University of Wollongong

Research Online

Faculty of Science, Medicine and Health - Papers: part A

Faculty of Science, Medicine and Health

1-1-2014

Novel implications of Lingo-1 signaling in the prefrontal cortex and hippocampus of perinatal phencyclidine treated rats in a neurodevelopmental model of schizophrenia

Jessica L. Andrews University of Wollongong, ja393@uowmail.edu.au

Kelly Newell University of Wollongong, knewell@uow.edu.au

Xu-Feng Huang University of Wollongong, xhuang@uow.edu.au

Francesca Fernandez-Enright University of Wollongong, fernande@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/smhpapers

Part of the Medicine and Health Sciences Commons, and the Social and Behavioral Sciences Commons

Recommended Citation

Andrews, Jessica L.; Newell, Kelly; Huang, Xu-Feng; and Fernandez-Enright, Francesca, "Novel implications of Lingo-1 signaling in the prefrontal cortex and hippocampus of perinatal phencyclidine treated rats in a neurodevelopmental model of schizophrenia" (2014). *Faculty of Science, Medicine and Health - Papers: part A.* 2458.

https://ro.uow.edu.au/smhpapers/2458

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

Novel implications of Lingo-1 signaling in the prefrontal cortex and hippocampus of perinatal phencyclidine treated rats in a neurodevelopmental model of schizophrenia

Abstract

Abstract of a poster presentation.

Disciplines

Medicine and Health Sciences | Social and Behavioral Sciences

Publication Details

Andrews, J. L., Newell, K. A., Huang, X. & Fernandez-Enright, F. (2014). Novel implications of Lingo-1 signaling in the prefrontal cortex and hippocampus of perinatal phencyclidine treated rats in a neurodevelopmental model of schizophrenia. Presentation Abstract of the Society of Biological Psychiatry 69th Annual Scientific Meeting (p. Online). United States: Society of Biological Psychiatry.

Document Type

Conference Paper

Publication Details

Andrews J.L, Newell K.A, Huang XF, Fernandez-Enright F. Novel Implications of Lingo-1 Signaling in the Prefrontal Cortex and Hippocampus of Perinatal Phencyclidine Treated Rats in a Neurodevelopmental Model of Schizophrenia. *Society of Biological Psychiatry's 69th Annual Meeting*, New York, USA May 8-10, 2014.

Novel Implications of Lingo-1 Signaling in the Prefrontal Cortex and Hippocampus of Perinatal Phencyclidine Treated Rats in a Neurodevelopmental Model of Schizophrenia

Jessica L. Andrews^{1,2}, Kelly A. Newell^{1,2}, Xu-Feng Huang^{1,2}, Francesca Fernandez-Enright^{1,2}

1. Illawarra Health and Medical Research Institute, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia

2. Centre for Translational Neuroscience, Schizophrenia Research Institute, Sydney, NSW, Australia

Background: Leucine-rich repeat and immunoglobulin domain-containing protein Lingo-1, is a potent negative regulator of axonal myelination and neurite extension. Nogo receptor (NgR)/TNF receptor orphan Y (TROY) and/or p75 complex, With No Lysine (K) (WNK1) and Myelin transcription factor-1 (Myt1), have been reported as co-receptors/co-factors of Lingo-1 signaling in the brain. We investigated the developmental profile of Lingo-1 signaling proteins in a phencyclidine (PCP) neurodevelopmental rat model of schizophrenia.

Methods: Male Sprague Dawley rats received subcutaneous injections of PCP (10mg/kg) or saline at postnatal days (PN)7, 9 and 11. Rats (n=6) were sacrificed at three time points, PN12, 5 weeks or 14 weeks. Protein expression levels of Lingo-1, NgR, p75, TROY, WNK1 and Myt1 were examined within the prefrontal cortex (PFC) and hippocampus (HPC) of the treated rats.

Results: Myt1 was decreased in PCP treated rats at PN12 in both PFC and HPC (10-18%; $p \le 0.044$). p75 was also decreased in HPC of PCP treated rats at PN12 (16%; p=0.011). There were no significant changes in the expression of any of the tested proteins in either brain region at PN 5 weeks ($0.129 \le p \le 0.909$). At PN 14 weeks, Lingo-1, NgR, TROY and WNK1 were increased in the PFC (7%-18.5%; $0.002 \le p \le 0.036$) and p75, TROY, and Myt1 were increased in HPC (14.5%-22%; $0.0149 \le p \le 0.022$) of PCP treated rats.

Conclusions: This is the first study to have shown an alteration of Lingo-1 signaling pathways in a neurodevelopmental schizophrenia animal model. This will allow us to gain a better understanding of the mechanisms implicated in schizophrenia.