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Key characteristics-based sensor distribution in multi-station assembly
processes

Abstract

This paper presents a novel approach for optimal key characteristics-based sensor distribution in a multi-
station assembly process, for the purpose of diagnosing variation sources responsible for product quality
defects in a timely manner. Current approaches for sensor distribution are based on the assumption that
measurement points can be allocated at arbitrary locations on the part or subassembly. This not only
presents challenges in the implementation of these approaches but additionally does not allow required
product assurance and quality control standards to be integrated with them, due to lack of explicit
relations between measured features and geometric dimensioning and tolerancing (GD&T). Furthermore,
it causes difficulty in calibration of measurement system and increases the likelihood of measurement
error due to the introduction of measurement points not defined in GD&T. In the proposed approach, we
develop methodology for optimal sensor allocation for 6-sigma root cause analysis that maximizes the
number of measurement points placed at critical design features called Key Characteristics (KCs) which
are classified into: Key Product Characteristics and Key Control Characteristics and represent critical
product and process design features, respectively. In particular, KCs have defined dimensional and
geometric tolerances which provides necessary design reference model for process control and
diagnosis of product 6-sigma variation faults. The proposed approach allows obtaining minimum required
production system 6-sigma diagnosability. A feature-based procedure is proposed which includes Genetic
Algorithm-based approach (allowing pre-defined KCs as the measurement points) and state-of-the-art
approaches (unrestricted location of measurement points) to iteratively include arbitrary measurement
points together with KCs in the final sensor layout. A case study of automotive assembly processes is
used to illustrate the proposed feature-based approach
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Abstract
This paper presents a novel approach for optimal key characteristics-based sensor
distribution in a multi-station assembly process, for the purpose of diagnosing
variation sources responsible for product quality defects in a timely manner.. Current
approaches for sensor distribution are based on the assumption that measurement
points can be allocated at arbitrary locations on the part or subassembly. This not only
presents challenges in the implementation of these approaches but additionally does
not allow required product assurance and quality control standards to be integrated
with them, due to lack of explicit relations between measured features and geometric
dimensioning and tolerancing (GD&T). Furthermore, it causes difficulty in calibration
of measurement system and increases the likelithood of measurement error due to the
introduction of measurement points not defined in GD&T. In the proposed approach,
we develop methodology for optimal sensor allocation for 6-sigma root cause analysis
that maximizes the number of measurement points placed at critical design features
called Key Characteristics (KCs) which are classified into: Key Product
Characteristics (KPCs) and Key Control Characteristics (KCCs) and represent critical
product and process design features, respectively. In particular, KCs have defined
dimensional and geometric tolerances which provides necessary design reference
model for process control and diagnosis of product 6-sigma variation faults. The
proposed approach allows obtaining minimum required production system 6-sigma
diagnosability. A feature-based procedure is proposed which includes Genetic
Algorithm (GA)-based approach (allowing pre-defined KCs as the measurement
points) and state-of-the-art approaches (unrestricted location of measurement points)
to iteratively include arbitrary measurement points together with KCs in the final
sensor layout. A case study of automotive assembly processes is used to illustrate the

proposed feature-based approach.



1. Introduction

Dimensional quality control is a major challenge within discrete part manufacturing
processes. For instance, in the automotive industries, two-third of all quality related
engineering changes in the automotive and aerospace industries are caused by
dimensional variation related failures (Ceglarek and Shi 1995). Hence, automatic in-
process sensing and data collection techniques are employed in complex multi-station
manufacturing processes in an effort to identify the root causes of 6-sigma variations.
In automotive assembly processes, end-of-line or distributed sensing are
generally used to diagnose process variation sources (Khan et al. 1999; Ding et al.
2003; Khan et al. 1998; Khan and Ceglarek 2000). Distributed sensing is more
effective than end-of-the-line sensing as it can identify more critical variation sources
(Ding et al. 2003). The effective root cause diagnosis of product 6-sigma variation
faults relies on optimal sensor distribution in multi-station assembly process. Poor
sensor distribution often produces large amounts of conflicting and vague
information. The problem pertaining to optimal sensor distribution in multi-station
assembly processes involves the determination of: (i) location of measurement
stations; (i1) number of sensors required at each measurement station; and, (iii) the
location of sensors within the measurement station. The term “location of sensor” can
be interpreted as either: (i) the location where a sensor is actually installed; or, (ii) the
location of a point or a feature on a given part or subassembly that the sensor
measures. The latter, i.e., the point which is measured, is commonly used in quality
control research. Hence, using this specification, sensor distribution may be defined as
the selection of points or features to be measured on different measurement stations.
In particular, measurement of a selected set of points leads to an inference about the
root cause(s) of product 6-sigma variation faults (Mandroli et al. 2006). Several
researchers in the area of manufacturing have focused on the sensor networks (Levi ef
al. 2010) and fault diagnosis and prediction in case of assembly systems (Rickli ez al.
2011; Baydar and Saitou 2004). Levi, et al. (2010) deals with the sensor networks in
terms of its security performance in real world applications. Fixture faults monitoring
using auto regressive models in automotive assembly processes are discussed in
Rickli et al. (2011). Error prediction, diagnosis, and recovery for discrete part
manufacturing using Monte Carlo simulations and genetic algorithm are discussed in

Baydar and Saitou (2004).



Research on sensor distribution can be classified in terms of selection of objective

function, optimization approach, and type of process considered (see Table 1).

Objectives such as diagnosability index, A-optimality, D-optimality, E-optimality and

pattern distance have been predominantly used in the literature to characterize sensor

distribution. The A-optimality maximizes the summation of all eigenvalues of Fisher

information matrix, D-optimality maximizes the determinant of Fisher information

matrix, and E-optimality maximizes the smallest eigenvalue of Fisher information

matrix. However, these objectives are known to be computationally complex due to

their non-linear characteristics.

Table 1: Methodologies used in literature for sensor distribution problem and its
classification based on single and multiple station assembly system

Sensor distribution methodolo

ies

Assembly systems with

Location of

Objective used Optimization Approach measurement Smg fe Mult.lp fe
. station station
points
Direct Search - -
SQP - -
Diagnosability Exchange algorithms - Ding et al.
(2003)
Random search - Shlg&g; al.
Direct Search - -
Khan et al. Khan et al.
SQP (1999) (1998)
Pattern distance Khan and
Exchange algorithms - Ceglarek
(2000)
Random search - -
Direct Search - -
SQP - -
A-optimality Exchange algorithms Z?zu nga)ll' -
Anywhere on parts/ Djurdjanovic
Random search subassemblies - and Ni
(2004)
Wang and
Direct Search Nagarkar -
(1999)
SQP - -
D-optimality ngrglfrigf
Exchange algorithms (1999); -
Camelio et
al. (2003b)
Random search - -
Direct Search - -
SQP - -
. Ding and
E-optimality Exchange algorithms L(1;1 Oe()t;;l' Apley
(2007)

Random search

Feature-based approach

GD&T driven

Proposed in this paper




based on Genetic (KCs)
Algorithm (GA)

The sensor distribution problem becomes even more complex when these objectives
are evaluated in a high dimensional search space (Ding et al. 2003; Liu et al. 2005).
This paper selects the E-optimality objective for evaluating the sensor layouts as it
subsumes other objectives (Liu et al. 2005). Furthermore, the existing optimization
algorithms for sensor distribution have been tested only on the problems of lower
dimensions; mostly in a production systems with a single assembly station (see Table
1). Table 1 classifies methodologies for sensor distribution approaches used in
literature based on the type of objective used and optimization approach.
Additionally, there are also some studies that conducted analysis of sensor distribution
problem without proposing optimization approach and using objectives such as
diagnosability (Ding et al. 2002; Zhou et al. 2003), pattern distance (Ding et al.
2002a), A-optimality (Djurdjanovic and Ni 2003), D-optimality (Djurdjanovic and Ni
2003), and E-optimality (Djurdjanovic and Ni 2003).

As illustrated in Table 1, the state-of-the-art approaches such as exchange
algorithm, SQP, random search, direct search; provides optimal sensor layout where
the measurement points are arbitrarily selected on the part or subassembly
(unrestricted search), rather than selecting KCs which are free from measurement
difficulties. That is, the state-of-the-art approaches does not consider the ease for
calibration of measurement gauges, feature based measurement error (Huang et al.
2004), and lack of explicit relations between measured features and geometrical
dimensioning and tolerancing (GD&T) characteristics (Meadows 1995). Hence, the
solution provided by existing approaches often becomes costly or difficult to
implement in industrial applications as they cannot be easily integrated with the
required product assurance and quality control standards. Increasingly, there is a need
to develop an effective and efficient methodology to obtain optimal sensor layouts
which can maximize production system diagnosability and simultaneously maximize
the number of measurement points placed at various KPCs and KCCs, which are
specifically selected for product assurance and quality control standards during the
design phase of product and process validation, respectively. However, since there are
a large number of KCs with various complex interactions defined by the GD&T, and

it is economically not justifiable to measure all of the KCs in multi-station assembly



process. Therefore, optimal sensor distribution is a very relevant and challenging

problem.

A feature-based sensor distribution approach is proposed in this paper that
maximizes the number of measurement points that are placed at critical design
features called Key Characteristics (KCs) available as part of the product and process
design information (CAD/CAM), and classified into: Key Product Characteristics
(KPCs) and Key Control Characteristics (KCCs) as to represent critical product and
process design features, respectively. The feature-based approach starts with the GA-
based approach, which considers only KCs as candidates for measurement point
selection for sensor layout. In particular, GA are used because of the huge search
space in which to search, owing to the large number of KCs and their combinations,
to create sensor layouts with various complex interactions defined by the GD&T. The
resulting sensor layout from GA allows having measurements with the best alignment
to the product design requirements (GD&T). However, restrictions to select
measurement points only from the predefined set of KCs can lead to a decrease of the
overall 6-sigma variation faults diagnosability level (i.e., sensitivity of sensor
layouts). Therefore, an iterative procedure is employed, which uses sensor layout
possessing all measurement points as KCs (obtained by GA) to search for sensor
layout having higher sensitivity. The procedure iteratively replaces KC(s) present in
the sensor layout obtained by GA with arbitrary point(s) based on state-of-the-art
approaches. This procedure is repeated until the sensitivity value of the sensor layout
is greater than the predefined threshold value. Thus, the proposed feature-based
optimal sensor distribution approach integrates both (i) traditional sensor distribution
approaches such as random search, exchange algorithms, and direct search
(unrestricted selection of measurement points) and (ii) GA-based approaches (pre-
defined KCs as candidates for measurement points selection) to maximize the number
of KCs selected as measurement points subject to minimum required production

system diagnosability.

The remainder of this paper is organized as follows: Section 2 presents a brief
discussion on relevant challenges and complexity pertaining to the sensor distribution
problem. In Section 3, a mathematical formulation of the objective function and
related constraints are discussed. Section 4 details the GA-based procedure for

optimal sensor distribution problem taking into consideration predetermined KCs as



the measurement points. Further, the feature-based approach for sensor distribution
based on GA-based procedure and the state-of-the-art approaches based on the
random search, exchange algorithms, and direct search, is discussed in Section 5.
Section 6 details the application of the proposed methodology for a case study of cab
assembly process. Finally, Section 7 provides summary and conclusions along with a

discussion on future research directions.

2. Information required for sensor distribution problem in multi-station
assembly

The problem of sensor distribution for process control and quality improvement is a
complex issue which requires design information to model all critical intricacies
involving products and processes, inherent for control of multi-station assembly
processes. The information required for sensor distribution can be explicitly divided
into: product information; process information; and information related to interactions
between process and product. These required design information creates a significant
challenges due to its complexity as outlined below.

Product Information Complexity

Early design evaluation of multi-station assembly processes is very important for new
product development and also for designing a robust manufacturing system to
improve product quality. Common automotive product assembly consists of 200-300
sheet metal parts and subassemblies which are to be assembled on 5575 assembly
stations (Ceglarek and Shi 1995). Therefore, the complexity arises when selecting
measurement points for sensor layout from the large combinations KPCs in multiple
parts and their subassemblies in several stations. The assembly process of body-in-
white is represented in the form of process tree as shown in Fig. 1. Each KPC on
parts/subassemblies can be represented as a design feature such as in automotive body
assembly process there are four major features measured on the product: (i) points;
(i1) edges; (iii) holes; and, (iv) slots. It is important to use/measure KPCs as they
directly represent product performance evaluation. However, the KPCs are selected
with different objectives in mind and thus not all can be measured (see Table 2).

Process information complexity

Multi-station assembly process generally refers to the processes involving more
than one assembly station to manufacture a complex product. For example,

automotive body assembly processes include multiple stations where parts are



assembled to produce complex product. For example, a common assembly process for

automotive product consists of 55-75 stations (Ceglarek and Shi 1995).

Level 1 G 1. Plenum lower panel 32. Middle roof bow
2. Right plenum end panel 33. Rear roof bow
3. Left plenum end panel 34. Cab rear inner panel
4.Right hood hinge gusset 35. Cab rear outer panel
Level 2 ° e 5. Left hood hinge gusset 36. Roof
6. Dash panel 37. Left side of the roof
7. Right cowl side 38. Right side of the roof
8. Left cowl side 39. Rear right Cargo Door
Level 3 0 @ e 9. Cowl Bar 40. Lower right rear door hinge
10. Underbody sub-assembly 41. Upper right rear door hinge
11. Right front fender tube 42. Front right Cargo Door
12. Left front fender tube. 43. Lower right front door hinge
Level 4 a @ ° 13. Radiator X-Member SA 44, Upper right front door hinge
- 14. Lower tube 45, Rear left Cargo Door
15. Body side panel 46. Lower left rear door hinge
16. Side extension reinforcement 47. Upper left rear door hinge
o ° G G 0 17. Reinforcement C-Pillar 48. Front left Cargo Door
Level 5 18. Roof Side Int Ext Cab Rail Assembly 49. Lower left front door hinge
19. A Pillar Inner Panel 50. Upper left front door hinge
20. A~ Pillar Lower 51. Left Hood Hinge
21. Reinforcement assembly cargo door 52. Right Hood Hinge
Level 5 e @ @ @ e@ 0 22. Rear Quarter Outer 53. Left Fender
23-30 (Same as 15-22) 54. Right Fender
31. Front roof bow 55. Hood

Level 6 g e A. Dash Sub-assembly

Al. Dash sub1: Plenum lower and Dash and cow!
sides subassembly

A2. Dash sub2: Plenum lower subassembly
Level 7 A3. Dash sub3: Dash and cowl sides subassembly

8. Dash / Underbody subassembly

C. Under body Complete

C1. UB sub1: Hydro-form motor compartment
Level 8 e e @ @ e @ D. Body Side Right

D1. Body Side Panel & Roof Rail Sub assembly
D2. Quarter Outer Sub assembly

levels. @W@®@EW (V@ P @EEE @ mm—

(same as body side right)

Level 10 () () @’@/@ &@@ @f@‘@ () () £ e

1. Doors

11. Right rear cargo door
12. Right front door
Level 11 @ @ 13. Left rear cargo door

14. Left front door
1. Hood Hinges

Level 12 O{Q%&Q 0406 Cbond
Figure 1: The process tree of a body-in-white

To evaluate the dimensional quality of the assembled product, measurement points
are selected on parts. Figure 2 illustrates a 3-D fixture layout for plenum lower
subassembly restrained during assembly operations by set of 4-way, 2-way fixture
pins and three datum fixture pads. These types of fixtures are used throughout
assembly stations to constraint part/subassembly movements (>1000 possible
variation sources). Thus, there are large number of fixtures (KCCs) controlling the
variations in assembly operations. In parts/subassemblies, these KCCs are defined as
various design features such as points, holes, edges, and slots. Each of the design
features are defined by GD&T characteristics, which is important for estimation of
process capability. Hence, KCCs on parts/subassemblies have to be measured for fault
root cause identification. However, not all KCCs can be measured due to visibility &
accessibility of measurement points and associated costs. Therefore, there is a need
for selection of measurement points, which can maximize the sensitivity of sensor

layouts to detect variations. More information about the sensitivity of sensor layouts
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U/D: Datum A1
Pad to Fixture pad
(Bottom Surface)

CC: 2-Way Hole
to Fixture pin

\ U/D: Datum C1

Pad to Fixture pad
(Bottom Surface)

F/A & CC: 4-Way Hole
to Fixture pin

&/

U/D: Datum C1
Pad to Fixture pad
(Bottom Surface)

Figure 2: Fixture layout on a 3-D Plenum Lower Subassembly; F/A — Fore/Aft, CC —
Cross Car, U/D — Up/Down

Therefore, fixtures used in production are not frequently calibrated by using
direct measurement of the locators, but rather indirectly by using measurement of
KCC points on the parts/subassemblies if available; or measurement of surrogate
points (key measurement point) for which the relation between them and KCC(s) can
be estimated accurately (for example, stream-of-variations analysis (SOVA) model
described below). Therefore, the process of distributing the sensors needs to (i)
maximize number of measured KCCs is subject to cost constraints, such as a limited
number of measurement stations and number of measurement points; and then (ii)
select additional points which minimize uncertainty in model estimating relation
between measurement points and KPCs and simultaneously maximize production
system diagnosability. This approach will be discussed in Section 3.

In multi-station assembly processes, the propagation of fixture variation
generated from each station and its impact on product quality are mathematically
described by the assembly response function such as SOVA model. The SOVA model
is developed for multi-station assembly processes as illustrated in Fig. 3 (Jin and Shi

1999; Huang et al. 2007). Mathematically it is represented as



X(k) = A(k-1)%< X(k-1) + B(k) < P(k) + E(k), k=1.2...N (1)
Y (k) =C(k) < X(k) + W(k), {k} < {1,2,3..N} 2)

where, £ is the station index and N is the number of stations. X(k) represents the
dimensional deviations that occur randomly as a result of assembly process on station
k. The input vector P(k) represents the random deviations associated with fixture
locators on station k. Process errors and unmodeled higher order terms are represented
by E(k). Y(k) and C(k) represents product measurements and observation matrix at
station k. W(k) is white noise representing measurement noise.

Eq. (1) suggests that part deviation X(k), at the k™ station is influenced by the
accumulated deviation up to station k-1, i.e., X(k-1) and deviation contribution at
station k, i.e., P(k). Whereas, in Eq (2), observation vector Y(k),is obtained at
measurement station k. When sensors are installed on one or more stations in a
production line, the index for the observation equation (Eq. 2) is actually a subset of
{1,2,3, ...,N}, whereas the index for the state equation is complete set. In case of end-
of the line sensing k =N only, i.e., all the measurement points are present at the end of
production line. Whereas, in case of distributed sensing, k for Eq. 2 is subset of {1, 2,

3,...,N}, i.e., measurement points are selected on parts assembled at multiple stations.

Y(k)
Wik
X(k)...

- X(k-1)
> Station 1 — ——P Station k > —p Station N —

T

Figure 3: Diagram of Multi-station assembly process with N stations

P(k) E(k)

The matrices A(k) and B(k) in the state space model represent process design
such as change of fixture layouts at each station, as well as the effect of fixture layout
change across stations (see Table 3). The matrix C(k) , can be interpreted as, sensor

layout at K™ station (number of measurement point and its locations, see Table 3). The



aforementioned matrices are determined by utilizing the information about product
and process (CAD/CAM) and thus tend to become large in dimensions. Furthermore,
the mathematical indices, which are formulated for sensor distribution based on these
matrices, becomes computationally complex. The interpretation of the system
matrices A, B, and C is illustrated in Table 3.

Table 3: Interpretation of the SOV A matrices (Ding et al. 2003)

Symbol Name Relationship Interpretation As,if:;ll? ly
Change of fixture Assembl
A() Dynamic matrix X(k-1)—2%D X(k) layout between two trans fery
adjacent stations
. . B(k) Fixture/Mating Part
B() Input matrix P(k) X(k) layout at station k& positioning
ce) Observation X(k) ch gy (k) Sensor layout at Inspection
matrix station k p
.. Change of fixture
State transition N ®(kD) Assembly
Q)(D) matrix X(l) X(k) laygut among transfer
multiple stations

The sensor distribution problem in case of distributed sensing can be divided into:
(1) determining measurement stations (i.e., determining values of & in Eq. 2); and, (ii)
location of measurement points on parts or subassembly at the measurement station.
Generally, restriction is imposed on the number of measurement stations in multi-
station assembly process due to high capital investment in constructing measurement
stations and installing measurement sensors. Figure 4, shows the assembly and

measurement station of an assembly line.

Figure 4: (a) Automotive assembly station; and, (b) Measurement station

11




After measurement stations are identified, the selection of the set of measurement
points located on parts/subassemblies at measurement stations are identified from a
large number of candidate measurement points. Furthermore, the combination of
measurement points that can occur in sensor layouts adds to the complexity of sensor
distribution problem. The following section discusses the mathematical formulation of
the sensor distribution problem, which is used in feature-based approach to obtain

optimal sensor layout.

3. Sensor distribution problem formulation

In this section, the sensor distribution problem for distributed sensing is
formulated using the SOVA model (Jin and Shi 1999; Huang et al. 2007) for
modeling multi-station assembly processes (see Section 2). Based on the SOVA
model (Egs. 1 and 2), numerous performance measures for optimal sensor placement
have been introduced in the current literature such as: maximum distance between the

variation patterns (Khan et al. 1999); diagnosability index ( ) (Ding et al. 2003); and,
sensitivity index (S,,) (Liu et al. 2005). The diagnosability condition does not makes

distinction between diagnosable systems even though some sensor systems may have
a superior performance compared to others in that they can easily detect a small
change in the variation sources. This difference of detection capability is
characterized by the concept of “sensitivity”. It is desirable that a sensor system not
only has full diagnosability but also is sensitive to the underlying changes of variation
sources. Hence, this paper will go beyond diagnosability, aiming to maximize
sensitivity indices. The non-zero values of the sensitivity index, as developed in this
paper, guarantees full diagnosability. The sensitivity index differentiates among the
diagnosable systems and thus is a tougher objective.
The linear input-output relations between observation vector Y(k), and variation
sources P(k), is illustrated based on the SOVA model as shown in Egs (1) and (2).
The input-output model is

Y=J-P+J(0)-X(0)+D (3)
where,Y' =[Y'(l) Y'(2)....Y'(N)], D'=[D'(1) D'(2) .....D'(N)] and
D(k) = Zk:C(k)(I)(k, HEG) + W(k) .®(i, j) is interpreted as change of fixture layout

P

among multiple stations (from i to /™ station).

12



The coefficient of first term of Eq (3) J can be defined as:

C(HB()) 0o ... 0
C(2)®(2,1)B(1) C2B(2) ... ... 0 @
J= : : Lo, :
C(N)®(N,HB(I) C(N)®(N,2)B(2) ... ... C(N)B(N)
and coefficient of X(0) term as:
[ C(H®(,0) |
C(2)®@(2,0)
J(0)= : (5)
| C(N)®(N,0) |

The deviations due to stamping processes X(0) are ignored as only deviation of parts
during assembly processes are considered. Thus, the linear diagnostic model can be
represented as:

Y=J-P+D (6)
In root cause diagnosis, inferences can be made about P based on a sample of
measurements of Y.
In the model represented by Eq (6), the J matrix is determined by system design
parameters such as locator and sensor locations. The J matrix is called system matrix
in engineering systems design. Also, the P matrix is not the vector of parameters but a
vector of unknown random inputs. In fact, Eq (6) can be represented as a linear mixed

model with both fixed and random effects.
Y=J.p+J-P+D 7)
where p is the mean vector of P and P is the zero-mean random part of the variation

sources. Hence, p corresponds to the fixed effects and P corresponds to the random

effects. For root cause diagnosis, one needs to detect abnormal variations of the mean

components u=[,ul...,up]T and the variance components 0=[c; ...oi]T. If ™vand

2 represents the mean and covariance matrix of Y, then the model represented by Eq
(7) can be
m, =J-p ®)

vec(ZY ) =7(J)0+ o vec(l) 9)
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k

where 77(.)is a matrix transform defined on matrix Z=[z'---z"---z"]" having z* as its

k"™ row vector, k= 1,2....n.

7[(Z) — I:(Zl *ZI)T "'(Zl *Zn)T ._'(Zn *ZI)T ”_(Zn *Zn)T} (10)
and ‘*’ represents the Hadamard product of the two vectors. In defining the
diagnosability, sensitivity for detecting changes in mean and variance components can
be defined as the ratio of the change in the mean or variance of Y over a perturbation
of the mean and variance of the input sources. Hence, given measurements Y, the
mean-detecting sensitivity (S,,) and variation-detecting sensitivity (S,) is defined as:

. (omy)" (6m
_ i @My (@)
w0 (op) (Op)
~ T ~
tr((ézy) (&Y))

S =min (12)
Y0620 (50)(50)

(11

where, O, is the covariance matrix obtained from the process variation sources.

Since a linear relation exists in Eqgs (8) and (9) and using the eigen value property of

symmetric matrix, the abovementioned sensitivity indices can be expressed in terms

of J'J as:
S, =4

‘min

J') and S, =4 (z(I)" #(J)) (13)
Where, A _. (.)denotes the smallest eigenvalue of a matrix. An inequality relationship
between S, and Sy is identified; for same J, the lower bound for Sy is Si . That is

S2 < S, ,for same J (14)

From Eq (14), it can be inferred that maximization of S;, will certainly increase the
value of S,. Hence, S;, can be considered as a unified criterion for the problem of
sensor distribution in multi-station assembly processes. Therefore, the design
variables for sensor distribution problem are the number of sensors and their location
on parts at different measurement stations represented by vector y(s), where ‘s’ is the
number of sensors. The number of sensors ‘s’ is divided into ‘#»’ measurement stations
as sy, S»..., Sy; where, sy represents the number of sensors allocated to K

measurement station. Hence,

S:Zsk (15)
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W (s) consists of the X, Y and Z coordinate of measurement points on
parts/subassemblies at measurement station. Now, ¥ (s) is represented as:

W) =[ XK Zl XY ZL e XY 2 XY 2] (16)

where, X/, v/and Z/ is the coordinate of i"™ sensor placed on the jth station. The

sensor distribution approach in this paper is based on the sensitivity index S,, (¥ (s)),

which characterizes the quality of sensor layout ¥ (s).

4. Feature-based approach for sensor distribution

In this section, the feature based approach for sensor distribution is discussed in
detail. This section details the feature-based approach for sensor distribution by
involving GA-based approach (see Section 5) and state-of-the-art approaches such as
random search, exchange algorithms, and direct search. The feature-based approach
tries to maximize the number of KCs in the sensor layout thereby maintaining high
sensitivity (S,,) of sensor layouts. In feature-based approach, initially only KCs are
analyzed by using GA for getting the sensor layouts with high sensitivity value. If the
sensitivity index of the solution obtained is lower than the predefined threshold, then
state-of-the-art approaches are used to select the measurement points on the entire
regions on the parts. More information about the approach is provided in the latter
half of this section. Following text first discusses about the problems in selecting
arbitrary points as measurement points.

As mentioned in the introduction, the sensor placement on arbitrary points usually
incurs different types of problems:

1. Ease of calibration: It means that the measurement points selected should be in the

regions which are easily accessible to the measurement device. This is done to
avoid time consuming setups by the measuring device during measurement, which
increases the overall inspection time of the assembly processes.

1. Measurement error associated with the measurement point on the part: The

measurement devices have inherent errors caused by the lack of feature
traceability for some of the points on the part. The lack of feature traceability
means that instead of measuring a given point, the measurement device may
actually measure the area around the selected point (Huang et al. 2004). This
causes measurement errors corresponding to each measurement point which can

have significant impact on the measurement accuracy and hence on the process
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control and the diagnostic algorithms currently used in manufacturing. Figure 5
has been used to illustrate the concept of measurement errors related to some
points on the part. The nominal position of a point on part is A and when it is
mislocated due to the part positioning error in Z direction, its position becomes
A". The measurement error arises when the measurement device measures point
A" instead of A". The measurement error in Y direction is illustrated in Fig. 5.
The features such as a point on a plane can be measured with full accuracy in one
direction which is known as feature tracing direction. The measurement error
associated with the measuring devices is mainly depends upon: (i) the direction of
measurement; (ii) the geometry of the features; and (iii) the direction of the
pattern variation. The relations for estimating the errors in each direction are

detailed in Appendix A.

Measurement Error in Y direction caused

by part (point A) deviation in Z direction Nominal position of the

measured object

Measurement

Device - A
|

~

/ Real position of
1 .
, measured object

1

1

Measurement error in Y
direction

X Part mislocation in
Z-direction

Figure 5: Illustration of the error in the Y direction caused by a part mislocation
in Z direction. A — nominal position of the measurement point; A - mislocated
position of the measurement point caused by part mislocation in Z direction; A™ -
point measured. (Huang et al. 2004)

1ii. Tolerance values of the measurement points: Before assembly operations are

actually performed, design engineers use the geometric dimensioning and tolerancing

guidelines for most of the design operations. Based on these guidelines, the tolerance

values are assigned to the predetermined critical features/points (Meadows 1995).

Following text discusses about the feature based approach in detail.

The overall approach for feature-based approach for the decision making is

presented in Fig. 6. The feature based methodology starts with the arrangement of

16



CAD data, and design information about KCs. The CAD data provides the geometric
and dimensional information (GD&T) of the parts, subassemblies and the final
product including all KCs: KPCs & KCCs and their tolerances. The design
information provides the details about the different KCs, in the form of features and
points on the parts, which are easy to calibrate, free from feature based measurement
errors and have defined tolerances at the design stage. Then, GA-based procedure is
applied in terms of selecting the measurement points from available KCs. GA based
procedure is employed first for solving sensor distribution problem after getting the
design information and CAD data as measurement points are selected solely from

available KCs.

The GA-based approach finds best sensor layout with all measurement points as
KCs and having highest sensitivity value for given number of sensors. Detailed
description about the GA-based approach is discussed in Section 5. Intuitively, it may
be noted that the sensor layouts obtained from the GA-based approach may not be as
sensitive as the layouts from state-of-the-art approaches. This is due to the fact that all
the state-of-the-art approaches consider entire regions on the part for measurement
point selection. Therefore, the decision regarding accepting the sensor layout from
GA-based approach as the final solution is made based on threshold value (T) of the
sensitivity index. Hence, a threshold value (T) is defined to be 7 % of potential
sensitivity value (S,), which is attained if the restriction for measurement point
selection from KCs is removed. The sensor layout from the GA-based approach is
accepted if its sensitivity index (S,) is greater than T, otherwise, an iterative
procedure of removing KC(s) from the sensor layout and a search procedure based on
the state-of-the-art approaches such as exchange algorithms, random search, and
direct evaluation techniques is employed. The iterative procedure of sensor
distribution is illustrated in Fig. 7.

The iterative procedure takes CAD data and the sensor layout obtained by GA-
based approach (SL?) considering KCs only as measurement points. The state-of-the-
art method (exchange algorithms, random search, and direct evaluation) resulting in
highest S, is selected for further comparison with the T value. After each iteration,
one KC in the sensor layout is removed and it is replaced by the arbitrary point is
selected by state-of-the-art method or GA. The resulting S,, is checked to see if it is

greater than T. If the resulting sensor layout has S,, > T then the layout is considered
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to be the final optimal sensor layout. In case S, < T for the resulting layout, then
number of KC to be replaced (represented as K) is incremented by 1 and again the
procedure is run with state-of-the-art approaches. Another stopping criteria for this
procedure is when percentage of KCs in sensor layout () becomes zero, i.e., when

there are no KCs left in the sensor layout to be replaced.

e -

\ START

¥
Design‘ CAD Data
Information

Apply GA based sensor distribution for

predetermined KCs only
(see Section 5)

y

Sensor Layout having KCs
as measurement point

SR
[
Cxﬁ?:gj;jz;ﬁx;:t Apply iterativ‘e procedure for removing
! KCs in sensor layout
solution

// Choose sensor layout as

& STOP optimal solution
P —.
( STOP \

N

Figure 6: Feature-based approach to identify optimal sensor layout in multi-station
assembly processes; C is the % of KCs in sensor layout as measurement points

Figure 8 illustrates the situation when SL“ has S,, < T and the sensor layout from
the best state-of-the-art approach is greater than T. The sensor layout SL“ has all the
measurement points as KCs, i.e., { = 100%. In case of state-of-the-art approach, { <
100 as sensor layout obtained from the state-of-the-art approaches has measurement
points which can be arbitrary points or KCs. Hence, the sensor layout from state-of-
the-art approach has the advantage of having greater S, values than GA-based
approach. But, they are inferior to GA-based approach as ( is lower for state-of-the art

approaches.
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Figure 7: Iterative procedure for optimal sensor layout; C is the % of KCs in
sensor layout as measurement points
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Figure 8: The case when S, from GA-based approach is less than T and S, > T for
state-of-the-art approach

The proposed feature based approach is applied to sensor distribution optimization
problem; where the objective of the problem is to maximize { (percentage of KCs in
resulting sensor layout) such that the S,, > T. Therefore, the problem can be

formulated as:

Max. & (17)
Subjectto: §_=T (18)
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The feature based methodology for solving the abovementioned problem is based on
the knowledge developed by applying the GA-based approach (search for
measurement points in KCs) and the state-of-the-art approaches developed in this
paper. As shown in Fig. 8, the main aim of the methodology is to increase the number
of KCs in the sensor layout obtained by state-of-the art approaches and
simultaneously maintaining sensitivity value above threshold T.

The following section discusses in detail the steps involved in the GA-based approach

utilizing KCs as measurement point.

5. GA-based approach for sensor distribution from predetermined KCs
In this section, CAD data and predetermined KCs from design information are used
to obtain the sensor layout (SL®Y) with high sensitivity index using GA-based

approach. The steps involved in GA-based approach are detailed as follows:

5.1 Determination of measurement station

In this step, each assembly station of the multi-station assembly system is classified
either as a measurement or a non-measurement station. The index for identifying
measurement station is detailed by Ding et al. (2003). They studied, variation
transmission in multi-station assembly process and an identified an index for
identifying the measurement stations. The determination of variation transmission

index requires fixture layout geometry B(i) and the fixture layout changes between

stations, as modeled by ®(k,i) (Ding et al. 2003). Assuming, p; number of 3-2-1

fixtures on station ‘i’ and each of them physically supports each rigid part. Therefore,
the total number of degrees of freedom to be restrained is

p, - DOF = m(i) = dimension(P(7)) (19)
where m(i) is the number of independent variation sources related to p, fixtures. The

variation transmission ratio is defined to quantify the variation transmission between

stations

nGil k=2 (”(q’sf(’i ?'B(")) , (20)

where 7n(i/ k) =1 represents the complete information regarding fixture variation that

is transmitted from station i to k. The detailed analysis of 77(i/ k) is provided in Ding
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et al. (2003). Specifically, if 7(i/ k) =1 for all values of ‘i’ then sensor placement on
only the last station, i.e., N™ station is required. Therefore, i™ station is designated for
taking measurements, if 77(i/ k) <1, i.e. variance information lost during transmission
from station i to station N, is retrieved if sufficient number of sensors are installed on

i" station. Consequently, a decision variable ; is defined as

{1 if n@i/N)=1
a;, =

0 ifnG/N)<l 1)

The variable ¢, is computed for all the stations of multi-station assembly processes in

order to identify the measurement station.
5.2 Input candidate measurement points
The design information about the parts which are to be assembled is utilized to

obtain a set of measurement points. The design information of a part includes the KCs
which are defined at the design stage by the designers as the critical points or features
which are necessary to be measured for dimensional quality inspection of the products
and processes, i.e., KPCs and KCCs. The measurement points, in case of GA-based
approach, are selected only from KCs (KPCs and KCCs). Thus, difficulties such as
sensor calibration, feature-based measurement errors and the tolerance allocation are
eliminated. Furthermore, a large number of available KCs for the process and
products make the search space of sensor distribution problem computationally large.
5.3 Measurement point selection on a measurement station

In this subsection, the measurement stations and measurement points obtained from
Sections 5.1 and 5.2 are utilized to find the sensor layout with maximum sensitivity

index value. First, a station is classified into a measurement or a non-measurement

station based on the decision variable «,. The possible measurement points, based on

the part information, are available from Section 5.2. These measurement points occur
in large numbers, and their combination to construct sensor layout, based on the given
number of sensors, becomes combinatorial optimization problem. Hence, the GA is
utilized for the sensor distribution problem as it comes under the category of
evolutionary algorithms which are identified as the efficient techniques for dealing
with complex optimization problems.

The GA is a commercially available technique in most of the standard software’s

optimization toolbox. The objective function of the sensor distribution problem is the
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sensitivity index (S,,) formulated in Section 3 (Eq. 13) and the search space is the
predetermined measurement points obtained from Subsection 5.2. The standard value
of tuning parameters in GA, i.e., crossover, mutation probability and population size
has been used for effective search of the solution space. The GA is stopped when
1000 successive iterations no longer produce better sensitivity index. The output of
the application of GA on sensor distribution is the sensor layout of a single station
with maximum S,, value.
5.4 Sensor distribution in case of multi-station assembly systems

In this subsection, the GA-based procedure has been discussed for measurement
point selection for multi-station assembly system, which builds on Subsection 5.3.
The available number of sensors is dividled among measurement stations.
Furthermore, with the allocated number of sensors, measurement point selection is
carried out on each measurement station as discussed in Subsection 5.3. The overall
procedure for optimal sensor distribution in multi-station assembly system is
illustrated in following steps.
Determination of measurement station and possible sensor layout

Step 1: For stations k=1,2,3..N, the corresponding decision variable ¢, is

calculated for determining the measurement stations. Thereafter, the number
of measurement stations is denoted as ‘»’ and the measurement station index
is stored in vector @ of 1x» dimension.

Step 2: The total number of sensors ‘s’, are divided randomly among the ‘n’
measurement stations as s,,,,5;...s, such that all s,>=1. Where, s, denotes

. th .
the number of sensors available for placement on £~ measurement station.

Determination of best sensor layout from the predetermined KCs

Step 3: Apply GA to find optimal sensor layout (¥'(s)) having highest sensitivity
value (S ).

Step 4: If S) > S then S2 < S| | W' (5) « ¥/(s). Here, ¥*'(s)and S** are
the best sensor layout obtained and its sensitivity value.

Step 5: If / < L___then procedure is repeated from Step 2 and / =7+1. Where, L4 18

the maximum number of iterations (user defined).

Else Stop.
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The output from above procedure are W*(s)and S”*. The following section

illustrates the application of the proposed feature based methodology on industrial

case study.

6. Case Study

The feature-based approach is illustrated by implementing it on a case study
involving five-station cab assembly process. The process tree of the product to be
assembled on five stations is provided in Fig. 9. It is illustrated that the process tree of
cab assembly process includes parts/subassemblies such as underbody, right door
frame, left door frame, front bow, central bow, and rear bow; which are assembled on
five stations (as presented in Ceglarek and Prakash, 2012). The current case study
involves assembly of 3-D parts on five stations; hence, a newly formulated 3-D
SOVA model has been employed to model variation propagation in multi-station

assembly process (Huang et al. 2007).

Assembly Product

S

r L=
Subassembly Il Rear Roof
Bow
] ~
Subassembly Il Central Roof Bow
I L
Subassembly Il Front Roof Bow
—0
Subassembly | Left Door Front
I - I
Underbody Right Door Front

Figure 9: The process tree of the cab assembly process with 5 stations
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Therefore, in the case of 3-D part assembly process, the deviations arising on k™
station (X(k)) are due to three translational and three rotational DOF. The state
equations of five station assembly of parts are
X(k)=B(k)*P(k) + E(k), k=1 (22)
X(k) = A(k-1)* X(k-1) + B(k) < P(k) + E(k), k=2,3...5 (23)
On the basis of the derivation and analysis carried out in (Huang et al. 2007), 3-D
SOV A matrices (A, B) for five station cab assembly process are constructed.

As discussed in Section 4, the CAD data and design information about cab
assembly parts are used for applying proposed feature-based approach for sensor
distribution. The feature based methodology starts by considering only predetermined
KCs (available from CAD and design information) for selecting the measurement
points by GA-based procedure (see Section 5). The GA-based approach finds a
optimal sensor layout for the given number of sensors (which is 25 in this case). The
values of other parameters used for running GA based approach are L,,,,=20; o;=0,
a2=1, 03=0, as=1, as=1; and n =3 (refer Section 5 for explanation of these variables).
The results of GA-based approach on a cab assembly have been reported in Table 4.
GA-based approach is computationally efficient than the state-of-the-art approaches,
which is evident from Table 4. The state-of-the-art approaches, such as simulated
annealing (SA), exchange algorithm and direct evaluation strategy perform badly in
terms of required computational time. However, the solution found by the state-of-
the-art approaches is more sensitive than the GA-based approach. This is due to the
fact that the GA-based approach considers only KCs for measurement point selection
as opposed to the unrestricted search of state-of-the-art approaches. Following
paragraph presents brief descriptions of the search methods used in this section for
comparison.

GA are an inspired search method based on the principles of natural evolution.
The algorithm starts with a random set of solutions called chromosomes, whose
fitness chromosome is determined by evaluating the objective function. The process
of survival of the fittest is simulated by allowing better chromosomes to produce the
offspring chromosomes (through crossover and mutation). The offspring population
members are then evaluated to evolve next iteration’s population if they provide better
solutions. This process is repeated for large number of iterations to obtain a best
chromosome. The main parameters values used in the GA-based approach are

population size is 20, mutation probability is 0.02, and crossover probability is 0.8.
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Simulated annealing resembles the process of physical annealing of solids. It starts
with an initial solution at high temperature, exploring its nearby solutions by a
perturbation process, and then replacing the solution with higher energy solutions, if
obtained. This is repeated for a number of iterations which is determined by cooling
rate. In this application, the main parameter values are initial temperature is 1000,
cooling rate is 0.98, and number of solutions checked at each stage is 20. Exchange
algorithms start with a set of measurement locations (randomly selected) and
exchanges the current locations with those in candidate locations set to improve the
chosen objective function. Candidate locations are obtained by discretizing the
assembly parts (10 mm). When the number of measurement locations are large (>10),
CPU time of exchange algorithms are high. This is due to the fact that exchange
algorithm were initially developed for experimental design with a relatively small
number of factors and experiments. Direct search methods do not require any
information about the gradient of the objective function as opposed to gradient-based
search. A direct search algorithm searches a set of solutions around the current
solutions, looking for one in which the value of the objective function is lower than
the value at the current solution. Due to a large number of objective function
evaluations for the set of solutions, computational times are typically higher.

The decision regarding the suitability of the sensor layout from the GA-based
approach has to be made by comparing the sensitivity value (S,,) with the threshold
value (T). The threshold sensitivity value is obtained based on the potential sensitivity
(S,) value, which is taken to be 40.00. Therefore, the value of ‘T’ becomes 36.00
(taking 7= 90), which is greater than the §,, obtained from GA-based approach and
lower than the sensitivity value obtained by the state-of-the-art approaches (see Table
4). This scenario is discussed in detail in Section 4 (see Fig. 8). Therefore, iterative
procedure is employed to obtain sensor layout to replace KCs (as discussed in Section
4). The iterative procedure is used to retain maximum number of KCs in the sensor
layout obtained by the state-of-the-art approaches. Hence, the methodology described
in Section 4 is applied to obtain the best sensor layout which has S >T7 and
maximum number of measurement points as KCs. After running this procedure, five
measurement points (KCs) in the sensor layout obtained by GA-based approach has
been replaced by arbitrary points on parts/subassembly. S,, value for the sensor layout

is obtained to be 38.21. Therefore, sensor layouts obtained by the feature-based
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approach can be used for measurement purposes in multi-station assembly processes.
In this case study, the option of using sensor layouts directly from state-of-the-art
approaches directly has not been employed due to the potential cost that would be
incurred if calibration, tolerance allocation and measurement error analysis are done

for the sensor layout having arbitrary measurement points.

Table 4: Comparison among various approaches against the proposed KC-based
approaches when s = 25

Average Sensitivity Computational Time

Method of optimization

value (Sp) (Seconds)
GA-based search 33.4382 47.22
Simulated Algorithm (SA) 38.0302 529.34
Exchange Algorithm 38.6145 234.23
Direct Evaluation 38.8786 1642.63

Therefore, the sensor layout obtained after the application of feature-based
methodology will have fewer challenges related to calibration, tolerancing and

measurement errors due to the presence of KCs in final sensor layout.

7. Summary and Conclusions

This paper presents a feature-based approach for determining the optimal sensor
distribution in the case of multi-station assembly processes. The main objective of the
proposed method is to maximize the number of KCs that can be used as a
measurement point in a sensor layout. A sensitivity index value has been used for
characterizing the sensor layout, which is defined as the capability of measurement
systems to detect the underlying root causes of variation. The application of feature-
based sensor distribution methodology is illustrated on the 3-D automotive part.
Where, GA-based approach (taking in consideration predetermined KCs only for
measurement point selection) is integrated with state-of-the-art approaches with a
view to increase the number of predetermined points in the sensor layout based on the
threshold sensitivity value. The proper mathematical formulation of the KC
maximization problem and related constraints such as: (i) ease of calibration; (ii)
measurement errors; and (iii) tolerance allocation is not detailed in this paper. Instead,
conceptual guidelines have been discussed above so that future researches in this area

may focus on it.
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Appendix A
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Figure A.1: Geometrical relations for feature-based measurement errors (Huang et al.
2004)

e(x) =d, (cos’ asin® f—1)+d (cos’ asin fcos f)+d. (sinacosasin f) (A.1)
e(y) =d,(cos® asin Bcos ) +d, (cos® acos® f—1)+d_(sina cos a cos f§) (A.2)
e(z)=d, (sinacosasin B)+d, (sina cosa cos ) +d. (sin” o —1) (A.3)
Where, d.,d : ,and d. are the deviations of the feature in the x, y, and z directions
respectively and a, B are the angles between the intersection lines and the coordinate

axes as illustrated in Fig. A.1. Thus, the designer can identify the measurement errors

associated with the placement of sensors on arbitrary points.
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