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Abstract  

The size effect on the mechanism of fracture in ultrafine grained sheets is an unsolved problem in 

microforming. This paper describes a tensile test carried out to study the fracture behavior and the 

shear fracture angles of both rolled and aged ultrafine grained Aluminum 6061 sheets produced by 

asymmetric cryorolling. A Scanning Electron Microscope (SEM) was used to observe the fracture 

surface. The finite element method was used to simulate the tensile test using the uncoupled 

Cockcroft-Latham and Tresca criteria and the coupled Gurson-Tvergaard-Needleman (GTN) 

damage criterion. It was found that the shear fracture angle decreases gradually from 90º to 64º with 

an increasing number of passes. The results of simulations using the GTN criterion show trends 

similar to the experimental ones. The paper also presents a discussion on the fracture mechanism 

and the size effect during the tensile test.  
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Introduction 

In recent years, micro-manufacturing has attracted increasing attention due to the trend of product 

miniaturization. The global market for microsystems reached $25 billion in 2009 (Yurish et al. 

2005), and continues to show a growing demand on micro-technical products. Most of these 

products contain mechanical parts produced by microforming. The microforming process demands 

a greater understanding of size effects and material behavior associated with miniaturization. In 
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particular, fracture in microforming has received increasing attention in recent years. Fu and Chan 

(2013) have carried out a review on the microforming technologies. They summarized that the 

fracture strain decreases with reduction in workpiece size and an increase in grain size in tensile 

tests of sheet metal. It was seen that fracture takes place through localized shearing of individual 

grain. However, there are still many unanswered questions on the fracture mechanism of 

micro-formed foils.  

To reduce the size effects on the deformation of workpiece in the microforming process, it is 

possible to manufacture nanostructured/ultrafine grained sheet/foil by Severe Plastic Deformation 

(SPD) methods. Ma et al. (2009) studied the deformation of ultrafine grained copper produced by 

Equal Channel Angular Pressing (ECAP) in a micro deep drawing process. They found that the 

ultrafine grained copper has a potential application in microforming. The main advantages of 

nanostructured/ultrafine grained materials processed by SPD are good machinability, forgeability, 

and formablity, achieved at relatively low process cost. SPD techniques such as ECAP, 

Accumulative Roll Bonding (ARB) (Yu et al., 2013a), and Asymmetric Cryorolling (AC), have 

been developed (Estrin and Vinogradov, 2013) to this end. Among these techniques, ARB and AC 

can produce flat sheets. Wang et al. (2002) carried out cryorolling experiments with pure copper. 

They found that the matrix grains impart high strength and the inhomogeneous microstructure 

induces strain hardening that stabilize the tensile deformation. The microstructural evolution of a 

precipitation-hardenable cryorolled Al-Mg-Si alloy at different strain levels was studied by 

Panigrahi and Jayaganthan (2008). Yu et al. (2012, 2013b) studied the evolution of the 

microstructure of Al 1050 and Al 6061 alloys by AC. However, there have been no reports to date 

on the investigation of the fracture behavior of sheets when subjected to cryorolling.  

The tensile test has been used widely to study the fracture behavior of metals. Thin rolled copper 

foils of varying thickness were tested in tension by Simons et al. (2006). They found that when the 

thickness is reduced from 250 μm to 10 μm, the fracture strain decreases from approximately 20% 

to 0.2% for as-received foils and from 35% to 15% for heat-treated samples. Fu and Chan (2011) 

conducted tensile tests with annealed pure copper foils with different thicknesses and grain sizes to 

study the size effects on fracture behavior. It was found that the flow stress, fracture stress and 

strain and the number of micro-voids on the fracture surface decrease with decreasing ratio of 

specimen size to grain size. To analyze the fracture mechanism, most researchers use the Scanning 



Electron Microscope (SEM) to observe the fracture surface of tensile samples. Based on the 

observation of the fracture surface, Segal et al. (2006) analyzed the fracture of ultrafine grained 

(Al+0.5%Cu) alloy during tensile tests. They found that the initial plasticity could be attributed to 

micro-localized flow along shear bands. For ultrafine grained metallic samples, flow localization in 

the neck is observed almost immediately after the yield stress is exceeded. The shear fracture angle 

α (Figure 1) may range from 45º to 90º for different materials, strain rates, etc. However, there are 

only a limited number of reports that mention the shear fracture angle. Khakbaz and Kazeminezhad 

(2012) found that the shear fracture angle increases from 45º to 60º in annealed samples after three 

passes of constrained groove pressing. Wang and Shan (2008) carried out tensile tests with ultrafine 

grained aluminum under different strain rates, and they found that the fracture angles of samples 

were about 60º regardless of the strain rate. However, the reason for this phenomenon was still not 

clear. Labergère et al. (2011) employed a fully adaptive 2D numerical methodology to simulate with 

accuracy various metal forming processes, e.g. tensile testing. In their model, the mesh size 

distribution is based on various error indicators making use of the hessian of the plastic strain rate 

combined with a specific damage error function and a specific local curvature error function 

evaluated at contact boundaries. In their simulated and experimental results, the shear fracture 

angles of tensile samples are around 60º. 

 

Figure 1.  

Most metals subjected to tensile tests are tested to ductile fracture. Many ductile fracture criteria 

have been proposed. The basic principles upon which ductile fracture criteria are based can be 

generally divided into four categories (Vez Jr et al. 2010): (a) energy dissipation; (b) void growth: 

material modeling; (c) void growth: growth mechanisms; and (d) void growth: void geometry. 

These are exemplified by the Cockcroft-Latham (1968), the Tresca, the Freudenthal (1950), the 

Gurson-Tvergaard-Needleman (GTN) (Gurson 1977; Needleman and Tvergaard 1987) and the 

Continuum Damage Mechanics (CDM) or CDM-based (Kachanov 1986; Chow and Wang 1987; 

Lemaitre 1992; Lemaitre and Desmorat 2005; Lemaitre et al. 2009; Murakami 2012; Saanouni 2008, 

2012 and 2013; Besson 2010) fracture criteria. Although these fracture criteria can predict the 

fracture behavior of metals, it is not clear which criteria can accurately predict the fracture for 



nanostructure/ultrafine grained materials.  

Yu et al. (2013) reported that the grain size could be refined to 235 nm in Al 6061 alloy sheets 

after seven AC passes. This is an example of ultrafine grained material. In this paper, we present an 

analysis of the fracture of both rolled and aged Al 6061 alloy sheets subjected to tensile tests. The 

shear fracture angle gradually decreases as the number of rolling passes increases, and plateaus at 

around 60º. Along with the experimental investigation, Finite Element Method (FEM) simulations 

of the fracture using different fracture criteria are also presented. The results of simulations using 

the GTN damage criterion show trends similar to the experimental observations. An explanation for 

the stable fracture angle (~60º, not 45º) is proposed.  

Sample evolution during tensile test 

Figure 2 illustrates the progressive evolution of a typical sample during a tensile test. Figure 2(a) 

shows uniform elongation; Figure 2(b) the slip line field during necking (Segal et al. 2006); 

followed by Fig 2(c), 2(d) and 2(e) showing different fracture models with different fracture angles. 

The following paragraphs elaborate on these individual stages.  

Uniform elongation - Figure 2(a)  

Corresponding to an elongation ∆l, the true strain ε, the fractional reduction in cross-section area 

ϕ and the true tensile stress σ in rectangular cross section samples are: 
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where the l0 is the initial sample length, A0 the initial cross-section area, and P the instantaneous 

tensile load.  

Figure 2.  

Necking- Figure 2 (b) 



Figure 2(b) shows the slip line field in the plastic zones ABDO during localized necking (Segal et 

al. 2006). Here, we assume that ∆l0 is the elongation before necking and ∆l1 the elongation after 

necking that deforms around the necking zones nearly equals to sample width w. Then, the true stain 

εn, area reduction ϕn, and true tensile stress σn are given by: 
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Fracture 

Necking is followed by sample fracture. Generally, ductile fracture often appears in metal 

sheets/foils, although shear fracture at angles (α) can also occur, as shown in Figures 2 (c) to 2(e). 

The following paragraphs describe the criteria that have been developed for prediction of the 

fracture behavior in materials.  

1) Cockcroft-Latham fracture criterion (Cockcroft and Latham 1968; Haddi et al. 2012) 

The criterion assumed that the maximum principal stress is the most relevant in the initiation of 

fracture. The criterion is defined in terms of traction plastic work associated with the principal stress 

along the path of the equivalent plastic strain, as shown in Eq. (7).  
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where σ1 is the largest principal stress, εf is the critical plastic strain at fracture, and εeq is the 

equivalent plastic strain. C1 is the critical damage value at fracture. In the tensile process, the largest 

principal stress is parallel to the loading direction. Thus, based on this criterion, the final fracture 

angle of samples after the tensile process will be around 90°, as shown in Figure 2 (c). 

2) Tresca fracture criterion 



The Tresca criterion is based on the maximum shear stress, as shown in Eq. (8).  
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In the tensile process, the maximum shear stress (τmax) is generally oriented at 45° to the loading 

direction. According to this criterion, the samples will fracture as shown in Figure 2 (d). 

3) GTN fracture criterion 

The GTN fracture criterion, as shown in Eqs. (9)~(13) (Gurson 1977; Needleman and Tvergaard 

1987; Zhou and Ling 2009), has proved successful in predicting mechanical degradation and failure 

in tensile-dominant processes:  
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where, f  is the plastic potential in which the parameters q1, q2 and q3 are material coefficients, 

𝜎𝑒𝑒 the equivalent von Mises stress, 𝜎𝐻 the hydrostatic stress, 𝜎0 the current flow stress of the 

matrix material and fV is the void volume fraction which is defined by: 
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where f defines the current void volume fraction; ff is the void volume fraction at failure and fc the 

void volume fraction at a critical juncture when f starts to deviate from fV; 𝑓𝑢∗ is the value of fV at 

fracture. To complete the constitutive model, the void volume fraction has to be established as a 

function of time. The growth of existing voids (𝑓�̇�𝑔𝑔𝑔𝑔ℎ ) and the nucleation of new voids 

(𝑓�̇�𝑢𝑛𝑛𝑒𝑛𝑔𝑛𝑔𝑛) contribute to the increase in porosity: 
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where 𝜀�̇�𝑘
𝑝  is the trace of the equivalent plastic strain rate, 𝜀̅̇𝑃 the plastic strain rate, fN the volume 

fraction of particles available for void nucleation, εN the main void nucleation strain, and sN the 

standard deviation of the distribution. The main parameters in the GTN criterion are listed in Table 

1 (Zhou and Ling 2009).  

Three-dimensional FE models for the first, third, fifth and seventh passes were set up on the 

LS-DYNA platform, using the experimental sample dimensions and material parameters. The 

stress-strain relations used follow the values in Yu et al. (2013) with a piecewise stress vs strain 

model, where the failure void volume fraction (ff) gradually decreases with an increasing number of 

passes. The Solid 164 type was employed which was solved by explicit dynamic finite element 

method. In order to reduce the influence of mesh size distribution on the simulated results (Sánchez 

et al. 2008), the parallel tensile zones were meshed with uniform element size. In addition, samples 

were meshed with 8-node hexahedral elements. The smallest of element was measured 0.25mm 

(length) ×0.22 mm (width) ×0.22 mm (thickness). In the model for the first pass, there are 29435 

nodes and 24153 elements in the samples.  

Table 1.  

Experimental investigation 

Procedure 

Commercial Al 6061 alloy specimens were used. The chemical composition of the alloy is listed 

in Table 2. Before rolling, the samples were well tempered. The AC technique was employed to roll 

sheets measuring 1.5 mm ×60 mm×200 mm. The rolling speed ratio between the upper and lower 

rolls was set at 1.1. The sheets were dipped into liquid nitrogen for at least 8 minutes before each 

pass. The rolling schedule is shown in Table 3. After each AC pass, half of the samples were aged 

at 100ºC for 48 hours. The samples were machined into 25 mm gauge length and 6 mm gauge width 

tensile samples according to ASTM D412 standard. Uniaxial tensile tests were conducted with an 

initial strain rate of 1.0×10-3 s-1 on an INSTRON machine operating at constant speed. SEM was 

used to reveal details of the fracture mechanism after each pass. The morphology of the fractured 

surface of the sheets was studied with a Zeiss Auriga Field Emission Scanning Electron Microscope 

(FESEM) operating at 20 kV with a working distance of 15 mm.  



Table 2. 

Table 3. 

Shear Fracture Angle 

In this study, we focused on an investigation of the fracture behavior of ultrafine grained Al 6061 

alloy sheets subjected to tensile processing. Table 4 lists a series of images of the tips of the 

fractured samples and the corresponding shear fracture angles. After the first AC pass, significant 

necking was observed. The shear fracture angles for rolled and aged samples were seen to be 90.0º 

and 87.9º respectively. These reduced sharply to 72.4º and 71.6º respectively after the second AC 

pass. With subsequent passes, the shear fracture angle decreased gradually, but at a slower rate. 

After the seventh AC pass, the shear fracture angle was seen to be 64.3º for both rolled and aged 

samples. Besides, for the samples after two or three AC passes, the specimen width at fracture zone 

changes slightly during tensile, and there was less necking before the final ductile fracture. The 

reduction in necking decreases the tri-axial nature of the stress at final ductile fracture. Shear ductile 

fracture takes place at relatively low-stress triaxiality, while at higher stress triaxiality with severe 

necking, coalescence of voids is caused by necking of the inter-void ligaments instead of 

shear-linking up of voids (Lou et al. 2012 and 2013). Thus, this results in reducing the shear 

fracture angle from 90° to about 64.3°.  

Table 4.  

The shear fracture angles and the elongation after each pass for both rolled and aged samples are 

presented in Figure 3. It is seen that the shear fracture angle decreases and levels off with 

increasing the number of AC passes to about 64º, instead of 45º, as generally assumed. After the 

fourth pass, the shear fracture angle for rolled samples is slightly larger than that for aged samples.  

Figure 3.  

Fracture morphology 

 Figure 4 shows SEM images of the fracture surfaces of rolled and aged samples after tensile 

tests. After the first AC pass, a large number of round dimples appear on the fracture surface. This 

suggests that after the first pass, the fracture is evidently caused by inter-void necking of ligaments 

at relatively high stress triaxiality induced by severe necking at fracture. After several passes, the 

depth of dimples decreases for both the rolled and aged samples. It is observed that the dimples link 



up along a certain shear direction with each successive pass. The dimple depth gradually decreases 

along a definite direction, which indicates shear fracture. The transition from inter-void necking of 

ligaments to shear-linking up of voids as passes increases is due to the decrease of stress triaxiality 

caused by reduced necking at the eventual fracture. After the seventh AC pass, the dimples are very 

shallow. Moreover, as shown in Figure 4 (e) and (f), and Figure 4 (g) and (h), the dimples are 

smooth for rolled samples, while there are some wrinkles on the dimple surface for the aged 

samples.  

Figure 4.  

Discussion 

Fracture Mechanism in Tensile Process 

In a typical uniaxial tensile test, the shear fracture angle is always 90° or 45° for typical FCC metals 

and alloys. Ma et al. (2013) found that the shear fracture angle is 90° for ultrafine grained copper 

sheets. Segal et al. (2006) established a mathematical model for tensile testing of ultrafine grained 

metals. They predicted a 45° fracture angle for cylindrical samples, and realized it in ultrafine 

grained Al-0.5%Cu alloy. However, as seen in Table 4, the shear fracture angle gradually decreases 

from 90° to 64°, and is a function of the number of passes to which the sample is subjected. 

Khakbaz (2012) and Wang (2008) found that the shear fracture angles range from 60° to 65° for 

ultrafine grained aluminum samples produced by SPD techniques. Labergère et al. (2011) employed 

a fully adaptive 2D numerical methodology to simulate a tensile testing and the shear fracture 

angles of tensile samples were around 60º.  

Figure 5 shows the shear fracture angle as a function of the number of passes, as predicted by the 

different fracture criteria described above. The Cockcroft-Latham fracture criterion predicts a 

constant 90° shear fracture angle which is the same with the results of Kang et al. (2014) who 

conducted the tensile tests with 8.15 mm thickness of AA6061, while the Tresca fracture criterion 

predicts a constant 45°. It is obvious that these two fracture criteria cannot predict the fracture 

behavior of ultrafine grained aluminum alloys produced by SPD techniques. In contrast, application 

of the GTN criterion in the FE model yields simulation results that have a trend similar to the 

experimental ones. The AC-processed aluminum sheets are ultrafine grained materials, whose 

ductility reduces with an increasing number of rolling passes. In Figure 4, there are some dimples in 



the fracture surface, which implies ductile fracture behavior during the tensile process, but there are 

also some smooth zones at the fracture surface, suggesting localized brittle fracture. Segal et al. 

(2006) found that both ductile and brittle fractures can occur in the samples during tensile tests. 

When the GTN criterion was employed, the brittle fracture behavior of samples was neglected and 

the element size cannot be meshed too small. This may explain the difference between the 

simulated results and experimental ones. In addition, because the brittle fracture behavior of the 

samples was neglected, the simulated final elongations are larger than those seen experimentally. 

However, it appears that the GTN criterion can still be used to simulate the fracture behavior of 

ultrafine grained samples during tensile tests compared with other two kinds of fracture criteria.  

Figure 5.  

Secondary particles can lead to crack initiation and induce surface defects in the deformed 

material. As shown in Figure 6, there are some voids around the particles on the fracture surface. In 

the rolled samples, as the number of rolling passes increases, an increasing number of voids appear 

around the particles (Yu et al. 2008, 2009, 2013b). Figure 6 (a) shows the voids formed around the 

secondary particles after rolling. Figures 6(b) and 6(c) shows the fracture mechanism by 

coalescence of voids for necking of inter-void ligaments and shear-linking up of voids respectively 

(Weck and Wilkinson 2008). Compared with the two different mechanisms of void coalescence in 

Figures 6(b) and 6(c) with the SEM images of fracture surfaces for specimens after a different 

number of rolling passes, it is obvious that coalescence of voids transitions from inter-void necking 

of ligaments to shear-linking up of voids as the number of rolling passes increases.  

Figure 6. 

Eqs. (12) and (13) describe the void growth and nucleation in the GTN model. The GTN model 

also considers the coalescence of voids as an important factor for the growth of the void volume 

fraction, as in Eq. (10). Besides, a number of other models have been proposed to describe void 

coalescence according to the two different mechanisms illustrated in Figures 6(b) and 6(c). These 

two mechanisms are schematically illustrated in Figure 7. Based on different assumptions, three 

typical void coalescence models (Thomason 1990; McClintock et al. 1966; Lou et al. 2012) were 

proposed: 

Figure 7.  
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In the above equations, a, c, e, and W are geometric parameters of voids as shown in Figure 7; 

𝐴𝑛−2𝐷 is the area fraction of the inter-void matrix, which is equal to e/W; Vf the initial void volume 

fraction; σm the mean stress; σe the equivalent plastic stress; ε  the far-field true strain; n the strain 

hardening exponent; maxτ  the maximum shear stress. Eq. (14) is controlled by the normal stress, 

and Eqs. (15) and (16) are controlled by shear stress. It is easy to understand that both the normal 

stress and shear stress together determine the coalescence of voids in the AC-processed aluminum 

sheets. Thus, to simulate the fracture behavior of sheet metal materials in the tensile process, the 

void coalescence under both tension and shear loading should be considered. It will be interesting to 

develop a void coalescence model that combines tension and shear in future. Here, we simply 

define a weighting factor β, which stands for the fraction of shear-linking up of voids (fS) compared 

to the fraction of the inter-void necking of ligaments (fN) in the shear fracture angle (а) of samples 

in the tensile processing: 

αββ =+− SN ff)1(            (17) 

Figure 8 shows the relationship between the weighting factor and the foil thickness (t), which 

could be fitted by Eq. (18):  

)27.0/exp(0043.05635.0 t−=β         (18) 

Figure 8.  

Size Effect  

Figure 3 shows that the elongation of samples increases after the ageing treatment compared to 

that after rolling. However, rolled and aged specimens subjected to the tensile test show only a very 

slight difference. The rolled samples were aged at 100ºC, which does not result in an increase in 

grain size and only develops some nano-size precipitations. The precipitations result in greater 



elongation during the tensile test, owing to an accumulation of dislocations. The dislocations 

surround the nano-size precipitates, which results in enhanced ductility. Thus, from the 

experimental results, it may be concluded that the precipitations do not affect the shear fracture 

angle. In addition, as seen in Figure 3, the shear fracture angle increases with the number of rolling 

passes. During rolling, the sheet thickness gradually decreases from 1.3 mm to 0.19 mm, and the 

grain size gradually decreases to 235 nm. Thus, both the grain size and the thickness of samples 

resulting from the rolling will affect the fracture behavior of the samples in the tensile test.  

Figure 9(a) compares the tensile force vs displacement curve deduced from simulation using the 

GTN criterion with the experimental results. The simulated final elongations are seen to exceed the 

experimental results. In the simulation models, the material properties are assumed to be uniform 

and inhomogeneity. This may explain the discrepancy between the simulation results and the 

experimental results. However, as shown in Figure 3, we found that the influence of the sample 

elongation during tensile process on the shear fracture angle is only slight. The shear fracture angles 

are similar for a wide range of elongations, for the rolled and aged samples with the same thickness. 

Thus, it can be concluded that the difference between the simulated and experimental elongations 

do not imply an incorrect estimate of the shear fracture angle. Figure 9 (b) shows the shear fracture 

angles with a variety of the thickness and material parameters of samples by the GTN criterion. As 

seen in Table 3, after the first AC pass, the thickness of sample is 1.3 mm. When using the material 

parameter after the first pass, the shear fracture angle is 90º, however, when using the material 

parameters after the fifth pass, the shear fracture angle decreases to74º. Similarly, for the sample 

thickness after the fifth AC pass, when using the material parameters after the first AC pass, the 

shear fracture angle is 64º, which decreases into 60º when using the material parameters after the 

fifth AC pass. It is obvious that the material characteristics will directly affect the shear fracture 

angle during the tensile test.  

When using the same material parameters with variable sample thicknesses, the shear fracture 

angles will also change greatly. When using the material parameters after the first AC pass, the 

shear fracture angles is 90º when the thickness of sample is 1.3 mm. This reduces to 64º when the 

thickness reduces to 0.4 mm after the fifth AC pass. Similarly, when using the material parameters 

after the fifth AC pass, the shear fracture angles is 74º for thickness of sample 1.3 mm. This 

decreases to 60º for a 0.4 mm sample thickness.  



Figure 9.  

Characteristic features of localization and fracture were detected during tensile testing of samples. 

According to Eqs. (9) - (13), the fracture behavior is directly affected by the void density. Uniform 

elongation takes place along sample length with a symmetrical stress-strain state and a pure shear 

deformation mode. When the material hardening ability reduces to some critical level, plastic 

deformation is localized in the sample neck (Segal et al. 2006). In the tensile test processing, both 

the necking fracture and shear fracture models have obvious shear lines. In addition, the fractures 

initiate at the center of the samples. Figure 10 shows two kinds of fracture behavior, and Figure 

10(g) is the employed geometry and mesh of samples. Sánchez et al (2008) employed the GTN 

criterion to solve ductile fracture problems and pointed out particular attention should be given to 

the mesh size dependence and to the coalescence of the larger void. Saanouni (2012) also pointed 

out the fracture zone is very dependent in the mesh size and mesh orientation. In order to obtain a 

good result, the samples were meshed uniformly. Figure 10 (a) and (d) show the void density 

distribution before the fracture, the area with high void density in Figure 10 (a) is much larger than 

that in Figure 10 (d), which will directly affect the size of the initiated fracture, as shown in Figure 

10 (b) and (e). As shown in Figure 10 (c) and (f), when the fracture initiates, they propagate along 

different directions, and shows different shear fraction angles of samples finally. When the area of 

the initiated fracture is larger than a certain value, the fracture will occur with necking. However, 

for the samples with a smaller size of fracture, the flow of samples is unstable. When the area of the 

initiated fracture is smaller than a certain value, the fracture will appear with shear model. As shown 

in Figure 3, with a higher pass number, the dimple depths decreases, which indicates that the ff will 

decrease, and then results in a lower shear fracture angle, as listed in Table 4.  

Figure 10.  

It is obvious that the shear fracture angle will reflect the elongation of the samples during the 

tensile process. Thus, the elongation of samples will change with thickness for the same material. 

With a reduction in the sheet thickness, the grains on the free surface are less constrained and more 

easily deformed at a substantially lower flow stress than is the case in the bulk state. Suh et al. 

(2010) found that the tensile strength of Al 6K21-T4 sheets decreased almost linearly with thickness 

when the thickness was reduced below a critical value. Figure 11 shows the FE simulation results 



of the elongation of samples during tensile test with the material parameters after the first AC pass 

with change of the sample thickness after the first, third, fifth, and seventh passes listed in Table 3. 

We could find that with the same material parameters, the fracture occurs by necking when the 

thickness is 1.3 mm. However, when the thickness of samples is less than 0.8 mm, the fracture 

occurs by shear. In addition, when the thickness of samples is 1.3 mm, the elongation is about 3.0 

mm; however, it reduces to 2.0 mm when the thickness of sample is 0.2 mm. It is obvious that the 

elongation of samples reduces with decreasing the sample thickness from 1.3 mm to 0.2 mm, in 

which the elongation of samples are linearly proportional to the sample thickness, as was also seen 

by Suh et al. (2010). 

Figure 11.  

Figure 11 shows that the elongation is inversely proportional to the sample thickness. Figure 12 

shows the relationship elongation/thickness as a function of the number of passes. It can be deduced 

that the effective ductility increases with more passes. After the seventh pass, the effective ductility 

is about two times that after the first pass.  

Figure 12.  

6. Conclusions 

(1) The fracture behavior of ultrafine grained Al 6061 alloy sheets produced by asymmetric 

cryorolling was investigated both experimentally and by FE simulation. Experimental results 

showed that the shear fracture angle of the samples gradually decreases from 90º to 64º as the 

number of rolling passes increases.  

(2) The fracture surface of the rolled samples is much smoother than that of the aged samples. 

This may be due to precipitation, and may explain the difference in elongation during the tensile 

test. However, precipitation does not appear to affect the shear fracture angle.  

(3) Beside the material properties and the strain rate, the test specimen thickness affects the 

fracture behavior during the tensile test. For the same material parameter, the shear fracture angle 

during the tensile test reduces with reduction in sample thickness from 1.3 mm to 0.2 mm.  

(4) It would be interesting to develop a model based on void coalescence combining tension and 

shear in the future to predict the fracture behavior in nanostructured / ultrafine grained materials.  
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Table 1. Main parameters in GTN model. 

Parameters f0 fc fN εN sN q1 q2 q3 

Value 0.000125 0.013 0.0008 0.3 0.1 1.5 1.0 2.25 

 
  



Table 2. Chemical composition of Al 6061 alloy. 

Elements Si Fe Cu Mn Mg Zn Ti Cr Al 

wt % 0.4-0.8 0.7 0.15-0.4 0.15 0.8-1.2 0.25 0.15 0.04-0.35 Balance 

 
  



Table 3. Schedule of asymmetric cryorolling. 

Rolling pass 0 1 2 3 4 5 6 7 

Strip thickness, mm 1.5 1.3 1.0 0.82 0.58 0.4 0.26 0.19 

Reduction ratio, % - 13 23 18 29 31 35 27 

 
  



Table 4. Image of fracture end of samples after tensile test. 

Number of 
rolling pass, N 

Images Shear fracture angle, ° 
Rolled samples Aged samples Rolled samples Aged samples 

Pass 1 

  

90±0 87.9±2.8 

Pass 2 

  

72.4±1.0 71.6±0.4 

Pass 3 

  

70.8±0.3 67.7±0.5 

Pass 4 

  

67.1±1.7 66.7±1.0 

Pass 5 

  

64.7±0.3 66.0±0.2 

Pass 6 

  

64.3±0.3 66.4±0.3 

Pass 7 

  

64.3±0.4 64.3±0.5 

 



 

Figure 1. Illustration of shear fracture angle. 

  



 
Figure 2. Evolution of samples during tensile press (a) uniform elongation; (b) slip line field during 
necking; (c) Cockroft-Latham fracture model; (d) Tresca fracture model; (e) GTN fracture model. 

  



 

Figure 3. Fracture degree and elongation for rolled and aged samples in tensile test. Scatter bar of 

fracture angles for pass 5 and 6 not shown due to small values. 

  



 

Figure 4. Fracture morphology of rolled and aged samples after multiple passes. 

  



 

Figure 5. Shear fracture angle by simulation and experiment. 

  



 

Figure 6. Fracture behavior caused by void coalescences. (a) void around particle after rolling; (b) 

necking of inter-void ligaments and (c) shear-linking up of voids. 
  



 
Figure 7. Illustration of void coalescence, (a) necking of inter-void ligaments, (b) shear-linking 

up of voids. 

 
  



 

Figure 8. Weighting factor β as a function of foil thickness. 

  



 

Figure 9. Tensile force vs displacement curve between simulated and experimental results for 1.3 

mm thickness sample (a), and shear fracture angle with variable thicknesses and material 

parameters (b). 

  

  



 

Figure 10. Void density distribution on the samples in the fracture processing for the thickness of 

samples 1. 3 mm, where (a), (b), and (c) for the material parameters after the first pass, (d), (e) and 

(f) for the material parameters after the fifth pass; (f) is the geometry and mesh of tensile samples. 

  



 

Figure 11. Elongation of samples with the same materials and variable thickness of samples. 

  



 

Figure 12. Change of elongation/thickness during AC rolling. 
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