, respectively. 
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a) ESD 3D surface for different 𝒌 and |𝛚|, for �̅� = 𝟏𝟎𝟎, 𝚫𝒅̅̅ ̅̅ = 𝟏𝟎 and 𝒍 = 𝟎. 𝟎𝟏 

 
b) ESD for �̅� = 𝟏𝟎𝟎, 𝚫𝒅̅̅ ̅̅ = 𝟏𝟎, 𝒍 = 𝟎. 𝟎𝟏, |𝛚| in the 

range of [𝟒, 𝟑𝟐],  for 𝒌 = 𝟐, 𝟓 and 𝟏𝟎 

 
c) ESD for �̅� = 𝟏𝟎𝟎, 𝚫𝒅̅̅ ̅̅  in the range of [𝟎%, 𝟐𝟎%], 𝒍 =
𝟎. 𝟎𝟏, 𝒌 = 𝟓, for |𝛚| = 𝟒, 𝟏𝟔 and 𝟑𝟐 

 
 

d) ESD for �̅� = 𝟏𝟎𝟎, 𝚫𝒅̅̅ ̅̅ = 𝟏𝟎, 𝒍 = 𝟎. 𝟎𝟏, 𝒌 in the 

range of [𝟎. 𝟏, 𝟓],  for |𝛚| = 𝟒, 𝟖, 𝟏𝟔 and 𝟑𝟐 

 
e) ESD for �̅� = 𝟏𝟎𝟎, 𝚫𝒅̅̅ ̅̅  in the range of [𝟎%, 𝟐𝟎%], 𝒍 =
𝟎. 𝟎𝟏, |𝛚| = 𝟒, for 𝒌 = 𝟓, 𝟏𝟎, 𝟐𝟎 and 𝟓𝟎  

 

 

Figure 6.2. Analysis of ESD based on 𝒌, |𝛚|, and 𝚫𝒅̅̅ ̅̅  
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6.3 Review of the System Optimization based on Individual 

Variables  

 

This section demonstrates a summary of the results from chapter 4 and 5 on 

optimization with respect to the camera density 𝑘 and number of rays chosen for rendering |ω| 

individually. 

 

6.3.1 Overview of Optimization of Camera Density 𝒌 

 

Recall from chapter 4 that the equation to calculate the maximum 𝑘 for 

ESDUVDM(𝑑,Δ𝑑,𝑘,𝑙,|ω|)  to avoid quality deterioration due to errors in depth maps is obtained as 

follows: 

𝑘 =
𝑙((√

|ω|

𝑛
−1)𝑑2−𝑑Δ𝑑)

Δ𝑑(√|ω|−1)
                                                                                                            (6.1)  

where Δ𝑑 > 0, |ω| > 𝑛(
𝑑+Δ𝑑

𝑑
)2 and 𝑛 refers to scene reflection complexity (𝑛 = 1 is 

for a pure Lambertian reflection and higher value of 𝑛 could be used to model non-Lambertian 

reflections). 

Figure 6.3 demonstrates a summary of theoretical expectations and experimental results 

presented in chapter 4 (Illustrated before as Figures 4.5, 4.6, 4.8 and 4.9).  Figure 6.3.a and 

Figure 6.3.b show the theoretical expectations for this optimization model. For any given depth 

estimation error Δ𝑑 ≤ 20%, 𝑘 is calculated directly from (6.1) to maintain ESD̅̅ ̅̅ ̅ at 4.00, the 

ideal ESD calculated for 𝑛 = 4 and Δ𝑑 = 0 (ESDIdeal = ESDUVDM(𝑑,0,𝑘,𝑙,𝑛) =
𝑛

(𝑙𝑑)2
 and 𝑛 ≥ 1). 

Figure 6.3.a demonstrates the ESD for fixed 𝑘 = 14.4 and optimum 𝑘 calculated from (6.1). 

Figure 6.3.b shows the calculated 𝑘 in such a scenario. Figures 6.3.c and 6.3.d are the 

experimental results corresponding to the theoretical predictions presented in Figures 6.3.a and 



127 |   C h a p t e r  6  J o i n t  O p t i m i z a t i o n  o f  A c q u i s i t i o n  &  R e n d e r i n g  

S u b s y s t e m s  b y  A p p l y i n g  L a g r a n g e a n  M e t h o d  t o  E S D   

 

6.3.b. As it can be seen the rendering PSNR is maintained at a prescribed value (for instance 50 

dB) with calculated 𝑘 in contrast with the average PSNR for fixed 𝑘 = 14.4. Figure 6.3 shows 

that for high error rates, changing 𝑘 using (6.1) results in significant improvements over the 

fixed camera density and can maintain the rendering quality around the prescribed 50 dB. 

 

 
a) Theoretical impact of depth estimation error on 

rendering quality (𝐄𝐒𝐃̅̅ ̅̅ ̅̅ ) for fixed 𝒌 = 𝟏𝟒. 𝟒 and 

calculated maximum 𝒌 

 
 

b) Theoretical calculation of 𝒌 for different levels 

of errors to maintain the rendering quality (𝐄𝐒𝐃̅̅ ̅̅ ̅̅ ) 

at a constant value of 4.00 

 
c) Experimental rendering quality for fixed 

𝒌 = 𝟏𝟒. 𝟒 vs. calculated maximum 𝒌 demonstrated 

in Figure 6.3.d for different levels of depth errors 

 
 
 

d) Maximum calculated k to maintain the mean 

PSNR at a prescribed value of 50 dB for different 

levels of errors in depth estimation 
 

 

Figure 6.3. Summary of theoretical and experimental optimization of 𝒌 (camera density) based on ESD 
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6.3.2 Overview of Optimization with Respect to |𝛚| 

 

In reference to chapter 5, the optimum |ω| for ESDUVDM(𝑑,Δ𝑑,𝑘,𝑙,|ω|)  to avoid quality 

deterioration due to errors in depth maps can be derived as follows: 

|ω| = (
𝑙(𝑑+Δ𝑑)−

Δ𝑑.𝑘

𝑑
𝑙𝑑

√𝑛
−
Δ𝑑.𝑘

𝑑

)

2

                                                                                                             (6.2)  

where 𝑘 <
𝑙𝑑2

Δ𝑑√𝑛
 

For the purpose of the optimization, it is assumed that available |Ω| and thus SD is 

always large enough to provide this minimum |ω| at each point of the scene. 

Figure 6.4 demonstrates a summary of theoretical expectations and experimental results 

presented in chapter 5 (Illustrated before as Figures 5.2, 5.3, 5.5 and 5.6). Figures 6.4.a and 

6.4.b show the theoretical expectations for this optimization model. For any given depth 

estimation error Δ𝑑 < 20%, |ω| is calculated directly from (6.2) to maintain ESD̅̅ ̅̅ ̅ at 4.00, the 

ideal ESD calculated for 𝑛 = 4. Figure 6.4.a demonstrates the ESD for fixed 4 ray interpolation 

and for optimum number of rays calculated from (6.2). Figure 6.4.b shows the calculated 

number of rays |ω|, employed in interpolation in such a scenario. Figures 6.4.c and 6.4.d are the 

experimental results corresponding to the theoretical predictions presented in Figures 6.4.a and 

6.4.b. As it can be seen, the rendering PSNR is maintained at a prescribed value (for instance 50 

dB) with calculated optimum number of rays |ω| in contrast with the average PSNR for 

conventional fixed 4 ray interpolation. Figure 6.4 shows that for high level of error in depth, the 

use of optimum |ω| using (6.2) results in significant improvements over the conventional fixed 

4 ray interpolation and can maintain the rendering quality around the prescribed 50 dB. 
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a) Theoretical impact of depth estimation error on 

rendering quality (𝐄𝐒𝐃̅̅ ̅̅ ̅̅ ) for fixed |𝛚| = 𝟒 and 

calculated minimum  |𝛚| 

 
 

b) Theoretical calculation of |𝛚| for different levels 

of errors to maintain the rendering quality (𝐄𝐒𝐃̅̅ ̅̅ ̅̅ ) at 

a constant value of 𝟒. 𝟎𝟎  

 
c) Experimental rendering quality for conventional 

fixed 4 ray interpolation (|𝛚| = 𝟒) vs. calculated 

optimum |𝛚| demonstrated in Figure 6.4.d for 

different levels of depth errors 

 
 

d) Calculated minimum |𝛚| to maintain the mean 

PSNR at a prescribed value of 50 dB for different 

levels of errors in depth estimation  

 
 

Figure 6.4. Summary of theoretical and experimental optimization of |𝛚| (number of rays employed in 

interpolation) based on ESD 

 

6.3.3 Limitations of Individual Optimizations 

 

As discussed in previous chapters, the above optimization equations are applied to the 

mean  ESD̅̅ ̅̅ ̅ for the entire scene by assuming the average depth of the scene �̅� and average error 

in depth estimation  Δ𝑑̅̅̅̅  to calculate average |𝑘|̅̅ ̅̅  or |ω|̅̅ ̅̅ .  If the design criteria requires the scene 

to be sampled and reconstructed by a minimum ESDIdeal instead of average  ESDIdeal̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ , 
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optimization equations should be applied to all 𝑑 ranging between (𝑑𝑚𝑖𝑛 , 𝑑𝑚𝑎𝑥) , the minimum 

and maximum depths of the scene with corresponding Δ𝑑.  

 

6.3.3.1 Limitations of optimization based on |𝝎| 

 

Note that ESD cannot be increased indefinitely by only increasing |ω| because:  

a) The curve of ESD vs. |ω| is saturating as |ω| increases: 

lim|ω|→∞(ESDUVDM(𝑑,Δ𝑑,𝑘,𝑙,|ω|)) = (
𝑑

Δ𝑑𝑘
)
2
,  

b) |ω| is bounded by |Ω| and cannot be increased indefinitely, i.e., ESD cannot be 

increased to over SD at any point of the scene because both |Ω| and thus SD are predetermined 

by the acquisition configuration, and  

c) Increasing |ω| would also increase the complexity of interpolation process 

significantly. 

 

6.3.3.2 Limitations of Optimization based on 𝒌 

 

ESD cannot be increased indefinitely by only decreasing 𝑘 because the curve of ESD 

vs. 𝑘 is saturating as 𝑘 decreases: lim𝑘→0(ESDUVDM(𝑑,𝛥𝑑,𝑘,𝑙,|ω|)) =
|ω|

(𝑙𝑑+𝑙Δ𝑑)2
  . 

Hence, in practice, the error in depth map can be compensated for by judicious 

alteration of both |ω| and 𝑘, i.e., rendering complexity and camera density. This demonstrates 

the desirability of a joint optimization model to calculate both |ω| and 𝑘. Next section provides 

an analytical ESD joint optimization model based on the Lagrangean method. 
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6.4 Joint optimization of |𝛚| and 𝐤 

 

The gradient of ESDUVDM(𝑑,𝛥𝑑,𝑘,𝑙,|ω|) can be expressed as: 

∇(ESDUVDM(𝑑,𝛥𝑑,𝑘,𝑙,|ω|)) = (
𝜕ESDUVDM(𝑑,𝛥𝑑,𝑘,𝑙,|ω|)

𝜕|ω|
,
𝜕ESDUVDM(𝑑,𝛥𝑑,𝑘,𝑙,|ω|)

𝜕𝑘
)

=

(

 
 
 
 
 
 
 

(

 
 
1−

𝛥𝑑. 𝑘√|ω|

𝑑 (𝑙(𝑑 + 𝛥𝑑) +
𝛥𝑑. 𝑘
𝑑
(√|ω| − 1))

)

 
 

(𝑙(𝑑 + 𝛥𝑑) +
𝛥𝑑. 𝑘
𝑑
(√|ω| − 1))

2 ,
−2Δ𝑑|ω| (√|ω| − 1)

𝑑 (𝑙(𝑑 + Δ𝑑) +
Δ𝑑. 𝑘
𝑑
(√|ω| − 1))

3

)

 
 
 
 
 
 
 

  (6.3) 

To optimize ESDUVDM(𝑑,𝛥𝑑,𝑘,𝑙,|ω|) with respect to both |ω| and k, a Lagrangean 

optimization method can be used. Assume that the minimum required rendering quality as ESD̅̅ ̅̅ ̅ 

is given as 𝑇. In individual optimizations of 𝑘 and |ω|, it was assumed that 𝑇 =
𝑛

(𝑙𝑑)2
 ,the ideal 

ESD with no error in depth estimation (Δ𝑑 = 0) by employing 𝑛 rays during interpolation, 

where 𝑛 refers to the scene reflection complexity (𝑛 = 1 is for a pure Lambertian reflection and 

higher value of 𝑛 could be used to represent non-Lambertian reflections). But in general we can 

assign any value to 𝑇 based on the design requirements. The optimization problem can then be 

formulated as: 

ESDUVDM(𝑑,𝛥𝑑,k,l,|ω|) ≥ 𝑇 
 
⇒ 

|ω|

(𝑙(𝑑 + 𝛥𝑑) +
𝛥𝑑. 𝑘
𝑑
(√|ω| − 1))

2 ≥ 𝑇                      (6.4) 

Note that the acquisition cost is directly determined by the number of cameras. For a 2D 

regular camera grid, this cost is proportional to 
1

𝑘2
 where 𝑘 determines the camera density. The 

cost function to express the combined rendering and acquisition cost can be defined as:  
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𝐶(𝑘, |ω|) =
𝐶𝑘
𝑘2
 + 𝐶ω|ω|                                                                                                        (6.5) 

where 𝐶𝑘 refers to the cost associated with each camera in camera grid and 𝐶ω is the 

rendering computational cost associated with |ω|, the number of rays employed in interpolation, 

i.e., 𝐶𝑘  is a hardware configuration cost and 𝐶ω is a software complexity cost. Note that, in this 

thesis a linear cost function is used. However, the same optimization method can be extended to 

other cost functions. 

This optimization problem can be solved by a Lagrangean method by rewriting the 

optimization problem with the help of Lagrange multipliers as: 

Λ (𝑘, |ω|, λ) = 𝐶(𝑘, |ω|) + λ(ESDUVDM(𝑑,Δ𝑑,k,l,|ω|) − 𝑇)

=
𝐶𝑘
𝑘2
 + 𝐶ω|ω| + 𝜆

(

 
 |ω|

(𝑙(𝑑 + Δd) +
Δd. k
d
(√|ω| − 1))

2 − 𝑇

)

 
 
                   (6.6) 

The optimum 𝑘 and |ω| should satisfy (6.7), 

∇𝑘,|ω|,λ𝛬 (𝑘, |ω|, λ) = 0
 
⇒

{
  
 

  
 
𝜕𝛬 (𝑘, |ω|, λ)

𝜕𝑘
= 0

𝜕𝛬 (𝑘, |ω|, λ)

𝜕|ω|
= 0

𝜕𝛬 (𝑘, |ω|, λ)

𝜕λ
= 0

                                                                (6.7) 

By expanding these equations we have: 

𝜕𝛬 (𝑘, |ω|, 𝜆)

𝜕𝑘
=
−2𝐶𝑘
𝑘3

+
−2𝜆Δ𝑑|ω| (√|ω| − 1)

𝑑 (𝑙(𝑑 + Δ𝑑) +
Δ𝑑. 𝑘
𝑑
(√|ω| − 1))

3 = 0                           (6.8) 
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𝜕𝛬 (𝑘, |ω|, 𝜆)

𝜕|ω|
= 𝐶ω +

𝜆

(

 
 
1 −

Δ𝑑. 𝑘√|ω|

𝑑 (𝑙(𝑑 + Δ𝑑) +
Δ𝑑. 𝑘
𝑑
(√|ω| − 1))

)

 
 

(𝑙(𝑑 + Δ𝑑) +
Δ𝑑. 𝑘
𝑑
(√|ω| − 1))

2 = 0                  (6.9) 

𝜕𝛬 (𝑘, |ω|, λ)

𝜕λ
=

|ω|

(𝑙(𝑑 + Δd) +
Δd. k
d
(√|ω| − 1))

2 − 𝑇 = 0                                     (6.10) 

By rewriting (6.8) and (6.9) based on λ and substituting 𝑘 from (6.10) after an extensive 

calculation, these equations can be analytically solved. Due to the limitations of the space, 

details of analytical derivations can be found in the appendix IV. The analytical derivations 

show that by introducing an auxiliary variable 𝑋 = √|ω| , |ω| can be computed from (6.11) 

which is a quintic equation (polynomial equation of order 5). Analytical methods for solving a 

quintic equation by using radicals are available under specific criteria, such as Arthur Cayley 

method [105]. Alternatively well-known Newton-Raphson numerical method [106] can be used. 

Note that only real roots |ω| > 1 are acceptable. 

𝛼5𝑋
5 + 𝛼4𝑋

4 + 𝛼3𝑋
3 + 𝛼2𝑋

2 + 𝛼1𝑋 + 𝛼0 = 0                                                            (6.11) 

where, 

{
 
 
 
 
 

 
 
 
 
 

𝛼5 = (−𝐶ω𝑑
3Δ𝑑)

𝛼4 = (3𝐶ω𝑙𝑑
3Δ𝑑√𝑇(𝑑 + Δd) + 𝐶ω𝑑

3Δ𝑑)

𝛼3 = (−3𝐶ω𝑙𝑑
3Δ𝑑√𝑇(𝑑 + 𝛥𝑑) − 3𝐶ω𝑙

2𝑑3Δ𝑑𝑇(𝑑 + Δ𝑑)2)

𝛼2 = (
3𝐶ω𝑙

2𝑑3Δ𝑑𝑇(𝑑 + Δ𝑑)2 − 𝐶𝑘𝑑Δ𝑑
3𝑇 +

𝐶ω𝑙
3𝑑3Δ𝑑𝑇√𝑇(𝑑 + 𝛥𝑑)3+𝐶𝑘𝑙𝑑Δ𝑑

3𝑇√𝑇(𝑑 + Δ𝑑)
)

𝛼1 = (
−𝐶ω𝑙

3𝑑3Δ𝑑𝑇√𝑇(𝑑 + Δ𝑑)3 −

2𝐶𝑘𝑙𝑑Δ𝑑
3𝑇√𝑇(𝑑 + Δ𝑑) + 2𝐶𝑘𝑑Δ𝑑

3𝑇
)

𝛼0 = (−𝐶𝑘𝑑Δ𝑑
3𝑇 + 𝐶𝑘𝑙𝑑Δ𝑑

3𝑇√𝑇(𝑑 + Δ𝑑))

 

 

After calculating |ω| , 𝑘 can be calculated from |ω| as: 
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𝑘 =
√|ω|𝑑 − 𝑙𝑑√𝑇(𝑑 + Δd)

Δd√𝑇 (√|ω| − 1)
                                                                                              (6.12) 

where |ω| > (𝑙√𝑇(𝑑 + Δd))
2
 

Note that any calculated |ω| from (6.11) should satisfy the condition of (6.12). If none 

of the roots of (6.11) can satisfy this condition, a minimum |ω| from this condition should be 

calculated as |ω| instead of using (6.11). 

 

6.4.1 Discussion 

 

To demonstrate how the proposed method can be used, let us start with two examples. 

Assume a given FVV system with 𝑙 = 0.01, �̅� = 100, 
Δ𝑑

𝑑
 = 10%, 𝐶𝑘 = 10, 𝐶ω = 1, and 

𝑇 = 4. Real roots of (6.11) are 𝑋 = {1, 2.878, 0.0458}. As |ω| > 1, first and third roots are not 

acceptable and by rounding the |ω|, we have  |ω| = 8. 𝑘 can be calculated from (6.12) for 

|ω| = 8, which results in 𝑘 = 1.7185 and the minimum cost function 𝐶(𝑘, |ω|) = 11.39. For 

the same system but by assuming 𝐶𝑘 =  𝐶ω = 1, we have |ω| = 6, 𝑘 = 0.8606, and the 

minimum cost function 𝐶(𝑘, |ω|) = 7.35. The second example results in a higher number of 

cameras but less interpolation complexity as expected. Both examples result in ESD̅̅ ̅̅ ̅ = 4.00 as 

desired. 

Figure 6.5 shows the cost function 𝐶 for different values of |ω| for these two examples. 

Figure 6.6 demonstrates the calculated 𝑘 from (6.12) for each |ω| in Figure 6.5. Note that 

|ω| > 5 to satisfy the condition of (6.12). 
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Figure 6.5.  Cost function 𝑪(𝒌, |𝛚|) vs. |𝛚| for two test cases 

 

 

Figure 6.6. Calculated 𝒌 from (6.12) for each  |𝛚| shown in Figure 6.5. 
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Optimum of cost function 𝐶(𝑘, |ω|) = 11.39 

for 𝐶𝑘 = 10 and 𝐶ω = 1, resulting in 

|ω| = 8 and 𝑘 = 1.7185 

Optimum of cost function 𝐶(𝑘, |ω|) =

7.35 for 𝐶𝑘 = 1 and 𝐶ω = 1, resulting 

in |ω| = 6 and 𝑘 = 0.8606 
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Figure 6.7.a demonstrates the joint optimization of both |ω| and 𝑘 for different values 

of 
𝐶𝑘

𝐶ω
 from 0 to 500 for a system with 𝑙 = 0.01, �̅� = 100,

𝛥𝑑

𝑑
 = 20%, and 𝑇 = 4. 

𝐶𝑘

𝐶ω
= 0  occurs 

when 𝐶𝑘 = 0, i.e., no cost is assumed for adding cameras. This results in a very high number of 

cameras and small |ω| as expected. High values of 
𝐶𝑘

𝐶ω
 are associated with high cost of adding 

cameras and hence results in high |ω| but small number of cameras. Note that in Figure 6.7 the 

left vertical axis is based on 
1

𝑘2
 and not 𝑘 to express the camera grid density. The steps in the 

curves are due to the fact that |ω| must be an integer. Figure 6.7.b shows a region of 6.7.a in 

which  
𝐶𝑘

𝐶ω
≤ 10. 
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Figure 6.7. Joint optimization of |𝛚| and 𝒌 for different values of 
𝑪𝒌

𝑪𝛚
 

a) 
𝑪𝒌

𝑪𝛚
≤ 𝟓𝟎𝟎 and b)  

𝑪𝒌

𝑪𝛚
≤ 𝟏𝟎 

 

The main application of the proposed joint optimization method is to calculate the 

optimum trade-off among camera density and rendering complexity for a desired output video 

quality. Key advantages of this trade-off is in minimizing the cost of acquisition (by 
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significantly reducing the number of the cameras in the gird) and compensate it by increasing 

the rendering complexity up to a permitted level based on constraints on computational load 

(e.g., the acceptable delay introduced by rendering). Figure 6.8 demonstrates an LF-based FVV 

system with 𝑙 = 0.01, �̅� = 100,  and the camera grid size of 50𝑥50 units. For each depth 

estimation error 
𝛥𝑑

𝑑
 in the range of [1% ,20%], three scenarios of the proposed optimization 

method are shown for |ω| = 8, |ω| = 16, and |ω| = 32. The vertical axis illustrates the 

calculated number of cameras for each scenario. 

As can be seen from Figure 6.8, employing higher density of rays for interpolation can 

significantly decrease the number of cameras. For example, for 15% error in depth estimation, 

employing |ω| = 32 rays for interpolation requires 484 cameras, compared with 729 cameras 

for 16 and 2809 cameras for 32 ray interpolation. 

 

 

Figure 6.8. Calculated number of cameras in a camera grid for three different optimizations with |𝛚| =
𝟖, |𝛚| = 𝟏𝟔, 𝐚𝐧𝐝 |𝛚| = 𝟑𝟐 
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6.4.2 Experimental Validation 

 

For experimental validation, the same simulation system and empirical model 

introduced in chapter 2-5 is employed. Figure 6.9 illustrates the UV-DM rendering quality for 

fixed 𝑘 = 5 and different |ω|  =  4, 9, 16, 25, and 36, for depth map error levels 
𝛥𝑑

𝑑
 in the range 

of 5% to 20%. Rendering quality is reported in terms of PSNR. As can be seen in Figure 6.9, the 

same pattern expected from the proposed model is achieved, i.e., increasing the number of rays 

in interpolation improves the PSNR, e.g. |ω| = 25 and 15% error performs better than |ω| = 9 

and 10% error. 

 

 

Figure 6.9. Experimental 𝐔𝐕𝐃𝐌 (𝒅, 𝚫𝒅, 𝒌, 𝒍, |𝛚|) rendering quality in PSNR for 
𝜟𝒅

𝒅
 in the range of [𝟓, 𝟐𝟎], and 

|𝛚| = (𝟒, 𝟗, 𝟏𝟔, 𝟐𝟓, 𝐚𝐧𝐝 𝟑𝟔) 
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Figure 6.10 illustrates the UV-DM rendering quality for fixed |ω| = 4  and different 

𝑘 = 0.5, 1, 2, 5, and 10 ( and corresponding number of cameras), for depth map error levels 
𝛥𝑑

𝑑
 

in the range of 5% to 20%. As it can be seen in Figure 6.10, the same pattern expected from the 

proposed model is achieved, as smaller 𝑘 improves the PSNR, e.g. 𝑘 = 1 and 15% error in 

depth performs better than 10% error in depth with 𝑘 = 2. Note that the data demonstrated in 

Figure 6.9 and Figure 6.10 are produced by 400,000 experiments, conducted by the simulator. 

 

 

Figure 6.10. Experimental 𝐔𝐕𝐃𝐌(𝒅, 𝚫𝒅, 𝒌, 𝒍, |𝛚|) rendering quality in PSNR for 
𝚫𝒅

𝒅
 in the range of [𝟓, 𝟐𝟎], and 

𝒌 =  (𝟎. 𝟓, 𝟏, 𝟐, 𝟓, 𝐚𝐧𝐝 𝟏𝟎) 
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6.5 Conclusion 
 

A Lagrangean joint optimization method of the (i) density of rays used for interpolation 

and (ii) the camera density for a light field based free viewpoint video system is presented in 

this chapter. It is shown that the error in depth maps can be compensated for by judicious 

alteration of both variables, to maintain the rendering quality at a desired level. Theoretical 

analysis based on effective sampling density (ESD) is validated through extensive experiments. 
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7 Chapter 7: Non-Uniform/Irregular Acquisition based on the 

Scene Complexity Variations 
 

 

7.1 Summary 

 

Acquisition of a free viewpoint video (FVV) system is theoretically considered as a 

problem of plenoptic signal sampling. It is typically performed by using a regular camera grid. 

While a regular acquisition itself results in non-uniform sampling density, this non-uniformity 

does not match the scene complexity and frequency variations. This Chapter shows how to 

superimpose the ESD theory with the scene complexity and proposes an irregular acquisition 

method for optimum non-uniform LF acquisition corresponding to the variations of the scene 

complexity. Specifically, scene complexity is measured through analyzing DCT coefficients of 

reference images of the scene, describing the frequency behavior of the plenoptic signal over the 

scene space. An optimization model is formulated to calculate the optimum configurations of 

the acquisition cameras including positions and orientations. The theoretical analysis and 

numerical simulations demonstrate that the rendered video quality can be significantly improved 

(around 20% in mean PSNR) by employing the proposed irregular acquisition compared with 

the regular camera grid. 

The rest of this chapter is organized as follows. Section 2 presents an overview of how 

the theory of ESD can be superimposed by scene complexity. Section 3 describes the proposed 

non-uniform/irregular acquisition optimization model. Section 4 demonstrates the experimental 

validation for the proposed optimization model. Section 5 concludes the chapter. 
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7.2 Effective Sampling Density and Scene Complexity 

 

Denote from chapter 3 that LF sampling density (SD) is defined as the number of 

acquired rays per unit area of the scene space and Effective Sampling Density (ESD) as the 

number of rays per unit area of the scene that have been acquired and employed in the rendering 

process to estimate an unknown ray [16, 30]. Clearly SD is an acquisition parameter 

representing the upper bound of ESD which is also dependent on the rendering method. 

As shown in chapter 3, the output quality of an LF-based FVV system is determined by 

three factors: 

1. The ESD in interpolation area 𝐴, the vicinity of the point 𝑝 (the intersection of 

unknown ray 𝑟 with scene), which is mathematically derived in chapter 3 for a given acquisition 

configuration and rendering method.   

2. The scene complexity in area 𝐴, which could be measured in terms of its spatial 

frequency components. 

3. The accuracy and effectiveness of the interpolation function 𝐹 employed for the 

estimation of the unknown ray 𝑟. 

Note that this is a micro analysis of quality assessment for reconstruction of only one 

unknown ray 𝑟. For a macro analysis of the output quality of LF-based FVV systems; typically, 

ESD̅̅ ̅̅ ̅, the average of the ESD for a given acquisition and rendering components is calculated for 

the whole scene and the average of output quality is calculated empirically from this ESD̅̅ ̅̅ ̅. The 

evaluation, comparison and optimization of the acquisition components and rendering 

algorithms which have been carried out in chapters 3 to 6 are based on this assumption. 

In addition, note that chapters 3 to 6 assumed a fixed scene complexity and a given 

interpolation algorithm for the analysis, evaluation and optimization. These assumptions were 

necessary to make ESD the exclusive objective indicator of the output quality. 
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In contrast, this chapter shows that scene complexity can be included in the proposed 

ESD theory. This will result in an optimization model, formulated for optimum non-

uniform/irregular LF acquisition. Before demonstrating the optimization model, let’s reproduce 

the relation of output quality and scene complexity from the chapter 3 experiments. Figure 7.1 

shows the mean PSNR for different rendering methods, categorized based on the complexity of 

the scene. As can be seen, more complex scenes result in reduced output quality. This can be 

explained due to fixed ESD for different scenes with different complexities in term of higher 

spatial frequency components. Nevertheless, ESD provides the right prediction on the relative 

performance amongst the various methods. 

 

 

Figure 7.1. Output quality and scene complexity 

 

In general, experiments demonstrate that the relation between ESD, scene complexity, 

and output quality can be illustrated as Figure 7.2. Output quality in Figure 7.2 is demonstrated 
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as normalized LF signal reconstruction accuracy which is a parameter between 0 and 1, with 1 

representing perfect LF signal reconstruction. In practise, value 0 for reconstruction accuracy is 

corresponding to very low output quality in PSNR (e.g., less than 10) and value 1 to very high 

quality in PSNR (e.g., higher than 50). In addition, different levels of scene complexities are 

represented by parameter ℎ in Figure 7.2. As will be discussed later, in this thesis ℎ is calculated 

from spatial frequency variations of the scene, particularly from the values of the high 

frequency DCT coefficients. As can be seen from Figure 7.2, the LF signal reconstruction 

accuracy vs. ESD can be regarded as a set of utility functions 𝑈ℎ(𝐸𝑆𝐷) based on the given ℎ. 

The higher the scene complexity, more ESD would be required for a given reconstruction 

fidelity. 

 

 

Figure 7.2. LF signal reconstruction accuracy vs. amounts of under-sampling, in term of ESD as a set of utility 

functions 𝑼𝒉(𝐄𝐒𝐃) for several scenes with different complexities 𝒉 
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3D regions or blocks, each having a fixed average complexity ℎ. Then, the aim of the 

optimization problem could be to find the optimum acquisition configuration which provides 

the minimum required ESD for all blocks. Section 4 proposes a mathematical formulation for 

this optimization problem. Let’s first review several assumptions used in the optimization 

model. 

 

7.2.1 Simplifications Applied to the Proposed Optimization Model 

 

While the proposed optimization model proposed in next section is generic, several 

simplifications will be applied for the initial solution as well as validation. First, the rendering 

method is assumed to select all available rays in each point of the scene, i.e., |ω| = |Ω| for the 

reconstruction of each unknown ray 𝑟. This simplification assumes unlimited computational 

resources for rendering process and compromises the influences of rendering component in 

output quality, hence restricts the optimization to acquisition component. However, the future 

work on the optimization model requires a joint optimization on both acquisition and rendering 

components similar to what has been proposed in chapter 6 but this time with the addition of 

scene complexity. This assumption results in ESD to be equal to SD in any point of the scene 

space and thus ESD can be substituted with SD in the optimization model. 

Another simplification is to limit the camera positions to a plane, i.e., irregular camera 

grid. In other word, while the optimization model is proposed in 3D space, the simplified 

solution is given for 2D space. 

Final simplification is for representing the scene complexity. While the depth maps are 

available and the scene can be discretized into small 3D blocks and for each 3D block, the 

frequency variations of depth and texture computed to estimate average complexity ℎ, but we 

approximate the scene complexity with 2D scene complexity maps produced from 2D reference 

images. This approximation method will be discussed later in subsection 7.4.2. 
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7.2.2 SD Pattern in Scene Space 

 

Please recall from chapter 3 that even a regular camera grid results in a non-uniform SD 

in the scene space. However, this non-uniformity is not related to the spatial variations of scene 

complexity. 

As discussed in subsection 7.3.1, the optimization model will be simplified to SD 

instead of ESD. Figure 7.3 shows the non-uniformity of SD as contour maps for an initial 

regular camera grid of 30𝑥30 with 𝑘 = 2 at different depths, 𝑑 = 30, 60, and 90, camera field 

of view of 30°, image resolution of 100𝑥100 pixels (𝑙 = 0.005358984) and ideal area 

𝐴 = (𝑙𝑑)2, i.e., LF system resolution. 

While Figure 7.3 illustrates the SD pattern for a regular acquisition, it is possible to 

conclude that by changing the acquisition pattern, the SD pattern would change and therefore, 

the proposed optimization model is required to map this SD pattern to the scene complexity, i.e., 

provide the minimum required SD for all 3D discretized blocks of the scene. 

 

 

Figure 7.3. SD pattern in scene space as contour maps at different depths 
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7.3 Proposed Acquisition Optimization Model 

 

This section proposes the optimization model for non-uniform/irregular LF acquisition. 

Initially the generic optimization will be formulated. Subsequently, the simplifications from 

subsection 7.3.1 are applied one by one to the optimization model to derive an initial solution 

for validation. In general, the cameras should be arranged such that the proportion of the scene 

with higher complexity is sampled by more cameras. 

Assume the scene is discretized with 𝑚 small 3D blocks, {𝑝1, 𝑝2, … 𝑝𝑚}. Each block 𝑝𝑖 

has a fixed volume with equal length 휀𝑖 in 𝑋, 𝑌 and 𝑍 directions, 3D position of the center of 

block in the scene space (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖), and a weight ℎ𝑖 indicating the complexity of the scene that 

may be measured based on the localized highest frequency components of 𝑝𝑖 . Each block 𝑝𝑖 is 

represented as 𝑝𝑖(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖, 휀𝑖 , ℎ𝑖). In addition, assume there are 𝑛 cameras with known 

parameters in the acquisition component, 𝐺𝑛 = {𝑐1, 𝑐2, … 𝑐𝑛}. Each camera 𝑐𝑖 is described as 

𝑐𝑖(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖, 𝛼𝑖, 𝛽𝑖, 𝜃𝑖, 𝑓𝑖), where 𝑥, 𝑦, and 𝑧 are the camera’s position and 𝛼, 𝛽 and 𝜃 are the 

camera’s orientation in 𝑋, 𝑌 and 𝑍 directions respectively and 𝑓 refers to the camera’s internal 

parameters, e.g., horizontal and vertical fields of view. Acquisition 𝐺𝑛 = {𝑐1, 𝑐2, … 𝑐𝑛} and 

rendering algorithm 𝑅 can be mathematically employed to compute the ESD pattern in scene 

space. 𝐸𝑆𝐷𝑅(𝐺𝑗, 𝑝𝑖) gives the ESD at point 𝑝𝑖 for a given acquisition 𝐺𝑗 of 𝑗 cameras and 

rendering method/algorithm 𝑅. Let  𝑈ℎ𝑖(𝐸𝑆𝐷𝑅(𝐺𝑗, 𝑝𝑖))  denote the rendering accuracy for each 

block 𝑝𝑖 as demonstrated in Figure 7.2. An optimal configuration of the cameras is expected to 

provide the minimum ESD required for each block of complexity ℎ𝑖 that results in an acceptable 

output quality as specified by the utility function for all blocks of the scene. To improve the 

chances of obtaining a feasible solution, we define 𝑊(ℎ𝑖) as the weight of ℎ𝑖 based on 𝑈ℎ𝑖 

shape. 𝑊 in the simplest form can be 𝑊(ℎ𝑖) = ℎ𝑖 which means there is a linear relation 

between required ESD and ℎ𝑖. For a given number of cameras, an objective function 𝑂(𝐺𝑛) can 

be formulated as: 
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 𝑂(𝐺𝑛) =∑(𝑈ℎ𝑖(𝐸𝑆𝐷𝑅(𝐺𝑛, 𝑝𝑖)).𝑊(ℎ𝑖)) 

𝑚

𝑖=1

                                                                      (7.1) 

The optimization problem is to find an acquisition 𝐺𝑛 which makes the 𝑂(𝐺𝑛) 

maximum. Note that 𝐺𝑛 is a vector with 6𝑛 elements (𝑛 cameras and 6 degrees of freedom for 

each camera). For a simplified acquisition component, i.e., a 2D camera grid, 𝑧𝑖 and 𝜃𝑖 are fixed 

and the vector 𝐺𝑛 has 4𝑛 elements. Due to acquisition limitations the constraints over 𝐺𝑛 may 

be expressed as: 

{
  
 

  
 
𝑥𝑖𝑚𝑖𝑛 ≤ 𝑥𝑖 ≤ 𝑥𝑖𝑚𝑎𝑥
𝑦𝑖𝑚𝑖𝑛 ≤ 𝑦𝑖 ≤ 𝑦𝑖𝑚𝑎𝑥
𝑧𝑖𝑚𝑖𝑛 ≤ 𝑧𝑖 ≤ 𝑧𝑖𝑚𝑎𝑥
𝛼𝑖𝑚𝑖𝑛 ≤ 𝛼𝑖 ≤ 𝛼𝑖𝑚𝑎𝑥
𝛽𝑖𝑚𝑖𝑛 ≤ 𝛽𝑖 ≤ 𝛽𝑖𝑚𝑎𝑥
𝜃𝑖𝑚𝑖𝑛 ≤ 𝜃𝑖 ≤ 𝜃𝑖𝑚𝑎𝑥

                                                                                                 (7.2) 

The core of the optimization problem defined in (7.1) is the 𝑈ℎ𝑖 utility functions 

definition. As shown in Figure 7.2, 𝑈ℎ𝑖 has a diminishing marginal utility. 𝑈ℎ𝑖 can be iteratively 

defined by its marginal utility 𝛿𝑈ℎ𝑖
 as: 

𝑈ℎ𝑖(𝑖) = 𝑈ℎ𝑖(𝑖 − 1) + 𝛿𝑈ℎ𝑖
(𝑖 − 1) 𝑎𝑛𝑑 𝑈ℎ𝑖(0) = 0                                                         (7.3) 

Note that for a continuous approximation of 𝑈ℎ𝑖 , 𝛿𝑈ℎ𝑖
≈
𝑑𝑈ℎ𝑖
𝑑𝐸𝑆𝐷

 .  

To iteratively define utility functions 𝑈ℎ𝑖 based on (7.3), 𝛿𝑈ℎ𝑖
 can be approximated by a 

linear or logarithmic diminishing behavior as: 

𝛿𝑈ℎ𝑖
(𝑗) = 𝑈ℎ𝑖(1) − (

(𝑗−𝛽1)

𝛽2
)𝑈ℎ𝑖(1)  and 𝛽1 ≥ 1, 𝛽2 ≥ 𝑈ℎ𝑖(1)                                     (7.4)  

Note that by assuming 𝛽2 = 𝑈ℎ𝑖(1), (7.4) is simplified to a linear marginal utility. From 

(7.3) and (7.4), it can be shown that: 

𝑈ℎ𝑖 (𝐸𝑆𝐷𝑅(𝐺𝑗, 𝑝𝑖)) = ∑ 𝛿𝑈ℎ𝑖
(𝑗)

𝐸𝑆𝐷𝑅(𝐺𝑗,𝑝𝑖)

𝑗=1

                                                                            (7.5) 
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To simplify (7.5) let’s assume all blocks have equal size 휀𝑖 = 1. 𝐸(𝐺𝑗 , 𝑝𝑖) gives the 

number of cameras that are able to see/capture 𝑝𝑖 for a given acquisition 𝐺𝑗 = {𝑐1, 𝑐2, … 𝑐𝑗}. In 

addition let’s assume the rendering algorithm selects all available rays in each point of the scene 

for interpolation, then: 

 𝐸𝑆𝐷𝑅(𝐺𝑗, 𝑝𝑖) = 𝑆𝐷(𝐺𝑗, 𝑝𝑖) =
𝐸(𝐺𝑗,𝑝𝑖)

𝜀𝑖
2 = 𝐸(𝐺𝑗, 𝑝𝑖)                                                     (7.6) 

By applying (7.4) and (7.6) to (7.5) and assuming 𝑊(ℎ𝑖) =
ℎ𝑖

𝑈ℎ𝑖
(1)

 for all blocks, (7.1) 

can be rewritten as: 

𝑂(𝐺𝑛) =∑ ∑ (ℎ𝑖 − (
(𝑗 − 𝛽1)

𝛽2
)ℎ𝑖)

𝐸(𝐺𝑛,𝑝𝑖)

𝑗=1

 

𝑚

𝑖=1

                                                                       (7.7) 

To compute (7.7), it is easier to rewrite it based on cameras in acquisition component 𝐺 

rather than scene blocks. 𝑄(𝑐𝑖) gives a set of scene blocks that can be seen/captured by camera 

𝑐𝑖 : 

𝑂(𝐺𝑛) =∑ ∑ (𝛿𝑈ℎ𝑗
(𝐸(𝐺𝑖, 𝑝𝑗))

ℎ𝑗

𝑈ℎ𝑗(1)
 )

𝑝𝑗∈𝑄(𝑐𝑖)

→                                                                 

𝑛

𝑖=1

 

𝑂(𝐺𝑛) =∑ ∑ (ℎ𝑗 − (
(𝐸(𝐺𝑖 , 𝑝𝑗) − 𝛽1)

𝛽2
)ℎ𝑗 )

𝑝𝑗∈𝑄(𝑐𝑖)

 

𝑛

𝑖=1

                                                    (7.8) 

To assess the problem complexity, consider that an exhaustive search method to 

maximize (7.8) would require all possible configurations of 𝐺𝑛 to be examined. To reduce the 

size of the search space a simplified 2D camera grid UV can be assumed. Let UV plane size be 

𝑢. 𝑣, the discretization size, i.e., the minimum space required for a camera as 𝑑𝑢 and 𝑑𝑣 in 𝑈 an 

𝑉 directions, and 𝑂𝑢 and 𝑂𝑣 possible number of discrete orientations in 𝑈 and 𝑉 directions, then 

there are 𝑁 = 
𝑢.𝑣.𝑂𝑢.𝑂𝑣

𝑑𝑢.𝑑𝑣
 possibilities for positioning the cameras. Let a new set 𝑆 = {𝑠1, 𝑠2, … 𝑠𝑁} 
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all potential cameras in UV plane. Clearly, 𝐺𝑛 ⊂ 𝑆. The total number of possible 𝐺𝑛 is 

(
𝑢.𝑣

𝑑𝑢.𝑑𝑣
)!𝑂𝑢.𝑂𝑣

𝑛!((
𝑢.𝑣

𝑑𝑢.𝑑𝑣
)−𝑛)!

 which represents the size of the search space. 

In this thesis we adopt a dynamic programming solution to obtain 𝐺𝑛 effectively for 

reasonable 𝑛 and 𝑁. The boundary condition for calculating 𝐺1is: 

𝐺1 = {𝑐1}, 𝑂(𝐺1)is maximum when: 

𝑐1 = 𝑠𝑘 and 𝑘 is the index of the maximum in: 

max
1 ≤ 𝑟 ≤ 𝑁

∑ (ℎ𝑗 )

𝑝𝑗∈𝑄(𝑠𝑟)

                                                                                                                                (7.9) 

The general rule for calculating 𝐺𝑖+1 can be written as: 

Assume 𝑂(𝐺𝑖)is maximum,  

𝑂(𝐺𝑖+1)is maximum when: 

𝐺𝑖+1 = 𝐺𝑖 ∪ {𝑐𝑖+1} and 

𝑐𝑖+1 = 𝑠𝑘 and 𝑘 is the index of the maximum in: 

max
1 ≤ 𝑟 ≤ 𝑁 ,

𝑛𝑜 𝑐𝑎𝑚𝑒𝑟𝑎 𝑖𝑛 𝑠𝑟 

  ∑ (ℎ𝑗 − (
(𝐸(𝐺𝑖 ∪ {𝑠𝑟}, 𝑝𝑗) − 𝛽1)

𝛽2
)ℎ𝑗 )

𝑝𝑗∈𝑄(𝑠𝑟)

                                                 (7.10) 

From (7.9) and (7.10), it is straightforward to write an algorithm to obtain the optimum 

𝐺𝑛. The dynamic programming solution also can store all ℎ𝑗 in a data structure and in each step 

of calculating the optimum 𝐺𝑛 only update the affected subset of ℎ𝑗 with 𝛿𝑈ℎ𝑖
. 
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7.3.1 Computing the 𝒉𝒊 Complexity Factors 

 

Different methods can be used to obtain ℎ𝑖 for each block based on the FVV design 

requirements. This chapter assumes that ℎ𝑖 is be determined by the highest frequency 

components of the block computed by applying DCT transform. 

After applying DCT to each block 𝑝𝑖, different techniques can be utilized. One can 

calculate the norm or sum of energies for all AC coefficients and put it in ℎ𝑖 . Another technique 

is to only calculate the norm or sum of energies for high frequency components such as 4𝑥4 or 

16𝑥16 bottom-right coefficients of the DCT. Experiments show that it is a good practice to 

apply a normalization process to the raw weights from the previous step. 

 

7.3.2 Optimization with no Scene Geometric Information 

 

In many LF based FVV systems, little or no information is available about the scene 

geometry. In such cases, it would not be possible to ascertain the requisite information about 

blocks 𝑝𝑖 such as 𝑥𝑖, 𝑦𝑖 , 𝑧𝑖, and our knowledge about the scene is limited to 𝑛 reference images 

captured with current acquisition cameras. 

This subsection introduces a modified 2D version of the optimization problem defined 

in (7.1) to (7.10) by replacing 𝑝 with approximated 2D scene blocks �̃�𝑖(�̃�𝑖 , �̃�𝑖 , ℎ̃𝑖), where �̃�𝑖, �̃�𝑖 

refer to the position of the projected scene over image plane 𝑆𝑇. The 2D projection transform 

which maps 𝑝 to �̃� can be a typical 2D image projection transform or a more complex transform 

by averaging the disparity of each block of the scene among all reference images to minimize 

the errors of approximation of (�̃�𝑖, �̃�𝑖) from (𝑥𝑖 , 𝑦𝑖). 

Scene complexity map is defined as a 2D representation of all �̃�𝑖(�̃�𝑖, �̃�𝑖 , ℎ̃𝑖) . Assume 

that the cameras in 2D camera grid (𝐺𝑛) are in an initial state and it is desired to change the 
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cameras positions and orientations based on the current scene. To generate the complexity map, 

images of the scene are first captured using initial camera configuration, subsequently this 

complexity map is employed in the modified 2D optimization to obtain the optimal 

configuration of acquisition cameras. In the following, two methods are described for the 

generation of the complexity map. 

Method I: Apply an image mosaicing algorithm to all reference images to generate a 

panoramic view of the whole scene. Alternatively, a virtual camera can be located in the middle 

of UV camera plane with a very large field of view which covers the whole scene and LF 

rendering itself can be used to calculate the view. Subsequently, this image is discretized into 

2D scene blocks �̃�𝑖 and DCT transform is applied to each 2D block �̃�𝑖. Weights ℎ̃𝑖 can be 

calculated from these 2D DCT coefficients with the same methods proposed in subsection 7.4.1. 

Method II: In this method, the reference images captured by each camera are first 

discretized into blocks. The DCT transform then is applied to these image blocks and a localized 

complexity map is generated for each camera. Subsequently a “DCT mosaicing” algorithm is 

applied to all of these localized complexity maps to generate the final scene complexity map. 

The main difference between the “DCT mosaicing” and “image mosaicing” is that they treat the 

overlapping parts differently, where the proposed “DCT mosaicing” computes the average or 

maximum energy of DCT coefficients for compositing stage. 

In practice, the scene complexity map could change in time and, hence, a dynamic 

acquisition optimization would be desired to control movable and steerable cameras. This 

extension is left for future publications. 

 

7.4 Experimental Validation 

 

The same FVV simulation system discussed in chapter 3 to 6 was utilized to validate 

the proposed optimization model. Four new 3D scenes were chosen for validation including: 
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bonny, dragon, a scene combined from bonny, dragon and two textured cubes and a room, in 

order of complexities, respectively. The 2D version of the optimization algorithm using 

reference images to quantify the scene complexity is reported in the following experiments.  

 First regular camera grids with 𝑛 = 49 and 169 were generated for these scenes. For 

each experiment, 1000 random virtual cameras were produced. Rendering quality was 

calculated in terms of averaged PSNR among all 1000 virtual cameras for all four 3D scenes by 

employing UVST-DM rendering method. Consequently, the proposed optimization model was 

applied to each scene and a new irregular camera grid was obtained. The same virtual cameras 

were produced and the rendering quality for new irregular grid was compared with the initial 

regular grid.  

Figure 7.4 demonstrates the summary of output quality for all four scenes for initial 

regular and optimized irregular 7𝑥7 and 13𝑥13 camera grids. 

 

 

Figure 7.4. Output quality for four scenes for initial regular and optimized irregular camera grids 
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In general, Figure 7.4 shows about 20% improvement for 7𝑥7 and 15% improvement 

for 13𝑥13 camera grids in the PSNR values by using the proposed optimization model. 

For the visualization of the output only two of the four scenes are selected in this 

chapter due to limited space, the bonny, dragon and two textured cubes scene for validation and 

subjective evaluation and the complex room scene for demonstration of the application of the 

proposed model. 

Figure 7.5 illustrates the initial regular camera grid and steps/iterations of 2D 

optimization algorithm (7.9) and (7.10) for creating an optimum irregular camera grid for the 

first scene. 

 

  

  

Initial regular grid Iteration 1 

Iteration 2 Iteration 3 
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Figure 7.5. Initial regular camera grid and steps/iterations of the optimization algorithm generating an 

optimum irregular camera grid 

 

Iteration 4 Iteration 5 

Iteration 6 Iteration 7 

Iteration 8 Iteration 9 

Iteration 10 Final irregular grid 
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Figure 7.6.a demonstrates a complete view of first scene. Figures 7.6.b and 7.6.c show 

generated complexity map for this scene from method I and method II as described in section 4. 

Similarly, Figure 7.7.a demonstrates a complete view of the second scene. Figures 7.7.b 

and 7.7.c show generated complexity map for this scene from method I and method II.  

Figure 7.8.a illustrates a sample image out of 1000 ground truth images generated with 

simulator. Figures 7.8.b and 7.8.c show the rendered output for the same virtual camera by 

employing a regular and an optimum irregular acquisition respectively. While subjective 

comparison shows the rendering improvement for irregular grid, the objective comparison also 

shows average 15% to 20% improvement in average PSNR among all 1000 virtual cameras as 

demonstrated before in Figure 7.4. 
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Figure 7.6. a) Scene I; Normalized complexity map from b) method I and c) method II 

(b) 

(a) 

(c) 
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Figure 7.7. a) Scene II; Normalized complexity map from b) method I and c) method II 

(a) 

(b) 

(c) 
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Figure 7.8. A sample of a) ground truth from simulator, b) rendered with regular grid, c) rendered with 

irregular grid, out of 1000 images generated, with average rendering improvment of 15% to 20% in PSNR  

(a) 

(b) 

(c) 
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Figures 7.9.a and 7.10.a show regular camera grids with 49 and 169 cameras capturing 

the room scene respectively. Optimum irregular camera grids based on proposed optimization 

with 49 and 169 cameras are illustrated in 7.9.b and 7.10.b respectively. Note that the objective 

output quality improvements have been demonstrated in Figure 7.4 before.  

 

 

 

Figure 7.9. a) Regular camera grid with 49 (𝟕𝒙𝟕) cameras; b) optimum irregular camera grid based on the 

proposed optimization model for 49 cameras 

 

(a) 

(b) 
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Figure 7.10. a) Regular camera grid with 169 (𝟏𝟑𝒙𝟏𝟑) cameras; b) optimum irregular camera grid based on 

the proposed optimization model for 169 cameras 

 

 

 

 

(a) 

(b) 
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7.5 Discussion and Conclusion 

 

By superimposing the scene complexity in term of scene special frequency variations to 

ESD theory, an optimization model is proposed in this chapter to calculate the configurations of 

cameras in an irregular acquisition of an LF based FVV system. Theoretical analysis and 

numerical simulation have demonstrated that the rendered video quality is significantly 

improved by employing the proposed irregular acquisition. 
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8 Chapter 8: Conclusions and Future Works 
 

 

The main contribution of this research is to propose a theory for analytical comparison, 

evaluation, and optimization of the LF acquisition and rendering components for LF-based FVV 

systems, particularly in the more realistic under-sampled LF and approximated depth 

information with errors in depth map. The core of the proposed theory is the concept of 

effective sampling density (ESD). ESD is shown to be an analytically tractable metric that 

represents the combined impact of the imperfections of LF acquisition and rendering and can 

quantify their impacts on the final video quality separately as well as jointly. 

Chapter 3 shows that different LF rendering methods and LF acquisition configurations 

can be theoretically evaluated and compared using the proposed ESD. Eight well-known 

rendering methods with different acquisition configurations have been analyzed through ESD 

and simulation. The results have shown that ESD is an effective indicator of output distortion 

and quality that can be obtained directly form system parameters and that takes into 

consideration both acquisition and rendering. In addition, an empirical relationship between the 

theoretical ESD and achievable rendering quality (in PSNR) has been established which allows 

direct prediction of the overall video quality without the actual implementation of the system. 

Furthermore, a subjective quality assessment has confirmed that ESD is highly correlated with 

the perceived output quality. 

Chapter 4 discusses the use of ESD for LF acquisition optimization. The acquisition 

optimization is simplified to regular camera grid acquisition and the number of cameras 

required to capture the scene which is an essential problem in a practical LF based FVV system. 

The ESD analysis is applied to under-sampled LF under realistic conditions (non-Lambertian 

reflections and occlusions) and rendering with complex interpolations. As a result of this 

analysis, a method for calculating the minimum number of cameras and evaluating the impact of 
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depth map errors on output quality for LF-based FVV systems is proposed in this chapter. It is 

shown that higher camera density can compensate for the adverse effect of depth map errors on 

the output quality. To employ the proposed method in LF based FVV system design, the desired 

rendering quality of the system in PSNR can be mapped to the corresponding ESD by 

employing the empirical model given as (4.14). This ESD with depth estimation error can be 

applied to (4.13) to calculate the camera density in the grid and hence the minimum number of 

cameras. Theoretical and numerical results showed that the resulting number of cameras is 

significantly lower than what was reported in the previous studies with only a few percent 

reduction in the rendering quality. Moreover, it was shown that the previous methods are special 

cases of the one derived from ESD theory. 

Chapter 5 discusses the problem of LF rendering optimization by utilizing ESD theory. 

In particular, the optimization is applied to the depth-based LF rendering algorithms to provide 

an estimation of the rendering complexity in terms of optimum number of rays employed in 

interpolation algorithm so as to compensate for the adverse effect caused by errors in depth 

maps for a given rendering quality. To employ the proposed method in LF based FVV system 

design, the desired rendering quality of the system in PSNR can be mapped to the corresponding 

ESD by employing the empirical model given as (5.3). This ESD with depth estimation error is 

applied to (5.2) to calculate the optimum number of rays required for interpolation in rendering 

process. The proposed method is particularly useful in designing a rendering algorithm with 

inaccurate knowledge of depth to achieve the required rendering quality. Both the theoretical 

study and numerical simulations have shown that the proposed method was reliable and 

accurate. 

Chapter 6 demonstrates a joint optimization of both LF acquisition and LF rendering to 

achieve a desired output quality. A Lagrangean joint optimization method of ESD for the (i) the 

density of cameras in the acquisition grid and (ii) the density of rays within the interpolation 

area was proposed in this chapter and after an extensive calculation, an analytical solution to the 

Lagrangean optimization was given as (6.11) and (6.12). In particular, this chapter studied the 
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tradeoff among acquisition camera density, ray selection, depth error and rendering quality and 

it is shown that the error in depth maps can be compensated for by judicious alteration of both 

variables, to maintain the rendering quality at a desired level. Employing the proposed method 

on a regular grid camera system has shown that the number of cameras can be reduced by 8 

times if 32 rays, instead of 8 rays, are employed during rendering to achieve the similar 

rendering quality for a typical 20% error in depth estimation. 

Chapter 7 proposes a non-uniform/irregular LF acquisition by superimposing the scene 

complexity in terms of scene spatial frequency variations to ESD theory. It was shown that 

while a regular acquisition itself results in non-uniform sampling density, this non-uniformity 

does not match the scene complexity and frequency variations. Subsequently, an optimization 

model (7.1) to (7.10) was proposed to compute the optimum configurations of the acquisition 

cameras including positions and orientations, i.e., optimum non-uniform/irregular LF 

acquisition, corresponding to the variations of the scene complexity. Specifically, scene 

complexity was measured through analyzing DCT coefficients of reference images of the scene, 

describing the frequency behavior of the plenoptic signal over the scene space. The theoretical 

analysis and numerical simulations demonstrated that the rendered video quality was 

significantly improved (around 20% in mean PSNR) by employing the proposed irregular 

acquisition compared with the regular camera grid. 

The thesis also provides a number of appendices to cover the extensive mathematics. 

Appendix I gives an example for further demonstration of ω, Ω, and Ѳ sets. Appendix II gives 

details of SD calculation for a regular camera grid. Appendix III illustrates the details of ESD 

calculation for a regular camera grid. Appendix IV gives the analytical solution to Lagrangean 

optimization of ESD. Appendix V gives a brief overview on the proposed quantitative analysis 

of LF systems and simulation system used for validation of the proposed ESD theory. 
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8.1 Future Works 

 

While the fundamentals of ESD theory has been studied and reported in this thesis, the 

theory has a long way to go. We are working on extending the ESD theory and applying it to 

more problems related to LF-based FVV systems evaluation, comparison, and optimization and 

will report the results in future publications. In particular following problems should be 

investigated with higher priority: 

a) Chapter 3 shows the ESD derivations of eight rendering methods, for regular camera 

grid acquisition and 2-planes representation. While this was sufficient to introduce the theory 

and its application but the derivation of ESD for other well-known rendering methods and for 

more complicated acquisition architectures/topologies and LF representations should be carried 

out. 

b) For the experimental validation and objective rendering quality assessment, basic 

PSNR metric was chosen throughout the thesis. The extension of this to other metrics which are 

more suitable for video quality assessment is very important. In addition, the subjective quality 

assessment should also be done. Regardless, the relationship between ESD and those 

experimental assessments should be empirically established similar to the one demonstrated for 

PSNR and ESD. 

c) More research is required on the empirical model demonstrated for the relationship of 

the theoretical ESD and experimental output quality. This can be done by using better curve 

fitting methods as well as experiments with more scenes and in particular real scenes. 

d) Throughout the thesis the LF analysis, evaluations, comparisons, and optimizations 

of ESD are demonstrated for one unknown ray 𝑟 and the area of interpolation 𝐴 at the vicinity 

of 𝑝 the intersection point of 𝑟 with the scene. This is a micro analysis of quality assessment for 

reconstruction of only on unknown ray 𝑟 based on ESD. In this thesis as mentioned several 

times, the macro analysis of quality assessment of the system was given with an average of ESD 
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for a scene (ESD̅̅ ̅̅ ̅). It was argued that sampling the scene with this calculated ESD̅̅ ̅̅ ̅ guarantees the 

corresponding average output quality for the system. While this simplification was shown to be 

sufficient for uncomplicated scenes but a generic formulation of macro analysis of ESD is 

required for future works. This generic macro analysis can be formulated by performing the 

integral of ESD over the scene. 

e) The acquisition optimization proposed in chapter 4 was simplified to a regular grid 

acquisition and calculation of the number of cameras for the gird. Extension of this optimization 

to other acquisition architectures and configuration, parameterizations, and acquisition 

parameters are required. 

f) The rendering optimization proposed in chapter 5 was simplified to a regular grid 

acquisition and calculation of the number of rays employed for interpolation for UV-DM 

rendering method. Extension of this optimization to the other rendering methods, and other 

rendering parameters are required. 

g) The interpolation method 𝐹 was assumed to be fixed for all the methods proposed in 

this thesis. However, as speculated before in chapter 3, the efficacy of the interpolation method 

has a direct impact on the rendering quality. A mathematical analysis of various interpolation 

methods and superimposing the ESD theory by the efficacy of the interpolation method is also a 

very important problem for the future works. 

h) While in chapter 7, the ESD theory was superimposed by the scene complexity, but 

the analysis demonstrated in chapter 4, 5, and 6 are assumed that the scene complexity is fixed. 

The extensions of the optimization methods proposed in those chapters by superimposing scene 

complexity is another important problem to be considered in future works. 

i) The extension of the joint optimization method proposed in chapter 6 for other types 

of acquisition and rendering components is also an important problem for future works. 
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j) While the optimization method proposed in chapter 7 was generic, but several 

simplifications have been applied to the optimization model to solve it including substituting 

ESD by SD (i.e., not considering the rendering method), 2D version of the optimization for a 

irregular grid, and using the approximated scene complexity maps. The extensions of the 

proposed optimization for ESD ( instead of SD), 3D acquisition topology, and calculating the 

scene complexity by assuming the depth information are all significant problems, required to be 

performed in future. 

k) While the simulation model proposed in chapter 8 for quantitative analysis of LF-

based FVV systems and validation of the proposed ESD theory was very effective but applying 

the theory to real scenes is very important in next stages. We already designed and implemented 

a camera grid in our laboratory and trying to apply the results of the ESD theory to the real 

scenes. 

l) The same as any other signal processing applications, pre-filtering and post-filtering 

of LF signal are important problems. The optimum LF filtering to avoid anti-aliasing has been 

investigated before in several researches as discussed in literature review chapter. While the 

relation between optimum filtering and ESD was discussed in spectral analysis of LF in chapter 

4, but the optimum amount and the type of filtering are among the important problems that 

required to be answered by using ESD theory in future.  

m) As discussed before, LF can be considered as a discrete synthetic aperture. 

Employing more rays for interpolation would increases the size of the aperture and 

consequently decreases the depth of field. On the other hand, employing less number of rays 

would reduce the aperture size and results in increasing the depth of field. This size of the 

aperture is shown to be directly related to the LF filtering. While Chapter 5 proposed a method 

to calculate the optimum number of rays for interpolation but the optimum size of the discrete 

synthetic aperture for an optimum ray filtering is also a very important problem and we are 

working on this for a future publication. 
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n) The LF compression and transmission component was not the focus of this thesis and 

has not been investigated here. However, future extension of ESD theory requires a full analysis 

over LF compression and transmission methods and the relation between ESD and the required 

bandwidth. Hence, for a desired output quality, and system parameters the calculated ESD can 

be mapped to the minimum bandwidth required for the signal transmission. 
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9 Appendices 
 

9.1 Appendix I: Demonstration of 𝛚, Ω, and Ѳ sets    

 

Appendix I describes an example for further demonstration of ω, Ω, and Ѳ sets in an 

LF-based FVV system. Denote from chapter 3 that Ѳ refers to a set of all rays captured by an LF 

acquisition component. Ω is a subset of rays from Ѳ that intersects the scene at 𝐴, the area of 

interpolation at vicinity of 𝑝, the intersection point of unknown ray 𝑟 with the scene. All of the 

rays in Ω can be potentially employed in interpolation process to estimate 𝑟. However, 

practically, due to lack of knowledge about the scene geometry, as well as computational 

limitations only ω a subset of rays from Ω is selected by the selection process of the rendering 

method. Clearly, ω ⊆ Ω ⊆ θ. Figure 9.1 illustrates a sample 2D light field with 8 cameras and 8 

pixels per image. It shows 64 rays in Ѳ, and 𝑟 the unknown ray intersecting the scene on point 𝑝 

and 𝐴 the area of interpolation souranding 𝑝. 
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Figure 9.1. A sample 2D light field with 8 cameras and 8 pixels per image. It shows 64 rays in Ѳ, and 𝒓 the 

unknown ray intersecting the scene on point 𝒑 and 𝑨 the area of interpolation souranding 𝒑 

 

Figure 9.2 illustrates the same 2D light field with 22 rays in Ω, all the captured rays in 

the LF system that flowing through 𝐴, the area of interpolation. These 22 rays potentially could 
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be employed in a rendering method to estimate 𝑟. However, practically, just a subset of them 

would be used for interpolation as discussed before. 

 

 

 

 

                                                               

                                                                                                     𝒑   𝑨 

        

        
                                         𝒓  

 
                                             𝒖           

                                                                   𝒔 

    
Figure 9.2. The same 2D light field as Figure 9.1 with 22 rays in Ω, all the rays in the system that flowing 

through 𝑨, the area of interpolation 

 

Figure 9.3 shows the same 2D light field with 7 rays in ω , a subset of rays from Ω 

selected by an imaginary rendering method to be employed for interpolation of unknown ray 𝑟. 

𝐵1 and 𝐵2 are the boundary rays souranding all other rays in ω which can be employed to 

calculate the area of interpolation 𝐴. We will be shown in Appendix III, effective sampling 

density (ESD) could be calculated by deriving the line equations for boundary rays 𝐵1 and 𝐵2 

and calculating 𝐴.  

 

 

 

                                                                 𝑩𝟏                             𝑝   𝐴 
                                                           

        

                                                           𝑩𝟐  

                                        𝒓  

 
                                            𝒖           

                                                                 𝒔 
 

Figure 9.3. The same 2D light field as Figure 9.2 with 7 rays in 𝛚, a subset of rays in Ω selected by rendering 

method to be employed in interpolation of unknown ray 𝒓. 𝑩𝟏 and 𝑩𝟐 are the boundary rays souranding all 

other rays in 𝛚 creating the area of interpolation 𝑨.  
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9.2 Appendix II: Details of SD (Sampling Density) Calculation for a 

Regular Camera Grid LF Acquisition 

 

This appendix demonstrates an approach for calculating the SD for an LF-based FVV 

system. The main problems in calculating the SD are to determine the area of interpolation 𝐴 

and to calculate the number of rays in Ω for that 𝐴 for a given acquisition configuration. The 

area of interpolation 𝐴, itself is determined by the selection process of the rendering component 

and the amount of error in depth estimation. In this appendix, the ideal interpolation area by 

assuming no errors in depth estimation is assumed as 𝐴 = (𝑙𝑑)2, which is the system resolution 

as discussed before. In addition, to calculate Ω for this ideal 𝐴, a regular camera grid for LF 

acquisition is considered. Clearly, SD can be calculated in any points of the scene from: 

SD =
|Ω|

𝐴
. The proposed approach can be extended to any acquisition architecture and 

configuration and for any size of interpolation area 𝐴. Subsequently, SD can be illustrated as a 

contour chart throughout the scene space. 

The problem of calculating |Ω| is corresponding to calculating the number of cameras 

able to see a specific part of the scene determined by 𝐴. To calculate the number of cameras, 

let’s start with a basic demonstration of a pinhole camera in an LF system in Figure 9.4. Camera 

vertical angle of view, pixel length, image length, and the length of camera’s field of view in 

depth 𝑑 are demonstrated in Figure 9.4   
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                                                                    Length of camera’s field of view at depth 𝑑: 2𝑑𝑡𝑔(
𝛼

2
)                             

                                                                                                                                            

                                 Image length:  𝑙 ∗ 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑟 2𝑑𝑡𝑔(
𝛼

2
)                                                                                                   

                       Pixel length: 𝑙 

                            

       𝑢𝑖(0, 𝑢)                                   

                                                                                 Pixel length at depth 𝑑: ld            Scene  

                       Vertical angle of view: 𝛼                                                                                                                                                                                                                                                                                            

                                                            

        

                     𝑢                                                   𝑠               

                                               1 

                                                                                𝑑 

Figure 9.4. A pinhole camera in an LF acquisition and the basic geometric concepts 

 

Figure 9.5 illustrates a row of cameras in 𝑢 and how these cameras field of view 

overlap. The distance between two adjacent cameras is 𝑘  which makes imaginary discrete line 

segments in the scene space with the same length 𝑘. Each line segment can be seen by a number 

of cameras which can be calculated based on the overlaps of the field of views. The same 

concept can be easily extended to a regular camera grid 𝑢𝑣 and rectangular segments. 

As it can be seen from Figure 9.5, there is a pattern for number of cameras can see the 

segments as depth 𝑑. The very first and very last segments could only be seen by one camera 

but intermediate sections could be seen by three cameras in this example. In general scenario, 

there is still a pattern for the number of cameras seeing each segment at depth d. This pattern is 

incremental starting from one at the borders of the LF system field of view, incrementing to a 

fixed maximum in the centre as: {1,2,3,4, . . . , 𝑚𝑎𝑥 − 1,𝑚𝑎𝑥,𝑚𝑎𝑥, . . . 𝑚𝑎𝑥,𝑚𝑎𝑥 −

1, . . .4,3,2,1}. 
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Figure 9.5. A sample 2D light field system showing the scene space discretization and the number of cameras 

able to see each discrete line segment at depth 𝒅 

 

Following equations demonstrate how to calculate the geometric parameters 

demonstrated in Figure 9.4 and 9.5. FOV stands for “field of view” in these equations. 

𝐹𝑂𝑉𝑐𝑎𝑚𝑒𝑟𝑎 = 2𝑑𝑡𝑔 (
𝛼

2
)                                                                                             (9.1) 

and 𝛼 is the camera vertical or horizontal angle of view.  

𝐹𝑂𝑉𝐿𝐹 𝑠𝑦𝑠𝑡𝑒𝑚 = (𝑛 − 1)𝑘 + 2𝑑𝑡𝑔 (
𝛼

2
)                                                                      (9.2) 

and n is the number of cameras. 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 =
𝐹𝑂𝑉𝐿𝐹 𝑠𝑦𝑠𝑡𝑒𝑚

𝑘
=
(𝑛−1)𝑘+2𝑑𝑡𝑔(

𝛼

2
)

𝑘
                                          (9.3) 

And the resolution of the LF system at depth 𝑑 can be calculated as: 

𝐹𝑂𝑉𝐿𝐹 𝑠𝑦𝑠𝑡𝑒𝑚 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = min (𝑛. 𝑐𝑎𝑚𝑒𝑟𝑎_𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ,
𝐹𝑂𝑉𝐿𝐹 𝑠𝑦𝑠𝑡𝑒𝑚

𝑙𝑑
)               (9.4) 

𝑐𝑎𝑚𝑒𝑟𝑎_𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 is the resolution of the cameras and ld is the length of the pixel at 

depth 𝑑. For depth d close to 𝑠𝑡 image plane not all of the LF system FOV could be seen by 

1
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Depth d 

cameras and there are some dark regions. In this scenario, 𝑛. 𝑐𝑎𝑚𝑒𝑟𝑎_𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 gives the 

system resolution in (9.4). Nevertheless, further from this initial depth, overlapping among 

cameras is accrued and the second part of (9.4) gives the resolution. Please note that the system 

resolution after overlapping would reduce from original 𝑛. 𝑐𝑎𝑚𝑒𝑟𝑎_𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛. 

To compute the pattern of {1,2,3,4, . . . , 𝑚𝑎𝑥 − 1,𝑚𝑎𝑥,𝑚𝑎𝑥, . . . 𝑚𝑎𝑥,𝑚𝑎𝑥 −

1, . . .4,3,2,1} shown in Figure 9.5, parameter 𝑚𝑎𝑥 should be calculated. Note that 𝑚𝑎𝑥 refers to 

the maximum number of cameras able to see a segment in central zone of FOV at depth d.  

𝑚𝑎𝑥 = maximum ([
𝐹𝑂𝑉𝑐𝑎𝑚𝑒𝑟𝑎

𝑘
] , 𝑛) = maximum ([

2𝑑𝑡𝑔(
𝛼

2
)   

𝑘
] , 𝑛)                         (9.5) 

and 𝑛 is the number of cameras. 

Figure 9.6 shows a sample 2D light field with a regular row of 30 cameras with 𝑘 = 2, 

camera vertical angle of view is 30
o
, camera resolution is 100 pixels which makes pixel length 

𝑙 = 0.005358984, and 𝑑 is between [2,100]. The scene space is discretized with line segments 

with 𝑙𝑒𝑛𝑔𝑡ℎ =  2 ( equal to camera distance as discussed before) and 𝑤𝑖𝑑𝑡ℎ = 1. 

 

 

Figure 9.6. Number of cameras able to see a discrete segment in the scene space for a sample 2D light field 
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Note that the scene space is already discretized based on the pixel size which is a 

natural phenomena in digital photography. To align the discretization process based on the line 

segments with the underneath natural pixel discretization, it is assumed in Figure 9.6 that in 

each depth 𝑑, each segment has integer number of pixels to have a unambiguous contour. 

Without this simplification, there are some aliasing in the boarders of each segment, where there 

is a pixel shared between two adjacent line segments. This assumption could be mathematically 

explained as:   

𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑑, 𝑖 =  
𝑘

𝑙𝑑
  𝑎𝑛𝑑 𝑖 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟                                 (9.6) 

Also it is assumed that there are always several pixels in each segment, i.e., the 

discretization based on the line segment is coarser than pixel discretization. Mathematically,  

𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑑, 𝑘 >> 𝑙𝑑  →  𝑑 ≪
𝑘

𝑙
                                               (9.7) 

If the condition of (9.7) is not satisfied, i.e., pixel length is larger than the segment 

length for large d>
𝑘

𝑙
 , the calculation and contour visualization should be carried out based on 

the pixel length ld rather than segment length k. Without losing generality, this case is not 

demonstrated here. 

The number of rays in |Ω| can be calculated from the number of cameras demonstrated 

in Figure 9.6 for each segment. It is know from (9.6) that there are 
𝑘

𝑙𝑑
 pixels in each segment, 

hence there are 
𝑘

𝑙𝑑
 rays from each camera intersect that given segment. Thus, 

|Ω| 𝑓𝑜𝑟 𝑔𝑖𝑣𝑒𝑛 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑚𝑒𝑟𝑎𝑠 𝑠𝑒𝑒𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡.
𝐾

𝑙𝑑
          (9.8) 

By assuming the area of interpolation 𝐴 to be equal to the segment length, i.e., 𝐴 = 𝑘, 

SD for each segment can be calculated as: 
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Depth 𝑑 

𝑆𝐷 𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 =  
|Ω| 𝑓𝑜𝑟 𝑔𝑖𝑣𝑒𝑛 𝑠𝑒𝑔𝑚𝑒𝑛𝑡

𝐴
=

 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑚𝑒𝑟𝑎𝑠 𝑠𝑒𝑒𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡.

𝑘

𝑙𝑑

𝑘
= 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑚𝑒𝑟𝑎𝑠 𝑠𝑒𝑒𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡

𝑙𝑑
                   (9.9)            

Equation (9.9) demonstrates that SD can be calculated from a nonlinear transform of 

number of cameras seeing each segment. By applying this nonlinear transform to Figure 9.6, a 

contour of SD in scene space is demonstrated in Figure 9.7. 

 

 

Figure 9.7. Sampling Density (SD) contour for a sample 2D light field 

 

Notice from Figure 9.7 that SD of a point in the scene decreases when it moves further 

from the camera grid and away from the centre of the scene. A semi-triangle in the centre of the 

scene with one edge on 𝑠, has the highest SD in 2D LF.   

For 3D light field with a regular camera grid acquisition the same results can be 

generalized as the configuration is symmetric. Hence, 

𝑆𝐷 𝑓𝑜𝑟 𝑎 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑖𝑛 3𝐷 𝑙𝑖𝑔ℎ𝑡 𝑓𝑖𝑒𝑙𝑑 =

(
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑚𝑒𝑟𝑎𝑠 𝑠𝑒𝑒𝑖𝑛𝑔 𝑡ℎ𝑒 𝑙𝑖𝑛𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡

𝑙𝑑
)
2
                                                                         (9.10) 
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Figure 9.8 demonstrates a 3D light field with a regular camera grid acquisition with the 

same system parameters as Figure 9.7 

 

 

Figure 9.8. Sampling Density (SD) contour for a sample 3D light field with regular camera grid acquisition 
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9.3 Appendix III: Details of ESD (Effective Sampling Density) 

Calculation for a Regular Camera Grid LF Acquisition 

 

This appendix describes the mathematical methodology to calculate ESD for a regular 

camera grid acquisition. A simple scenario for a 2D light field is demonstrated here which can 

be easily extended to 3D light field and arbitrary ray selection as described before in chapter 3. 

Figure 9.9 illustrates a 2D light field, an unknown ray 𝑟 and a subset of acquired rays ω 

employed by rendering process to estimate 𝑟. Two rays 𝐵1 and 𝐵2 are boundary rays and all rays 

in ω geometrically bounded by them as discussed before in Appendix I. In this simple scenario, 

selection mechanism 𝑀 is selected a subset of rays in ω bounded by 𝑛 cameras and 𝑚 pixels. 𝐴 

is the area of interpolation generated by intersections of rays in ω with the scene. The length of 

𝐴 in a simplified 2D LF can be computed from the distance between 𝐵1 and 𝐵2 at depth 𝑑. 

Mathematically A can be expressed as a function of 𝑘, 𝑙, 𝑛, 𝑚, and 𝑑 : 

𝐴(𝑘, 𝑙, 𝑛, 𝑚, 𝑑) = |𝐵1(𝑑) − 𝐵2(𝑑)|                                                                         (9.11) 

The line equations of 𝐵1 and 𝐵2 rays could be easily calculated from their intersections 

with 𝑢 : (𝑈𝑖(0, 𝑢), 𝑈𝑖+𝑛(0, 𝑢 + 𝑛. 𝑘)) and 𝑠: (𝑆𝑗(1, 𝑠), 𝑆𝑗+𝑚(1, 𝑠 + 𝑚. 𝑙)) where the distance 

between 𝑢 and 𝑠 is assumed to be 1, the distance between adjacent cameras is 𝑘 and the pixel 

length is 𝑙. In addition to k, l, n, m, and d  𝐴 can be also a function of 𝐺 the geometric 

information of the scene generated by depth estimation mechanism (refer to chapter 3). For the 

corresponding 3D light field, the area of interpolation can be computed as 𝐴2 by assuming a 

symmetrical ray selection. 

The effective sampling density ESD can then be calculated from ESD =
|ω|

𝐴
 as discussed 

in chapter 3. 
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                                                                                                                               𝐵2                                𝐴                      

                                                                                                                                                          𝑟                                     

                                                                                                                                                            

                                                                                                                                                     

                                                  𝑆𝑗+𝑚(1, 𝑠 + 𝑚. 𝑙) 

𝑈𝑖+𝑛(0, 𝑢 + 𝑛. 𝑘)                                                       𝑆𝑗(1, 𝑠)              𝐵1                                                                                                                                                                                                                                                          

 

    

         𝑈𝑖(0, 𝑢) 

                     𝑢                                                   𝑠               

                                               𝟏 

                                                                                              𝒅 

Figure 9.9. Effective Sampling calculation for a simplified 2D LF system 

 

9.3.1 ESD for Blind LF Rendering Methods 

 

9.3.1.1 UV Interpolation 

 

To estimate the unknown ray r in UV interpolation, the nearest known neighbouring ray 

to the intersection point of 𝑟 with the 𝑠𝑡 plane is chosen. Then four known rays from four 

immediate neighbour cameras in the 𝑢𝑣 plane to that point are interpolated by employing a 2D 

interpolation method such as bilinear interpolation. Figure 9.10 shows the simplified 2D light 

field with two lines 𝑢 and 𝑠 instead of two slabs 𝑢𝑣 and 𝑠𝑡. Necessary rays for interpolation are 

demonstrated in this Figure. For any rays intersecting 𝑢 between 𝑈1  and 𝑈2 and 𝑠 between 𝑆1 

and 𝑆𝑚 (rays bounded by 𝐵1 = 𝑌5 and 𝐵2 = 𝑌3), rays 𝑌1 and 𝑌3 and between 𝑆𝑚  and 𝑆2 (rays 

bounded by 𝐵1 = 𝑌2 and 𝐵2 = 𝑌9), rays 𝑌2 and 𝑌4 are chosen to be interpolated, where 𝑆𝑚 is the 
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middle point between 𝑆1 and 𝑆2. Let’s assume 𝐴𝑈𝑉  is the length of interpolation area between 

bounded rays in depth 𝑑. All the rays flowing through 𝐴𝑈𝑉 are interpolated from two rays. Due 

to symmetric configuration 𝐴𝑈𝑉 = 𝑌5 − 𝑌3 = 𝑌2 − 𝑌9. 

 

                             

                                                                                                                                      

                                                                                                                                 Y5                       Y1 

                                                                                                   Y2                                                             AUV                                 

                                                                                                                                                            

                                                            S2(1,s+l)         Y4                                       Y9                                             

                                 Sm(1,s+l/2) 

  U2(0,u+k)                                                            S1(1,s)               Y3                                                                                                                                                                                                                                                          

 

   Um (0,u+k/2)    

       U1(0,u) 

                     𝑢                                                   𝑠               

                                               𝟏 

                                                                                              𝒅 

Figure 9.10. A simplified 2D LF system with required rays for UV interpolation ESD calculation 

 

9.3.1.2 ST, UVST and NN Interpolations 

 

The same procedure can be employed for ST, UVST and NN methods. In ST 

interpolation a bilinear interpolation in 𝑠𝑡 plane is applied. In the nearest neighbourhood 

estimation (NN), the unknown ray is estimated with a ray with nearest known (𝑠, 𝑡) in 𝑠𝑡 and 

(𝑢, 𝑣) in 𝑢𝑣. In UVST method, a quadrilinear interpolation is applied to all 16 known rays, 

surrounded the given unknown ray. In the simplified 2D LF representation, the bilinear 
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interpolation in UV and ST methods are simplified to linear interpolation of two rays and 

quadrilinear interpolation in UVST to a bilinear interpolation. Figure 9.11 demonstrates all the 

rays required for blind LF rendering methods ESD calculation. 

 

                             

                                                                                                                                     Y2                   Y8 

                                                                                                                                               Y5        Y1       Y4                  

                                                                                                                                                         Y6                                                        

                                                                                                                                                           Y7      Y9                                                         

                                                            S2(1,s+l)                                                                                            

                               Sm(1,s+l/2) 

  U2(0,u+k)                                                              S1(1,s)                                                             Y3                                                                                                                                                                                                                                                          

 

Um (0,u+k/2)    

       U1(0,u) 

                     𝑢                                                   𝑠               

                                               𝟏 

                                                                                              𝒅 

Figure 9.11. Required rays for LF blind rendering methods ESD calculation 

 

Table 9.1 summarizes the line equations for all the rays demonstrated in Figure 9.11. 

Table 9.2 summarizes the interpolation area A, number of rays employed in interpolation, and 

ESD calculation for the blind LF rendering methods in both 2D and 3D LF representations. 
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Table 9.1 

Line equations for all the rays demonstrated in Figure 9.11 

Ray symbol Line equation 

Y1 𝑌1 = (𝑠 − 𝑢)𝑋 + 𝑢 

Y2 𝑌2 = (𝑠 + 𝑙 − 𝑢)𝑋 + 𝑢 

Y3 𝑌3 = (𝑠 − 𝑢 − 𝑘)𝑋 + (𝑢 + 𝑘) 

Y4 𝑌4 = (𝑠 + 𝑙 − 𝑢 − 𝑘)𝑋 + (𝑢 + 𝑘) 

Y5 𝑌5 = (𝑠 +
𝑙

2
− 𝑢)𝑋 + 𝑢 

Y6 𝑌6 = (𝑠 − 𝑢 +
𝑙 − 𝑘

2
)𝑋 + (𝑢 +

𝑘

2
) 

Y7 𝑌7 = (𝑠 − 𝑢 −
𝑘

2
)𝑋 + (𝑢 +

𝑘

2
) 

Y8 𝑌8 = (𝑠 + 𝑙 − 𝑢 −
𝑘

2
)𝑋 + (𝑢 +

𝑘

2
) 

Y9 𝑌9 = (𝑠 +
𝑙

2
− 𝑢 − 𝑘)𝑋 + (𝑢 + 𝑘) 

 

9.3.1.3 Discussions 

 

Please note that the above calculations in particular, Figure 9.11 and Table 9.2, 

demonstrate the ESD calculation for the simplified blind LF rendering method when the 

𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 of rendering component only selects the immediate neighbours of the 

unknown ray 𝑟. The details of general case, has been completely discussed before in chapter 3. 

The main aim of this section was to show how the ESD can be calculated with applying 

geometric concepts to LF system. The same approach can be employed to calculate the ESD for 

any given LF system. The general ray equation will be discussed later in section 9.3.3.  

 

 

 

 



185 |   A p p e n d i x  I I I :   D e t a i l s  o f  E S D  C a l c u l a t i o n  f o r  a  R e g u l a r  

C a m e r a  G r i d  L F  A c q u i s i t i o n  

 

Table 9.2 

Summary of ESD calculation for the simplified blind LF rendering methods 

Rendering 

Method 

Area of interpolation 

𝑨 for 2D LF 
A in 3D LF 

Number of rays 

employed in 

interpolation |𝛚| 
for 2D LF 

|𝛚| in 3D 

LF 

𝐄𝐒𝐃 =
|𝛚|

𝑨
 

NN 

𝐴𝑁𝑁
=  𝑌5(𝑑) − 𝑌7(𝑑)
=  𝑌8(𝑑) − 𝑌9(𝑑)
=  𝑌2(𝑑) − 𝑌6(𝑑)
=  𝑌6(𝑑) − 𝑌3(𝑑)

= ( 
𝑙 + 𝑘

2
)𝑑 −

𝑘

2
 

 

 

𝐴𝑁𝑁
2 

1 

Y1 / Y4 / Y2 / Y3 
1 

 

𝐸𝑆𝐷𝑁𝑁

=  
1

𝐴𝑁𝑁
 

2 

ST 

𝐴𝑆𝑇
= 𝑌2(𝑑) − 𝑌7(𝑑)
= 𝑌 (𝑑) − 𝑌3(𝑑) = 

(𝑙 + 
𝑘

2
)𝑑 −

𝑘

2
 

 

𝐴𝑆𝑇
2 2 

(Y1 ,Y2 ) / (Y3 , 

Y4) 

4 

𝐸𝑆𝐷𝑆𝑇

=
4

𝐴𝑆𝑇 
2 

 

UV 

𝐴𝑈𝑉
= 𝑌5(𝑑) − 𝑌3(𝑑)
=  𝑌 (𝑑) − 𝑌9(𝑑) = 

(𝑘 + 
𝑙

2
)𝑑 − 𝑘  

𝐴𝑈𝑉
2 

2 

(Y1 ,Y3 ) / (Y2 , 

Y4) 

4 

𝐸𝑆𝐷𝑈𝑉

=
4

𝐴𝑈𝑉
2

 

 

 

UVST 

𝐴𝑈𝑉𝑆𝑇
=  𝑌2(𝑑) − 𝑌3(𝑑)
= (𝑙 + 𝑘)𝑑 − 𝑘 

𝐴𝑈𝑉𝑆𝑇
2 

4 

(Y1 ,Y2 ,  Y3, Y4) 
16 

𝐸𝑆𝐷𝑈𝑉𝑆𝑇

=
16

𝐴𝑈𝑉𝑆𝑇
 

2 

 

 

 

9.3.2 ESD for LF Rendering Methods with Depth Information 

 

In the previous section, it was assumed that no depth information is available. As 

discussed before in chapter 3, by employing an estimated depth, the ESD and hence the 

rendering quality can be improved. Figure 9.12 demonstrates a simple rendering method using 

minimal depth information such as object focusing depth, which we refer to as UV-D. In this 

simple version of UV-D, just two immediate neighbours are interpolated to estimate the 

unknown ray 𝑟. In more advanced versions of UV-D, all the rays that intersect the object surface 

on interpolation area 𝐴 at depth 𝑑 could be employed in the rendering process. 
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Ui+1(0,u+k)                           Sj+n(1,s+nl)                                      Y2                           𝑝                                                  

                                                                    LS               Y11                                                          AUVD                                                         

                           Unknown Ray 𝑟           Y12       AS                          Y1 

       Ui(0,u)                                  Sj(1,s)                                                                                     Scene 

                                                                                                                                                                                                                                                                                                                               

                                                            

        

                     𝑢                                                   𝑢               

                                               𝟏 

                                                                                              𝒅 

Figure 9.12. Simplified 2D LF representation with employing focused depth 𝒅 for a better ray selection in UV-

D rendering method 

 

Note from Fgiure 9.12 that it is assumed that exact intersection point of unknown ray 𝑟 

with the object surface is known as 𝑝 at depth 𝑑. AUVD refers to the interpolation area for UV-D 

method, Y11 and Y12 are two immediate neighbour rays, intersecting with 𝑟 on point 𝑝 at depth 𝑑 

on the object surface. If these two rays pass through the known 𝑠 values, 𝐴𝑈𝑉𝐷  =  0, if not, 

neighbourhood or bilinear interpolation could be used to estimate them. In both cases Y1 and Y2 

are boundary rays used for interpolation. 𝐴𝑈𝑉𝐷 is equal to the distance between Y1 and Y2 at 

depth 𝑑. Approximated Y11 and Y22 are interpolated in a bilinear way on 𝑢𝑣 to estimate 𝑟. 

With triangular similarity it is obvious that: 

𝑑 − 1

𝑑
=
𝐿𝑠
𝑘

 
⇒ 𝐿𝑠 =

𝑘(𝑑 − 1)

𝑑
                                                                                           (9.12) 
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The worst case scenario happens when the unknown ray (Y11 or Y12) is in the middle of 

the known 𝑠 values.  

𝐴𝑆 = 𝐿𝑆 +
𝑙

2
+
𝑙

2
=
𝑘(𝑑 − 1) + 𝑙𝑑

𝑑
                                                                                  (9.13) 

And it can be easily shown that: 

𝐴𝑈𝑉𝐷 = 𝑙𝑑                                                                                                                             (9.14)  

In reality the exact depth 𝑑 of point 𝑝 is not known and the estimated depth 𝑑 of 𝑝 has a 

Δ𝑑 error. 𝑝′ refers to the estimated 𝑝 with Δ𝑑 error. Again the same procedure is taken by the 

selection process for the estimated 𝑝′ as demonstrated in Figure 9.13. 

 

                             

                                                                                                                                      

                                                                                                                                            

                                                                                                                                                                                           

Ui+1(0,u+k)                           Sj+n(1,s+nl)                                      Y2                               𝑝
′              Y3                                   

                                                                    LS               Y11                                                                         AUVD                                                         

                           Unknown ray 𝑟           Y12        AS                                                             Y1       Y4 

       Ui(0,u)                                  Sj(1,s)                                                                                       𝑝       Scene  

                                                                                                                                                                                                                                                                                                                               

                                                            

        

                     𝑢                                                   𝑠               

                                               𝟏 

                                                                                              𝒅                                 𝚫𝒅 

Figure 9.13. General UV-D rendering with approximated point 𝒑 with 𝚫𝒅 error in depth estimation 

 



188 |   A p p e n d i x  I I I :   D e t a i l s  o f  E S D  C a l c u l a t i o n  f o r  a  R e g u l a r  

C a m e r a  G r i d  L F  A c q u i s i t i o n  

 

In the general UV-D rendering presented in Figure 9.13, again the rays intersecting in 

approximated point 𝑝′ at depth 𝑑 are found, however the real point  𝑝 on the object surface is 

somewhere in the range of 𝑑 ±  Δ𝑑. Clearly, this error in depth estimation would increase the 

area of interpolation 𝐴𝑈𝑉𝐷 as: 

𝐴𝑈𝑉𝐷 = max[ |𝑌2(𝑑 + Δd) − 𝑌1(𝑑 + Δd)|, |𝑌3(𝑑 + Δd) − 𝑌4(𝑑 + Δd)| ]              (9.15) 

and, 

|𝑌2(𝑑 + Δd) − 𝑌1(𝑑 + Δd)|  

= 𝑙(𝑑 + Δd) − |𝑌11(𝑑 + Δd) − 𝑌12(𝑑 + Δd)| =  |𝑙(𝑑 + Δd) −
Δd.k

d
|                    (9.16) 

and,  

|𝑌3(𝑑 + Δd) − 𝑌4(𝑑 + Δd)| = |𝑌11(𝑑 + Δd) − 𝑌12(𝑑 + Δd)| + 𝑙(𝑑 + Δd) = 

|𝑙(𝑑 + Δd) +
Δd.k

d
|                                                                                                        (9.17) 

From equations (9.15), (9.16) and (9.17), it can be concluded that: 

𝐴UVD = 𝑙(𝑑 + Δd) +
Δd.k

d
                                                                                           (9.18) 

Subsequently, the ESDUVD for 3D light field can be computed as: 

ESDUVD =
4

𝐴UVD
2                                                                                                            (9.19) 

In above discussions and (9.19) it is assumed that only immediate neighbours of 𝑟 are 

selected as ω, i.e., |ω| = 4 . To model a more complex surface reflection behaviour, more rays 

from Ω  can be selected as ω by selection mechanism 𝑀 to be employed in interpolation 𝐹. Here 

Ω is a set of all the rays intersecting the interpolation area 𝐴 in vicinity of point 𝑝 (or more 

realistic 𝑝′ when the error estimation has an error Δd). Figure 9.14 illustrates a very simple 

scenario of the rays in Ω for the case when the exact point 𝑝 is known. The extension of this to 

the case with estimation error is straight forward. 
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                                                  Sn(1,s+(n-1)l)                                                                                          

Ui+3(0,u+3k)        Y21                                                                                                         𝑝                                                                          

                                                                                                                                                            

 Ui+2(0,u+2k)      Y11                                                                                                                       

                           Unknown ray 𝑟                             

  Ui+1(0,u+k)                     Y12        S3(1,s+2l)                                                                             Scene  

                                                        S2(1,s+l)                                                                                                                                                                                                                                                                       

       Ui(0,u)                      Y22               S1(1,s) 

        

                     𝑢                                                   𝑢               

                                               𝟏 

                                                                                          𝒅 

Figure 9.14. UV-D rendering with exact depth information with more rays selected as 𝛚 from available rays in 

Ω  

 

9.3.2.1  Discussions 

 

This section provides more details of the geometry and ESD calculation for LF 

rendering methods with depth information as a supplementary to chapter 3. UV-D rendering 

method with exact and estimated depth information has been chosen as a candidate to 

demonstrate the geometry. However, the full extension of the analysis of UV-D to UVST, UV-

DM, and UVST-DM as well as arbitrary ray selections have been completely discussed in 

chapter 3 and has not been repeated here. 
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9.3.3 General Ray Equation 

 

As it is shown in previous chapters, the main method to calculate ESD is based on 

deriving the ray equations for boundary lines. In addition, to select the rays during LF rendering, 

in particular form the ω set for methods with depth information, deriving the ray equation and 

computing its intersection with 𝑢𝑣 and 𝑠𝑡 planes is a very critical problem in LF rendering. This 

section presents a vector representation of line equations for all the rays passing through a given 

point 𝑝 (𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧) in the scene space. This analysis is mainly based on the representation 

proposed in  [11].   

With assuming the image plane at 𝑧 = −1 and camera plane at 𝑧 = 0, it is obvious from 

camera pinhole model that: 

𝑟 = (0,0,−
𝑝𝑥

𝑝𝑧
, −

𝑝𝑦

𝑝𝑧
) + 𝑢. (1,0,1 +

1

𝑝𝑧
, 0) + 𝑣. (0,1,0,1 +

1

𝑝𝑧
)                              (9.20) 

By rewriting (9.20) based on the ray parameters in LF representation, we have:  

𝑟(𝑢, 𝑣, 𝑠, 𝑡) = (0,0, −
𝑝𝑥

𝑝𝑧
, −

𝑝𝑦

𝑝𝑧
) + 𝑢. (1,0,1 +

1

𝑝𝑧
, 0) + 𝑣. (0,1,0,1 +

1

𝑝𝑧
)               (9.21) 

Equation (9.21) indicates all the rays passing through the given point 𝑝 (𝑝𝑥 , 𝑝𝑦, 𝑝𝑧) and 

intersecting 𝑢𝑣 camera plane. 

Equation (9.21) can be rewritten based on the scalar disparities along epipolar lines. 

Note that cameras are regularly located in rows and columns of a grid, hence the images are 

rectified and their epipolar lines are horizontal or vertical. In other word, the disparities can be 

described as horizontal and/or vertical shifts between the corresponding pixels of image pairs. 

Each correspondence requires two rays to be represented. Let’s demonstrate them with  

𝑟1( 𝑢1, 𝑣1, 𝑠1, 𝑡1) and 𝑟2( 𝑢2, 𝑣2, 𝑠2, 𝑡2). It is easy to show: 

𝑠2− 𝑠1

𝑢2− 𝑢1
=
𝑡2− 𝑡1

𝑣2− 𝑣1
=

1

𝑝𝑧
= 𝑑𝑖𝑠𝑝                                                                                    (9.22) 

Subsequently, (9.21) could be rewritten in term of its disparity by employing (9.22) as : 
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𝑟(𝑢, 𝑣, 𝑠, 𝑡) = (0,0, 𝑠0, 𝑡0) + 𝑢. (1,0, 𝑑𝑖𝑠𝑝, 0) + 𝑣. (0,1,0, 𝑑𝑖𝑠𝑝)                            (9.23) 

𝑠0 and 𝑡0 could be directly calculated from 𝑟1 and 𝑟1. Again (9.23) can be used to 

compute all the rays passing through a given 3D point in space. In addition, for a given camera 

or a given intersection point (𝑢, 𝑣) in 𝑢𝑣 plane the corresponding (𝑠, 𝑡) can be directly 

calculated from (9.23). The solutions of (9.23) with integer values of 𝑢 and 𝑣 is correspondence 

to a back projection procedure from the point 𝑝 to the real cameras at camera plane 𝑢𝑣. This 

back projection procedure can compute all the rays in Ω. 
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9.4 Appendix IV: Analytical Solution to Lagrangean Optimization of 

ESD 

 

Chapter 6 introduced a joint optimization on ESD by applying Lagrangean 

optimization. Though the optimization method has been completely discussed in chapter 6, but 

the details of analytical solutions derivation has been postponed to this appendix. 

Partial derivation of ESDUVDM(𝑑,Δ𝑑,𝑘,𝑙,|ω|) based on |ω| can be calculated as follow: 

𝜕𝐸𝑆𝐷𝑈𝑉𝐷𝑀(𝑑,𝛥𝑑,𝑘,𝑙,|ω|)

𝜕|ω|
=
(𝑙(𝑑+𝛥𝑑)+

𝛥𝑑.𝑘

𝑑
(√|ω|−1))

2

−2|ω|(𝑙(𝑑+𝛥𝑑)+
𝛥𝑑.𝑘

𝑑
(√|ω|−1))

𝛥𝑑.𝑘

2𝑑√|ω|

(𝑙(𝑑+𝛥𝑑)+
𝛥𝑑.𝑘

𝑑
(√|ω|−1))

4 =

(1−
𝛥𝑑.𝑘√|ω|

𝑑(𝑙(𝑑+𝛥𝑑)+
𝛥𝑑.𝑘
𝑑
(√|ω|−1))

)

(𝑙(𝑑+𝛥𝑑)+
𝛥𝑑.𝑘

𝑑
(√|ω|−1))

2                                                                                                      (9.24) 

It is obvious that (𝑙(𝑑 + 𝛥𝑑) +
𝛥𝑑.𝑘

𝑑
(√|ω| − 1)) > 0 for l > 0 , hence, 

𝜕𝐸𝑆𝐷𝑈𝑉𝐷𝑀(𝑑,𝛥𝑑,𝑘,𝑙,|ω|)

𝜕|ω|
= 0

 
⇒1−

𝛥𝑑.𝑘√|ω|

𝑑(𝑙(𝑑+𝛥𝑑)+
𝛥𝑑.𝑘

𝑑
(√|ω|−1))

=  0 
 
⇒  𝛥𝑑. 𝑘√|ω| = 𝑑 (𝑙(𝑑 + 𝛥𝑑) +

𝛥𝑑.𝑘

𝑑
(√|ω| − 1))

 
⇒  𝛥𝑑. 𝑘√|ω|  = 𝑙𝑑2 + 𝑙𝑑𝛥𝑑 + 𝛥𝑑. 𝑘√|ω| − 𝛥𝑑. 𝑘

 
⇒ 𝑙𝑑2 + 𝑙𝑑𝛥𝑑 − 𝛥𝑑. 𝑘 =

0
 
⇒𝑘 =

𝑙𝑑2+𝑙𝑑𝛥𝑑

𝛥𝑑
            

And partial derivation based on 𝑘 is: 

𝜕𝐸𝑆𝐷𝑈𝑉𝐷𝑀(𝑑,𝛥𝑑,𝑘,𝑙,|ω|)

𝜕𝑘
=
−2

𝛥𝑑

𝑑
|ω|(√|ω|−1)(𝑙(𝑑+𝛥𝑑)+

𝛥𝑑.𝑘

𝑑
(√|ω|−1))

(𝑙(𝑑+𝛥𝑑)+
𝛥𝑑.𝑘

𝑑
(√|ω|−1))

4 =

−2Δ𝑑|ω|(√|ω|−1)

𝑑(𝑙(𝑑+Δ𝑑)+
Δ𝑑.𝑘

𝑑
(√|ω|−1))

3                                                                                                             (9.25) 
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It is obvious that for any given 𝑑 > 0, Δ𝑑 ≥ 0, 𝑙 > 0 , 𝑘 > 0 and |ω| ≥ 1, 𝑑 (𝑙(𝑑 +

Δ𝑑) +
Δ𝑑.𝑘

𝑑
(√|ω| − 1))

3

> 0, and −2Δ𝑑|ω| (√|ω| − 1) ≤ 0 hence, 
𝜕𝐸𝑆𝐷𝑈𝑉𝐷𝑀(𝑑,𝛥𝑑,𝑘,𝑙,|ω|)

𝜕𝑘
≤ 0 , 

where equality occurs for |ω| = 1. 

From (9.24) and (9.25) we can calculate (9.26):  

∇(ESDUVDM(𝑑,𝛥𝑑,𝑘,𝑙,|ω|)) = (
𝜕ESDUVDM(𝑑,𝛥𝑑,𝑘,𝑙,|ω|)

𝜕|ω|
,
𝜕ESDUVDM(𝑑,𝛥𝑑,𝑘,𝑙,|ω|)

𝜕𝑘
) =

(

  
 
(1−

𝛥𝑑.𝑘√|ω|

𝑑(𝑙(𝑑+𝛥𝑑)+
𝛥𝑑.𝑘
𝑑
(√|ω|−1))

)

(𝑙(𝑑+𝛥𝑑)+
𝛥𝑑.𝑘

𝑑
(√|ω|−1))

2 ,
−2Δ𝑑|ω|(√|ω|−1)

𝑑(𝑙(𝑑+Δ𝑑)+
Δ𝑑.𝑘

𝑑
(√|ω|−1))

3

)

  
 
                                                            (9.26) 

The ESD Lagrangean equation can be written as: 

Λ (𝑘, |ω|, λ) = 𝐶(𝑘, |ω|) + λ(𝐸𝑆𝐷𝑈𝑉𝐷𝑀(𝑑,𝛥𝑑,k,l,|ω|) − 𝑇) =

𝐶𝑘

𝑘2
 + 𝐶ω|ω| + 𝜆(

|ω|

(𝑙(𝑑+Δd)+
Δd.k

d
(√|ω|−1))

2 − 𝑇)                                                                   (9.27) 

The optimum 𝑘 and |ω| should satisfy (9.28), 

∇𝑘,|ω|,λ𝛬 (𝑘, |ω|, λ) = 0
 
⇒

{
 
 

 
 
𝜕𝛬 (𝑘,|ω|,λ)

𝜕𝑘
= 0

𝜕𝛬 (𝑘,|ω|,λ)

𝜕|ω|
= 0

𝜕𝛬 (𝑘,|ω|,λ)

𝜕λ
= 0

                                                                            (9.28) 

By expanding the equations in (9.28) we have: 

𝜕𝛬 (𝑘,|𝜔|,𝜆)

𝜕𝑘
=
−2𝐶𝑘

𝑘3
+

−2𝜆𝛥𝑑|ω|(√|ω|−1)

𝑑(𝑙(𝑑+𝛥𝑑)+
𝛥𝑑.𝑘

𝑑
(√|ω|−1))

3 = 0                                                                      (9.29) 

𝜕𝛬 (𝑘,|𝜔|,𝜆)

𝜕|𝜔|
= 𝐶ω +

𝜆(1−
𝛥𝑑.𝑘√|ω|

𝑑(𝑙(𝑑+𝛥𝑑)+
𝛥𝑑.𝑘
𝑑
(√|ω|−1))

)

(𝑙(𝑑+𝛥𝑑)+
𝛥𝑑.𝑘

𝑑
(√|ω|−1))

2 = 0                                                                    (9.30) 
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𝜕𝛬 (𝑘,|ω|,λ)

𝜕λ
=

|ω|

(𝑙(𝑑+Δd)+
Δd.k

d
(√|ω|−1))

2 − 𝑇 = 0                                                                              (9.31) 

By rewriting (9.31) based on 𝑘: 

|ω|

(𝑙(𝑑+Δd)+
Δd.k

d
(√|ω|−1))

2 = 𝑇
 
⇒k =

√|ω|𝑑−𝑙𝑑√𝑇(𝑑+Δd)

Δd√𝑇(√|ω|−1)
                                                                 (9.32) 

From (9.29) and (9.30) we have: 

𝜆 =
−𝐶𝑘𝑑(𝑙(𝑑+𝛥𝑑)+

𝛥𝑑.𝑘

𝑑
(√|ω|−1))

3

𝑘3𝛥𝑑|ω|(√|ω|−1)
  and, 

 𝜆 =
−𝐶ω(𝑙(𝑑+𝛥𝑑)+

𝛥𝑑.𝑘

𝑑
(√|ω|−1))

2

(1−
𝛥𝑑.𝑘√|ω|

𝑑(𝑙(𝑑+𝛥𝑑)+
𝛥𝑑.𝑘
𝑑
(√|ω|−1))

)

   

𝑏𝑦 𝑟𝑒𝑚𝑜𝑣𝑖𝑛𝑔 𝜆  
⇒            

−𝐶𝑘𝑑(𝑙(𝑑+𝛥𝑑)+
𝛥𝑑.𝑘

𝑑
(√|ω|−1))

𝑘3𝛥𝑑|ω|(√|ω|−1)
=

−𝐶ω

(1−
𝛥𝑑.𝑘√|ω|

𝑑(𝑙(𝑑+𝛥𝑑)+
𝛥𝑑.𝑘
𝑑
(√|ω|−1))

)

 
⇒  

𝐶𝑘𝑑 (𝑙(𝑑 + 𝛥𝑑) +
𝛥𝑑.𝑘

𝑑
(√|ω| − 1))(1 −

𝛥𝑑.𝑘√|ω|

𝑑(𝑙(𝑑+𝛥𝑑)+
𝛥𝑑.𝑘

𝑑
(√|ω|−1))

) = 𝐶ω𝑘
3𝛥𝑑|ω| (√|ω| −

1)
 
⇒  

𝐶𝑘𝑑 (𝑙(𝑑 + 𝛥𝑑) +
𝛥𝑑.𝑘

𝑑
(√|ω| − 1)) − 𝐶𝑘𝛥𝑑. 𝑘√|ω| − 𝐶ω𝑘

3𝛥𝑑|ω| (√|ω| − 1) = 0

Rewriting based on 𝑘 
⇒                𝐶𝑘𝑑𝑙(𝑑 + 𝛥𝑑) + 𝐶𝑘𝛥𝑑. 𝑘√|ω| − 𝐶𝑘𝛥𝑑. 𝑘 − 𝐶𝑘𝛥𝑑. 𝑘√|ω| −

𝐶ω𝑘
3𝛥𝑑|ω|√|ω| + 𝐶ω𝑘

3𝛥𝑑|ω| = 0
 
⇒  

(𝐶ω𝛥𝑑|𝜔| (1 − √|ω|)) 𝑘
3 − (𝐶𝑘𝛥𝑑)𝑘 + 𝐶𝑘𝑑𝑙(𝑑 + 𝛥𝑑) = 0                                            (9.33) 

Now by substituting 𝑘 from (9.32) in (9.33) we have: 
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(𝐶ω𝛥𝑑|ω| (1 − √|ω|))(
√|ω|𝑑−𝑙𝑑√𝑇(𝑑+Δd)

Δd√𝑇(√|ω|−1)
)

3

− (𝐶𝑘𝛥𝑑)(
√|ω|𝑑−𝑙𝑑√𝑇(𝑑+Δd)

Δd√𝑇(√|ω|−1)
) + 𝐶𝑘𝑑𝑙(𝑑 +

𝛥𝑑) = 0
 
⇒  

 (𝐶ω𝛥𝑑|ω| −

𝐶ω𝛥𝑑|ω|√|ω|)(
(|ω|√|ω|𝑑3−𝑙3𝑑3𝑇√𝑇(𝑑+Δd)3−3|ω|𝑑3𝑙√𝑇(𝑑+Δd)+3𝑙2𝑑3𝑇(𝑑+Δd)2√|ω|)

(Δd√𝑇(√|ω|−1))
3 )−

(𝐶𝑘𝛥𝑑)(
√|ω|𝑑−𝑙𝑑√𝑇(𝑑+Δd)

Δd√𝑇(√|ω|−1)
) + 𝐶𝑘𝑑𝑙(𝑑 + 𝛥𝑑) = 0

 
⇒  

(
(𝐶ω𝛥𝑑|ω|

2√|ω|𝑑3−𝐶ω𝛥𝑑|𝜔|𝑙
3𝑑3𝑇√𝑇(𝑑+Δd)3−3𝐶ω𝛥𝑑|ω|

2𝑑3𝑙√𝑇(𝑑+Δd)+3𝐶ω𝛥𝑑𝑙
2𝑑3𝑇(𝑑+Δd)2|ω|√|ω|)

(Δd√𝑇(√|ω|−1))
3 )+

(
(−𝐶ω𝛥𝑑|ω|

3𝑑3+𝐶ω𝛥𝑑|ω|√|ω|𝑙
3𝑑3𝑇√𝑇(𝑑+Δd)3+3𝐶ω𝛥𝑑|ω|

2√|ω|𝑑3𝑙√𝑇(𝑑+Δd)−3𝐶ω𝛥𝑑|ω|
2𝑙2𝑑3𝑇(𝑑+Δd)2)

(Δd√𝑇(√|ω|−1))
3 )+

(
−𝐶𝑘𝛥𝑑√|ω|𝑑+𝐶𝑘𝛥𝑑𝑙𝑑√𝑇(𝑑+Δd)

Δd√𝑇(√|ω|−1)
) + 𝐶𝑘𝑑𝑙(𝑑 + 𝛥𝑑) = 0 

 
⇒  

(
(−𝐶ω𝑑

3𝛥𝑑|ω|3+𝐶ω𝑑
3𝛥𝑑|ω|2√|ω|+3𝐶ω𝑑

3𝛥𝑑𝑙√𝑇(𝑑+Δd)|𝜔|2√|𝜔|−3𝐶ω𝑑
3𝛥𝑑𝑙√𝑇(𝑑+Δd)|ω|2−3𝐶ω𝑙

2𝑑3𝑇(𝑑+Δd)2𝛥𝑑|𝜔|2+3𝐶ω𝛥𝑑𝑙
2𝑑3𝑇(𝑑+Δd)2|𝜔|√|ω|+𝐶ω𝛥𝑑𝑙

3𝑑3𝑇√𝑇(𝑑+Δd)3|ω|√|𝜔|−𝐶ω𝛥𝑑𝑙
3𝑑3𝑇√𝑇(𝑑+Δd)3|ω|)

(Δd√𝑇(√|ω|−1))
3 ) +

(
−𝐶𝑘𝛥𝑑√|ω|𝑑+𝐶𝑘𝛥𝑑𝑙𝑑√𝑇(𝑑+Δd)

Δd√𝑇(√|ω|−1)
) + 𝐶𝑘𝑑𝑙(𝑑 + 𝛥𝑑) = 0   

Δd√𝑇(√|ω|−1)≠0

⇒              ((−𝐶ω𝑑
3𝛥𝑑|ω|3 + 𝐶ω𝑑

3𝛥𝑑|ω|2√|ω| + 3𝐶ω𝑑
3𝛥𝑑𝑙√𝑇(𝑑 + Δd)|ω|2√|ω| −

3𝐶ω𝑑
3𝛥𝑑𝑙√𝑇(𝑑 + Δd)|ω|2 − 3𝐶ω𝑙

2𝑑3𝑇(𝑑 + Δd)2𝛥𝑑|ω|2 +

3𝐶ω𝛥𝑑𝑙
2𝑑3𝑇(𝑑 + Δd)2|ω|√|ω| + 𝐶ω𝛥𝑑𝑙

3𝑑3𝑇√𝑇(𝑑 + Δd)3|ω|√|ω| − 𝐶ω𝛥𝑑𝑙
3𝑑3𝑇√𝑇(𝑑 +

Δd)3|ω|)) + (Δd√𝑇 (√|ω| − 1))
2

(−𝐶𝑘𝛥𝑑√|ω|𝑑 + 𝐶𝑘𝛥𝑑𝑙𝑑√𝑇(𝑑 + Δd)) + (Δd√𝑇 (√|ω| −

1))
3

(𝐶𝑘𝑑𝑙(𝑑 + 𝛥𝑑)) = 0
 
⇒   

((−𝐶ω𝑑
3𝛥𝑑|ω|3 + 𝐶ω𝑑

3𝛥𝑑|ω|2√|ω| + 3𝐶ω𝑑
3𝛥𝑑𝑙√𝑇(𝑑 + Δd)|ω|2√|ω| −

3𝐶ω𝑑
3𝛥𝑑𝑙√𝑇(𝑑 + Δd)|ω|2 − 3𝐶ω𝑙

2𝑑3𝑇(𝑑 + Δd)2𝛥𝑑|ω|2 +
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3𝐶ω𝛥𝑑𝑙
2𝑑3𝑇(𝑑 + Δd)2|ω|√|ω| + 𝐶ω𝛥𝑑𝑙

3𝑑3𝑇√𝑇(𝑑 + Δd)3|ω|√|ω| − 𝐶ω𝛥𝑑𝑙
3𝑑3𝑇√𝑇(𝑑 +

Δd)3|ω|)) + (Δd2𝑇 (|ω| + 1 − 2√|ω|)) (−𝐶𝑘𝛥𝑑√|ω|𝑑 + 𝐶𝑘𝛥𝑑𝑙𝑑√𝑇(𝑑 + Δd)) +

(Δd3T√𝑇 (|ω|√|ω| − 1 − 3|ω| + 3√|ω|)) (𝐶𝑘𝑑𝑙(𝑑 + 𝛥𝑑)) = 0
 
⇒    

((−𝐶ω𝑑
3𝛥𝑑|ω|3 + 𝐶ω𝑑

3𝛥𝑑|ω|2√|ω| + 3𝐶ω𝑑
3𝛥𝑑𝑙√𝑇(𝑑 + Δd)|ω|2√|𝜔| −

3𝐶ω𝑑
3𝛥𝑑𝑙√𝑇(𝑑 + Δd)|ω|2 − 3𝐶ω𝑙

2𝑑3𝑇(𝑑 + Δd)2𝛥𝑑|ω|2 +

3𝐶ω𝛥𝑑𝑙
2𝑑3𝑇(𝑑 + Δd)2|ω|√|ω| + 𝐶ω𝛥𝑑𝑙

3𝑑3𝑇√𝑇(𝑑 + Δd)3|ω|√|𝜔| − 𝐶ω𝛥𝑑𝑙
3𝑑3𝑇√𝑇(𝑑 +

Δd)3|ω|)) + (Δd2𝑇|ω| + Δd2𝑇 − 2Δd2𝑇√|ω|) (−𝐶𝑘𝛥𝑑√|ω|𝑑 + 𝐶𝑘𝛥𝑑𝑙𝑑√𝑇(𝑑 + Δd)) +

((Δd3T√𝑇|ω|√|ω| − Δd3T√𝑇 − 3Δd3T√𝑇|ω| + 3Δd3T√𝑇√|ω|)) (𝐶𝑘𝑑𝑙(𝑑 + 𝛥𝑑)) = 0 
 
⇒  

((−𝐶ω𝑑
3𝛥𝑑|ω|3 + 𝐶ω𝑑

3𝛥𝑑|ω|2√|ω| + 3𝐶ω𝑑
3𝛥𝑑𝑙√𝑇(𝑑 + Δd)|ω|2√|ω| −

3𝐶ω𝑑
3𝛥𝑑𝑙√𝑇(𝑑 + Δd)|ω|2 − 3𝐶ω𝑙

2𝑑3𝑇(𝑑 + Δd)2𝛥𝑑|ω|2 +

3𝐶ω𝛥𝑑𝑙
2𝑑3𝑇(𝑑 + Δd)2|𝜔|√|ω| + 𝐶ω𝛥𝑑𝑙

3𝑑3𝑇√𝑇(𝑑 + Δd)3|𝜔|√|𝜔| − 𝐶ω𝛥𝑑𝑙
3𝑑3𝑇√𝑇(𝑑 +

Δd)3|ω|)) + (−𝐶𝑘𝑑Δd
3𝑇|ω|√|ω| + 𝐶𝑘𝑙𝑑(𝑑 + Δd)Δd

3𝑇√𝑇|ω|) + (−𝑑Δd3𝑇𝐶𝑘√|ω| +

Δd3𝑇√𝑇𝐶𝑘𝑙𝑑(𝑑 + Δd)) + (2𝑑Δd
3𝑇𝐶𝑘|ω| − 2Δd

3𝑇√𝑇𝐶𝑘𝑙𝑑(𝑑 + Δd)√|ω|) +

((Δd3T√𝑇𝐶𝑘𝑑𝑙(𝑑 + 𝛥𝑑)|ω|√|ω| − Δd
3T√𝑇𝐶𝑘𝑑𝑙(𝑑 + 𝛥𝑑) − 3Δd

3T√𝑇𝐶𝑘𝑑𝑙(𝑑 + 𝛥𝑑)|ω| +

3Δd3T√𝑇𝐶𝑘𝑑𝑙(𝑑 + 𝛥𝑑)√|ω|)) = 0
 
⇒  

−𝐶ω𝑑
3𝛥𝑑|ω|3 + 𝐶ω𝑑

3𝛥𝑑|ω|2√|ω| + 3𝐶ω𝑑
3𝛥𝑑𝑙√𝑇(𝑑 + Δd)|ω|2√|ω| − 3𝐶ω𝑑

3𝛥𝑑𝑙√𝑇(𝑑 +

Δd)|ω|2 − 3𝐶ω𝑙
2𝑑3𝑇(𝑑 + Δd)2𝛥𝑑|ω|2 + 3𝐶ω𝛥𝑑𝑙

2𝑑3𝑇(𝑑 + Δd)2|ω|√|ω| −

𝐶𝑘𝑑Δd
3𝑇|ω|√|ω| + 𝐶ω𝛥𝑑𝑙

3𝑑3𝑇√𝑇(𝑑 + Δd)3|ω|√|ω|+Δd3T√𝑇𝐶𝑘𝑙𝑑(𝑑 + 𝛥𝑑)|ω|√|ω| −

𝐶ω𝛥𝑑𝑙
3𝑑3𝑇√𝑇(𝑑 + Δd)3|ω| + 𝐶𝑘𝑙𝑑(𝑑 + Δd)Δd

3𝑇√𝑇|ω| + 2𝑑Δd3𝑇𝐶𝑘|ω| −

3Δd3T√𝑇𝐶𝑘𝑙𝑑(𝑑 + 𝛥𝑑)|ω| − 𝑑Δd
3𝑇𝐶𝑘√|ω| − 2Δd

3𝑇√𝑇𝐶𝑘𝑙𝑑(𝑑 + Δd)√|ω| +

3Δd3T√𝑇𝐶𝑘𝑑𝑙(𝑑 + 𝛥𝑑)√|ω| + Δd
3𝑇√𝑇𝐶𝑘𝑙𝑑(𝑑 + Δd) − Δd

3T√𝑇𝐶𝑘𝑑𝑙(𝑑 + 𝛥𝑑) = 0
 
⇒    
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−𝐶ω𝑑
3𝛥𝑑|ω|3 + 𝐶ω𝑑

3𝛥𝑑|ω|2√|ω| + 3𝐶ω𝑑
3𝛥𝑑𝑙√𝑇(𝑑 + Δd)|ω|2√|𝜔| − 3𝐶ω𝑑

3𝛥𝑑𝑙√𝑇(𝑑 +

Δd)|ω|2 − 3𝐶ω𝑙
2𝑑3𝑇(𝑑 + Δd)2𝛥𝑑|ω|2 + 3𝐶ω𝛥𝑑𝑙

2𝑑3𝑇(𝑑 + Δd)2|ω|√|ω| −

𝐶𝑘𝑑Δd
3𝑇|ω|√|ω| + 𝐶ω𝛥𝑑𝑙

3𝑑3𝑇√𝑇(𝑑 + Δd)3|𝜔|√|𝜔|+Δd3T√𝑇𝐶𝑘𝑙𝑑(𝑑 + 𝛥𝑑)|ω|√|ω| −

𝐶ω𝛥𝑑𝑙
3𝑑3𝑇√𝑇(𝑑 + Δd)3|ω| − 2𝐶𝑘𝑙𝑑(𝑑 + Δd)Δd

3𝑇√𝑇|ω| + 2𝑑Δd3𝑇𝐶𝑘|ω| −

𝑑Δd3𝑇𝐶𝑘√|ω| + Δd
3T√𝑇𝐶𝑘𝑙𝑑(𝑑 + 𝛥𝑑)√|ω| = 0

√|ω|≠0
⇒      

(−𝐶ω𝑑
3𝛥𝑑)|ω|2√|ω| + (3𝐶ω𝑑

3𝛥𝑑𝑙√𝑇(𝑑 + Δd) + 𝐶ω𝑑
3𝛥𝑑)|ω|2 + (−3𝐶ω𝑑

3𝛥𝑑𝑙√𝑇(𝑑 +

Δd) − 3𝐶ω𝑙
2𝑑3𝑇(𝑑 + Δd)2𝛥𝑑)|ω|√|ω| + (3𝐶ω𝛥𝑑𝑙

2𝑑3𝑇(𝑑 + Δd)2 − 𝐶𝑘𝑑Δd
3𝑇 +

𝐶ω𝛥𝑑𝑙
3𝑑3𝑇√𝑇(𝑑 + Δd)3+Δd3T√𝑇𝐶𝑘𝑙𝑑(𝑑 + 𝛥𝑑)) |ω| + (−𝐶ω𝛥𝑑𝑙

3𝑑3𝑇√𝑇(𝑑 + Δd)3 −

2𝐶𝑘𝑙𝑑(𝑑 + Δd)Δd
3𝑇√𝑇 + 2𝑑Δd3𝑇𝐶𝑘)√|ω| + (−𝑑Δd

3𝑇𝐶𝑘 + Δd
3T√𝑇𝐶𝑘𝑙𝑑(𝑑 + 𝛥𝑑)) =

0                                                                                                                                           (9.34) 

Let’s introduce an auxiliary variable 𝑋 = √|ω| , |ω| can be computed by rewriting 

(9.34) based on 𝑋 as shown as (9.35) which is a quintic equation (polynomial equation of order 

5). Analytical methods for solving a quintic equation by using radicals are available under 

specific criteria, such as Arthur Cayley method [105]. Alternatively well-known Newton-

Raphson numerical method [106] can be used. Note that only real roots |ω| > 1 are acceptable. 

After calculating |ω| , 𝑘 can be calculated from  (9.32). 

𝛼5𝑋
5 + 𝛼4𝑋

4 + 𝛼3𝑋
3 + 𝛼2𝑋

2 + 𝛼1𝑋 + 𝛼0 = 0                                                                         (9.35) 

where,  

{
 
 
 

 
 
 

𝛼5 = (−𝐶ω𝑑
3𝛥𝑑)

𝛼4 = (3𝐶ω𝑙𝑑
3𝛥𝑑√𝑇(𝑑 + Δd) + 𝐶ω𝑑

3𝛥𝑑)

𝛼3 = (−3𝐶ω𝑙𝑑
3𝛥𝑑√𝑇(𝑑 + 𝛥𝑑) − 3𝐶ω𝑙

2𝑑3𝛥𝑑𝑇(𝑑 + 𝛥𝑑)2)

𝛼2 = (3𝐶ω𝑙
2𝑑3𝛥𝑑𝑇(𝑑 + 𝛥𝑑)2 − 𝐶𝑘𝑑𝛥𝑑

3𝑇 + 𝐶ω𝑙
3𝑑3𝛥𝑑𝑇√𝑇(𝑑 + 𝛥𝑑)3+𝐶𝑘𝑙𝑑𝛥𝑑

3𝑇√𝑇(𝑑 + 𝛥𝑑))

𝛼1 = (−𝐶ω𝑙
3𝑑3𝛥𝑑𝑇√𝑇(𝑑 + 𝛥𝑑)3 − 2𝐶𝑘𝑙𝑑𝛥𝑑

3𝑇√𝑇(𝑑 + 𝛥𝑑) + 2𝐶𝑘𝑑𝛥𝑑
3𝑇)

𝛼0 = (−𝐶𝑘𝑑𝛥𝑑
3𝑇 + 𝐶𝑘𝑙𝑑𝛥𝑑

3𝑇√𝑇(𝑑 + 𝛥𝑑))
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9.5 Appendix V: The Quantitative Analysis for Comparison and 

Evaluation of LF based FVV Systems 
 

9.5.1 Summary 

 

Although several acquisition models and rendering algorithms have been suggested for 

LF based FVV systems but the lack of appropriate datasets with known ground truth has 

prevented a comparison and evaluation study of these models and algorithms. In most of the 

reported studies, the proposed method is applied to several test cases for validation and as a 

result, just a subjective visualized output is given. To overcome this problem and to validate the 

theory of ESD, this thesis has widely used a new quantitative approach for LF-based FVV 

systems to validate different theoretical expectations from ESD theory reported in previous 

chapters. This short chapter briefly presents this novel quantitative approach for comparison and 

evaluation of LF-based FVV systems. The core of the proposed methodology is a simulation 

model and a 3D engine. The platform produces the reference images and ground truth data for a 

given 3D model. Subsequently, data are injected to a comparison engine to compare synthesized 

images from light field engine with original images from simulation, generating objective 

experimental results for evaluation. The methodology is highly flexible and efficient to 

automatically generate different datasets and objectively compare and analyze any subset of 

rendering methods or acquisition models for any given experiment design scheme. Overall, it is 

shown that the proposed quantitative methodology could be used for objective evaluation and 

comparison of LF-based FVV systems and to validate the ESD theory.  
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9.5.2 Methodology and Simulation Model 

 

The main idea behind the proposed methodology is to develop a computer simulation 

model employing a 3D engine. The simulator roles could be categorized as: 

 1) Any LF-based FVV system has its own acquisition architecture and configurations 

employing different number of cameras, different topologies/architectures, different camera 

configurations and different parameterizations such as basic 2 slabs/planes (2PP), two-sphere 

parameterization (2SP) and sphere-plane parameterization (SPP). This information is given to 

the simulator and the simulator generates all the reference images/videos for the given LF 

acquisition component. 

 2) The experimental scheme gives a random validation or test set of virtual/observation 

cameras distributed in the user navigability space. These observation images for different 

viewpoints are generated by the simulator. These images are considered as ground truth data for 

objective evaluation. 

 3) These are different LF rendering algorithms. Given the rendering algorithm, the LF 

rendering engine generates the synthesized/rendered images for the same viewpoints of test set, 

from the given reference images. 

 4) Image comparison engine compares each pair of ground truth and rendered images 

based on a desired metric such as PSNR to quantitatively evaluates the quality of rendering. The 

average of PSNR (or other metrics) for all the images in test set is an objective assessment of 

that LF-based FVV system for that test set. 

The simulation model is able to generate variety of datasets and ground truth data for 

any given experimental configuration and FVV system, automatically and efficiently. These 

datasets are statistically reliable. The data analysis also could be automatically done by 

comparison engine. The output of the system is well-designed charts including any statistical 

analysis required by experiment scheme. Figure 9.15 illustrates the architecture of the system. 
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Figure 9.15. System architecture and simulation data flow 

 

Coordinator interacts with user, reads input files, calculates the positions and 

orientations of reference cameras for a given LF acquisition, calculates the positions and 

orientations of virtual/observation cameras (test/validation set) and provides the scene 3D 

model, reference cameras and observation cameras configurations to 3D engine and supply LF 

rendering engine by rendering algorithm, rendering parameters and reference cameras 

configurations. 

3D engine renders the scene 3D model, automatically generates reference and 

virtual/observation cameras in 3D model and generates image files corresponding to the 

cameras. In the developed system, open source Blender was utilized for 3D engine and a Python 

script for simulation procedure was implemented. All other subsystems are implemented in C to 

improve efficiency. 

LF rendering engine creates a ray space for the given acquisition and then 

synthesize/render output images for each given observation point by employing the given 

rendering algorithm and parameters. 

Image comparison engine receives two sets of images, a ground truth observation 

image set from the 3D engine and a rendered observation image set from the LF rendering 

engine. It employs an image comparison method to calculate the images dissimilarity related to 

Coordinator 

3D Engine 

LF rendering 

Engine 

Image Comparison Engine 

Scene 3D model, real & 

virtual cameras and LF 

acquisition configuration 

Reference images for 

the given LF acquisition 

Ground truth observation 

images from simulation 

Rendered/ synthesized 

images for the given 

LF rendering method 
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LF rendering error for that given observation point and scene geometry. The Mean of this error 

indicates the LF error for the given scene. In this thesis the Peak Signal to Noise Ratio (PSNR) 

is used in to calculate the error in db. This module provides coordinator with all error data and 

subsequently, coordinator provide the user with all kind of data analysis and charts required for 

that given experiment scheme. 

Interestingly, since 3D models are used to represent the scene, a full depth map is 

available to use in the rendering process. Controlled amount of depth map error can then be 

introduced to study how the rendering would be impacted when the depth map is noisy or 

inaccurate. Figure 9.16 demonstrates a snapshot of the camera grid for acquisition and some 

random virtual cameras for rendering and generation of ground truth. 

 

 

 

Figure 9.16. a) A simulated regular camera grid; b) Virtual viewpoints. 

(a) 

(b) 
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Figure 9.17 demonstrates the rendering outputs for three LF rendering methods for a 

given 3D object and the same viewpoint. 

 

 UVST  UV-D  UV-DM 
 

 

Figure 9.17. Sample rendering output for three LF rendering methods 

 

9.5.3 Discussion and Conclusion 

 

A quantitative methodology for LF-based FVV system evaluation and comparison is 

proposed in this appendix. This methodology has been widely used throughout the thesis to 

validate the ESD theory and different evaluation and optimization models proposed in different 

chapters. 
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