
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Engineering and Information
Sciences - Papers: Part A

Faculty of Engineering and Information
Sciences

1-1-2014

Testing model transformation programs using metamorphic testing Testing model transformation programs using metamorphic testing

Mingyue Jiang
Swinburne University of Technology

Tsong Yueh Chen
Swinburne University of Technology, tchen@ict.swin.edu.au

Fei-Ching Kuo
Swinburne University of Technology, dkuo@uow.edu.au

Zhiquan Zhou
University of Wollongong, zhiquan@uow.edu.au

Zuohua Ding
Zhjiang Sci-Tech University

Follow this and additional works at: https://ro.uow.edu.au/eispapers

 Part of the Engineering Commons, and the Science and Technology Studies Commons

Recommended Citation Recommended Citation
Jiang, Mingyue; Chen, Tsong Yueh; Kuo, Fei-Ching; Zhou, Zhiquan; and Ding, Zuohua, "Testing model
transformation programs using metamorphic testing" (2014). Faculty of Engineering and Information
Sciences - Papers: Part A. 3234.
https://ro.uow.edu.au/eispapers/3234

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers?utm_source=ro.uow.edu.au%2Feispapers%2F3234&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers%2F3234&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers%2F3234&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers/3234?utm_source=ro.uow.edu.au%2Feispapers%2F3234&utm_medium=PDF&utm_campaign=PDFCoverPages

Testing model transformation programs using metamorphic testing Testing model transformation programs using metamorphic testing

Abstract Abstract
Model transformations are crucial for the success of Model Driven Engineering. Testing is a prevailing
technique of verifying the correctness of model transformation programs. A major challenge in model
transformation testing is the oracle problem, which refers to the difficulty or high cost in determining the
correctness of the output models. Metamorphic Testing alleviates the oracle problem by making use of
the relationships among the inputs and outputs of multiple executions of the target function. This paper
investigates the effectiveness and feasibility of metamorphic testing in testing model transformation
programs. Empirical results show that metamorphic testing is an effective testing method for model
transformation programs.

Keywords Keywords
Metamorphic Testing, Model Transformation, Software Quality, Software Testing, Test Oracle

Disciplines Disciplines
Engineering | Science and Technology Studies

Publication Details Publication Details
Jiang, M., Chen, T., Kuo, F., Zhou, Z. and Ding, Z. (2014). Testing model transformation programs using
metamorphic testing. 26th International Conference on Software Engineering and Knowledge Engineering
(SEKE 2014) (pp. 94-99). Canada: Knowledge Systems Institute Graduate School.

This conference paper is available at Research Online: https://ro.uow.edu.au/eispapers/3234

https://ro.uow.edu.au/eispapers/3234

Testing Model Transformation Programs using Metamorphic Testing ∗

Mingyue Jiang1,3, Tsong Yueh Chen1, Fei-Ching Kuo1, Zhi Quan Zhou2, Zuohua Ding3

1Department of Computer Science and Software Engineering
Swinburne University of Technology, Hawthorn, VIC 3122, Australia

2School of Computer Science and Software Engineering
University of Wollongong, Wollongong, NSW 2522, Australia
3Laboratory of Scientific Computing and Software Engineering

Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China

Abstract

Model transformations are crucial for the success of
Model Driven Engineering. Testing is a prevailing tech-
nique of verifying the correctness of model transformation
programs. A major challenge in model transformation test-
ing is the oracle problem, which refers to the difficulty or
high cost in determining the correctness of the output mod-
els. Metamorphic Testing alleviates the oracle problem by
making use of the relationships among the inputs and out-
puts of multiple executions of the target function. This paper
investigates the effectiveness and feasibility of metamorphic
testing in testing model transformation programs. Empir-
ical results show that metamorphic testing is an effective
testing method for model transformation programs.

Keywords: Metamorphic Testing, Model Transforma-
tion, Software Quality, Software Testing, Test Oracle

1. Introduction

Model transformation, which refers to the automatic pro-
cess of transforming one model into another, is a vital ele-
ment of Model Driven Engineering (MDE). In MDE, model
transformations are usually used to transform models be-
tween different languages or different abstraction levels. In
this way, models are automatically transformed and refined
until code of final software is produced. The success of
MDE critically depends on the correctness of model trans-
formation programs as an incorrect transformation will re-
sult in incorrect models and the final software.

Testing is a prevailing technique of verifying the correct-
ness of model transformation programs. A major challenge

∗This project was supported in part by Australian Research Council
(Project ID: LP100200208), and National Natural Science Foundation of
China (Grant Nos. 61170015 and 61210004).

in the testing process is the oracle problem: In general, it is
difficult to obtain test oracles for model transformation pro-
grams [8]. We propose the technique of Metamorphic Test-
ing (MT) to alleviate the oracle problem in testing model
transformation programs. MT has been successfully applied
to detect real-world faults [3, 5]. In MT, programs are tested
against their expectedly necessary properties. A major dif-
ference between MT and all the other testing methods for
model transformation is that the properties used by MT are
relationships among the inputs and outputs of multiple ex-
ecutions of the target program (known as metamorphic re-
lations), whereas the properties used by the other methods
focus on the input and output of a single execution. An-
other difference is that when testing model transformations,
metamorphic relations (MRs) can be extracted from infor-
mal specifications, whereas most of the other methods rely
on formal specifications.

2. Model Transformation

Model transformation is a critical activity in MDE,
which is about the generation of target models from source
models. A framework of model transformation is given in
Fig. 1. The source metamodel (MMa) and the target meta-
model (MMb) describe the static information of models,
which are manipulated by the model transformation. The
source (Ma) and target (Mb) models conform to their re-
spective metamodels. The transformation model (Mt) refers
to an implementation (program) of the model transforma-
tion, and MMt is the metamodel of Mt. The model trans-
formation program (Mt) takes a source model as input and
produces a target model as output.

There are different transformation languages, of which
a popular one is the ATLAS Transformation Language
(ATL) [6]. We conducted a case study using a popu-
lar model transformation program written in ATL, namely,

1

MMM

MMbMMt

Ma MbMt

conform to
conform to

conform to conform to
conform to

conform to

Metametamodel

Transformation Model

MMa

(Source Metamodel)

(Source Model)

(Target Metamodel)

(Target Model)

Figure 1. A framework of model transformation

NamedElt

+name:String

Classifier

DataType Class
+isAbstract:Boolean

Attribute
+multivalued:Boolean

+att

owner

+type

*

*
+super

(a) The Class metamodel

NamedElt

+name:String

Table Column Type+col

+owner *

+type*

*+key
+keyOf 1..*

(b) The Relational metamodel

Figure 2. The metamodels of Class2Relational

Class2Relational, which is an “advanced example” open-
sourced in the ATL Transformations Zoo 1 and is often used
as a subject program by various experimentations [4].

In Class2Relational, Class model is the source model
and Relational model is the target model. The Class and Re-
lational models conform to the Class and Relational meta-
models, respectively (see Fig. 2). In a Class model, each
DataType represents a primitive data type, and each Class
has a name and a set of Attributes, each of which can be
single-valued or multi-valued and has either DataType or
Class as its type. In a Relational model, each Table contains
a name, a reference to its key Columns and a set of Columns,
each of which is described by its name and type. The fol-
lowing describes the requirements of how Class2Relational
should transform a Class model into a Relational model:
(1) For each DataType, a Type is created.
(2) For each Class, a Table (Type1) is created. Their names
are identical. The Table contains a key Column, whose name
is “objectId” and type is a specific type (In this example, it
refers to Integer). Each Attribute of the Class is also manip-
ulated, which is described in the following.
(3) For each single-valued Attribute of type DataType, a
Column is created, and their names and types are identical.
(4) For each multi-valued Attribute of type DataType, a Ta-
ble (Type2) is created. Two Columns of the Table are also
created. One is the identifier Column (with a specific type)

1http://www.eclipse.org/atl/atlTransformations

and the other contains name and type of the Attribute.
(5) For each single-valued Attribute of type Class, a Column
is created. The name of the Column is the Attribute’s name
+“id”, and the type of the Column is a specific type.
(6) For each multi-valued Attribute of type Class, a new Ta-
ble (Type3) is created, which has two Columns with specific
types (one is the identifier Column, and the other is named
attribute.name + “id”).
(7) The name of the Table (Type2, Type3) is set to str1+
“ ”+ str2, str1 represents the name of the Class which con-
tains the Attribute, and str2 represents the name of the At-
tribute. The Table’s identifier Column is named str1+“id”.

The model transformation program class2relational.atl
was written according to the above requirements. An ex-
ample Class model is given in Table 1 (left column), writ-
ten in the XML Metadata Interchange (XMI) format. After
executing class2relational.atl with this Class model as in-
put, the output model, that is, the corresponding Relational
model, is shown in Table 1 (right column). Obviously, it is
not difficult to manually verify the correctness of the trans-
formation. It should be noted that real-world models are
much larger and much more complex than the above ex-
ample. Checking the correctness of the transformations of
real-world models is therefore a very difficult task.

3. Metamorphic Testing

Metamorphic Testing (MT) [3] is a methodology de-
signed to alleviate the oracle problem. Different from con-
ventional testing strategies, MT uses some specific proper-
ties known as Metamorphic Relations (MRs) involving mul-
tiple test cases and their outputs.

Let p be a program implementing function f . To test
p, suppose a set of test cases T={t1, t2, . . . , tn} (n > 0)
have been generated using some test case selection strate-
gies (such as black-box, white-box or random testing). Test
cases in T are referred to as original test cases. Based on the
knowledge of f , some MRs can be identified. For each MR,
a set of follow-up test cases can be generated for T. Suppose
t′i is a follow-up test case for the original test case ti, then
(ti, t′i) is called a metamorphic test group [12]. MT runs
the original and follow-up test cases and checks whether the
outputs satisfy the MRs, regardless of the availability of an
oracle for each individual test case.

4. Application of Metamorphic Testing to
Model Transformation

The procedure is outlined as follows: First, identify
MRs and construct a set of original test models. For each
MR, generate follow-up test models based on the original
test models. Then execute the model transformation pro-
gram using both the original and follow-up test models, and

Table 1. A Class model (left column) and the corresponding Relational model (right column)
<?xml version=”1.0” encoding=”ASCII”?> <?xml version=”1.0” encoding=”ASCII”?>
<xmi:XMI xmi:version=”2.0” xmlns:xmi= <xmi:XMI xmi:version=”2.0” xmlns:xmi=
”http://www.omg.org/XMI” xmlns=”Class”> ”http://www.omg.org/XMI” xmlns=”Relational”>
<DataType name=”Integer”/> <Table name=”C1” key=”/0/@col.0”>
<DataType name=”String”/> <col name=”objectId” keyOf=”/0” type=”/2”/>
<Class name=”C1”> <col name=”A1” type=”/3”/></Table>

<attr name=”A1” multiValued=”false” <Table name=”C2” key=”/1/@col.0”>
type=”/1”/> <col name=”objectId” keyOf=”/1” type=”/2”/>
<attr name=”A2” multiValued=”true” <col name=”A3Id” type=”/2”/></Table>

type=”/1”/> <Type name=”Integer”/>
</Class> <Type name=”String”/>
<Class name=”C2”> <Table name=”C1 A2”>

<attr name=”A3” multiValued=”false” <col name=”C1Id” type=”/2”/>
type=”/2”/> <col name=”A2” type=”/3”/></Table>

<attr name=”A4” multiValued=”true” <Table name=”C2 A4”>
type=”/2”/> <col name=”C2Id” type=”/2”/>
</Class></xmi:XMI> <col name=”A4Id” type=”/2”/></Table></xmi:XMI>

collect the output models. Finally, check the relationship
among the original and follow-up test models and their re-
spective output models against the MR. Any violation of
MR implies that the program under test is faulty.

A key activity in MT is the identification of MRs, which
requires knowledge of the model transformation require-
ments. Once MRs are identified, they can be used for test-
ing irrespective of the programming language of the model
transformation software. We are now going to present some
MRs for the subject program Class2Relational.

We will use Type1 Table, Type2 Table and Type3 Table
to represent the aforementioned three kinds of Tables of
the Relational model and use Specific Columns to repre-
sent Columns whose type refers to the specific type. Let C1

denote the original test model and C2 denote the follow-up
test model with T1 and T2 being their output models, re-
spectively. We use X.Y to indicate the element Y of model
X, and X.#Y to denote the number of Y of model X.

Based on the requirements of Class2Relational, the fol-
lowing categories of MRs can be identified:
1. Reset of values of some attributes of the test model.
MR1.1: If we modify the values of some attributes of C1 to
obtain C2 (the modified values are legal), then

T2.#Type1 Tables=T1.#Type1 Table1s,
and T2.#Types=T1.#Types.

MR1.2: Suppose Attr is an attribute of Class Cla in C1, and
C2 is constructed by reversing the value of Attr.multivalued.
• If Attr.multivalued is true (It is false in C2), then we have:

(T2.Tab.Columns \ T1.Tab.Columns) = {Col | Col.name
contains Attr.name}, where Tab is the Table whose name
equals Cla.name and \ is the set difference operator, which
will be used hereafter in this paper,

T2.#Ts1 = (T1.#Ts1 − 1),where Ts1 is a set composed
of Tables whose name contains Attr.name,

and T2.#Ts2 = (T1.#Ts2 − 1), where Ts2 is a set com-
posed of Tables whose name contains Cla.name.
• If Attr.multivalued is false, then (T1.Tab.Columns \
T2.Tab.Columns) = {Col | Col.name contains Attr.name},

T2.#Ts1=(T1.#Ts1 +1), and T2.#Ts2=(T1.#Ts2 +1).
MR1.3: Suppose Attr is an attribute of Class Cla in C1, and
C2 is constructed by changing Attr’s type.
• If Attr.type refers to a DataType (Attr.type will refer to a
Class in C2), then

T2.#Specific Columns = (T1.#Specific Columns +1).
• If Attr.type refers to a Class, then we have:

T2.#Specific Columns = (T1.#Specific Columns −1).
2. Insertion of an element into the test model.
MR2.1: Construct C2 by adding a DataType into C1, then

T2.#Columns=T1.#Columns,
T2.#Types= (T1.#Types+1), and T2.#Tables=T1.#Tables,

MR2.2: Construct C2 by adding a Class into C1, then
T2.#Type1 Tables= (T1.#Type1 Tables+1),
T2.#Columns>T1.#Columns, T2.#Types=T1.#Types,
and T2.#specific Columns > T1.#specific Columns.

MR2.3: Construct C2 by adding an Attribute to C1.
MR2.3.1: The added Attribute is a single-valued Attribute
of DataType, then T2.#Columns= (T1.#Columns+1),

T2.#Tables=T1.#Tables, T2.#Types=T1.#Types,
and T2.#specific Columns=T1.#specific Columns.

MR2.3.2: The added Attribute is a multi-valued Attribute of
DataType, then T2.#Columns= (T1.#Columns+2),

T2.#Tables= (T1.#Tables+1), T2.#Types=T1.#Types,
T2.#Type1 Tables=T1.#Type1 Tables,
T2.#Type2 Tables= (T1.#Type2 Tables+1),
and T2.#specific Columns= (T1.#specific Columns+1).

MR2.3.3: The added Attribute is a single-valued Attribute
of Class, then T2.#Columns= (T1.#Columns+1),

T2.#Tables=T1.#Tables, T2.#Types=T1.#Types
and T2.#specific Columns= (T1.#specific Columns+1).

MR2.3.4: The added Attribute is a multi-valued Attribute of
Class, then T2.#Columns = (T1.#Columns+2),

T2.#Tables= (T1.#Tables+1), T2.#Types=T1.#Types
T2.#Type1 Tables=T1.#Type1 Tables,
T2.#Type3 Tables = (T1.#Type3 Tables+1),
and T2.#specific Columns= (T1.#specific Columns+2).

3. Deletion of data from the test model according to the
output model
MR3.1: Suppose Col is a Column of Table Tab (Tab is a
Table of Type1) in the output mode of C1. Construct C2 by
deleting information related to Col of C1.
• If Col is related to a single-valued Attribute, then

(T1.Tab.Columns \ T2.Tab.Columns) = {Col}.
• If Col is related to a multi-valued Attribute, then

(T1.Tables \ T2.Tables) = {T | T.name = Tab.name+
’ ’+ Col.name}, and (T1.Columns \ T2.Columns) = {Col
| Col.name either contains Tab.name or Col.name}.
MR3.2: Suppose Tab is a Table of Type1 in the output
model of C1, and C2 is constructed by deleting information
related to Tab of C1. Then we have: (T1.Tables \ T2.Tables)
= {T | T .name=Tab.name+str, where str can be empty}.
4. Interchange of data in the test model
MR4 Suppose Cla1 and Cla2 are two Classes of C1, and
Attr1 and Attr2 are Attributes of Cla1 and Cla2, respec-
tively. C2 is constructed by interchanging the data of Attr1
and Attr2 (that is, in C2, Attr1 becomes an Attribute of
Cla2 and Attr2 becomes an Attribute of Cla1).
• If Attr1 and Attr2 are both single-valued Attributes, then

T2.Columns = T1 .Columns, T2.#Tables = T1.#Tables,
DiffTable = (T2.Tables \ (T2.Tables ∩ T1.Tables)) = {Tab

| Tab.name = Cla1.name or Cla2.name}, where ∩ is the
set intersection operator, which will be used throughout this
paper, and DiffTables.size = 2, where size is the number of
elements in the set.
• If Attr1 and Attr2 are both multi-valued Attributes, then

T2.Columns = T1. Columns, T2.#Tables = T1.#Tables,
DiffTable = (T2.Tables \ (T2.Tables ∩ T1.Tables)) = {Tab

| Tab.name contains Attr2.name and Cla1.name or con-
tains Attr1.name and Cla2.name} and DiffTables.size = 2.
• If one of these two attributes (namely, Attr1) is single-
valued and the other (namely, Attr2) is multi-valued, then

T2.#Columns=T1.#Columns, T2.#Tables=T1.#Tables,
DiffColumns = (T2.Columns \ (T2.Columns ∩

T1.Columns)) = {Col | Col.name contains Cla1.name} and
DiffColumns.size =1,

DiffTable1 = (T2.Type1 Tables \ (T2.Type1 Tables ∩
T1.Type1 Tables)) = {Tab | Tab.name = Cla1.name or
Tab.name = Cla2.name} and DiffTable1.size=2,

DiffTable2 = (T2.Type2,3 Tables \ (T2.Type2,3 Tables
∩ T1.Type2,3 Tables)) = {Tab | Tab.name contains
Atrr2.name and Cla1.name} and DiffTable2.size=1.

5. Empirical Evaluation

5.1. Experimental procedure

We conducted empirical evaluation of MT using the
model transformation program class2relational.atl, which
has 107 lines of code and contains 6 ATL rules and 1 ATL

helper. Using the MRs described in Section 4, the testing
procedure consists of the following three steps:
(1) Generation of original test models. The set of original
test models were generated randomly in such a way that
(i) they all conform to the source metamodel, (ii) all ele-
ments of the source metamodel are covered, and (iii) dif-
ferent original test models have different values in the same
attributes in order to maximize diversity.
(2) Construction of follow-up test models. Different MRs
will result in different follow-up test models. These models
were generated automatically.
(3) Verification of test results. This step was also performed
automatically by our test script against the MRs.

A total of 100 Class models were generated as the
original test models for testing the subject program
class2relational.atl. No violation of MRs was detected.
This is expected as class2relational.atl is a popular and
open-source program. In order to evaluate the fault-
detection effectiveness of MT, we then applied mutation
analysis [7] to generate 20 non-equivalent mutants from
class2relational.atl. Details of the mutants are shown in
Table 2, where Mi denotes the ith mutant.

5.2. Results of experiments

We applied MT to test every mutant using the 100 orig-
inal test models. Results of experiments are summarized
in Table 3 in terms of the violation ratio which is defined
as the ratio of violated metamorphic test groups among all
used metamorphic test groups. The last row shows the aver-
age violation ratio for each individual MR, and the last col-
umn shows the average violation ratio for each individual
mutant. It is observed that every mutant has some violated
metamorphic test groups. In other words, all seeded faults
are detected.

Table 3 shows that the average violation ratios of MRs
range from 0.00 to 0.54. This result is consistent with many
other MT studies, which reported that different MRs can
have very different fault-detection effectiveness. Table 3
also shows that the fault-detection effectiveness of an MR
is mutant dependent. Consider MR2.3.1, for instance, it has
varied violation ratios for M3, M9, M19, M20, which are
1.00, 0.08, 0.00 and 1.00, respectively.

The effectiveness of MT can be further analyzed using
metamorphic test groups. For each mutant, 100 × 12 =
1, 200 metamorphic test groups have been executed. There-
fore, there is a total of 1, 200 × 20 = 24, 000 metamor-
phic test groups. The total number of violated metamorphic
test groups is 5,240, which gives the overall effectiveness
of MT (in terms of violated metamorphic test groups) to
be 5, 240/24, 000 = 22%. This result shows that MT is
quite effective because a failure will be revealed after run-
ning about 5 metamorphic test groups on average.

Table 2. Details of mutants of class2relational.atl
Mutant Line number Original code New code mutation operator

M1 42 type<-a.type type<-a.owner ROCC
M2 77 thisModule.objectIdType a.type RSCC
M3 37 a.type.oclsKindof(CLA!DataType) a.oclKindof(CLA!DataType) RSMD
M4 56 name<-a.owner.name+’ ’+a.name name<-a.name+’ ’+a.name RSMD
M5 88 name<-a.owner.name+’ ’+a.name name<-a.name+’ ’a.name+ RSMD
M6 60 name<-a.owner.name+’Id’ name<-a.name+”Id” RSMD
M7 56 name<-a.owner.name+’ ’+a.name name<-a.owner.name+’ ’+a.owner.name RSMA
M8 7 select(e | e.name = ’Integer’) select(e | true) CFCD
M9 11 c:CLA!Class c:CLA!Class(c.attr.size()>0) CFCA
M10 29 REL!Type REL!Table CCCR
M11 29 REL!Type REL!Column CCCR
M12 21 type<-thisModule.objectIdType CACD
M13 57 col<-Sequence{id,value} CACD
M14 57 col<-sequence{id,value} col<-sequence{value} CACD
M15 61 type<-thisModule.objectIdType CACD
M16 89 col<-Sequence(id,foreignKey) CACD
M17 89 col<-sequence{id,foreignKey} col<-sequence{id} CACD
M18 7 select(e|e.name=’Integer’) select(e|not(e.name=’Integer’)) CFCP
M19 52, a.type.oclIsKindOf(CLA!DataType) not a.type.oclIsKindOf(CLA!DataType) CFCP

84 a.type.oclIsKindOf(CLA!Class) not a.type.oclIsKindOf(CLA!Class)
M20 37, a.type.oclIsKindOf(CLA!DataType) not a.type.oclIsKindOf(CLA!DataType) CFCP

72 a.type.oclIsKindOf(CLA!Class) not a.type.oclIsKindOf(CLA!Class)

Table 3. Results of experiments: violation ratios
MR MR MR MR MR MR MR MR MR MR MR MR Average violation
1.1 1.2 1.3 2.1 2.2 2.3.1 2.3.2 2.3.3 2.3.4 3.1 3.2 4 ratio for each mutant

M1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.73 0.06
M2 0.00 0.00 0.55 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.87 0.49 0.24
M3 0.00 0.47 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.45 0.16
M4 0.00 0.59 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.41 0.77 0.73 0.29
M5 0.00 0.34 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.25 0.00 0.63 0.19
M6 0.00 0.00 0.00 0.00 0.00 0.00 0.94 0.00 0.00 0.00 0.00 0.49 0.12
M7 0.00 0.58 0.00 0.00 0.00 0.00 0.94 0.00 0.00 0.05 0.00 0.81 0.20
M8 0.00 0.00 0.50 0.00 0.50 0.00 0.50 0.50 0.50 0.00 0.00 0.45 0.25
M9 0.00 0.00 0.00 0.00 0.54 0.08 0.08 0.08 0.05 0.03 0.00 0.55 0.12
M10 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.47 0.12
M11 0.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 0.77 0.53 0.61
M12 0.00 0.00 0.00 0.00 0.49 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.07
M13 0.00 0.00 0.41 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.54 0.16
M14 0.00 0.00 0.54 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.53 0.17
M15 0.00 0.00 0.54 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.56 0.18
M16 0.00 0.00 0.60 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.50 0.18
M17 0.00 0.00 0.49 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.46 0.16
M18 0.00 0.00 1.00 0.00 1.00 0.00 1.00 1.00 1.00 0.00 0.00 0.49 0.46
M19 0.00 0.00 0.49 0.00 0.00 0.00 1.00 0.00 1.00 0.00 0.89 0.46 0.32
M20 0.00 0.00 0.48 0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.87 0.44 0.32

Average violation
ratio for each MR 0.00 0.10 0.33 0.10 0.18 0.10 0.47 0.23 0.33 0.04 0.20 0.54

5.3. A further analysis of the effectiveness of MRs

Table 3 shows that the fault-detection effectiveness of
different MRs can be very different: MR4 was violated by
every mutant, but MR1.1 was never violated. The most
effective MR is MR4. Its average violation ratio is 0.54.
That is, on average, more than half of its metamorphic test
groups can reveal a failure. MR4 is highly effective be-
cause it makes use of more information of the transforma-
tion requirements than the remaining MRs. MR4 checks
almost all data items of the Relational model, taking their
concrete values into consideration, instead of just compar-
ing the numbers of some elements. The other MRs (ex-

cept the worst one, MR1.1) generate follow-up test models
by adding or deleting some elements, or resetting the at-
tributes’ values of some elements of the original test model.
Their average violation ratios range from 0.10 to 0.47. They
are less effective than MR4 because they check only certain
parts of the Relational model. We analyzed each MR to-
gether with all the mutants that violated it. For any given
pair of mutant and MR, a high violation ratio will be intu-
itively expected if the fault in the mutant is relevant to the
MR.

MR1.1, which constructs follow-up test models by
changing the values of some arbitrary attributes, was the
least effective MR: It did not detect any violation. The rea-

son for this is twofold. First, in each and every metamorphic
test group generated by MR1.1, the original and follow-up
test case executions are almost identical in the sense that the
same statements of the subject program are exercised (and
in the same sequence). The original and follow-up output
models generated in this way are therefore very similar. As
a result, MR1.1 is very likely to be satisfied. This observa-
tion confirms the findings of Chen el al. [2] and Cao et al.
[1]: an effective MR should make the original and follow-
up test case executions as different as possible. Secondly,
MR1.1 checks the test results at a quite high abstraction
level by ignoring many details of the output models. Con-
sequently, even if an output model is incorrect, the incor-
rect data item buried in the output model is not checked by
MR1.1 and hence a violation cannot be detected. This find-
ing shows that an effective MR should look at the details of
the output as much as possible.

We have obtained two useful guidelines. First, MRs
whose original and follow-up test case executions are very
different, are likely to have a higher chance of detecting a
failure than those whose original and follow-up test case
executions are similar. Secondly, an effective MR should
involve detailed information from the requirements specifi-
cation as much as possible and as complete as possible.

6. Discussions and Conclusion

We propose to apply Metamorphic Testing (MT) to al-
leviate the oracle problem in testing model transforma-
tion programs. To evaluate the effectiveness of the pro-
posed approach, a case study has been conducted using
Class2Relational and mutation analysis. The empirical re-
sults show that MT can effectively detect model transforma-
tion faults. We used Metamorphic Relations (MRs) involv-
ing four kinds of operations, namely, addition of elements,
deletion of elements, alteration of attribute’s values, and in-
terchange of elements. We have obtained two guidelines
for applying MT to model transformation programs. The
first guideline is to select MRs whose original and follow-
up test case executions are significantly different. The sec-
ond guideline is to select MR that involves as many details
of the model transformation as possible from the transfor-
mation requirements. These two guidelines are appropriate
for the selection of MRs for any model transformation pro-
grams.

Many applications have a model transformation com-
ponent or have been developed using model transforma-
tions. Examples of the former include software devel-
opment tools that use model transformations to generate
the application code [10]. Examples of the latter include
context-aware pervasive systems [9] and secure XML data
warehouses [11] which are developed using Model Driven
Development (MDD) method. Obviously, the correctness

of the model transformations will affect the quality of the
final systems. MT can be used to test the model transforma-
tions in such applications.

References

[1] Cao Y., Zhou Z.Q., Chen T.Y. On the correlation between
the effectiveness of metamorphic relations and dissimilari-
ties of test case executions. In Proceedings of the 13th Inter-
national Conference on Quality Software (QSIC’13), pages
153–162, 2013.

[2] Chen T.Y., Huang D.H., Tse T.H., Zhou Z.Q. Case stud-
ies on the selection of useful relations in metamorphic test-
ing. In Proceedings of the 4th Ibero-American Symposium
on Software Engineering and Knowledge Engineering (JI-
ISIC’04), pages 569–583, 2004.

[3] Chen T.Y., Kuo F.-C., Towey D., Zhou Z.Q. Metamorphic
testing: Applications and integration with other methods. In
Proceedings of the 12th International Conference on Quality
Software (QSIC’12), pages 285–288, 2012.

[4] Guerra E., Lara J.D., Wimmer M., Kappel G., Kusel A.,
Retschitzegger W., Schönböck J., Schwinger W. Automated
verification of model transformations based on visual con-
tracts. Automated Software Enginerring, 20:5–46, 2013.

[5] Harman M., McMinn P., Shahbaz M., Yoo S. A comprehen-
sive survey of trends in oracles for software testing. Tech-
nical report, Technical Report (CS-13-01), Department of
Computer Science, University of Sheffield, 2013.

[6] Jouault F., Allilaire F., Bézivin J., Kurtev I. ATL: A
model transformation tool. science of computer program-
ming. IEEE Transactions on Software Engineering, 72(1-
2):21–39, 2008.

[7] Mottu J.M., Baudry B., Traon Y.L. Mutation analysis test-
ing for model transformation. In Proceedings of the Second
European Conference on Model Driven Architecture: Foun-
dataions and Applications (ECMDA-FA’06), pages 376–
390, 2006.

[8] Mottu J.M., Baudry B., Traon Y.L. Model transformation
testing: Oracle issue. In Proceedings of Internatioanl Con-
ference on Software Testing Verification and Validatiaon”,
pages 105–112, 2008.

[9] Serral E., Valderas P., Pelechano V. Towards the model
driven development of context-aware pervasive systems.
Pervasive and Moblie Computing, 6(2):254–280, 2010.

[10] Thang N.X., Zapf M., Geihs K. Model driven development
for data-centric sensor network applications. In Proceedings
of the 9th International Conference on Advances in Mobile
Computing and Multimedia, pages 194–197, 2011.

[11] Vela B., Blanco C., Fernández-Medina E., Marcos E. A
practical application of our mdd appraoch for modeling
secure xml data warehouses. Decision Support Systems,
52(4):899–925, 2012.

[12] Xie X.Y., Wong W.E., Chen T.Y., Xu B.W. Metamor-
phic slice: An application in spectrum-based fault localiza-
tion. Information and Software Technology, 55(5):866–879,
2013.

	Testing model transformation programs using metamorphic testing
	Recommended Citation

	Testing model transformation programs using metamorphic testing
	Abstract
	Keywords
	Disciplines
	Publication Details

	tmp.1421875348.pdf.J0MFy

