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Abstract

This paper presents a novel approach for optimal key characteristics-based sensor 

distribution in a multi-station assembly process, for the purpose of diagnosing 

variation sources responsible for product quality defects in a timely manner.. Current

approaches for sensor distribution are based on the assumption that measurement 

points can be allocated at arbitrary locations on the part or subassembly. This not only 

presents challenges in the implementation of these approaches but additionally does 

not allow required product assurance and quality control standards to be integrated 

with them, due to lack of explicit relations between measured features and geometric 

dimensioning and tolerancing (GD&T). Furthermore, it causes difficulty in calibration 

of measurement system and increases the likelihood of measurement error due to the 

introduction of measurement points not defined in GD&T. In the proposed approach, 

we develop methodology for optimal sensor allocation for 6-sigma root cause analysis 

that maximizes the number of measurement points placed at critical design features 

called Key Characteristics (KCs) which are classified into: Key Product 

Characteristics (KPCs) and Key Control Characteristics (KCCs) and represent critical 

product and process design features, respectively. In particular, KCs have defined 

dimensional and geometric tolerances which provides necessary design reference 

model for process control and diagnosis of product 6-sigma variation faults. The 

proposed approach allows obtaining minimum required production system 6-sigma 

diagnosability. A feature-based procedure is proposed which includes Genetic 

Algorithm (GA)-based approach (allowing pre-defined KCs as the measurement 

points) and state-of-the-art approaches (unrestricted location of measurement points) 

to iteratively include arbitrary measurement points together with KCs in the final 

sensor layout. A case study of automotive assembly processes is used to illustrate the 

proposed feature-based approach.
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1. Introduction

Dimensional quality control is a major challenge within discrete part manufacturing 

processes. For instance, in the automotive industries, two-third of all quality related 

engineering changes in the automotive and aerospace industries are caused by 

dimensional variation related failures (Ceglarek and Shi 1995). Hence, automatic in-

process sensing and data collection techniques are employed in complex multi-station 

manufacturing processes in an effort to identify the root causes of 6-sigma variations.

In automotive assembly processes, end-of-line or distributed sensing are 

generally used to diagnose process variation sources (Khan et al. 1999; Ding et al. 

2003; Khan et al. 1998; Khan and Ceglarek 2000). Distributed sensing is more 

effective than end-of-the-line sensing as it can identify more critical variation sources 

(Ding et al. 2003). The effective root cause diagnosis of product 6-sigma variation 

faults relies on optimal sensor distribution in multi-station assembly process. Poor 

sensor distribution often produces large amounts of conflicting and vague 

information. The problem pertaining to optimal sensor distribution in multi-station 

assembly processes involves the determination of: (i) location of measurement 

stations; (ii) number of sensors required at each measurement station; and, (iii) the 

location of sensors within the measurement station. The term “location of sensor” can 

be interpreted as either: (i) the location where a sensor is actually installed; or, (ii) the 

location of a point or a feature on a given part or subassembly that the sensor 

measures. The latter, i.e., the point which is measured, is commonly used in quality 

control research. Hence, using this specification, sensor distribution may be defined as 

the selection of points or features to be measured on different measurement stations. 

In particular, measurement of a selected set of points leads to an inference about the 

root cause(s) of product 6-sigma variation faults (Mandroli et al. 2006). Several 

researchers in the area of manufacturing have focused on the sensor networks (Levi et 

al. 2010) and fault diagnosis and prediction in case of assembly systems (Rickli et al. 

2011; Baydar and Saitou 2004). Levi, et al. (2010) deals with the sensor networks in 

terms of its security performance in real world applications. Fixture faults monitoring 

using auto regressive models in automotive assembly processes are discussed in 

Rickli et al. (2011). Error prediction, diagnosis, and recovery for discrete part 

manufacturing using Monte Carlo simulations and genetic algorithm are discussed in 

Baydar and Saitou (2004).
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Research on sensor distribution can be classified in terms of selection of objective 

function, optimization approach, and type of process considered (see Table 1). 

Objectives such as diagnosability index, A-optimality, D-optimality, E-optimality and 

pattern distance have been predominantly used in the literature to characterize sensor 

distribution. The A-optimality maximizes the summation of all eigenvalues of Fisher 

information matrix, D-optimality maximizes the determinant of Fisher information 

matrix, and E-optimality maximizes the smallest eigenvalue of Fisher information 

matrix. However, these objectives are known to be computationally complex due to 

their non-linear characteristics.

Table 1: Methodologies used in literature for sensor distribution problem and its 
classification based on single and multiple station assembly system

Sensor distribution methodologies Assembly systems with 

Objective used Optimization Approach
Location of 

measurement 
points

Single 
station

Multiple 
station

Diagnosability

Direct Search

Anywhere on parts/ 
subassemblies

- -
SQP - -

Exchange algorithms - Ding et al. 
(2003)

Random search - Shukla et al. 
(2009)

Pattern distance

Direct Search - -

SQP Khan et al. 
(1999)

Khan et al. 
(1998) 

Exchange algorithms -
Khan and 
Ceglarek 
(2000)

Random search - -

A-optimality

Direct Search - -
SQP - -

Exchange algorithms Zhu et al. 
(2004) -

Random search -
Djurdjanovic 

and Ni 
(2004)

D-optimality

Direct Search
Wang and 
Nagarkar 

(1999)
-

SQP - -

Exchange algorithms

Wang and 
Nagarkar 
(1999); 

Camelio et 
al. (2003b)

-

Random search - -

E-optimality

Direct Search - -
SQP - -

Exchange algorithms Liu et al. 
(2005)

Ding and 
Apley 
(2007)

Random search - -
Feature-based approach GD&T driven Proposed in this paper
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based on Genetic 
Algorithm (GA)

(KCs)

The sensor distribution problem becomes even more complex when these objectives 

are evaluated in a high dimensional search space (Ding et al. 2003; Liu et al. 2005).

This paper selects the E-optimality objective for evaluating the sensor layouts as it 

subsumes other objectives (Liu et al. 2005). Furthermore, the existing optimization 

algorithms for sensor distribution have been tested only on the problems of lower 

dimensions; mostly in a production systems with a single assembly station (see Table 

1). Table 1 classifies methodologies for sensor distribution approaches used in 

literature based on the type of objective used and optimization approach. 

Additionally, there are also some studies that conducted analysis of sensor distribution 

problem without proposing optimization approach and using objectives such as 

diagnosability (Ding et al. 2002; Zhou et al. 2003), pattern distance (Ding et al. 

2002a), A-optimality (Djurdjanovic and Ni 2003), D-optimality (Djurdjanovic and Ni 

2003), and E-optimality (Djurdjanovic and Ni 2003).

As illustrated in Table 1, the state-of-the-art approaches such as exchange 

algorithm, SQP, random search, direct search; provides optimal sensor layout where 

the measurement points are arbitrarily selected on the part or subassembly 

(unrestricted search), rather than selecting KCs which are free from measurement 

difficulties. That is, the state-of-the-art approaches does not consider the ease for 

calibration of measurement gauges, feature based measurement error (Huang et al. 

2004), and lack of explicit relations between measured features and geometrical 

dimensioning and tolerancing (GD&T) characteristics (Meadows 1995). Hence, the 

solution provided by existing approaches often becomes costly or difficult to 

implement in industrial applications as they cannot be easily integrated with the 

required product assurance and quality control standards. Increasingly, there is a need 

to develop an effective and efficient methodology to obtain optimal sensor layouts 

which can maximize production system diagnosability and simultaneously maximize 

the number of measurement points placed at various KPCs and KCCs, which are 

specifically selected for product assurance and quality control standards during the 

design phase of product and process validation, respectively. However, since there are 

a large number of KCs with various complex interactions defined by the GD&T, and 

it is economically not justifiable to measure all of the KCs in multi-station assembly 
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process. Therefore, optimal sensor distribution is a very relevant and challenging 

problem.

A feature-based sensor distribution approach is proposed in this paper that 

maximizes the number of measurement points that are placed at critical design 

features called Key Characteristics (KCs) available as part of the product and process 

design information (CAD/CAM), and classified into: Key Product Characteristics 

(KPCs) and Key Control Characteristics (KCCs) as to represent critical product and 

process design features, respectively. The feature-based approach starts with the GA-

based approach, which considers only KCs as candidates for measurement point 

selection for sensor layout. In particular, GA are used because of the huge search 

space in which to search, owing to the large number of KCs and their combinations,

to create sensor layouts with various complex interactions defined by the GD&T. The 

resulting sensor layout from GA allows having measurements with the best alignment 

to the product design requirements (GD&T). However, restrictions to select 

measurement points only from the predefined set of KCs can lead to a decrease of the 

overall 6-sigma variation faults diagnosability level (i.e., sensitivity of sensor 

layouts). Therefore, an iterative procedure is employed, which uses sensor layout 

possessing all measurement points as KCs (obtained by GA) to search for sensor 

layout having higher sensitivity. The procedure iteratively replaces KC(s) present in 

the sensor layout obtained by GA with arbitrary point(s) based on state-of-the-art 

approaches. This procedure is repeated until the sensitivity value of the sensor layout 

is greater than the predefined threshold value. Thus, the proposed feature-based 

optimal sensor distribution approach integrates both (i) traditional sensor distribution 

approaches such as random search, exchange algorithms, and direct search

(unrestricted selection of measurement points) and (ii) GA-based approaches (pre-

defined KCs as candidates for measurement points selection) to maximize the number 

of KCs selected as measurement points subject to minimum required production 

system diagnosability.

The remainder of this paper is organized as follows: Section 2 presents a brief 

discussion on relevant challenges and complexity pertaining to the sensor distribution 

problem.  In Section 3, a mathematical formulation of the objective function and 

related constraints are discussed. Section 4 details the GA-based procedure for 

optimal sensor distribution problem taking into consideration predetermined KCs as 
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the measurement points. Further, the feature-based approach for sensor distribution 

based on GA-based procedure and the state-of-the-art approaches based on the 

random search, exchange algorithms, and direct search, is discussed in Section 5. 

Section 6 details the application of the proposed methodology for a case study of cab 

assembly process. Finally, Section 7 provides summary and conclusions along with a 

discussion on future research directions.

2. Information required for sensor distribution problem in multi-station 

assembly

The problem of sensor distribution for process control and quality improvement is a

complex issue which requires design information to model all critical intricacies 

involving products and processes, inherent for control of multi-station assembly 

processes. The information required for sensor distribution can be explicitly divided 

into: product information; process information; and information related to interactions 

between process and product. These required design information creates a significant 

challenges due to its complexity as outlined below.

Product Information Complexity

Early design evaluation of multi-station assembly processes is very important for new 

product development and also for designing a robust manufacturing system to 

improve product quality. Common automotive product assembly consists of 200–300 

sheet metal parts and subassemblies which are to be assembled on 55–75 assembly

stations (Ceglarek and Shi 1995). Therefore, the complexity arises when selecting 

measurement points for sensor layout from the large combinations KPCs in multiple 

parts and their subassemblies in several stations. The assembly process of body-in-

white is represented in the form of process tree as shown in Fig. 1. Each KPC on 

parts/subassemblies can be represented as a design feature such as in automotive body 

assembly process there are four major features measured on the product: (i) points; 

(ii) edges; (iii) holes; and, (iv) slots. It is important to use/measure KPCs as they 

directly represent product performance evaluation. However, the KPCs are selected 

with different objectives in mind and thus not all can be measured (see Table 2). 

Process information complexity

Multi-station assembly process generally refers to the processes involving more 

than one assembly station to manufacture a complex product. For example, 

automotive body assembly processes include multiple stations where parts are 
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assembled to produce complex product. For example, a common assembly process for 

automotive product consists of 55-75 stations (Ceglarek and Shi 1995).  

L

K 55

J

51 I

53 54

I2H I1

42 43 4439 40 41G

F35

15 16 17

C ED3332 3431

D1 D2 E3 E4C1 B

1312 1411 D3 D4 21 22

18 19 20

A 10

A1 9

A2 A3

32 41 5 6 7 8

23 24 25

29 30 E1 E2

26 27 28

36 37 38

Level 1

Level 2

Level 3

Level 4

Level 5

Level 5

Level 6

Level 7

Level 8

Level 9

Level 10

Level 11

Level 12

52

I4I3

48 49 5045 46 47

A. Dash Sub-assembly
A1. Dash sub1: Plenum lower and Dash and cowl 
sides subassembly
A2. Dash sub2: Plenum lower subassembly
A3. Dash sub3: Dash and cowl sides subassembly
B. Dash / Underbody subassembly
C. Under body Complete
C1. UB sub1: Hydro-form motor compartment
D. Body Side Right
D1. Body Side Panel & Roof Rail Sub assembly
D2. Quarter Outer Sub assembly 
D3. Body Side Panel Sub assembly
D4. Roof Rail Sub assembly
E. Body side Left
(same as body side right)
F. Framing
G. Weld re-spots station
H. Roofing Station
I. Doors
I1.   Right rear cargo door
I2.   Right front door
I3.   Left rear cargo door
I4.   Left front door
J. Hood Hinges
K. Fenders
L. Hood

1. Plenum lower panel
2. Right plenum end panel 
3. Left plenum end panel 
4. Right hood hinge gusset 
5. Left hood hinge gusset
6. Dash panel 
7. Right cowl side
8. Left cowl side
9. Cowl Bar 
10. Underbody sub-assembly 
11. Right front fender tube
12. Left front fender tube.
13. Radiator X-Member SA
14. Lower tube 
15. Body side panel 
16. Side extension reinforcement 
17. Reinforcement C-Pillar
18. Roof Side Int Ext Cab Rail Assembly 
19. A Pillar Inner Panel 
20. A – Pillar Lower
21. Reinforcement assembly cargo door
22. Rear Quarter Outer
23-30 (Same as 15-22)
31. Front roof bow

32. Middle roof bow
33. Rear roof bow
34. Cab rear inner panel
35. Cab rear outer panel
36. Roof
37. Left side of the roof
38. Right side of the roof
39. Rear right  Cargo Door
40. Lower right  rear door hinge
41. Upper right rear door hinge
42. Front right  Cargo Door
43. Lower right  front door hinge
44. Upper right  front door hinge
45. Rear left Cargo Door
46. Lower left rear door hinge
47. Upper left rear door hinge
48. Front left Cargo Door
49. Lower left front door hinge
50. Upper left front door hinge
51. Left Hood Hinge
52. Right Hood Hinge
53. Left Fender
54. Right Fender
55. Hood

Figure 1: The process tree of a body-in-white

To evaluate the dimensional quality of the assembled product, measurement points 

are selected on parts. Figure 2 illustrates a 3-D fixture layout for plenum lower 

subassembly restrained during assembly operations by set of 4-way, 2-way fixture 

pins and three datum fixture pads. These types of fixtures are used throughout

assembly stations to cons������� ����	
���


����� ���
�
��
� ������� ��

���
�

variation sources). Thus, there are large number of fixtures (KCCs) controlling the 

variations in assembly operations. In parts/subassemblies, these KCCs are defined as 

various design features such as points, holes, edges, and slots. Each of the design 

features are defined by GD&T characteristics, which is important for estimation of 

process capability. Hence, KCCs on parts/subassemblies have to be measured for fault 

root cause identification. However, not all KCCs can be measured due to visibility & 

accessibility of measurement points and associated costs. Therefore, there is a need 

for selection of measurement points, which can maximize the sensitivity of sensor 

layouts to detect variations. More information about the sensitivity of sensor layouts 
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Figure 2: Fixture layout on a 3-D Plenum Lower Subassembly; F/A – Fore/Aft, CC –
Cross Car, U/D – Up/Down

Therefore, fixtures used in production are not frequently calibrated by using 

direct measurement of the locators, but rather indirectly by using measurement of 

KCC points on the parts/subassemblies if available; or measurement of surrogate 

points (key measurement point) for which the relation between them and KCC(s) can 

be estimated accurately (for example, stream-of-variations analysis (SOVA) model 

described below). Therefore, the process of distributing the sensors needs to (i) 

maximize number of measured KCCs is subject to cost constraints, such as a limited 

number of measurement stations and number of measurement points; and then (ii) 

select additional points which minimize uncertainty in model estimating relation 

between measurement points and KPCs and simultaneously maximize production 

system diagnosability. This approach will be discussed in Section 3. 

In multi-station assembly processes, the propagation of fixture variation 

generated from each station and its impact on product quality are mathematically 

described by the assembly response function such as SOVA model. The SOVA model 

is developed for multi-station assembly processes as illustrated in Fig. 3 (Jin and Shi 

1999; Huang et al. 2007). Mathematically it is represented as
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X(k) = A(k-1)×X(k-1) + B(k)×P(k) + E(k),  k = 1,2…N (1)

Y(k) =C(k)×X(k) + W(k), {k}�{1,2,3…N}    (2)

where, k is the station index and N is the number of stations. X(k) represents the 

dimensional deviations that occur randomly as a result of assembly process on station 

k. The input vector P(k) represents the random deviations associated with fixture 

locators on station k. Process errors and unmodeled higher order terms are represented 

by E(k). Y(k) and C(k) represents product measurements and observation matrix at 

station k. W(k) is white noise representing measurement noise.

Eq. (1) suggests that part deviation X(k), at the kth station is influenced by the 

accumulated deviation up to station k-1, i.e., X(k-1) and deviation contribution at 

station k, i.e., P(k). Whereas, in Eq (2), observation vector Y(k),is obtained at 

measurement station k. When sensors are installed on one or more stations in a 

production line, the index for the observation equation (Eq. 2) is actually a subset of 

{1,2,3, …,N}, whereas the index for the state equation is complete set. In case of end-

of the line sensing k =N only, i.e., all the measurement points are present at the end of 

production line. Whereas, in case of distributed sensing, k for Eq. 2 is subset of {1, 2, 

3,…,N}, i.e., measurement points are selected on parts assembled at multiple stations.

Figure 3: Diagram of Multi-station assembly process with N stations

The matrices A(k) and B(k) in the state space model represent process design 

such as change of fixture layouts at each station, as well as the effect of fixture layout 

change across stations (see Table 3). The matrix C(k) , can be interpreted as, sensor 

layout at kth station (number of measurement point and its locations, see Table 3). The 
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aforementioned matrices are determined by utilizing the information about product 

and process (CAD/CAM) and thus tend to become large in dimensions. Furthermore, 

the mathematical indices, which are formulated for sensor distribution based on these 

matrices, becomes computationally complex. The interpretation of the system 

matrices A, B, and C is illustrated in Table 3.

Table 3: Interpretation of the SOVA matrices (Ding et al. 2003)

Symbol Name Relationship Interpretation Assembly 
Task

A(·) Dynamic matrix )()1( )1( kk k XX A �� ��� �
Change of fixture 

layout between two 
adjacent stations

Assembly 
transfer

B(·) Input matrix )()( )( kk k XP B���� Fixture/Mating
layout at station k

Part 
positioning

C(·) Observation 
matrix

( )( ) ( )kk k����CX Y Sensor layout at 
station k Inspection

( )� � State transition 
matrix

( , )( ) ( )�X Xk ii k����
Change of fixture 

layout among 
multiple stations

Assembly 
transfer

The sensor distribution problem in case of distributed sensing can be divided into: 

(i) determining measurement stations (i.e., determining values of k in Eq. 2); and, (ii) 

location of measurement points on parts or subassembly at the measurement station. 

Generally, restriction is imposed on the number of measurement stations in multi-

station assembly process due to high capital investment in constructing measurement 

stations and installing measurement sensors. Figure 4, shows the assembly and 

measurement station of an assembly line. 

Figure 4: (a) Automotive assembly station; and, (b) Measurement station 
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After measurement stations are identified, the selection of the set of measurement 

points located on parts/subassemblies at measurement stations are identified from a 

large number of candidate measurement points. Furthermore, the combination of 

measurement points that can occur in sensor layouts adds to the complexity of sensor 

distribution problem. The following section discusses the mathematical formulation of 

the sensor distribution problem, which is used in feature-based approach to obtain 

optimal sensor layout.

3. Sensor distribution problem formulation

In this section, the sensor distribution problem for distributed sensing is 

formulated using the SOVA model (Jin and Shi 1999; Huang et al. 2007) for 

modeling multi-station assembly processes (see Section 2). Based on the SOVA 

model (Eqs. 1 and 2), numerous performance measures for optimal sensor placement 

have been introduced in the current literature such as: maximum distance between the 

variation patterns (Khan et al. 1999); diagnosability index ( � ) (Ding et al. 2003); and, 

sensitivity index ( mS ) (Liu et al. 2005). The diagnosability condition does not makes 

distinction between diagnosable systems even though some sensor systems may have 

a superior performance compared to others in that they can easily detect a small 

change in the variation sources. This difference of detection capability is 

characterized by the concept of “sensitivity”. It is desirable that a sensor system not 

only has full diagnosability but also is sensitive to the underlying changes of variation 

sources. Hence, this paper will go beyond diagnosability, aiming to maximize 

sensitivity indices. The non-zero values of the sensitivity index, as developed in this 

paper, guarantees full diagnosability. The sensitivity index differentiates among the 

diagnosable systems and thus is a tougher objective. 

The linear input-output relations between observation vector Y(k), and variation 

sources P(k), is illustrated based on the SOVA model as shown in Eqs (1) and (2). 

The input-output model is 

Y=J·P + J(0)·X(0) + D         (3)

where, T T T T[ (1) (2) ......... (N)]�Y Y Y Y , DT= T T T[ (1) (2) ....... (N)]D D D and 

k

i 1
(k) (k) (k, j) (i) (k)

�

� 	
D C � � � . ( , )i j� is interpreted as change of fixture layout 

among multiple stations (from ith to jth station). 
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The coefficient of first term of Eq  (3) J can be defined as:

(1) (1) 0 0
(2) (2,1) (1) (2) (2) 0

(N) (N,1) (1) (N) (N,2) (2) (N) (N)

� �

 �

 �

 ��

 �

 �

 �� �

C B
C � � � �

J

C � � � � � � �

� �

� �

� � � � �

� � � � �

� �

(4)

and coefficient of X(0) term as:

(1) (1,0)
(2) (2,0)

(0)

(N) (N,0)

� �

 �

 �

 ��

 �

 �

 �� �

C �
C �

J

C �

�

�

(5)

The deviations due to stamping processes X(0) are ignored as only deviation of parts 

during assembly processes are considered. Thus, the linear diagnostic model can be 

represented as:

Y=J·P + D (6)

In root cause diagnosis, inferences can be made about P based on a sample of 

measurements of Y.

In the model represented by Eq (6), the J matrix is determined by system design 

parameters such as locator and sensor locations. The J matrix is called system matrix 

in engineering systems design. Also, the P matrix is not the vector of parameters but a 

vector of unknown random inputs. In fact, Eq (6) can be represented as a linear mixed 

model with both fixed and random effects. 
~

� � 	 � 	Y J � � 	 
 (7)

where � is the mean vector of P and P� is the zero-mean random part of the variation 

sources. Hence, � corresponds to the fixed effects and P� corresponds to the random 

effects. For root cause diagnosis, one needs to detect abnormal variations of the mean 

components 1[ ]T
p� ��� � and the variance components 2 2

1[ ]T
p� ��� � . If Ym and 

�Y represents the mean and covariance matrix of Y, then the model represented by Eq 

(7) can be

� �Ym J � (8)

� � 2( ) ( )Dvec vec� �� � 	Y J � 
 (9)
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where (.)� is a matrix transform defined on matrix 1[ ]k n T�Z z z z� � having zk as its 

kth row vector, k = 1,2….n.
1 1 1 1( ) ( * ) ( * ) ( * ) ( * )T n T n T n n T� � �� � �Z z z z z z z z z� � � (10)

and ‘*’ represents the Hadamard product of the two vectors. In defining the 

diagnosability, sensitivity for detecting changes in mean and variance components can 

be defined as the ratio of the change in the mean or variance of Y over a perturbation 

of the mean and variance of the input sources. Hence, given measurements Y, the 

mean-detecting sensitivity (Sm) and variation-detecting sensitivity (Sv) is defined as:

( ) ( )min
( ) ( )

T

m TS
�

� �
� ��

� Y Y
� �

m m
� �

(11)

� � � �� �
min

( ) ( )

T

v T

tr
S

�

� �

� ��

� �
�

Y Y

� � � �

� �

(12)

where, ��Y
� is the covariance matrix obtained from the process variation sources. 

Since a linear relation exists in Eqs (8) and (9) and using the eigen value property of 

symmetric matrix, the abovementioned sensitivity indices can be expressed in terms 

of TJ J as:

min ( )T
mS �� J J and min ( ( ) ( ))T

vS � � �� J J (13)

Where, min (.)� denotes the smallest eigenvalue of a matrix. An inequality relationship 

between Sm and Sv is identified; for same J, the lower bound for Sv is 2
mS . That is

2
m vS S� ,for same J (14)

From Eq (14), it can be inferred that maximization of Sm will certainly increase the 

value of Sv. Hence, Sm can be considered as a unified criterion for the problem of 

sensor distribution in multi-station assembly processes. Therefore, the design 

variables for sensor distribution problem are the number of sensors and their location 

on parts at different measurement stations represented by vector �(s), where ‘s’ is the 

number of sensors. The number of sensors ‘s’ is divided into ‘n’ measurement stations 

as s1, s2…, sn; where, sk represents the number of sensors allocated to kth

measurement station. Hence, 

1

n

k
k

s s
�

�
 (15)
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� (s) consists of the X, Y and Z coordinate of measurement points on 

parts/subassemblies at measurement station. Now, � (s) is represented as:

1 1 1

1 1 1 1 1 1
1 1 1 1 1 1( ) : :

n n n

n n n n n n
s s s s s ss X Y Z X Y Z X Y Z X Y Z� �� � �� � � � (16)

where, j
iX , j

iY and j
iZ is the coordinate of ith sensor placed on the jth station. The 

sensor distribution approach in this paper is based on the sensitivity index Sm ( � (s)), 

which characterizes the quality of sensor layout � (s).

4. Feature-based approach for sensor distribution

In this section, the feature based approach for sensor distribution is discussed in 

detail. This section details the feature-based approach for sensor distribution by 

involving GA-based approach (see Section 5) and state-of-the-art approaches such as 

random search, exchange algorithms, and direct search. The feature-based approach 

tries to maximize the number of KCs in the sensor layout thereby maintaining high 

sensitivity (Sm) of sensor layouts. In feature-based approach, initially only KCs are 

analyzed by using GA for getting the sensor layouts with high sensitivity value. If the 

sensitivity index of the solution obtained is lower than the predefined threshold, then 

state-of-the-art approaches are used to select the measurement points on the entire 

regions on the parts. More information about the approach is provided in the latter 

half of this section. Following text first discusses about the problems in selecting 

arbitrary points as measurement points. 

As mentioned in the introduction, the sensor placement on arbitrary points usually 

incurs different types of problems:

i. Ease of calibration: It means that the measurement points selected should be in the 

regions which are easily accessible to the measurement device. This is done to 

avoid time consuming setups by the measuring device during measurement, which 

increases the overall inspection time of the assembly processes.

ii. Measurement error associated with the measurement point on the part: The 

measurement devices have inherent errors caused by the lack of feature 

traceability for some of the points on the part. The lack of feature traceability 

means that instead of measuring a given point, the measurement device may 

actually measure the area around the selected point (Huang et al. 2004). This 

causes measurement errors corresponding to each measurement point which can 

have significant impact on the measurement accuracy and hence on the process 
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control and the diagnostic algorithms currently used in manufacturing. Figure 5 

has been used to illustrate the concept of measurement errors related to some 

points on the part. The nominal position of a point on part is A and when it is 

mislocated due to the part positioning error in Z direction, its position becomes 

A*. The measurement error arises when the measurement device measures point 

A** instead of A*. The measurement error in Y direction is illustrated in Fig. 5. 

The features such as a point on a plane can be measured with full accuracy in one 

direction which is known as feature tracing direction. The measurement error 

associated with the measuring devices is mainly depends upon: (i) the direction of 

measurement; (ii) the geometry of the features; and (iii) the direction of the 

pattern variation. The relations for estimating the errors in each direction are 

detailed in Appendix A.  

Figure 5: Illustration of the error in the Y direction caused by a part mislocation 
in Z direction. A – nominal position of the measurement point; A* - mislocated 

position of the measurement point caused by part mislocation in Z direction; A**-
point measured. (Huang et al. 2004)

iii. Tolerance values of the measurement points: Before assembly operations are 

actually performed, design engineers use the geometric dimensioning and tolerancing 

guidelines for most of the design operations. Based on these guidelines, the tolerance 

values are assigned to the predetermined critical features/points (Meadows 1995).

Following text discusses about the feature based approach in detail.

The overall approach for feature-based approach for the decision making is 

presented in Fig. 6. The feature based methodology starts with the arrangement of 

A
Measurement 
Device

Measurement Error in Y direction caused 
by part (point A) deviation in Z direction

Z

X

Y

Part mislocation in 
Z-direction 

A
A**

Real position of 
measured object 

Measurement error in Y 
direction

Nominal position of the 
measured object
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CAD data, and design information about KCs. The CAD data provides the geometric 

and dimensional information (GD&T) of the parts, subassemblies and the final 

product including all KCs: KPCs & KCCs and their tolerances. The design 

information provides the details about the different KCs, in the form of features and 

points on the parts, which are easy to calibrate, free from feature based measurement 

errors and have defined tolerances at the design stage. Then, GA-based procedure is 

applied in terms of selecting the measurement points from available KCs. GA based 

procedure is employed first for solving sensor distribution problem after getting the 

design information and CAD data as measurement points are selected solely from 

available KCs.

The GA-based approach finds best sensor layout with all measurement points as 

KCs and having highest sensitivity value for given number of sensors. Detailed 

description about the GA-based approach is discussed in Section 5. Intuitively, it may 

be noted that the sensor layouts obtained from the GA-based approach may not be as 

sensitive as the layouts from state-of-the-art approaches. This is due to the fact that all 

the state-of-the-art approaches consider entire regions on the part for measurement 

point selection. Therefore, the decision regarding accepting the sensor layout from 

GA-based approach as the final solution is made based on threshold value (T) of the 

sensitivity index. Hence, a threshold value (T) is defined to be � % of potential 

sensitivity value (Sp), which is attained if the restriction for measurement point 

selection from KCs is removed. The sensor layout from the GA-based approach is 

accepted if its sensitivity index (Sm) is greater than T, otherwise, an iterative 

procedure of removing KC(s) from the sensor layout and a search procedure based on 

the state-of-the-art approaches such as exchange algorithms, random search, and 

direct evaluation techniques is employed. The iterative procedure of sensor 

distribution is illustrated in Fig. 7.

The iterative procedure takes CAD data and the sensor layout obtained by GA-

based approach (SLGA) considering KCs only as measurement points. The state-of-the-

art method (exchange algorithms, random search, and direct evaluation) resulting in 

highest Sm is selected for further comparison with the T value. After each iteration, 

one KC in the sensor layout is removed and it is replaced by the arbitrary point is 

selected by state-of-the-art method or GA. The resulting Sm is checked to see if it is 

greater than T. If the resulting sensor layout has Sm ������
����
���������
����
��
�
��



18

to be the final optimal sensor layout. In case Sm �� �� ���� ��
� �

������� �������� ��
��

number of KC to be replaced (represented as K) is incremented by 1 and again the 

procedure is run with state-of-the-art approaches. Another stopping criteria for this 

����
���
� �
���
���
��
����
����!"
� ��� 

�
��� ������� �#$��
���

� %
���� i.e., when 

there are no KCs left in the sensor layout to be replaced.

Figure 6: Feature-based approach to identify optimal sensor layout in multi-station 
�


���������




'�#��
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�<����!"
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Figure 8 illustrates the situation when SLGA has Sm < T and the sensor layout from 

the best state-of-the-art approach is greater than T. The sensor layout SLGA has all the 

measurement points as KCs, i.e.��#�?����<@�\����

����
���
-of-the-��������������#�^�

100 as sensor layout obtained from the state-of-the-art approaches has measurement 

points which can be arbitrary points or KCs. Hence, the sensor layout from state-of-

the-art approach has the advantage of having greater Sm values than GA-based 

approach. But, they are inferior to GA-��

������������
�#��
����
������
���
-of-the art 

approaches. 
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Figure 7: Iterative procedure for optimal sensor layout'�#��
���
�<����!"
����
sensor layout as measurement points

Figure 8: The case when Sm from GA-based approach is less than T and Sm > T for 
state-of-the-art approach

The proposed feature based approach is applied to sensor distribution optimization 

problem; where the ��`
����
������
������
���
������|���%
�#�(percentage of KCs in 

resulting sensor layout) such that the Sm �� �@� ��
�
���
�� ��
� �����
�� ���� �
�

formulated as: 

(17)

Subject to: (18)
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The feature based methodology for solving the abovementioned problem is based on 

the knowledge developed by applying the GA-based approach (search for 

measurement points in KCs) and the state-of-the-art approaches developed in this 

paper. As shown in Fig. 8, the main aim of the methodology is to increase the number 

of KCs in the sensor layout obtained by state-of-the art approaches and 

simultaneously maintaining sensitivity value above threshold T.

The following section discusses in detail the steps involved in the GA-based approach

utilizing KCs as measurement point.

5. GA-based approach for sensor distribution from predetermined KCs

In this section, CAD data and predetermined KCs from design information are used 

to obtain the sensor layout (SLGA) with high sensitivity index using GA-based 

approach. The steps involved in GA-based approach are detailed as follows: 

5.1 Determination of measurement station

In this step, each assembly station of the multi-station assembly system is classified 

either as a measurement or a non-measurement station. The index for identifying 

measurement station is detailed by Ding et al. (2003). They studied, variation 

transmission in multi-station assembly process and an identified an index for 

identifying the measurement stations. The determination of variation transmission 

index requires fixture layout geometry B(i) and the fixture layout changes between 

stations, as modeled by ( , )k i� (Ding et al. 2003). Assuming, pi number of 3-2-1

fixtures on station ‘i’ and each of them physically supports each rigid part. Therefore, 

the total number of degrees of freedom to be restrained is

( ) dimension( ( ))ip DOF m i i� � � P , (19)

where m(i) is the number of independent variation sources related to pi fixtures. The 

variation transmission ratio is defined to quantify the variation transmission between 

stations

( ( ( ,1) ( ))( / )
( )

k ii k
m i

� �� �
�

� � , (20)

where ( / ) 1i k� � represents the complete information regarding fixture variation that 

is transmitted from station i to k. The detailed analysis of ( / )i k� is provided in Ding 
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et al. (2003). Specifically, if ( / ) 1i k� � for all values of ‘i’ then sensor placement on 

only the last station, i.e., Nth station is required. Therefore, ith station is designated for 

taking measurements, if ( / ) 1i k� � , i.e. variance information lost during transmission 

from station i to station N, is retrieved if sufficient number of sensors are installed on 

ith station. Consequently, a decision variable i� is defined as

1 if ( / ) 1
0 if ( / ) 1i

i N
i N

�
�

�
� 

� ! �"
(21)

The variable i� is computed for all the stations of multi-station assembly processes in 

order to identify the measurement station. 

5.2 Input candidate measurement points

The design information about the parts which are to be assembled is utilized to 

obtain a set of measurement points. The design information of a part includes the KCs 

which are defined at the design stage by the designers as the critical points or features 

which are necessary to be measured for dimensional quality inspection of the products 

and processes, i.e., KPCs and KCCs. The measurement points, in case of GA-based 

approach, are selected only from KCs (KPCs and KCCs). Thus, difficulties such as 

sensor calibration, feature-based measurement errors and the tolerance allocation are 

eliminated. Furthermore, a large number of available KCs for the process and 

products make the search space of sensor distribution problem computationally large.

5.3 Measurement point selection on a measurement station 

In this subsection, the measurement stations and measurement points obtained from 

Sections 5.1 and 5.2 are utilized to find the sensor layout with maximum sensitivity 

index value. First, a station is classified into a measurement or a non-measurement 

station based on the decision variable i� . The possible measurement points, based on 

the part information, are available from Section 5.2. These measurement points occur 

in large numbers, and their combination to construct sensor layout, based on the given 

number of sensors, becomes combinatorial optimization problem. Hence, the GA is 

utilized for the sensor distribution problem as it comes under the category of 

evolutionary algorithms which are identified as the efficient techniques for dealing 

with complex optimization problems.   

The GA is a commercially available technique in most of the standard software’s 

optimization toolbox. The objective function of the sensor distribution problem is the 
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sensitivity index (Sm) formulated in Section 3 (Eq. 13) and the search space is the 

predetermined measurement points obtained from Subsection 5.2. The standard value 

of tuning parameters in GA, i.e., crossover, mutation probability and population size 

has been used for effective search of the solution space. The GA is stopped when 

1000 successive iterations no longer produce better sensitivity index. The output of 

the application of GA on sensor distribution is the sensor layout of a single station 

with maximum Sm value. 

5.4 Sensor distribution in case of multi-station assembly systems

In this subsection, the GA-based procedure has been discussed for measurement 

point selection for multi-station assembly system, which builds on Subsection 5.3. 

The available number of sensors is divided among measurement stations. 

Furthermore, with the allocated number of sensors, measurement point selection is 

carried out on each measurement station as discussed in Subsection 5.3. The overall 

procedure for optimal sensor distribution in multi-station assembly system is 

illustrated in following steps.

Determination of measurement station and possible sensor layout

Step 1: For stations 1,2,3...k N� , the corresponding decision variable k� is 

calculated for determining the measurement stations. Thereafter, the number 

of measurement stations is denoted as ‘n’ and the measurement station index 

is stored in vector � of 1 n# dimension.

Step 2: The total number of sensors ‘s’, are divided randomly among the ‘n’

measurement stations as 1 2 3, , ns s s s� such that all ks >=1. Where, ks denotes 

the number of sensors available for placement on kth measurement station.

Determination of best sensor layout from the predetermined KCs

Step 3: Apply GA to find optimal sensor layout ( ( )l s� ) having highest sensitivity 

value ( l
mS ).

Step 4: If  l Best
m mS S$ then Best l

m mS S% , ( ) ( )Best ls s%� � . Here, ( )Best s� and Best
mS are 

the best sensor layout obtained and its sensitivity value.

Step 5: If maxl L� then procedure is repeated from Step 2 and 1l l� 	 . Where, Lmax is 

the maximum number of iterations (user defined).

Else Stop.
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The output from above procedure are ( )Best s� and Best
mS . The following section 

illustrates the application of the proposed feature based methodology on industrial 

case study.

6. Case Study

The feature-based approach is illustrated by implementing it on a case study 

involving five-station cab assembly process. The process tree of the product to be 

assembled on five stations is provided in Fig. 9. It is illustrated that the process tree of 

cab assembly process includes parts/subassemblies such as underbody, right door 

frame, left door frame, front bow, central bow, and rear bow; which are assembled on 

five stations (as presented in Ceglarek and Prakash, 2012). The current case study 

involves assembly of 3-D parts on five stations; hence, a newly formulated 3-D

SOVA model has been employed to model variation propagation in multi-station 

assembly process (Huang et al. 2007).

Figure 9: The process tree of the cab assembly process with 5 stations
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Therefore, in the case of 3-D part assembly process, the deviations arising on kth

station (X(k)) are due to three translational and three rotational DOF. The state 

equations of five station assembly of parts are

X(k) = B(k)×P(k) + E(k),    k = 1 (22)

X(k) = A(k-1)×X(k-1) + B(k)×P(k) + E(k), k = 2,3…5 (23)

On the basis of the derivation and analysis carried out in (Huang et al. 2007), 3-D

SOVA matrices (A, B) for five station cab assembly process are constructed.

As discussed in Section 4, the CAD data and design information about cab 

assembly parts are used for applying proposed feature-based approach for sensor 

distribution. The feature based methodology starts by considering only predetermined 

KCs (available from CAD and design information) for selecting the measurement 

points by GA-based procedure (see Section 5). The GA-based approach finds a 

optimal sensor layout for the given number of sensors (which is 25 in this case). The 

values of other parameters used for running GA based approach are Lmax=20; �1=0, 

�2=1, �3=0, �4=1, �5=1; and n =3 (refer Section 5 for explanation of these variables).

The results of GA-based approach on a cab assembly have been reported in Table 4. 

GA-based approach is computationally efficient than the state-of-the-art approaches, 

which is evident from Table 4. The state-of-the-art approaches, such as simulated 

annealing (SA), exchange algorithm and direct evaluation strategy perform badly in 

terms of required computational time. However, the solution found by the state-of-

the-art approaches is more sensitive than the GA-based approach. This is due to the 

fact that the GA-based approach considers only KCs for measurement point selection 

as opposed to the unrestricted search of state-of-the-art approaches. Following 

paragraph presents brief descriptions of the search methods used in this section for 

comparison. 

GA are an inspired search method based on the principles of natural evolution. 

The algorithm starts with a random set of solutions called chromosomes, whose 

fitness chromosome is determined by evaluating the objective function. The process 

of survival of the fittest is simulated by allowing better chromosomes to produce the 

offspring chromosomes (through crossover and mutation). The offspring population 

members are then evaluated to evolve next iteration’s population if they provide better 

solutions. This process is repeated for large number of iterations to obtain a best 

chromosome. The main parameters values used in the GA-based approach are 

population size is 20, mutation probability is 0.02, and crossover probability is 0.8. 
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Simulated annealing resembles the process of physical annealing of solids. It starts 

with an initial solution at high temperature, exploring its nearby solutions by a 

perturbation process, and then replacing the solution with higher energy solutions, if 

obtained. This is repeated for a number of iterations which is determined by cooling 

rate. In this application, the main parameter values are initial temperature is 1000, 

cooling rate is 0.98, and number of solutions checked at each stage is 20. Exchange 

algorithms start with a set of measurement locations (randomly selected) and 

exchanges the current locations with those in candidate locations set to improve the 

chosen objective function. Candidate locations are obtained by discretizing the 

assembly parts (10 mm). When the number of measurement locations are large (>10), 

CPU time of exchange algorithms are high. This is due to the fact that exchange 

algorithm were initially developed for experimental design with a relatively small 

number of factors and experiments. Direct search methods do not require any 

information about the gradient of the objective function as opposed to gradient-based 

search. A direct search algorithm searches a set of solutions around the current 

solutions, looking for one in which the value of the objective function is lower than 

the value at the current solution. Due to a large number of objective function 

evaluations for the set of solutions, computational times are typically higher.

The decision regarding the suitability of the sensor layout from the GA-based 

approach has to be made by comparing the sensitivity value (Sm) with the threshold 

value (T). The threshold sensitivity value is obtained based on the potential sensitivity 

(Sp) value, which is taken to be 40.00. Therefore, the value of ‘T’ becomes 36.00 

(taking � = 90), which is greater than the Sm obtained from GA-based approach and 

lower than the sensitivity value obtained by the state-of-the-art approaches (see Table 

4). This scenario is discussed in detail in Section 4 (see Fig. 8). Therefore, iterative 

procedure is employed to obtain sensor layout to replace KCs (as discussed in Section 

4). The iterative procedure is used to retain maximum number of KCs in the sensor 

layout obtained by the state-of-the-art approaches. Hence, the methodology described 

in Section 4 is applied to obtain the best sensor layout which has mS T& and 

maximum number of measurement points as KCs. After running this procedure, five 

measurement points (KCs) in the sensor layout obtained by GA-based approach has 

been replaced by arbitrary points on parts/subassembly. Sm value for the sensor layout 

is obtained to be 38.21. Therefore, sensor layouts obtained by the feature-based 
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approach can be used for measurement purposes in multi-station assembly processes. 

In this case study, the option of using sensor layouts directly from state-of-the-art 

approaches directly has not been employed due to the potential cost that would be 

incurred if calibration, tolerance allocation and measurement error analysis are done 

for the sensor layout having arbitrary measurement points.

Table 4: Comparison among various approaches against the proposed KC-based 
approaches when s = 25

Method of optimization Average Sensitivity 
value (Sm)

Computational Time 
(Seconds)

GA-based search 33.4382 47.22
Simulated Algorithm (SA) 38.0302 529.34

Exchange Algorithm 38.6145 234.23
Direct Evaluation 38.8786 1642.63

Therefore, the sensor layout obtained after the application of feature-based 

methodology will have fewer challenges related to calibration, tolerancing and 

measurement errors due to the presence of KCs in final sensor layout.

7. Summary and Conclusions

This paper presents a feature-based approach for determining the optimal sensor 

distribution in the case of multi-station assembly processes. The main objective of the 

proposed method is to maximize the number of KCs that can be used as a 

measurement point in a sensor layout. A sensitivity index value has been used for 

characterizing the sensor layout, which is defined as the capability of measurement 

systems to detect the underlying root causes of variation. The application of feature-

based sensor distribution methodology is illustrated on the 3-D automotive part. 

Where, GA-based approach (taking in consideration predetermined KCs only for 

measurement point selection) is integrated with state-of-the-art approaches with a 

view to increase the number of predetermined points in the sensor layout based on the 

threshold sensitivity value. The proper mathematical formulation of the KC 

maximization problem and related constraints such as: (i) ease of calibration; (ii) 

measurement errors; and (iii) tolerance allocation is not detailed in this paper. Instead, 

conceptual guidelines have been discussed above so that future researches in this area 

may focus on it. 
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Appendix A

Figure A.1: Geometrical relations for feature-based measurement errors (Huang et al. 
2004)

* 2 2 * 2 *( ) (cos sin 1) (cos sin cos ) (sin cos sin )x y ze x d d d� ' � ' ' � � '� � 	 	 (A.1)

* 2 * 2 2 *( ) (cos sin cos ) (cos cos 1) (sin cos cos )x y ze y d d d� ' ' � ' � � '� 	 � 	 (A.2)

* * * 2( ) (sin cos sin ) (sin cos cos ) (sin 1)x y ze z d d d� � ' � � ' �� 	 	 � (A.3)

Where, *
xd , *

yd , and *
zd are the deviations of the feature in the x, y, and z directions 
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axes as illustrated in Fig. A.1. Thus, the designer can identify the measurement errors 

associated with the placement of sensors on arbitrary points. 
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