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intensive service provision is proposed, 2) An extensible QoS model is also proposed to calculate the QoS
values of data-intensive services, 3) Finally, a modified genetic algorithm-based approach is introduced to
compose data-intensive services. A local selection method with modifications of crossover and mutation
operators is adopted for this algorithm. The results of experiments will demonstrate the scalability and
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Abstract— The explosion of digital data and the dependence
on data-intensive services have been recognized as the most
significant characteristics of IT trends in the current decade.
Designing workflow of data-intensive services requires data
analysis from multiple sources to get required composite services.
Composing such services requires effective transfer of large data.
Thus many new challenges are posed to control the cost and
revenue of the whole composition. This paper addresses the
data-intensive service composition and presents an innovative
data-intensive service selection algorithm based on a modified
genetic algorithm. The performance of this new algorithm is also
tested by simulations and compared against other traditional
approaches, such as mix integer programming. The contributions
of this paper are three folds: 1) An economical model for
data-intensive service provision is proposed; 2) An extensible
QoS model is also proposed to calculate the QoS values of
data-intensive services; 3) Finally, a modified genetic algorithm-
based approach is introduced to compose data-intensive services.
A local selection method with modifications of crossover and
mutation operators is adopted for this algorithm. The results of
experiments will demonstrate the scalability and effectiveness of
our proposed algorithm.

[. INTRODUCTION

In recent years, the data generated by scientific activi-
ties, social networking, social media, as well as commercial
applications has exponentially increased. This explosion of
digital data and the dependence on data-intensive services are
key characteristics of the IT tread in this decade. Effective
developments of applications based on data-intensive services
have become of the most important challenges in service-
oriented computing. For example, computational scientists
often perform complex computational analysis, which both
consumes and produces large data sets. They build large-scale
scientific applications which are composed from various data-
intensive services into a composite service which can be re-
used by other users. In this context, data-intensive service
composition presents the following challenges.

o The data intensity and the communication cost of mass
data transfer will have a significant impact on the perfor-
mance of data-intensive applications.

o Large number of data sets and increasing functionality
of related services make the composition complex. Fur-
thermore, the development of cloud computing has made
increasingly diverse services available, enabling Web-
based publishing at different quality levels, for both the
data itself and services based on it.

o Current businesses using cloud computing have begun
to provide data management services, data transfer ser-
vices, and data storage services. The delivery of Internet-
scale data-intensive services has brought a number of
challenges, such as the maintenance of quality of service
(QoS) as well as excellent opportunities for businesses to
gain market share, and for scientific programs to save on
cost and energy as well as on space for data management.

o Dynamic and adaptive mechanisms are needed to be able
to make optimized service composition decisions in a
distributed manner.

In this paper, we address the challenges listed above for
data-intensive service composition. We propose a modified
genetic algorithm to compose data-intensive services. The
differences between our algorithm and others are as follows.

o Most other studies have adopted roulette wheel selection
which has problems when the fitness varies widely [5],
[6], [8], [17], [18]. The selection operator in this paper
is the combination of elitism selection and tournament
selection, by first copying the fittest individual into the
next generation and then producing other individuals of
the population. Elitism selection can increase the per-
formance of the GA very rapidly. Tournament selection
is among the most widely used selection strategies in
evolutionary algorithms. In addition, the combination of
the two selection methods can guarantee the algorithm
not to get stuck in local optima.

« In order to escape from local optima, a local selection rule
and some modifications of the crossover and the mutation
operators are adopted. The local selection method can im-
prove the convergence speed to the global optimum. The



modifications of the crossover and the mutation operators
can prevent the creation of the unfeasible solutions.

o Very little research has considered the effect of data in-
tensity and the communication cost of mass data transfer
on service composition. This paper is the first effort
to address data-intensive service composition using a
modified genetic algorithm.

The remainder of this paper is organized as follows: Section
II reviews related work. Section III further specifies the prob-
lem. Section IV investigates how a modified genetic algorithm
with a local selection method could be used to solve the
data-intensive service composition problem. Section V shows
the performance evaluation. Finally, Section VI concludes this
paper and proposes future work.

II. RELATED WORK

In a QoS-aware service composition process, the service
composer needs to select services to satisfy the quality con-
straints and achieve the optimization goals. The optimization
goals can vary and can include such aims, as minimizing the
overall cost of service usage or the overall response time,
or providing the best value for user-defined utility function.
The research area of QoS-aware service composition has
attracted much attention in the past years. It should be noted
that the optimization processes in most QoS-aware service
composition studies aim to satisfy quality constraints and
provide the “best” solutions with highest QoS. However, from
a cost perspective, consumers will not always pay more, even
if the qualities of the requested composite services exceed
their expectations. This is because most service-composition
processes involve static price-setting models.

A variety of studies adopted genetic algorithm (GA) to
solve QoS-based service composition problems. The authors
of [5] proposed a GA-based approach for QoS-aware service
composition. Their experimental results showed that the dif-
ferences between static and dynamic fitness functions were
not significant. By comparing the GA approach with the
linear integer programming method, the authors pointed out
that integer programming was preferable when the number
of concrete services was small. The paper [7] presented a
cost-driven web service selection based on genetic algorithm.
In the process of population initialization, an individual was
checked to see whether the constraints were satisfied after it
was generated. The checking process was also applied after
each crossover operation and mutation operation.

In [9], [17], [28], a genetic algorithm based on a relation
matrix coding scheme for QoS-aware service selection prob-
lem was proposed. The authors argued that the one dimension
coding scheme cannot express all paths of composite service at
the same time but the relation matrix coding schemes can. [28]
adopted an initial population policy and the mutation policy
to promote the fitness of genetic algorithm. [9] presented an
enhanced initial population policy and an evolution policy for
GA. [17] focused on how fitness function and a mutation
policy affected the performance of the genetic algorithm.

The paper [18] proposed a hybrid genetic algorithm utilizing
a local optimizer to improve the fitness value of the individuals
in the population in order to improve the overall QoS value.
The local optimizer was used to improve the individuals in
the initial population after it was randomly generated. The
study also used the local optimizer in the population at end of
each generation, but this was not represented in the algorithm.
The strategy for unfeasible individuals was that a penalty was
given to their fitness values. Similarly, the paper [11] presented
a hybrid genetic algorithm using a local improver for QoS-
aware service composition. The local improvement procedure
was based on an iterative neighborhood search so that a given
solution was replaced with best neighbor found.

The existing GA-based approaches for service composition
focus on different aspects such as the chromosome encoding
scheme, initial population policy, crossover policy, mutation
policy, the fitness function with a static or a dynamic penalty
factor, the operators, and population diversity handling. Re-
fer to the encoding method in GA-based approaches, some
adopted a one dimensional chromosome encoding method [5],
[29], but when the number of candidate services becomes very
large, the readability of the chromosomes is very weak and
it cannot represent the semantic information. So some GA-
based approaches adopted a relation matrix coding scheme
method [17]. However, this method frequently generated ille-
gal individuals and became less efficient. The authors of [6]
proposed a tree-encoding model which could express various
composition relationships and carried static-models of service
workflow and supported re-planning at run-time.

Mixed integer programming (MIP) approaches have been
proposed to solve QoS-aware service composition with global
constraints [2], [3], [5], [8], [12], [30]. We also formulate
the data-intensive service composition with constrained time
problem as a MIP model and use the open source integer
programming system Ipsolve version 5.5 [4] to solve it.
Random selection approach is also a GA-based approach [5],
[6], [8], [18]. This approach would randomly select a service
candidate to replace during the mutation operation.

Genetic algorithms belong to the category of bio-inspired
algorithms, which offer many advantages for dealing with
data-intensive service provision problems. Bio-inspired opti-
mization algorithms have been proposed to solve the service
provision problem, because of the simplicity of the algorithms
and the rapid convergence to optimal or near-optimal solutions
[20], [22]. Biological entities can learn from their environment.
They can sense the surrounding conditions and adaptively
invoke behaviors suited to the conditions. Biological inspired
systems are typically made of a population of simple agents,
which try to build the feasible solution to apply the stochastic
decision policy repeatedly. They are decentralized and self-
organized systems. We have already done pilot studies in
applying bio-inspired algorithms to tackle service composition
problems [14], [19], [20], [21], [27]. [21] was the first effort
to address the lower cost data-intensive service composition
problem. Also, there is ample evidence regarding the ap-
plicability of genetic algorithms for large-scale optimization



problems [13], [23] and service composition in cloud com-
puting [25]. In order to deal with the dynamic changes of
services and network conditions in cloud computing, as well
as the constraints of different users and the flexibility of the
selection criteria, a modified genetic algorithm-based data-
intensive service composition approach is proposed in this

paper.
I1I. PROBLEM STATEMENT
A. An Economical Model of Data-Intensive Service Provision

In general, data-intensive service composition will be sup-
ported cooperatively by service composers, service providers,
and data providers. Different providers need a method to
regulate and price their resources, and they all want to have
a position in the market whilst maximizing their profits.
An economical model of data-intensive service provision is
assumed to be an accurate representation of the reality and
to offer a suitable way to regulate the interactions among
the three providers. As shown in Fig. 1, in the downstream
market, the service composer seeks optimal strategies to select
elementary services provided by multiple service providers,
who compete on the basis of price and quality of services.
From the service composer’s point of view, it is important
to be able to assess the value of the needed services and how
much it wants to pay for them to satisfy its users’ requirements
as well as to maximize its profit. From the service provider’s
perspective, it is important to be able to analyze its competitive
position and improve its offers if it is to win contracts with the
service composer. In the upstream market, the service provider
requests the data from the data provider. The price of the data
may affect the total cost and the price of services. Therefore
the prices of service and data have a crucial impact on the
service composer’s and the service provider’s profits.

This paper makes a distinction between cost and other
QoS attributes because cost is usually related to other quality
attributes and it becomes more important in data-intensive ser-
vice provision. In traditional service composition, executable
services and its input/output data are usually in the same site.
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Fig. 1. Service and data set usage and charging relationship.

Thus the cost for data staging can be neglected or the cost is
a constant determined before execution, and service selection
algorithms need not consider it. However, in data-intensive
service composition, providers charge users depending on
the user’s location and the amount of data transferred. Each
service requests data sets from the storage resources (or data
servers). Each of these data sets may be replicated at several
locations that are connected to each other and to the service
endpoints through networks of varying capability [10], [15],
[24]. When composing data-intensive services, optimizing the
cost of data is a priority, as data play the dominant role in the
data-intensive service composition.

B. Data-Intensive Service Composition

In a Web service environment, abstract services are the
functional descriptions of services, and concrete services rep-
resent the existing services which are available for potential
invocation of their functionality and capabilities. When the
function of several concrete services is consistent with the
functional description of an abstract service, these concrete
services are the service candidates of the abstract service and
QoS attributes are used to distinguish them.

The data-intensive service composition problem is modelled
as a directed graph, denoted as G = (V, E, D), where V =
{AS;,ASs, ..., AS,} and E represent the vertices and edges
of the graph respectively, D = {d;,ds,...,d,} represents a
set of z data servers. Each edge (AS;, AS;) represent a rela-
tionship between AS; and AS;, which means that AS; has to
finish before invoking AS;. Each abstract service AS; has its
own service candidate set cs; = {csm, C8i2y- -, csi7m},i S
{1,...,n}, which includes all concrete services to execute
AS;. Each abstract service AS; requires a set of k data sets,
denoted by DT?, that are distributed on a subset of D. A
binary decision variable z; ; is the constraint used to represent
only one concrete service is selected to replace each abstract
service during the process of service composition, where x; ;
is set to 1 if cs; ; is selected to replace abstract service AS;
and 0 otherwise. Fig. 2 gives an example of a directed graph
for data-intensive service composition, in which data sets,
as the inputs and outputs of services, are incorporated. For
simplicity, it is assumed that all data sets needed by each
service have already been distributed in data centers prior
to service composition following a uniform distribution. In
addition, we will only consider the cost and response time of

data sets data sets
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Fig. 2. An example of directed graph for data-intensive service composition



data-intensive services.

C. QoS Model

Consider a data-intensive service cs; ; on site y has been
chosen to replace AS;, which is connected by links of different
bandwidths with all the data servers. The price of data set dt
is denoted by pg4:, which is the fee that a data user has to pay
to the data provider for the data usage. The size of data set
dt is denoted by size(dt). Cyc(AS;) and Cy-(AS;) are used
to denote the access cost and the transfer cost of all data sets
required by AS; respectively. Cy,.(AS;) is used to denote the
service related cost which mainly includes the cost to provision
the service and the cost to process the data sets. For each data
set dt € DT, the time to transfer it from dg to v is denoted
by Ti(dt,da,y). The cost for the task, Cost(AS;), can be
described by (1).

Cost(AS;) = Cue(AS;) + Ci(AS;) + Cor(AS;)
Cac(AS)) = > pas

dteDT?

(1)
Cir(AS;) = Z Ty(dt, dgs,y) * teost
dte DT
Tt (dty ddt7 y) = Size(dt)/bw(ddta y)
Subject to:
ASL = chivjxq;,j
=1
! )

> mij=1a; € {0,1}i€{1,...,n}
j=1

where tcost is the cost of data transfer for per time unit,
bw(dg,y) is the network bandwidth between data server
dg and service endpoint y, size(dt)/bw(dg,y) denotes the
practical transfer time.

The estimated execution time for the task, T.;(AS;), in-
cludes the time for processing data sets T},(AS;) and the time
for accessing data sets T,q(AS;). Taa(AS;) is the maximum
value of time for accessing all data sets required by the task.
The access response time of data set d¢, T,.(dt), includes
the data transfer time T3(d¢,dg,y), the storage access la-
tency Tsqi(dg:), and the request waiting time Tyt (dg; ). Thus,
T.+(AS;) can be given by (3).

T.:(AS;) = Tp(ASi) + Tad(ASi)
T.a(AS;) = T (dt
a(AS;) = max (T:(dt))

TTt (dt) = E(dta ddt; y) + Tsal(ddt) + th (ddt)
Tsai(dar) = size(dt)/sp(da)

nr

Tuwi(dar) =Y (size(dt’)/sp(dar))

=1

3)

where sp(dg;) is the storage media speed, nr is the number
of data requests waiting in the queue prior to the underlying
request for dt. The data transfer time T (dt, dgy, y) is the time
to transfer the data set from the remote site that houses the data

replica to the local site which has the service that requested the
replica. It depends on the network bandwidth and the size of
the data replica. The storage access latency is the delayed time
for the storage media to serve the requests and it depends on
the size of the data and storage type [1]. Each storage media
has many requests at the same time and it serves only one
request at a time. The current request needs to wait until all
requests prior it in the queue finish.

Using a genetic algorithm, the problem of finding a data-
intensive service composition solution is considered as an
optimization problem, in which the overall fitness value has
to be maximized. Formally, the optimization problem in this
paper is described as follows. Find a solution C'S' in graph G
by replacing each abstract service AS; in V' with a concrete
service ¢s; ; € cs; such that the overall fitness F'(CS) is
maximized with the constrained execution time. The fitness
function is described in the following section.

IV. DATA-INTENSIVE SERVICE SELECTION BASED
ON A MODIFIED GENETIC ALGORITHM

Genetic algorithms (GAs) belong to the larger class of
evolutionary algorithms (EAs), which generate approximate
solutions to optimization and search problems by using tech-
niques inspired by the principles of natural evolution: selec-
tion, crossover, and mutation. GA is a powerful tool to solve
combinatorial optimization problems [16]. To use a GA to
search for a solution to the data-intensive service composition
problem, the first step is to encode the problem with a suitable
genome. The encoding scheme of chromosomes in this paper
is the integer array coding scheme. The initial population is
created randomly according to a directed graph. Only one
branch of the conditional operations is selected according to a
certain probability. The selection operator in this paper is the
combination of elitism selection and tournament selection.

The crossover operator in this paper is the single point
crossover. The crossover point is created randomly but must
be checked as to whether it will create unfeasible solutions.
The checking rule is that there is one and only one branch of
each conditional operation to be selected.

The mutation operator for each chromosome replaces the
value of the gene with the assignment of another concrete
service in the service candidate set according to the local
selection rule which will be described as follows. The prob-
ability of mutation is for the locus of gene. The locus for
each gene represents its own position in the chromosome.
Every locus in each chromosome which was created by the
crossover operation is checked for possible mutation. Before
the mutation operation, it is necessary to check whether the
value of the gene equals zero. If the value of the gene equals
zero, it means the related abstract service is in a conditional
branch and it is not selected, so the mutation operator will not
be applied to this locus.

The local selection rule in the mutation operator is based
on the utility of the concrete service. Prior to the mutation
operation, the utility of each concrete service in each service
candidate set is computed. Then all the concrete services in



each service candidate set are sorted in descending order
according to their utility. When the mutation operation is
applied, the replacement process will search another service
candidate from the beginning of the service candidate set until
the assignment is different from the old assignment, and then
replace it.

Suppose a composite service CS is composed of n tasks,
and there are m concrete services to execute each task.
Each concrete service cs; ; is associated with a QoS vector
@j = l4i;,45,- - -, qf;] with r parameters. The set of QoS
attributes can be classified into two groups: positive and
negative QoS attributes. The values of negative QoS attributes
like response time need to be minimized. The higher their
values, the lower the QoS attributes. The values of positive
QoS attributes such as availability need to be maximized. The
higher their values, the higher the QoS attributes. In order to
evaluate the multidimensional quality of concrete service cs; ;,
an evaluation function is used. The function maps the quality
vector ¢;; into a single real value to enable selecting of service
candidates. In this paper, a multiple attribute decision-making
approach for the evaluation function is used, that is, the simple
additive weighting (SAW) technique [26].

There are two phases in applying SAW: 1)The scaling phase
is used to normalize all QoS attributes to the same scale,
independent of their units and ranges; 2)The weighting phase
is used to compute the utility of each service candidate by
using weights depending on users’ priorities and preferences.
For negative QoS attributes, values are scaled according to (4).
For positive QoS attributes, values are scaled according to (5).

maa:

qz] if Qmaz _ mzn 7& 0

[t L A
k ki

Vi = I? - Q" )

1 if Q™ — ;"” =0

k _ min

ql] ki max m7.n 0
Vk _ max min 1 kg 7é 5
b Qe Qyp )

max min
1 if Q — Wk =0

In (4) and (5), Q}'?" and Qmm (k € {1,27 ...,7}) are used
to represent the maximal value and the minimal value of the
k-th QoS attributes of all concrete services in candidate set
cs;, which are given by (6).

ki — . NI g,
Vesi jECSs; (6)
max
7Y = max
ki Vesi,j€cs; q”
The overall score of cs; ; is computed according to (7).
T
k
scorecs, , = E (Vi * W) @)

k=1

where Wy, € [0,1] and > W), = 1. W}, represents the weight

of k-th quality criteriak;vlith value normally provided by the
users based on their own preferences.

When using a GA to solve service composition problems,
the fitness function always corresponds to QoS attributes. In

this paper, the fitness function is used to evaluate the utility
of a potential solution. As we discussed before, this paper
will consider only the cost and response time of data-intensive
services. The ﬁtnesshvalue of a solution C'S is computed as

F(CS) = Ek 1 Q%AXW * Wy, where gf.g is the k-th
aggregated QoS Value computed by applying the aggregation
functions described in Table 1 of [5]. QM IN =y i1 Q"””
and QMAX = ¥ Qmaz represent the maximal value and
the minimal value of the k-th QoS attributes of all the possible
solutions, respectively.

The service selection algorithm based on a modified GA for
data-intensive service composition is given in Algorithm 1 on
the next page.

V. PERFORMANCE EVALUATION

The aim of this evaluation is to analyze the performance of
the proposed algorithm: 1) observing the evolution of fitness
value over the GA generations; 2) comparing our GA with
mixed integer programming approach [2], [12]; 3) comparing
our GA with GA-based random selection approach [5], [6],
[8], [18]. All the experiments are conducted on computers
with Inter Core i5 2500 CPU (3.3GHz and 8 GB RAM).

A. Test Case Generation

The values of parameters considered in this paper are:
Npop = 20, MaxIt = 1000, PC = 0.7, PM = 0.1,
EIT = 100. The weights for QoS attribute cost and response
time are 0.8 and 0.2 respectively. QoS values of different
concrete services, the number of data sets required by each
abstract service, size and price of each data set, storage media
speed and the number of waiting request of each data server,
network bandwidth between data server and service endpoint
were generated randomly with uniform distribution. There are
two branches in all the conditional patterns with the probability
of 0.5. The price of a data set, the network bandwidth (Mbps)
between each data server and service endpoint, the storage me-
dia speed (Mbps), the size (MB) of a data set and the number
of data request in the waiting queue were randomly generated
with uniform distribution from the following intervals: [1,100],
[1,100], [1,100], [1000,10000] and [1,10].

The performance of the modified genetic algorithm is af-
filiated to the size of the data-intensive service composition
problem. The size of the problem depends on the number of
abstract services in the workflow and the number of concrete
services for each abstract service. For the purpose of our
evaluation, we considered some scenarios, where a composite
application comprises services from n abstract services (n
varies in our experiments between 10 and 50, in increments of
10). There are m concrete services in each service candidate
set (m varies in our experiments between 100 and 1000, in
increments of 100). Each abstract service requires a set of k
data sets (k is fixed at 10 in our experiments). A scenario
generation system is designed to generate the scenario for
experiments. The system first determines a basic scenario,
which includes sequence, conditional and parallel structures.
Within this basic scenario, other scenarios are generated by



Algorithm 1 Data-intensive service selection algorithm based
on GA

Input:

M axIt: the maximum number of iterations;

EIT: the best fitness value remains unchanged for EIT
generations;

nstop: the number of changes of the best fitness value;

G: the directed graph;

Output:

S: a service execute path to create a composite service ;

iga = 1;

nstop = 0;

randomly create an initial Population;

calculates the utility of each concrete service according to

(D

calculates the fitness value of each individual;

6: sorts and reorganizes Population according to the fitness
value of each individual in descending order;

7: records the best fitness, changes nstop;

8: while iga < MazIt do

9:  iga =1ga+1;

10:  applies elitism and tournament selection strategy;

11:  for each pair of the selected parents do

12: applies crossover operator to produce two offspring;

13: adds the two offspring into the next generation;

14:  end for

15:  for each new individual z created by crossover opera-

holi i S s

W

tion do
16: for each locus [ of = do
17: if the value of [ is not zero and [ needs to mutate
then
18: stores z and calculate the fitness F(z);
19: uses the local selection rule to replace the value

of [ with assignment of another service candi-
date to produce new offspring x1;

20: calculates the fitness F'(x1);

21: if F'(z) > F(x1) then

22: xl = x;// the old individual with bigger
fitness value survives;

23: end if

24: end if

25: end for

26:  end for
27 all individuals in the next generation create the new

Population;
28:  for each individual in Population do
29: calculates the fitness values;

30:  end for

31:  sorts and reorganizes Population according to the
fitness value of each individual in descending order;

32:  records the best fitness, changes nstop;

33 if (iga > MaxIt)|J(nstop > EIT) then

34: break;

35:  end if

36: end while

37: sets the first individual in Population to S,

38: return S.

Generation: GFitness=28.2145, FRGE=1.
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Fig. 3. The evolution of fitness value

either placing an abstract service into it or adding another
composition structure as substructure. This procedure ends
until the scenario has the predefined number of abstract
services. All scenarios were executed 50 times and the average
values are reported from these experiments.

B. Result Analysis

We give one example of all experiments to show the
evolution of fitness value over the GA generations. Fig. 3
shows a scenario where a composite application comprises
services from 30 different service classes, the number of
service candidates per class is 500, and the number of data set
for each service candidate is 10. In Fig. 3, the short line on
the above half denotes the fitness value of the best individual
from the beginning of the trial, and the point on the below
half denotes the fitness value of the best individual of each
generation. The value of ‘GFitness’ is the fitness value of the
best individual from the beginning of the trial and it depends
on the QoS attributes of services. Different values of QoS
attributes give different values of ‘GFitness’. That is to say,
the change of the value of ‘GFitness’ has no significance for
the simulation results. The value of ‘FRGE’ is the number of
generations when the best fitness value appeared and from this
generation the value of the best fitness will not change.

When comparing GA with MIP, the GA is required to reach
the same solution as of MIP. In Fig. 4 on the next page, we
compare the performance of our modified genetic algorithm
with the performance of MIP approach with respect to the
number of abstract services. The number of abstract services
varies from 10 to 50, while the number of concrete services
per service candidate set is fixed at 500 and the number of
data sets required by each abstract service is fixed at 10. The
results of this experiment indicate that the performance of both
approach degrade as the number of abstract service increases,
however, the GA approach still outperforms the MIP approach.

In Fig. 5 on the next page, we study the performance of both
approaches with respect to the number of concrete services in
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the composition. The number of concrete services per service
class varies from 100 to 1000, while the number of abstract
services is set to 10, and the number of data sets is fixed at 10.
By increasing the number of service candidates, the required
computation time of the proposed GA increases very slowly,
this makes our algorithm more scalable.

When comparing GA with random selection approach, the
random selection approach is required to reach the same
solution as of GA. In Fig. 6 and Fig. 7 on the next page,
we compare the number of generations to reach the best
fitness value, namely, the value of ‘FRGE’ of our modified
genetic algorithm using local selection rule with ‘FRGE’ of
random selection approach. Both of GA and random selection
approach are required to reach the same solution as of MIP.

In Fig. 6, the value of ‘FRGE’ for GA is 8, 10, 12, 14 and
16 respectively, and the value of ‘FRGE’ for random selection
approach is 724, 823, 901, 1474 and 1555 respectively when
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the number of abstract services between 10 and 50. Fig. 6
indicates that both approaches need more generations to reach
the best fitness when increasing the number of abstract ser-
vices, however, the GA with local selection rule outperforms
the random selection approach.

In Fig. 7, the value of ‘FRGE’ for GA is all 7, and the
value of ‘FRGE’ for random selection approach is 212, 339,
395, 608, 730, 786, 954, 1271, 1393 and 1378 respectively
when the number of concrete services from 100 to 1000. Fig.
7 indicates that by increasing the number of concrete services,
the value of ‘FRGE‘ in the GA with local selection rule will
not change but that in the random selection approach increases
very quickly. That is to say, to reach the same solution as of
MIP, the random selection approach needs more generations.

VI. CONCLUSION

In this study, we presented and evaluated a new modified
genetic algorithm to support data-intensive service compo-



sition. The composition problem is modeled as a directed
graph. The algorithm adopts the combination of elitism se-
lection and tournament selection, a local selection method, a
modified crossover and new mutation operations to find the
optimal solution. We investigate how bio-inspired algorithms
facilitate data-intensive service composition. Our goal is to
reduce the cost of service composition that involves large
amounts of data transfer, data placement, and data storage.
The service composers, the service providers, and the data
providers all need a wise approach to regulate and price their
resources. Towards this, we present an economical model of
data-intensive service provision and an extensible QoS model.
Comparisons with mixed integer programming and random
selection approaches show the scalability and effectiveness of
our proposed algorithm. Future extensions of the work will
develop algorithms for negotiation processes among service
composers, service providers and data providers, and to per-
form a thorough comparison of GA with other approaches
such as ant colony optimization algorithms.
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