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Summary 

Despite extensive research during the last decades, the etiology of schizophrenia remains 

unclear. Evidence of both genetic and environmental influences in the developmental profile 

of schizophrenia has grown, and due to the complexity of this disorder, a polygenic aspect 

has been associated with this neuropsychiatric pathology. Unfortunately, no diagnostic 

strategies based on biological measurement or genetic testing is currently available for 

schizophrenia. Gene expression profiling and recent protein studies have shown a decrease in 

the expression of ubiquitin pathway proteins in the prefrontal cortex of schizophrenia 

patients.  We have examined Single Nucleotide Polymorphisms (or SNPs) within three genes 

from the ubiquitin protein system: the ubiquitin conjugating enzyme E2D1 (UBE2D1) gene, 

the E3 SUMO-protein ligase protein inhibitor of activated STAT 2 (PIAS2) gene, and the E3 

ubiquitin ligase F-box and leucine-rich repeat protein 21 (FBXL21) gene, in a Caucasian 

case-control population for schizophrenia. After Bonferroni correction for multiple testing 

was applied, no significant associations were reported for any of the tested SNPs. Additional 

genetic analyses will be necessary to fully explore the role of these three genes in 

schizophrenia. Regarding the rising interest of ubiquitin related proteins as a therapeutic 

target in other pathologies such as cancer, further research into the role of ubiquitin pathways 

in schizophrenia seem topical and timely. 

 

Keywords: Case-control association; Schizophrenia; Single Nucleotide Polymorphisms; 

Ubiquitin related genes 
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1. Introduction 

Episodes of mental illness may appear and disappear throughout a person’s life, 

affecting around one in five individuals. Schizophrenia is a mental disorder affecting 

approximately one percent of the general population and is characterized by symptoms 

such as hallucinations, delusions, disorganized communication, poor planning, reduced 

motivation, and blunted affect (Lewis and Lieberman, 2000; Lewis and Levitt, 2002). 

Despite 50 years of research in schizophrenia, no effective approach for prevention or 

cure has been produced. The etiology of this disorder remains unclear, although 

research strongly points towards the interaction between genetic and environmental 

influences (Tsuang, 2000; Aukes et al., 2008). Recent gene expression and protein 

studies have reported an alteration of ubiquitin pathways in the brains from 

schizophrenia sufferers compared to controls (Bousman et al., 2010; Rubio et al., 2013). 

The ubiquitin protein system plays an essential role in the regulation of membrane and 

cellular proteins, and has often been referred to as the “kiss of death” due to its labeling 

of proteins for degradation by proteases (Petroski, 2008; Tai and Schuman, 2008). The 

major function of the ubiquitin protein complex is to assure intracellular protein 

degradation by ubiquitination; a highly complex process involving a set of successive 

enzymes: E1 (ubiquitin activating enzymes), E2 (ubiquitin-conjugating enzymes), E3 

(ubiquitin protein ligases), the 20S proteasome, and deubiquitinating enzymes (Yi and 

Ehlers, 2007). Ubiquitin is first activated by E1 ubiquitin-activating enzymes, before 

being transferred to its active site, the amino acid cysteine. This transfer requires ATP, 

making the process energy-dependent. The ubiquitin molecule is then passed on to the 

second enzymes within the complex, E2 (ubiquitin-conjugating enzymes), before 

reaching the final group of enzymes, the E3 ubiquitin protein ligases, which recognize 

and bind the target substrate and labels it with the ubiquitin. This process can be 
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repeated until a short chain is formed, with three or more ubiquitin molecules usually 

targeting the protein to the proteasome, where the degradation occurs. Both E2 and E3 

proteins exist as large families: more than 35 E2s and 600 E3s have been identified so 

far, resulting in highly complex combinations of E2s with different E3 proteins defining 

the substrate specificity. Defects in this ubiquitin-dependent protein degradation have 

been implicated in the etiology of neurodegenerative diseases, metabolic disorders, 

cancer (Weathington and Mallampalli, 2014), developmental deficiency, immunity 

pathologies (Sakamoto, 2002; Pagano and Benmaamar, 2003) and schizophrenia. 

We have focused our analysis on three genes coding for ubiquitin related proteins (the 

ubiquitin conjugating enzyme E2D1 (UBE2D1), the E3 SUMO-protein ligase protein 

inhibitor of activated STAT 2 (PIAS2) and the E3 ubiquitin ligase F-box and leucine-

rich repeat protein 21 (FBXL21), which is a SKP1-cullin-F-box (SCF) protein, 

implicated in the regulation of the p53 pathway (Figure 1). The p53 pathway plays an 

essential role in the modulation of neurodevelopmental processes (including cerebral 

vascularization and neurogenesis) and/or to neurodevelopmental disorders such as 

schizophrenia. Due to their previous association in different reports and populations 

(Chen et al., 2008; Middleton et al., 2002), we analyzed a set of potential Single 

Nucleotide Polymorphisms (SNPs) in the UBE2D1 (coding for E2D1 protein), PIAS2 

(coding for the protein inhibitor of activated STAT 2) and FBXL21 gene (coding for F-

box and leucine-rich repeat protein 21) in the largest schizophrenia case-control 

Caucasian population collected in Australia to examine their potential associations with 

this devastating neurodevelopmental disorder. 
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2. Materials and methods 

(i) DNA samples 

DNA samples were obtained from the Australian Schizophrenia Research Bank 

(ASRB). Subjects with schizophrenia were identified using the Diagnostic and 

Statistical Manual of Mental Disorders IV criteria. All samples were from Caucasian 

volunteers. Subjects were matched for gender and age. The complete sample consisted 

of 268 schizophrenia cases, comprised of 186 males and 82 females, with an average 

age of 38.86±11.01 years; and 268 matched controls, comprised of 169 males and 99 

females, with an average age of 38.56±12.57 years, with no prior history of mental 

disorders. After a complete description of the study to the subjects, written informed 

consent was obtained. This study was approved by, and conducted according to the 

guidelines of the University of Wollongong Human Research Ethics Committee 

(HE10/161). 

(ii) SNP genotyping 

SNPs within the UBE2D1 (rs11006122 and rs1905455), PIAS2 (rs8094449, 

rs10502878, rs11876274, and rs56352844) and FBXL21 (rs1859427 and rs6861170) 

genes were tested in our Caucasian schizophrenia case-control population. The selection 

of these SNPs was based on their previous associations with schizophrenia and/or other 

disorders, and on their Minor Allele Frequencies (MAF) reported in Caucasian 

populations (MAF>15%) using HapMap data (http://hapmap.ncbi.nlm.nih.gov). High-

throughput SNP genotyping was performed using the MassARRAY® genotyping assay 

(Sequenom, Inc., San Diego, CA, USA), with the analysis performed by matrix-assisted 

laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). PCR 
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and extension primer design, selection and multiplexing were performed using 

MassARRAY® Designer Software (Sequenom, Inc., San Diego, CA, USA). 

(iii) Statistical analysis 

Power calculations indicated that for the smaller of the two cohorts, a sample size of 

204 cases (408 alleles) with a minor allele frequency of 0.2; has >90% a priori power to 

detect a significant allelic association conferring an odds ratio of 1.5 or greater. The 

distribution of all tested SNPs did not deviate significantly from Hardy Weinberg 

Equilibrium (HWE) (p>0.05), except for UBE2D1 (rs1905455, p=1.88x10-17) which 

was then excluded from further analysis. To detect associations between each SNP and 

schizophrenia, chi-square (χ2) analysis was performed to test for significant differences 

in allele and genotype frequencies between the case and control groups. The 

significance for all statistical tests was set to p<0.05 and values p<0.10 were described 

as trends. Data are expressed as specific counts for alleles and genotypes. Due to 

multiple testing in the SNP analysis, a standard Bonferroni-corrected p-value of 0.007 

(0.05/7) was required to give a 95% probability of correctly concluding not to reject the 

null hypothesis in the χ2 test.  

3. Results 

Two SNPs within UBE2D1, four SNPs in PIAS2 and two SNPs within FBXL21 were 

analyzed for association with schizophrenia in a large Australian Caucasian population 

(268 schizophrenia patients versus 268 matched controls with no prior history of mental 

disorders).  

Following Bonferroni correction for multiple comparisons there were no significant 

associations between the allelic frequency of any of the tested SNPs (UBE2D1 
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rs11006122, PIAS2 rs8094449, rs10502878, rs11876274, and rs56352844; FBXL21 

rs1859427 and rs6861170) and schizophrenia (0.08≤p≤0.92; Tables 2, 3 and 4 

respectively). In addition there were no genotypic associations between any of the tested 

SNPs and schizophrenia following Bonferroni correction (0.17≤p≤0.71; Tables 2, 3 and 

4). Further, analysis of each of the genetic markers by gender revealed no significant 

allelic or genotypic associations with any of these genetic markers and either gender 

(0.08≤p≤1.00; Tables 2, 3 and 4). Interestingly, the demographics of our tested 

population (Table 1) revealed that a large percentage of our schizophrenia subjects had 

a family history of mental disorders, twice as many as the control group. χ2 analysis 

revealed that both of the FBXL21 genetic markers rs1859427 and rs6861170 had a 

significant genotypic association with schizophrenia in the subjects whose mother 

(rs1859427: χ2=8.35, p=0.01; rs6861170: χ2=8.20, p=0.01) and/or father (rs1859427: 

χ2=16.80, p<0.001; rs6861170: χ2=15.54, p<0.001) had a history of mental disorders. 

None of the other SNPs from any of the other genes studied had any significant 

associations with schizophrenia in subjects who had a family history of mental disorders 

(0.10≤χ2≤4.17, 0.12≤p≤0.95). In addition, a large percentage of subjects from both 

tested groups experienced some form of self-reported childhood trauma, including but 

not limited to neglect, physical abuse, sexual abuse, and post-traumatic stress, with a 

larger number of schizophrenia subjects (41.0%) having a traumatic childhood 

compared to the control group (22.4%). Again, χ2 analysis revealed that both of the 

FBXL21 genetic markers rs1859427 and rs6861170 had a significant genotypic 

association with schizophrenia in the subjects who experienced childhood trauma 

(rs1859427: χ2=9.67, p=0.007; rs6861170: χ2=7.75, p=0.02). Again, none of the other 

SNPs analyzed had any significant associations with schizophrenia in subjects who 

experienced trauma during childhood (1.49≤χ2≤4.34, 0.11≤p≤0.47). 
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4. Discussion 

We have investigated the association of three genes from the ubiquitin protein system 

involved in the regulation of the p53 pathway in a large Australian Caucasian case-

control schizophrenia population. We did not report any significant associations with 

schizophrenia for any of the tested SNPs in the UBE2D1, PIAS2 and FBXL21 genes in 

our population. 

There is little information in the literature regarding association studies for our tested 

genes. Only the FBXL21 gene has been previously studied in two independent Irish 

populations, one corresponding to a high density of schizophrenia in Irish families 

(1,350 subjects from 273 families) and the other was a large Irish case-control 

population (814 cases versus. 625 controls) (Chen et al., 2008). Chen et. al. found 

rs1859427 and rs6861170 to be significantly associated with schizophrenia within their 

case-control population, and significance was maintained even after correction for 

multiple testing (p=0.01967 for both markers) (Chen et al., 2008). The MAF for both 

rs1859427 and rs6861170 FBXL21 markers were very similar in the schizophrenia 

group for both the present study (MAF=0.32 for both markers) and in the Chen et. al. 

study (MAF=0.27). This suggests that there is likely to be a difference between the 

genotyping frequencies in the schizophrenia groups and/or frequencies in the control 

group between our study and the Chen et. al. study. 

Interestingly, when we factor into our analysis the subjects who experienced some sort 

of trauma during childhood, the FBXL21 SNPs showed a significant association with 

schizophrenia among the tested SNPs (Table 5), however none of the other tested SNPs 

in any of the other tested genes had any significant associations in schizophrenia 

subjects who self-reported any traumatic childhood experiences. Differential epigenetic 
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gene regulation in relation to traumatic childhood experiences has only ever been 

reported for one ubiquitin E3 ligase (Mahogunin Ring Finger 1 or MGRN1) in women 

with fibromyalgia who had experienced traumatic childhood events (Menzies et al., 

2013). This suggests that adverse childhood experiences are able to induce genetic and 

epigenetic variations in ubiquitin protein genes responding to stressful conditions such 

as Ring Type E3 ubiquitin ligase and F-box proteins (Hermand, 2006; Hua and Vierstra, 

2011). A number of studies have shown strong associations between negative childhood 

experiences and adult psychiatric illnesses, in particular depression, psychosis and 

schizophrenia (Edwards et al., 2003; Kelleher et al., 2008; Lu et al., 2008). When we 

accounted for a family history of mental illness from either the mother and/or father 

within our tested population, we found a positive association between the FBXL21 

SNPs and schizophrenia (Table 5); but again there were no significant associations with 

any of the other tested SNPs in the tested genes in schizophrenia subjects who had a 

family history of mental illness, suggesting an inheritance for the FBXL21 genetic 

markers in the context of psychiatric disorders. This is in line with the Chen et. al study 

which showed that the haplotype of FBXL21 markers rs1859472 and rs6861170 were 

over-transmitted in the Irish study of high density schizophrenia families. 

As mentioned above, the FBXL21 gene encodes for an E3 ubiquitin ligase F-box protein 

in the SKP1-cullin-F-box (SCF) complex. The FBXL21 protein is known to be able to 

stabilize cryptochrome (CRY) proteins CRY1 and CRY2, which are implicated in 

regulating mammalian circadian rhythms (Hirano et al., 2013). In fact, the FBXL21 

protein was reported to antagonize the FBXL3 protein, another F-box-type E3 ligase, 

which ubiquitinates CRY proteins and mediates their degradation (Hirano et al., 2013). 

By attenuating the destabilizing action of FBXL3 on CRY proteins, FBXL21 expression 

allows for an adapted regulation of circadian rhythm gene transcription by CRY 



Andrews and Fernandez-Enright 

10 
 

proteins according to the circadian cycle. Furthermore, the circadian pattern of FBXL21 

expression in the mouse suprachiasmatic nucleus (region responsible for controlling 

circadian rhythm) is reminiscent of the expression pattern seen for other circadian 

pacemaker genes such as Period 1 (PER1) (Dardente et al., 2008). Mutations in either 

the FBXL21 or FBXL3 genes can lead to a dysfunction of circadian rhythm oscillations 

and lead to significant behavioral disturbances in individuals and alterations in their 

sleeping patterns; moreover the absence of FBXL21 causes a short-period phenotype in 

both mice and cells (Hirano et al., 2013; Yoo et al., 2013). Interestingly, schizophrenia 

patients have been reported to have intrinsically unstable circadian oscillators. A study 

by Bromundt et. al. recently provided important new information concerning the link 

between impairments in neuropsychological function and disrupted circadian rhythms in 

schizophrenia. (Bromundt et al., 2011); which is further supported by a microarray 

study which found a significant downregulation of the circadian pacemaker gene PER1 

in the postmortem temporal cortex of schizophrenia patients compared to healthy 

controls (Aston et al., 2004). Furthermore, an animal model study has shown 

dysfunction in the synchronization of circadian rhythms between brain cell networks 

involved in sleep–wake regulation and cognition (Dudley et al., 2003). Overall this 

suggests that alterations in circadian rhythms are present in schizophrenia, and that 

polymorphisms in the FBXL21 gene in addition to the FBX3 gene, could be involved in 

the circadian cycle disturbances that have been observed in schizophrenia (Mansour et 

al., 2009).  

The FBXL21 gene is located on Chromosome 5q31, a region that has previously been 

shown to contribute to the susceptibility for schizophrenia in both German and Israeli 

pedigree families (lod score 1.8) (Schwab et al., 1997). Putative loci associated with 

psychosis in bipolar disorder pedigrees were characterized in the chromosomic region 
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18q21, which includes the locus for the PIAS2 gene (Park et al., 1995). This region has 

also been suggested to be an influential genetic loci, common to both schizophrenia and 

bipolar disorders, depending on polygenic influence and critical environmental factors 

(Mors et al., 1997). Unfortunately, we did not report any significant associations 

between the tested SNPs (promoter and intron variants) in the PIAS2 gene with 

schizophrenia, suggesting that other genetic markers within this gene may be involved. 

Similarly, the genetic polymorphisms analyzed within the UBE2D1 gene (located in the 

promoter region) were not associated with schizophrenia in our tested population. The 

UBE2D1 gene is located at the chromosomic region 10q21.1 

(http://www.ncbi.nlm.nih.gov/gene/7321). This region includes the Ankyrin 3 (ANK3) 

gene, previously associated with schizophrenia by a number of studies that found the 

rs10761482 SNP to be associated with schizophrenia in a large European population as 

well as Han Chinese populations (Gella et al., 2011; Yuan et al., 2012). 

Due to its early expression in brain development and its key role in genomic stability as 

well as apoptotic process in brain cells, the p53 pathway plays an essential role in the 

modulation of neurodevelopmental processes, including those within the schizophrenia 

pathophysiology. Interestingly a reduced risk of cancer has been observed in individuals 

with schizophrenia during the last decade; considering the significant role p53 plays in 

the progression of cancer, this suggests a significant role of p53 in schizophrenia. 

Previous p53 polymorphisms were found to be associated with schizophrenia in both 

Chinese and Caucasian case-control populations and in family studies (Yang et al., 

2004; Ni et al., 2005). It is thought that the regulation of p53 expression by ubiquitin 

degradation may play an important role in schizophrenia pathophysiology. Although the 

present study did not examine polymorphisms within p53, all of the genes examined are 

involved in p53 signaling. While we did not find any significant associations between 
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any of the tested polymorphisms and schizophrenia, replicating our study in a larger 

population and/or testing additional polymorphisms within the same genes will add to, 

and allow for further exploration of the role of the tested ubiquitin related genes in the 

genetic vulnerability of schizophrenia. 

Our study reports the analysis of potential SNPs in three candidate genes from the 

ubiquitin protein system in a large Australian case-control schizophrenia population. 

Due to the limited information available on the role of E2 ubiquitin conjugating 

enzymes and E3 ubiquitin ligases in schizophrenia, in addition to the increasing variety 

of these groups of proteins, additional studies will be necessary to further examine the 

role of these ubiquitin proteins in the genetics of schizophrenia. A growing interest has 

recently emerged which is targeting ubiquitin related proteins in the treatment of cancer 

and inflammatory related diseases. Keeping in mind the paradoxical relationship 

between cancer and schizophrenia, the ubiquitin protein systems seem to be a good 

candidate to further analyze in the genetics and therapy for schizophrenia. 
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Table 1. Subject Demographics for Control (n = 268) and Schizophrenia Subjects (n = 
268). 

 Control subjects n (%) Schizophrenia subjects n (%) 
Gender 
        Female 99 (37%) 82 (30.6%) 
        Male 169 (63%) 186 (69.4%) 
 
Age at assessment (years) 
        Female 32.19 40.48 
        Male 42.22 38.14 
 
Family history of mental disorders 
        Mother 41 (15.3%) 95 (35.5%) 
        Father 49 (18.3%) 106 (39.6%) 
Traumatic childhood experience 60 (22.4%) 110 (41.0%) 
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Table 2. Allelic and genotypic distributions for UBE2D1 genetic marker in 
schizophrenia subjects and controls. 

 N Alleles Genotypes 
UBE2D1  (alleles) 

rs11006122 
C T CC CT TT 

Schizophrenia 264 150 (56.8%) 114 (43.2%) 45 (34.1%) 60 (45.5%) 27 (20.4%) 
Male 190 106 (55.8%) 84 (44.2%) 30 (31.6%) 46 (48.4%) 19 (20.0%) 

Female 74 44 (59.5%) 30 (40.5%) 15 (40.5%) 14 (37.8%) 8 (21.6%) 
Control 368 217 (59.0%) 151 (41.0%) 63 (34.2%) 91 (49.5%) 30 (16.3%) 
Male 232 134 (57.8%) 98 (42.2%) 40 (34.5%) 54 (46.6%) 22 (18.9%) 

Female 136 83 (61.0%) 53 (39.0%) 23 (33.9%) 37 (54.4%) 8 (11.7%) 
Total case vs. control   χ2 = 0.29 p = 0.58   χ2 = 0.99 p = 0.61 
Male case vs. control   χ2 = 0.17 p = 0.68   χ2 = 0.20 p = 0.90 

Female case vs. control   χ2 = 0.05 p = 0.82   χ2 = 3.18 p = 0.20 
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Table 3. Allelic and genotypic distributions for PIAS2 genetic markers in schizophrenia 
subjects and controls. 

 N Alleles Genotypes 
PIAS2  (alleles) 

rs8094449 
G A GG GA AA 

Schizophrenia 442 423 (95.7%) 19 (4.3%) 202 (91.4%) 19 (8.6%) 0 (0%) 
Male 314 300 (95.5%) 14 (4.5%) 143 (91.1%) 14 (8.9%) 0 (0%) 

Female 128 123 (96.1%) 5 (3.9%) 59 (92.2%) 5 (7.8%) 0 (0%) 
Control 498 471 (94.6%) 27 (5.4%) 223 (89.6%) 25 (10.0%) 1 (0.4%) 
Male 314 300 (95.5%) 14 (4.5%) 143 (91.1%) 14 (8.9%) 0 (0%) 

Female 184 171 (92.9%) 13 (7.1%) 80 (87.0%) 11 (11.9%) 1 (1.1%) 
Total case vs. control   χ2 = 0.63 p = 0.42   χ2 = 1.19 p = 0.55 
Male case vs. control   χ2 = 0.00 p = 1.00   χ2 = 0.00 p = 1.00 

Female case vs. control   χ2 = 0.39 p = 0.24   χ2 = 1.44 p = 0.48 
    

 N Alleles Genotypes 
PIAS2 (alleles) 

rs10502878 
C T CC CT TT 

Schizophrenia 204 160 (78.4%) 44 (21.6%) 62 (60.8%) 36 (35.3%) 4 (3.9%) 
Male 150 117 (78.0%) 33 (22.0%) 46 (61.3%) 25 (33.3%) 4 (5.3%) 

Female 54 43 (79.6%) 11 (20.4%) 16 (59.3%) 11 (40.7%) 0 (0%) 
Control 324 273 (84.3%) 51 (15.7%) 113 (69.8%) 47 (29.0% 2 (1.2%) 
Male 210 173 (82.4%) 37 (17.6%) 69 (65.7%) 35 (33.3%) 1 (0.9%) 

Female 114 100 (87.7%) 14 (12.3%) 44 (77.2%) 12 (42.1%) 1 (1.7%) 
Total case vs. control   χ2 = 2.88 p = 0.08   χ2 = 3.53 p = 0.17 
Male case vs. control   χ2 = 1.07 p = 0.30   χ2 = 3.15 p = 0.20 

Female case vs. Control   χ2 = 1.89 p = 0.16   χ2 = 3.89 p = 0.14 
    

 N Alleles Genotypes 
PIAS2  (alleles) 

rs11876274 
T C TT TC CC 

Schizophrenia 278 260 (93.5%) 18 (6.5%) 121 (87.1%) 18 (12.9%) 0 (0%) 
Male 196 184 (93.9%) 12 (6.2%) 86 (87.8%) 12 (12.2%) 0 (0%) 

Female 82 76 (92.7%) 6 (7.3%) 35 (85.4%) 6 (14.6%) 0 (0%) 
Control 382 354 (92.7%) 28 (7.3%) 164 (85.9%) 26 (13.6%) 1 (0.5%) 
Male 238 224 (94.1%) 14 (5.9%) 105 (88.2%) 14 (11.8%) 0 (0%) 

Female 144 130 (90.3%) 14 (9.7%) 59 (81.9%) 12 (16.7%) 1 (1.4%) 
Total case vs. control   χ2 = 0.18 p = 0.67   χ2 = 0.77 p = 0.68 
Male case vs. control   χ2 = 0.01 p = 0.91   χ2 = 0.01 p = 0.99 

Female case vs. control   χ2 = 0.37 p = 0.54   χ2 = 0.67 p = 0.71 
    

 N Alleles Genotypes 
PIAS2  (alleles) 

rs56352844 
A G AA AG GG 

Schizophrenia 206 193 (93.7%) 13 (6.3%) 90 (87.4%) 13 (12.6%) 0 (0%) 
Male 154 145 (94.2%) 9 (5.8%) 68 (88.3%) 9 (11.7%) 0 (0%) 

Female 52 48 (92.3%) 4 (7.3%) 22 (84.6%) 4 (15.4%) 0 (0%) 
Control 328 308 (93.9%) 20 (6.1%) 145 (88.4%) 18 (11.0%) 1 (0.6%) 
Male 212 200 (94.3%) 12 (5.7%) 94 (88.7%) 12 (11.3%) 0 (0%) 

Female 116 108 (93.1%) 8 (6.9%) 51 (88.0%) 6 (10.3%) 1 (1.7%) 
Total case vs. control   χ2 = 0.01 p = 0.92   χ2 = 0.78 p = 0.67 
Male case vs. control   χ2 = 0.01 p = 0.94   χ2 = 0.01 p = 0.99 

Female case vs. control   χ2 = 0.03 p = 0.85   χ2 = 0.85 p = 0.65 
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Table 4. Allelic and genotypic distributions for FBXL21 genetic marker in 
schizophrenia subjects and controls. 

 N Alleles Genotypes 
FBXL21  (alleles) 

rs1859427 
G A GG GA AA 

Schizophrenia 266 179 (67.3%) 87 (32.7%) 64 (48.1%) 51 (38.3%) 18 (13.6%) 
Male 192 129 (67.2%) 63 (32.8%) 45 (46.9%) 39 (40.6%) 12 (12.5%) 

Female 74 50 (67.6%) 24 (32.4%) 19 (51.4%) 12 (32.4%) 6 (16.2%) 
Control 374 264 (70.6%) 110 (29.4%) 98 (52.4%) 68 (36.4%) 21 (11.2%) 

Male 234 166 (70.9%) 68 (29.1%) 64 (54.7%) 38 (32.5%) 15 (12.8%) 
Female 140 98 (70%) 42 (30%) 34 (48.6%) 30 (42.8%) 6 (8.6%) 

Total case vs. control   χ2 = 0.79 p = 0.37   χ2 = 0.70 p = 0.70 
Male case vs. control   χ2 = 0.70 p = 0.40   χ2 = 1.60 p = 0.44 

Female case vs. control   χ2 = 0.02 p = 0.87   χ2 = 1.97 p = 0.37 
    

 N Alleles Genotypes 
FBXL21  (alleles) 

rs6861170 
T G TT TG GG 

Schizophrenia 268 182 (67.9%) 86 (32.1%) 66 (49.3%) 50 (37.3%) 18 (13.4%) 
Male 192 132 (68.8%) 60 (31.2%) 47 (49.0%) 38 (39.6%) 11 (11.4%) 

Female 76 50 (65.8%) 26 (34.2%) 19 (50%) 12 (31.6%) 7 (18.4%) 
Control 372 264 (71.0%) 108 (29.0%) 98 (52.7%) 68 (36.7%) 20 (10.6%) 

Male 234 167(71.4%) 67 (28.6%) 64 (54.7%) 39 (33.3%) 14(12.0%) 
Female 138 97 (70.3%) 41 (29.7%) 34 (49.3%) 29 (42.0%) 6 (8.7%) 

Total case vs. control   χ2 = 0.69 p = 0.41   χ2 = 0.66 p = 0.71 
Male case vs. control   χ2 = 0.35 p = 0.55   χ2 = 0.92 p = 0.63 

Female case vs. control   χ2 = 0.46 p = 0.49   χ2 = 4.84 p = 0.08 
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Table 5. Genotypic distributions for FBXL21 genetic markers in schizophrenia subjects 
and controls with respect to parental history of mental health issues and traumatic 
childhood experiences. 

 Genotypes 
FBXL21 

rs1859427  
GG GA AA 

Schizophrenia 64 (48.1%) 51 (38.3%) 18 (13.6%) 
Mother mental history 19 (46.3%) 19 (46.3%) 3 (7.4%) 
Father mental history 29 (56.9%) 18 (35.3%) 4 (7.8%) 
Traumatic childhood 25 (46.3%) 21 (38.9%) 8 (14.8%) 

Control 98 (52.4%) 68 (36.4%) 21 (11.2%) 
Mother mental history 8 (29.6%) 14 (51.9%) 5 (18.5%) 
Father mental history 18 (52.9%) 13 (38.2%) 3 (8.8%) 
Traumatic childhood 13 (37.1%) 19 (54.3%) 3 (8.6%) 

Mother mental case vs. control  χ2 = 8.35 p = 0.01 
Father mental case vs. control  χ2 = 16.80 p < 0.001 
Traumatic childhood case vs. control  χ2 = 9.67 p = 0.007 

  

 Genotypes 
FBXL21 

rs6861170  
TT TG GG 

Schizophrenia 66 (49.3%) 50 (37.3%) 18 (13.4%) 
Mother mental history 20 (47.6%) 18 (42.9%) 4 (9.5%) 
Father mental history 29 (54.7%) 18 (34.0%) 6 (11.3%) 
Traumatic childhood 25 (44.6%) 21 (37.5%) 10 (17.9%) 

Control 98 (52.7%) 68 (36.7%) 20 (10.6%) 
Mother mental history 9 (34.6%) 13 (50.0%) 4 (15.4%) 
Father mental history 18 (54.5%) 13 (39.4%) 2 (6.1%) 
Traumatic childhood 13 (38.2%) 18 (52.9%) 3 (8.8%) 

Mother mental case vs. control  χ2 = 8.20 p = 0.01 
Father mental case vs. control  χ2 =15.54 p < 0.001 
Traumatic childhood case vs. control  χ2 = 7.75 p = 0.02 
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