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Abstract: 

Gold(I) complexes are an important tool in the arsenal of established approaches for treating 

rheumatoid arthritis (RA), while some recent studies have suggested that gold nanoparticles 

(Au NPs) may also be therapeutically efficacious. These observations prompted the current 

biological studies involving gold(I) anti-RA agents and Au NPs, which are aimed towards 

improving our knowledge of how they work. The cytotoxicity of auranofin, aurothiomalate, 

aurothiosulfate and Au NPs towards RAW264.7 macrophages was evaluated using the MTT 

assay, with the former compound proving to be the most toxic. The extent of cellular uptake 

of the various gold agents was determined using graphite furnace atomic absorption 

spectrometry, while their distribution within macrophages was examined using microprobe 

synchrotron radiation X-ray fluorescence spectroscopy. The latter technique showed 

accumulation of gold in discrete regions of the cell, and co-localisation with sulfur in the case 

of cells treated with aurothiomalate or auranofin. Electrospray ionization mass spectrometry 

was used to characterize thioredoxin reductase (TrxR) in which the penultimate 

selenocysteine residue was replaced by cysteine. Mass spectra of solutions of TrxR and 

aurothiomalate, aurothiosulfate or auranofin showed complexes containing bare gold atoms 

bound to the protein, or protein adducts containing gold atoms retaining some of their initial 

ligands. These results support TrxR being an important target of gold(I) drugs used to treat 

RA, while the finding that Au NPs are incorporated into macrophages, but elicit little toxicity, 

indicates further exploration of their potential for treatment of RA is warranted.   
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1. Introduction 

Chrysotherapy is the use of gold compounds for medical applications, foremost of 

which is the treatment of rheumatoid arthritis (RA). The use of gold compounds to treat RA 

dates back to pioneering studies by Forestier in the 1920s and 1930s [1–3]. Subsequently, for 

over 50 years, chrysotherapy became a mainstay of treatment for RA, with sodium 

aurothiomalate (Myochrisine), gold thioglucose (Solganol), sodium bis(thiosulfato)gold, and 

auranofin (Ridaura) among the most used therapeutic agents [4,5]. Each of these compounds 

contains gold in the +1 oxidation state (Fig. 1). Although their use has waned recently, 

chrysotherapy still remains an important chemotherapeutic approach to the treatment of RA. 

Both aurothio-malate and -glucose are polymeric compounds containing Au(I) ions 

bound to two sulfur atoms. In contrast, sodium bis(thiosulfato)gold and auranofin are 

monomeric complexes in which the Au(I) center is bound to two sulfur atoms or a sulfur and 

a phosphorus, respectively. Auranofin entered clinical trials in the 1980s with much promise 

owing to its ability to be given to patients by oral administration. Nevertheless, the polymeric 

compounds are more effective treatments for RA than auranofin, although their use is 

associated with greater toxicity and unfavorable side effects [6].  

Despite their long history of clinical use, the precise details of the mechanism(s) of 

action of chrysotherapeutic agents are not known. This is due in part to the complexity of the 

autoimmune response that is at the center of RA, and the wide range of biological targets in 

vivo [7]. For example, auranofin inhibits activation of the transcription protein complex NF-

κB [8], and reduces expression of the inflammatory enzyme COX-2 [8,9]. Production of nitric 

oxide [10] and the pro-inflammatory cytokines TNF-α, IL-1β and IL-6 are also reduced by 

auranofin treatment [9,11], while aurothiomalate also inhibits production of TNF-α [12].  
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The Au(I) drugs are metabolized into their pharmacologically active forms after 

administration to patients. Initially the majority of the gold becomes bound to Cys-34 of 

serum albumin in processes that result in the loss of most, if not all, of the original ligands 

[4]. Several metabolites of the gold(I) complexes have been identified, including [Au(CN)2]
–, 

Au(III) complexes and Au(0) [7]. It has also been shown that cells sequester gold into 

lysosomal bodies termed aurosomes [13,14]. X-ray absorption near edge spectroscopy 

(XANES) showed that aurosomal gold in the tissues of rats treated with aurothiomalate or 

[AuCl4]
– is present in the +1 oxidation state, while extended X-ray absorption fine structure 

(EXAFS) spectroscopy showed that the metal was bound to two sulfur atoms [15]. 

One mechanism by which the gold(I) drugs exert their anti-RA effects is inhibition of 

hydrolytic enzymes such as β-glucuronidase and elastase [5]. In addition, aurothiomalate and 

auranofin inhibit cathepsins K and S, which play a role in the progression of RA [16]. 

Thioredoxin reductase (TrxR) is another enzymatic target for metabolites of the gold drugs. 

This dimeric protein regulates cellular processes via reduction of thioredoxin (Trx) [17]. Both 

Trx and TrxR are over-expressed in synovial cells or fluid of RA patients [18,19]. Inhibition 

of TrxR by gold drugs has attracted interest due to the presence of a selenocysteine residue at 

its active site, and the greater affinity of Au(I) for selenol groups compared to thiols [20,21]. 

In addition, while platinum complexes bind to the active site of TrxR [22], some gold drugs 

inhibit the enzyme more potently [23–26]. Matrix assisted laser desorption/ionization mass 

spectrometry (MALDI-MS) showed that multiple molecules of gold compounds bind to TrxR 

[27], suggesting the presence of binding sites other than the active site selenocysteine. Several 

other mechanisms of anti-RA action have been proposed, including inhibition of leukocyte 

infiltration [28], modulation of the adhesion of polymorphonuclear neutrophils [29] and 

modification of macrophage activity [30]. It has also been suggested that various metabolites 
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of the Au(I) drugs modulate activity of the immune system by binding directly to T-cell 

receptors to block antigen signaling [31].  

The formation of Au(III) and Au(0) metabolites from the Au(I) drugs suggests the 

latter undergo redox chemistry in vivo [32,33]. It has also been proposed that Au(0) is 

responsible for the anti-arthritic activity of Au(I) complexes, whilst Au(III) gives rise to the 

side-effects. Not surprisingly the anti-arthritic activity of gold nanoparticles (Au NPs) have 

been investigated in an effort to avoid side effects. In one study, rats that had been chemically 

induced to exhibit symptoms of inflammation were treated with either Au NPs or sodium 

aurothiomalate [34]. Those treated with Au NPs showed a greater reduction in the severity of 

symptoms, encouraging further investigations. One such study involved human patients with 

chronic RA that had proven unresponsive to other treatments. A significant reduction in the 

severity of symptoms was demonstrated in 9 of 10 patients [35]. Moreover, studies focusing 

on cell systems provided clues as to how Au NPs may elicit their anti-inflammatory activity. 

For example, they inhibit production of reactive nitrogen [36] and oxygen [37] species, as 

well as activation of NF-κB [36]. In addition, Au NPs do not induce secretion of the pro-

inflammatory cytokines TNF-α and IL-1β [37].  

Here we present the first systematic comparison of the cytotoxicity, uptake and 

cellular distribution of auranofin, sodium aurothiomalate and Au NPs with RAW264.7 

macrophages. Macrophages are of particular interest in the study of RA, since they have been 

implicated in the pathogenesis of the disease [38–40]. In addition, we used electrospray 

ionization mass spectrometry (ESI-MS) to compare the binding of the gold drugs and Au NPs 

to a modified form of TrxR, containing an active site cysteine instead of selenocysteine. 

  



5 

2. Experimental 

2.1. Materials 

All aqueous solutions were prepared using Milli-Q water (18.2 MΩ, Millipore). 

Sodium aurothiomalate, aurothioglucose, auranofin, gold(III) chloride (99.9%) and 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) were obtained from Sigma-

Aldrich. Sodium aurothiosulfate was obtained from Alfa Aesar. Fetal bovine serum (FBS, 

heat-inactivated) was purchased from Bovogen Biologicals. GlutaMAX and Roswell Park 

Memorial Institute-1640 cell culture medium powder (RPMI-1640) were purchased from Life 

Technologies.   

2.2. Synthesis of gold nanoparticles 

A stock solution of Au NPs was synthesized according to Turkevich et al. [41], with 

some modifications. Water (30 mL) was heated to near boiling, and a solution of HAuCl4 

(0.01 M in water, 2 mL) was added. This was followed by a solution of tri-sodium citrate 

(0.02 M, 4 mL), and the resulting red solution was heated for 1 h, cooled to room 

temperature, and then transferred to a volumetric flask (50.00 mL) to which water was added 

to produce a final concentration of 400 µM gold(0) atoms, assuming complete conversion of 

Au(III).  

The Au NPs were characterized as follows. Absorption spectra were obtained using a 

Varian Cary 500 UV-VIS-NIR spectrophotometer equipped with quartz cuvettes. Particle size 

analysis was performed using a Malvern Zetasizer Nano S, while field emission scanning 

electron microscopy (FESEM) images were obtained using a JEOL JSM-7500FA instrument. 

The FESEM samples were prepared by allowing a small volume of the Au NP solution to 

evaporate on a carbon-copper film. 
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2.3. Cell studies 

RAW264.7 macrophage cells were obtained as frozen permanents from the American 

Type Culture Collection (Manassas, VA) and were grown in RPMI-1640 medium containing 

10% FBS and 1% v/v GlutaMAX at 37 °C and 5% CO2. They were subcultured at 90% 

confluence. Treatment solutions of sodium aurothiomalate or sodium aurothiosulfate were 

prepared in RPMI-1640 medium containing 1% v/v GlutaMAX (RPMI-GlutaMAX medium). 

Control cells were also treated with RPMI-GlutaMAX medium. In contrast, treatment 

solutions containing auranofin were prepared in 1% v/v DMSO in RPMI-GlutaMAX 

medium. Treatment solutions of Au NPs were prepared in water and diluted to 15% v/v water 

in 85% RPMI-GlutaMAX medium. Trypan blue assays were used to assess the number of 

viable cells by adding 50 µL of cell suspension to 50 µL of trypan blue solution (0.5% w/v in 

phosphate buffered saline (PBS), Sigma-Aldrich). The number of cells was scored using a 

hemocytometer and a light microscope at 10 magnification. Cells that excluded the dye 

(uncompromised membrane integrity) were assumed to be ‘healthy/viable’ while those that 

stained blue were classified as ‘dead/non-viable.’ 

2.4 MTT assays 

 Cytotoxicity of the gold compounds was assessed using the MTT assay. RAW264.7 

cells (5×104 in 100 µL) were seeded into each well of a 96-well plate and incubated overnight 

(37 C, 5% CO2). The medium was removed and the cells were washed twice with RPMI-

GlutaMAX (300 µL). Freshly prepared treatment solutions containing the Au compounds or 

Au NPs at the required concentrations were added to the wells and incubated for 24 h. At the 

end of this period, the treatment solutions were removed and the adherent cells washed twice 

with RPMI-GlutaMAX (300 µL), before a further 100 µL of RPMI-GlutaMAX was added. In 

addition, MTT (50 µL, 2 mg/mL in PBS) was added and the plate was incubated for 4 h. This 
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solution was carefully removed and the resulting purple crystals were dissolved in DMSO 

(200 µL/well). The A570 and A630 were then measured using a BMG Labtech POLARstar 

Omega microplate reader. The A630 value was used as a background reading, whilst the 

absorbance at 570 nm arose from the purple MTT dye in DMSO. Cell viabilities were 

calculated using equation 1.  

Equation 1:  

Each plate contained 6 wells for each concentration of Au(I) compound or Au NPs, and 18 

control wells. Each experiment was performed three times, and the errors are reported as the 

standard deviation of the mean. 

2.5. Graphite furnace atomic absorption spectroscopy (GFAAS) 

 RAW264.7 cells (5×106 in 5 mL growth medium) were seeded into a sterile 60-mm 

cell culture dish and incubated for 24 h. The medium was then removed and the cells were 

washed once with PBS and once with RPMI-GlutaMAX. Treatment solutions containing the 

Au compounds or Au NPs were then added to the cells, which were then incubated for 24 h. 

The treatment solutions were collected in a centrifuge tube. RPMI-GlutaMAX (5 mL) was 

added to the dish and the cells were harvested. This suspension was combined with the initial 

treatment solution and both were centrifuged (300×g, 5 min). The supernatant was removed 

and the cells were resuspended in 5 mL of RPMI-GlutaMAX and re-centrifuged (300×g, 5 

min). This was repeated, after which the final pellet was resuspended in 1 mL of RPMI-

GlutaMAX. A small aliquot (50 µL) was removed and the numbers of viable and dead cells 

in each sample were determined using the trypan blue assay. The remainder of the cells were 

centrifuged and washed twice with a saline solution (0.9% w/v). The pellets were freeze-dried 

for 2 h and digested in 10–100 µL of nitric acid (Ultrapur, Merck Millipore, 60% v/v) 

100
cells) (control 630570

cells) (treated 630570
(%)Viability  Cell 





AA

AA
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overnight, depending on the sample (cell density and treatment concentration). The resulting 

solutions were subsequently diluted in 5.00 or 50.00 mL volumetric flasks containing a final 

nitric acid concentration of 0.6% v/v. Triplicate cell samples were prepared following 

treatment with each concentration of Au(I) compound or Au NPs. 

GFAAS measurements of the final solutions used a PerkinElmer AAnalyst 600 atomic 

absorption spectrometer equipped with the Winlab 32 AA Furnace program, incorporating 

Zeeman-effect background correction, an AS-800 autosampler and an AA Accessory cooling 

system. A gold hollow cathode lamp (PerkinElmer) was employed at a wavelength of 242.8 

nm with a slit width of 0.7 nm, to give an instrument energy reading of approximately 50 W. 

A certified Au standard solution (997 mg/L Au, 10% v/v HCl, PerkinElmer) was used to 

prepare the stock Au standard solution (50 µg/L, 0.6% v/v HNO3) for the calibration curve 

(correlation coefficients: 0.994 and 0.992). The analyte (20 µL) was mixed with 5 µL of 

matrix modifier solution and atomized from the surface of a pyrolytic graphite-coated tube 

using the furnace operating conditions described in Table S1 (supporting data). Argon gas 

was used throughout the analysis, with absorption measurements conducted during the 

atomization stage (1800 C). Triplicate measurements were performed for each sample. 

2.6. Microprobe synchrotron radiation X-ray fluorescence (SR-XRF) imaging 

The distributions of Au and other elements within macrophages that had been treated 

with either Au(I) compounds or Au NPs were determined by microprobe SR-XRF imaging. 

High spatial resolution imaging of single macrophages was performed at the Advanced 

Photon Source (APS), Argonne National Laboratory (Chicago, USA) while low spatial 

resolution imaging over a larger sample area was undertaken at the Australian Synchrotron 

(AS, Clayton, Australia). In both cases the samples were prepared on Si3N4 membranes 

(Silson, UK), which were initially washed once with ethanol (70% v/v), twice with sterile 
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PBS, and finally in cell growth medium, before being placed in a 60 mm cell culture dish. 

RAW 264.7 cells (5×106 in 5 mL growth medium) were seeded into the dishes, which were 

then incubated (37 C, 5% CO2) overnight. After confirming that the cells had grown to a 

sufficient confluency on the Si3N4 membranes, the growth medium was removed and the cells 

were washed twice with RPMI-GlutaMAX to remove the FBS. Treatment solutions (5 mL), 

containing the appropriate concentrations of Au(I) compounds or Au NPs were then added 

prior to incubation for 24 h. Following this, the membranes were removed from the dish and 

washed by sequentially dipping in two solutions of PBS and then three solutions of 200 µM 

ammonium acetate. The cells were finally fixed by dipping once in methanol. The membranes 

were then stored in a desiccator until analysed. 

Microprobe SR-XRF analysis of individual cells used the 2-ID-D beamline at APS 

with a monochromatic 13.45 keV X-ray beam focused to 0.3 μm2 using two stacked zone 

plates. The Si3N4 membranes were mounted on a high precision XYZ motorized stage 

(PM20076), and the X-ray fluorescence detected using a Vortex EM (Radiant Detector 

Technologies, LLC 165-VTX-EM) silicon drift detector operating in fluorescence mode. 

High-resolution elemental maps were acquired over the scan areas specified in the figure 

captions using a 0.5 µm step size and 0.5 s/point dwell time. The elements were quantified 

with the aid of measurements from the thin film standards NBS-1832 and NBS-1833, 

obtained from the National Bureau of Standards (Gaithersburg, MD). 

Elemental mapping of larger cell areas was carried out at the XFM beamline [42] at 

the AS using a monochromatic 12.055 keV X-ray beam focused to 2 μm in the horizontal and 

vertical dimensions using a Kirk-Patrick Baez mirror and a silicon drift diode detector 

operating in fluorescence mode. Elemental maps were acquired over 120 × 120 µm2 areas 

using a 2 µm step size and 1 s/point dwell time. In both cases, the full fluorescence spectra 
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were fit to modified Gaussians and the data were processed using the MAPS software 

package, version 1.7.1.03, provided by Dr Stefan Vogt at APS. 

2.7. Expression and purification of TrxR 

A plasmid containing human thioredoxin reductase (TrxR), pET46-(His)6-hTrxR1, 

was obtained from A. Wang [22]. The expressed protein had the codon for selenocysteine-

498 mutated to a cysteine to facilitate bacterial expression and contained an N-terminal His6 

tag to assist purification. E. coli BL21(λDE3)/pLysS containing the TRXR+ plasmid was 

grown in LB medium (750 mL) at 37 °C to A600 = 0.6. The culture was cooled to 23 °C, and 

TrxR production was induced with 1 mM IPTG (isopropyl-β-D-thiogalactoside) overnight. 

Cells were collected by centrifugation (10000×g, 15 min) and resuspended in buffer A (50 

mM Tris-HCl, pH 8.0, 500 mM NaCl, 10 mM imidazole), before being lysed using a French 

press. The lysate was clarified (28000×g, 30 min) and the supernatant loaded onto a Ni2+-

affinity column (HisTrap HP, GE Healthcare). The column was eluted with 12 mL of 25 mM 

imidazole, followed by a linear gradient (30 mL) of 25–350 mM imidazole in buffer A. 

Fractions containing the most pure TrxR, as assessed by SDS-PAGE were combined, 

dialyzed into buffer B (30 mM Tris-HCl, pH 8.0, 2 mM dithiothreitol, 1 mM EDTA), and 

loaded onto an anion-exchange column (8-mL MonoQ GL, GE Healthcare). Purified TrxR 

was eluted with 12 mL of 120 mM NaCl followed by a linear gradient (160 mL) of 120–300 

mM NaCl in buffer B. Fractions containing ≥90% purified TrxR were pooled, frozen in liquid 

nitrogen and stored at –80 °C. 

2.8. Electrospray ionization mass spectrometry (ESI-MS) 

TrxR (200 µL) was dialyzed at 4 °C against either 0.1 or 0.5 M ammonium acetate, 

pH 7.2 containing 1 mM dithiothreitol, and then twice (3 h each) against the same solutions 

without dithiothreitol. The protein concentration was determined from A280. Stock solutions of 
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each Au complex were prepared freshly, and the calculated volumes added to give reaction 

mixtures containing the desired concentration of gold drug. After storage of the mixtures on 

ice, glacial acetic acid was added to 5% (v/v). The mixtures were then immediately analyzed 

using ESI-MS. Spectra were acquired using a Waters (Manchester, UK) Q-ToF Ultima ESI 

mass spectrometer operating in positive ion mode using a nanospray source, over the m/z 

range 1000–6500, with at least 50 acquisitions combined to give the final spectrum. The 

instrument was calibrated using a 10 mg/mL caesium iodide solution in 70% isopropanol/ 

water. Raw spectra were background subtracted and smoothed using the Savitsky-Golay 

algorithm, and the charge series ions transformed to mass scale using MassLynx software. 

Stated masses and their errors were calculated using MassLynx software. 
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3. Results and discussion 

3.1 Characterization of gold nanoparticles 

Au NPs were characterized by absorption spectrophotometry, field emission scanning 

electron microscopy (FESEM) and particle size analysis. The UV-vis absorption spectrum 

(supplementary data, Fig. S1) showed one broad peak centered at 522 nm, consistent with the 

plasmon resonance band observed in other samples of gold nanoparticles [43]. FESEM 

indicated that the particles were spherical in shape and relatively uniform in size, ranging 

from 10–20 nm in diameter (supplementary data, Fig. S2). Similarly, particle size analysis 

showed the average diameter of the Au NPs to be 23 ± 7 nm. 

3.2 Cytotoxicity studies 

Auranofin exhibited significant cytotoxicity against the RAW264.7 macrophages, 

resulting in an IC50 of 4 µM (Fig. 2). This value is consistent with previous investigations of 

the toxicity of this drug, where auranofin was found to have an IC50 of 1.5 µM against a B16 

mouse melanoma cell line using a clonogenic assay [44], and an IC50 of 1.06 µM against a 

human ovarian cancer cell line using a 24 h MTT assay [45]. In contrast, Au NPs were non-

toxic over the concentration range 0.1–60 µM (Fig. 2). Higher concentrations of NPs could 

not be tested as these would have resulted in hypotonic conditions due to excess diluent. The 

lack of cytotoxicity induced by Au NPs is consistent with a report by Shukla et al. [37], who 

observed only minor decreases in cell viability (as assessed by the MTT assay) when 

macrophages were treated with 10–100 µM Au NPs for 24 h. 

Aurothiomalate was also non-toxic towards the macrophage cells at all concentrations 

examined in the current study (up to 1 mM). This contrasts with a previous report that showed 

it exhibited an IC50 of 60 µM against the B16 mouse melanoma cell line. It is important to 
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note, however, that the latter study used a clonogenic assay [44]. Therefore the observed 

toxicity may have been due to the drug having a degree of specificity for the melanoma cell 

line. Consistent with this is the observation of negligible toxicity of aurothiomalate towards a 

human umbilical vein endothelial (HUVE) cell line using both a 51Cr release assay and an 

MTT assay [28]. 

Aurothiosulfate was more toxic than aurothiomalate, but far less toxic than auranofin, 

with an IC50 of 650 µM. The low cytotoxicity of aurothiosulfate is consistent with the results 

of a prior study in which the MTT assay was used to measure its effects on human THP1 

monocytes; no cytotoxicity was observed with 5 µM aurothiosulfate [46].  

 

3.2 Cellular gold uptake 

A fundamental question that arises from these data is whether the observed variations 

in cell toxicity stem primarily from differences in cellular uptake of the gold complexes and 

NPs. To address this question, GFAAS was used to determine the extent of uptake of Au by 

RAW264.7 macrophages exposed for 24 h to Au NPs, aurothiosulfate or aurothiomalate at 

either 2.5 or 60 µM, to provide a direct comparison of the extent of uptake. Experiments with 

auranofin used the drug only at 2.5 µM since higher concentrations resulted in cell death (Fig. 

2). The results of these experiments, together with those obtained from cell viability 

experiments using the trypan blue assay under similar conditions are shown in Fig. 3. 

The trypan blue experiments (Fig. 3a) confirmed that the vast majority of the cells 

exposed to Au NPs, aurothiosulfate or aurothiomalate remained viable with intact 

membranes. Only in the case of cells exposed to auranofin were the percentages of viable and 

non-viable cells roughly equivalent (40% non-viable), which correlates with the results of the 
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MTT assay. This also supports the hypothesis that the measured levels of gold uptake for all 

compounds and NPs examined, with the exception of auranofin, was due to their ability to 

enter the cells, and not due to breakdown of the cellular membrane subsequently allowing 

passage of gold. 

Comparison of the uptake data following exposure of the cells to each of the gold 

complexes and Au NPs at a concentration of 2.5 µM Au (Fig. 3b) revealed that only the NPs 

and auranofin showed statistically significant uptake of gold in comparison to control cells (P 

<0.001). The capacity for macrophages to incorporate auranofin is not surprising, given that 

this complex has a distinctly different structure to aurothiomalate and aurothiosulfate. 

Auranofin has a lipophilic structure that facilitates its transport across cell membranes [47], 

and therefore contributes to its higher cytotoxicity. Conversely, the lower cytotoxicity of 

aurothiomalate and aurothiosulfate at 2.5 µM may be due to their relative inability to enter 

macrophages; very low amounts of gold were incorporated into the macrophages after 

exposure to these two compounds. 

Differences in the amount of gold uptake by cells were more substantial following 

exposure to higher Au concentrations. For example, significant (P <0.001) uptake was 

observed for cells exposed to 60 M aurothiomalate, aurothiosulfate or Au NPs. In the case 

of aurothiomalate an ~70-fold increase in the uptake of Au, from 7.6×10–15 to 5.2×10–13 

g/cell, occurred as a result of increasing the concentration of drug from 2.5 to 60 µM. An 

even more substantial increase in the level of gold uptake (to 1.4×10–12 g/cell) was observed 

following treatment with 60 µM aurothiosulfate. This is 100 times the value of 1.4×10–14 

g/cell obtained when the cells were exposed to 2.5 µM aurothiosulfate. 

Exposure to 60 µM Au NPs resulted in the greatest cellular gold uptake, (P <0.001 in 

comparison to aurothiosulfate and aurothiomalate), and a 33-fold increase in the amount of 
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gold incorporated into the macrophages when compared to cells treated with 2.5 µM Au NPs 

(9.7×10–14 to 3.3×10–12 g/cell). Chithrani et al. [48] have shown that gold nanoparticles can 

enter cells via a receptor-mediated, clathrin-dependent endocytosis pathway. Furthermore the 

uptake half-life varies with size, with smaller nanoparticles taken up the fastest (t½ = 1.9–2.2 

h) [49]. By comparison, it has been reported that auranofin enters cells by the sulfhydryl 

shuttle model, where the Au(PEt)3
+ fragment binds to a membrane transport protein through a 

thiol group and is subsequently transported through the membrane [50]. It is possible that the 

other gold(I) drugs follow a similar mechanism, and thus may partially explain why Au NPs 

are taken up in more significant quantities. Importantly, there was no evidence of toxicity at 

60 µM Au for aurothiomalate, aurothiosulfate or Au NPs as determined by the MTT assay 

(Fig. 2). If the extent of cytotoxicity were related primarily to the amount of intracellular 

gold, one would expect that the toxicity would increase in the order: aurothiomalate < 

aurothiosulfate < Au NPs. Whilst Fig. 2 shows that aurothiosulfate is more cytotoxic than 

aurothiomalate, it was not possible to determine whether or not Au NPs were more toxic than 

either or both of these gold complexes owing to the restricted range of concentrations of Au 

NPs that could be used. 

3.3 Cellular Au distribution 

Microprobe SR-XRF was used to image gold in single cells and small clusters of 

RAW264.7 macrophages after exposure to different concentrations of aurothiomalate, 

auranofin or Au NPs for 24 h. The results of these experiments are presented as elemental 

distribution maps for individual elements in Fig. 4. Macrophages were either treated with 

treatment medium, 1000 µM sodium aurothiomalate, 2.5 µM auranofin or 60 µM Au NPs. 

The low count and random distribution of gold in the control cells (Fig. 4a) is essentially 

background noise associated with the very low concentration of this element. This indicates 
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that the gold present in the remaining cells originated from treatment with the gold complexes 

or Au NPs.  

All three samples exposed to gold complexes or Au NPs show a high degree of co-

localization of gold with sulfur. The most likely explanation for this observation, in the case 

of sodium aurothiomalate and auranofin, is that the gold has become associated with sulfur 

that is endogenous to the cell, in the form of thiol-containing species such as glutathione or 

proteins. It is also theoretically possible that sulfur was observed to be co-localized with gold 

after the macrophages were treated with sodium aurothiomalate, simply because both 

elements are present in this compound. However, this explanation is extremely unlikely, since 

it has been reported that the original sulfur-donor ligands associated with the gold complexes 

undergo ligand exchange reactions when the complexes are introduced into biological 

systems (discussed further in Section 3.4) [47]. In addition, the results of the mass 

spectrometry studies presented in Section 3.4 also reveal rapid loss of the S-containing 

ligands from the Au coordination sphere in the complexes under study.  

The microprobe SR-XRF observation of co-localization between Au and S in cells 

treated with Au NPs, however, stems from issues inherent to the detection method that occur 

as a result of the dominating Au M line. Inspection of the spectra of the characteristic X-ray 

lines (Fig. S3) reveals that the Au M line (2.1 keV) is in close proximity to the P (2.0 and 2.1 

keV) and S (2.3 and 2.4 keV) K lines. In the case of cells treated with the Au NPs, the Au-M 

line is so significant that it dominates the region to the extent that it encroaches on the P and S 

K lines, thereby contributing to the intensity of the latter signals. In contrast, the Au M line 

was less intense following treatment with aurothiomalate and auranofin, due to the lower 

level of Au uptake by the cells. This supports the conclusion that co-localization in the case of 

macrophages treated with the Au complexes was due to interactions between gold and sulfur, 

most likely inside the cells. 
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In addition, it is apparent that the gold distribution differs according to treatment and 

physical appearance of the cells. For instance, in the top left and bottom right auranofin-

treated cells in Fig. 4c, the Au is distributed throughout the entire cell. However, this is not 

the case for the more fibroblastic cell located diagonally in the image. The fact that the uptake 

is greater in the rounder cells is consistent with the cells dying and losing membrane integrity. 

In contrast, the cells treated with aurothiomalate and Au NPs (Fig. 4b and 4d) show more 

discrete/localized areas of Au and there is evidence of co-localization of Au with Ca, Zn and 

Cu. 

The GFAAS data (Fig. 3) indicate that Au NPs were taken up by the macrophages to 

an extent greater, at least by an order of magnitude, than either of the clinically used gold 

drugs. The presence of discrete hotspots corresponding to gold in macrophages treated with 

Au NPs is consistent with earlier work that used transmission electron microscopy to show 

that Au NPs were packaged into endosomes and then lysosomes following entry into the cells 

[51]. It is likely that the same events occur in macrophages following treatment with 

aurothiomalate [13,14].  

Fig. 5 shows the elemental distribution maps for large numbers of macrophages 

exposed to treatment medium only, or to 1000 µM aurothiomalate, 2.5 µM auranofin or 60 

µM Au NPs. These results allow comparisons to be made regarding the homogeneity of gold 

uptake across the cell population. Spectra of the characteristic X-ray lines for these maps are 

shown in Fig. S4. Treatment with aurothiomalate led to a sparse pattern of gold uptake, with 

the majority of cells exhibiting regions of low gold intensity that were comparable with the 

background. Despite this, some regions of the gold map feature ‘hot spots’ of gold that are 

associated with cellular material. Similarly, macrophages exposed to auranofin exhibit a non-

uniform distribution of gold, with some cells showing much greater uptake than others, as is 

consistent with the results shown in Fig. 4c. Close examination of cells that displayed the 
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greatest uptake of auranofin showed they had a more rounded morphology than those that had 

incorporated less gold. This observation is consistent with changes in cell morphology noted 

previously for RAW264.7 macrophages that had been exposed to acute cytotoxic agents [52].  

Macrophages exposed to Au NPs showed the most homogeneous pattern of gold 

incorporation of any of the samples studied, with the majority displaying significant levels of 

uptake. This is consistent with the GFAAS results (Fig. 3), which showed higher levels of 

gold incorporation into Au NP-treated cells, and supports the suggestion that the Au NPs 

experience a wider range of biochemical interactions inside cells compared to the discrete 

gold complexes. 

3.4 Thioredoxin reductase binding studies 

The enzyme TrxR is attracting growing interest as a target for a variety of 

metallodrugs [22,27,53]. Both X-ray crystallography and MALDI-MS were used previously 

to show that several terpyridineplatinum(II) complexes bind to TrxR [22], while various gold 

complexes have also proven to be potent inhibitors of this enzyme [24–26]. In addition, TrxR 

is involved in the redox activity of RAW264.7 macrophages [54–56]. Our interest in 

examining the binding of gold complexes, and possibly Au NPs, to TrxR was derived in part 

from the contribution that these interactions may make to their anti-arthritic activity [18,19]. 

In addition, it has been speculated that the anti-cancer activity of auranofin may be linked to 

its ability to interact with TrxR [45,57]. Further interest in examining the binding of the 

various gold agents to this protein stems from the reported use of MALDI-MS to examine the 

binding interactions between TrxR and several different Au(I) complexes, including 

auranofin, aurothiomalate and AuPEt3Cl [27]. As the MALDI-MS spectra obtained were very 

broad, it was not possible to accurately determine the exact number of gold molecules that 

had bound to the protein. Furthermore, the question of whether or not any of the ligands 
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initially bound to gold in the drugs had been retained upon binding to the protein could not be 

answered. ESI-MS has previously been used to investigate the binding of several gold 

compounds, including those with anti-arthritic activity, to human serum albumin [58,59]. It 

offers a number of advantages for studies of this type, since it enables determination of the 

stoichiometry of bound metal compounds. 

Recombinant His6-tagged human TrxR [22] was expressed in E. coli and purified 

using metal affinity and anion exchange chromatography. Because bacterial systems do not 

efficiently express selenoproteins, the penultimate selenocysteine residue was replaced by 

cysteine. Initial experiments focused on determining the best solution conditions for obtaining 

ESI mass spectra of the monomeric and dimeric forms of TrxR. All spectra were obtained 

using solutions of the protein that also contained aqueous ammonium acetate to facilitate 

formation of charged ions. Fig. 6a shows the positive ion ESI mass spectrum of TrxR 

obtained in a solution of 100 mM ammonium acetate and 5% acetic acid (pH 3.7). Several 

distinct envelopes of ions are apparent. Those with an m/z ≤ 3200 are relatively narrow, and 

arise from the monomeric form of the protein. For example, the ion at m/z 2682 corresponds 

to [TrxR + 23H]23+. At higher m/z values, envelopes of broader ions are also apparent that are 

attributable to TrxR dimers. For example, m/z ~4932 is [2TrxR + 23H]23+. Therefore both 

forms of the protein were present under these solution conditions. The presence of differing 

envelopes of ions for the monomer and dimer suggests populations of molecules that were 

unfolded to varying extents [60]. The observation of relatively narrow ions attributable to the 

monomeric form of the protein (width at half height ~2.5 Th) allows more information to be 

obtained from gold binding studies because it is possible to distinguish ions differing by only 

10 Th; e.g., free protein molecules and protein molecules with a single bound gold ion. 

Fig. 6b shows the positive ion ESI mass spectrum obtained using a solution containing 

a higher ammonium acetate concentration (500 mM, pH 7.2) and no acetic acid. Only a small 
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number of relatively broad peaks were observed. Although the m/z of these ions were 

different to any of those present in Fig. 6a, they were still from the dimeric form of the 

protein. For example, the ion at m/z ~4999 is from [2TrxR + 23H]23+. This shows that the 

higher ammonium acetate concentration stabilized the protein in its dimeric form. Addition of 

acetic acid, even up to a concentration of 10%, failed to alter the appearance of the mass 

spectrum significantly. The broadness of the peaks in Fig. 6b prevented identification of ions 

arising from discrete gold/protein complexes in gold binding experiments. Therefore our 

efforts concentrated on examining the binding of the gold complexes and Au NPs to TrxR 

using conditions where the ESI mass spectrum gave ions of high abundance from the 

monomeric form of the protein, but where the reaction conditions had a mix of monomer and 

dimer present. 

Fig. 7a shows the ESI mass spectrum of a 1.1 µM solution of TrxR after 

transformation to an absolute mass scale. The spectrum was obtained using the conditions in 

Fig. 6a. The mass of the protein calculated using its amino acid sequence is 56288 Da without 

the initiating methionine residue. The mass determined from the spectrum was in good 

agreement (56310 Da) given the errors associated with mass detection under these conditions 

[60]. Also present in the spectrum are ions of lower abundance at 56488 and 56529 Da. To 

date we have been unable to definitively assign these peaks to specific amino acid or post-

translational modifications of TrxR. However, the peak at 56488 Da may be the result of the 

presence of the N-formyl-methionine (residue mass 169 Da) that initiates protein translation 

in E. coli [61]. Both peaks are likely due to covalently modified forms of the protein, as 

dialysis against formic acid instead of ammonium acetate resulted in no change to the ESI 

mass spectrum.  

Also shown in Fig. 7 are ESI mass spectra of solutions containing various ratios of 

gold complexes and TrxR. Each of these shows ions attributable to protein molecules 
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containing different numbers of bare gold atoms. For example, the spectrum of a solution 

containing a 3:1 ratio of sodium aurothiosulfate and TrxR (Fig. 7b) showed ions from TrxR 

adducts containing between one and seven gold atoms, with those protein molecules having 

one, two or three bound gold atoms the most abundant. Ions attributable to protein adducts in 

which [Au(S2O3)]
– moieties were bound to the protein were also present, but at much lower 

abundance, which is not surprising as it has been reported previously that gold complexes 

such as the chrysotherapeutic agents readily undergo ligand substitution reactions upon 

entering cells [4]. It is worth noting, however, that in an earlier study the most abundant ions 

present in the ESI mass spectrum of a solution containing a 0.5:1 ratio of aurothiosulfate and 

human serum albumin (HSA) were attributable to protein adducts containing one or two 

bound Au(S2O3) moieties [59]. At present we are uncertain of the reasons for the variation in 

abundance of ions featuring Au(S2O3) moieties bound to TrxR and HSA; they may be related 

to differences in instrumental parameters. 

The spectrum of a solution containing a 3:1 ratio of sodium aurothioglucose and TrxR 

(Fig. 7c) contains ions which most likely arise from protein complexes containing between 

one and six gold atoms. However, making definitive assignments for some of these ions is 

extremely difficult owing to the similarities between the molecular weight of thioglucose (ca. 

195) and the atomic weight of a single gold atom (196.97). This means, for example, that the 

ions at 56680 Da may be due to TrxR molecules with two bare gold atoms bound, protein 

molecules containing a single aurothioglucose moiety, or a mixture of both types of adducts. 

In considering this issue, it is worth noting that the spectrum of a solution containing TrxR 

and aurothiosulfate (Fig. 7b) contained many types of ions that could be unambiguously 

assigned to protein adducts containing different numbers of bound gold atoms. It is therefore 

reasonable to expect that coordination of the closely related aurothioglucose molecule to 
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TrxR would also occur concomitantly with cleavage of Au–S bonds and displacement of the 

original ligands present in the coordination sphere of the metal ion.  

The spectrum of the solution containing a 5:1 ratio of auranofin and TrxR (Fig. 7d) 

contained ions attributable to adducts with one or more AuPEt3 moieties bound to the protein, 

sometimes in addition to bare gold ions. These results may be compared to those from our 

previous MS investigation of the interactions of HSA with AuPEt3Cl, a model for auranofin 

[59]. Each of the adducts observed consisted of protein molecules bound to one or more 

AuPEt3 moieties. For TrxR, the most abundant ions were those attributable to protein 

molecules with one AuPEt3 bound, while ions from protein molecules with two bound 

AuPEt3 groups were of medium abundance (Fig. 7d). Thus, the Au–P bonds in auranofin and 

AuPEt3Cl remain largely intact upon coordination of the metal complex to TrxR or HSA and 

these bonds are stable under ESI conditions.  

The observation of a high degree of Au NP uptake by macrophages prompted us to 

investigate whether or not they can bind directly to TrxR, as formation of such protein 

adducts might account at least partially for the observed anti-arthritic activity of Au NPs. 

However, treatment of TrxR with up to 5 equivalents of Au NPs for as long as 24 h failed to 

produce any new ions in ESI mass spectra. There are several possible reasons for this 

outcome, including that the Au(0) atoms present in Au NPs are unlikely to form bonds with 

the protein that are sufficiently stable to survive the ESI process, or alternatively, the size of 

the nanoparticles may prevent them from approaching cysteine residues exposed on the 

surface of the protein.  

Interest in the environmental consequences of Au NPs, and their biomedical 

applications, has led to a number of reports on their interactions with proteins. One of the 

earliest such studies used zeta potential and quartz crystal microbalance techniques to 
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examine the binding of Au NPs to bovine serum albumin [62]. It was tentatively concluded 

that electrostatic forces, possibly involving the carboxylate groups of citrate anions on the 

surfaces of the Au NPs, and protonated amines of surface lysine residues of the protein, were 

responsible for the interactions. In a separate study, a combination of techniques, including 

circular dichroism spectroscopy and dynamic light scattering, was used to perform 

measurements on systems containing citrate-stabilized Au NPs of various sizes, and a range 

of proteins found in human blood [63]. The results of these investigations pointed to a model 

in which the proteins formed an outer layer, or “corona” on the surface of the Au NPs, and 

suggested that the overall strength of the interactions increased along with nanoparticle size. 

Binding constants ranging from 104 to 107 M–1 were obtained for these systems, indicating 

that in some instances the overall strength of the binding interactions was quite low.  

Evidence of interactions between thioredoxin reductase and nanoclusters composed of 

25 gold atoms stabilized by a tridecapeptide has also been reported [64]. The positively 

charged peptide enhanced the solubility of the gold clusters, and also facilitated electrostatic 

binding interactions with a number of negatively charged amino acid residues near the active 

site of the enzyme. Molecular docking studies and molecular dynamics simulations were used 

to further probe the nature of the binding interactions, and demonstrate the stability of the 

resulting assembly. It was also shown that the gold nanoclusters inhibit the activity of TrxR, 

leading to higher levels of reactive oxygen species and apoptosis in HeLa cells. Silver 

nanoparticles have also been reported to inhibit selenoprotein synthesis, and the activity of 

TrxR in in vitro studies, resulting in an increase in oxidative stress [65]. 

The above studies highlight the ability of Au NPs or nanoclusters, or nanoparticles 

composed of other metals, to interact with proteins, including TrxR.  Each of the techniques 

used in these investigations is non-destructive, and inherently well suited for probing weak 

binding interactions between two molecules. In contrast, whilst ESI-MS is known to employ 
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one of the “softer” ionization methods for obtaining mass spectra, the ability of non-covalent 

assemblies of molecules to be analyzed by this technique does vary widely owing to their 

exposure to high electrical potentials and moderately high temperatures. It is therefore likely 

that electrostatic interactions were taking place between the Au NPs and TrxR in samples 

prepared for mass spectrometry, but that these did not survive the conditions inside the 

spectrometer.  
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4. Conclusions 

This work shows that exposure of macrophages to Au NPs, compared with Au(I) complexes 

that include chrysotherapeutic agents, results in significantly greater uptake of gold. In 

addition, Au NPs were hardly cytotoxic towards macrophages, and were significantly less 

toxic than auranofin. These results support the need to further explore the potential of Au NPs 

as anti-RA agents. Nevertheless, ESI-MS did not show evidence that AuNPs could interact 

with TrxR in the same manner as gold(I) complexes. Unfortunately the intense Au M-line in 

the microprobe SR-XRF spectrum means that it is impossible to determine whether gold 

derived from Au NPs co-localizes with sulfur. However, the gold maps highlighted that the 

nanoparticles most likely enter macrophages and become localized as discrete hot spots, 

suggesting that they are packaged into lysosomes as a detoxification mechanism. Our current 

work is focused on further elucidation of the mechanism(s) by which Au NPs may elicit an 

anti-RA response in patients. 

 

5. Abbreviations 

APS Advanced Photon Source 

AS Australian Synchrotron 

Au NPs gold nanoparticles 

ESI-MS electrospray ionization mass spectrometry 

EXAFS extended X-ray absorption fine structure 

FBS fetal bovine serum 

FESEM field emission scanning electron microscopy 

GFAAS graphite furnace atomic absorption spectroscopy 

HSA human serum albumin 

HUVE human umbilical vein endothelial 

IPTG isopropyl-β-D-thiogalactoside 
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MALDI-MS matrix assisted laser desorption/ionization mass spectrometry 

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

PBS phosphate buffered saline 

Q-ToF quadrupole time-of-flight 

RA rheumatoid arthritis 

RPMI-1640 Roswell Park Memorial Institute-1640 

SR-XRF Synchrotron radiation X-ray fluorescence 

TrxR thioredoxin reductase 

TNF-α tumor necrosis factor alpha 

XANES X-ray absorption near edge spectroscopy 
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Figure Legends 

Fig. 1. Structures of clinically used gold drugs: a) auranofin, b) (sodium) aurothiomalate, c) 

(sodium) aurothiosulfate, d) aurothioglucose. [1 column width] 

Fig. 2. Cytotoxicity of Au NPs, sodium aurothiosulfate, sodium aurothiomalate and auranofin 

towards RAW264.7 macrophage cells, as assessed by the MTT assay. All cells were exposed 

to the gold compounds or Au NPs for 24 h prior to the assay. The error bars are ±1 standard 

deviation, calculated from measurements of triplicate plates. [1 column width] 

Fig. 3. a) Quantities of cells as determined by trypan blue assay after 24 h exposure to Au 

NPs, and complexes. b) Gold content in RAW264.7 cells after 24 h exposure to Au NPs, 

auranofin, aurothiosulfate or aurothiomalate. The extent of cellular uptake was determined 

using GFAAS. The error bars in both graphs reflect ±1 standard deviation, calculated using 

data obtained from triplicate samples. *** p < 0.001 compared to control; ns, not significant. 

[1 column width] 

Fig. 4. Microprobe SR-XRF elemental maps for RAW264.7 cells treated for 24 h with: a) 

treatment medium only; b) 1000 µM sodium aurothiomalate; c) 2.5 µM auranofin; d) 60 µM 

Au NPs. Data were collected at the APS. Each element is specified at the bottom of the 

column. Operating conditions: Beam energy = 13.450 keV; beam size = 0.5 µm; step size = 

0.5 µm; dwell time = 0.5 s/pt; scan dimensions (H x V) = (a) 18.5 x 18.5 µm2; (b) 52.5 x 20.5 

µm2; (c) 50.5 x 50.5 µm2; (d) 50.5 x 13.5 µm2. All values in the figure are in the units: 

µg/cm2. [2 column widths] 

Fig. 5. Microprobe SR-XRF elemental maps for RAW264.7 macrophage cells treated for 24 

h with: a) treatment medium only; b) 1000 µM aurothiomalate; c) 2.5 µM auranofin; d) 60 

µM Au NPs. Data were collected at the Australian Synchrotron. Each element is specified at 
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the bottom of the column. Quantities of each element listed above the maps are in relative 

units. Operating conditions: Beam energy = 12.055 keV; beam size = 2 µm; step size = 2 µm; 

dwell time = 1 s/pt; scan dimensions (H x V) = 120 x 120 µm2. Values above each map 

represent relative quantifications of the elements and are unitless. [2 column widths] 

Fig. 6. ESI mass spectra of: a) TrxR (5 µM) in 100 mM ammonium acetate and 5% acetic 

acid; and b) TrxR (5 µM) in 500 mM ammonium acetate; where M corresponds to a 

monomer peak and D to a dimer peak. [1.5 column widths] 

Fig. 7. ESI mass spectra, transformed to an absolute mass scale, of a solution containing 1.1 

µM TrxR, 100 mM ammonium acetate: a) TrxR in 100 mM ammonium acetate, pH 7.2; b) a 

1:3 ratio of TrxR and sodium aurothiosulfate that had reacted for 4 h; c) a 1:3 ratio of TrxR 

and aurothioglucose after 4 h; and d) a 1:5 ratio of TrxR and auranofin after 4 h. After the 

reaction period, each solution was acidified to 5% acetic acid and immediately injected into 

the mass spectrometer. Components A–M correspond to: (A) TrxR; (B) TrxR + Au; (C) TrxR 

+ AuL; (D) TrxR + Au + AuL; (E) TrxR + 2Au; (F) TrxR + 2Au + AuL; (G) TrxR + 2AuL; 

(H) TrxR + 2Au + 2AuL; (I) TrxR + 3Au; (J) TrxR + 4Au; (K) TrxR + 5Au; (L) TrxR + 6Au; 

(M) TrxR + 7Au; where L represents S2O3 or PEt3 for the aurothiosulfate or auranofin 

complex, respectively. [1 column width] 
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Table S1. Operating conditions for analysis of gold in digested cell samples using by GFAAS. 

Stage Temperature 

(°C) 

Ramp 

Time (s) 

Hold 

Time (s) 

Gas Flow 

(mL/min) 

Dry 1 110 1 30 250 

Dry 2 130 15 30 250 

Ash 800 10 20 250 

Atomization 1800 0 5 0 

Clean Out 2450 1 3 250 

 

 

 

 

 

Fig. S1. Absorption spectrum of a 400 µM solution of gold nanoparticles. 
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Fig. S2. Scanning electron micrograph of gold nanoparticles (Au NPs). Scale bar (100 nm) is included in white 

at the bottom of the image. 



3 

 

Fig. S3. Integrated (black), fit (green) and assigned Kα lines (red) of microprobe SR-XRF spectra for 

RAW264.7 cells treated for 24 h with: a) treatment medium only; b) 1000 µM sodium aurothiomalate; c) 2.5 

µM auranofin; d) 60 µM Au NPs. Data were collected at the Advanced Photon Source. Vertical lines indicate 

the expected energy positions of gold L or M lines. 
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Fig. S4. Integrated (black), fit (green) and assigned Kα lines (red) of microprobe SR-XRF spectra for 

RAW264.7 cells treated for 24 h with: a) treatment medium only; b) 1000 µM sodium aurothiomalate; c) 2.5 

µM auranofin; d) 60 µM Au NPs. Data were collected at the Australian Synchrotron. Vertical lines indicate the 

expected energy positions of gold L or M lines. 
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