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Abstract: In this paper, a temporal shift unwrapping technique is presented 
for solving the problem of shift wrapping associated with spatial shift 
estimation (SSE)-based fringe pattern profilometry (FPP). Based on this 
technique, a novel 3D shape measurement method is proposed, where 
triangular patterns of two different spatial frequencies are projected. The 
patterns of the higher frequency are used to implement the FPP, and the one 
with lower frequency is utilized to achieve shift unwrapping. The proposed 
method is able to solve the shift unwrapping problem associated with the 
existing multi-step triangular pattern FPP by projection of an additional 
fringe pattern. The effectiveness of the proposed method is verified by 
experimental results, where the same accuracy as existing multi-step 
triangular pattern FPP can be achieved, but enabling the measurement of 
objects with complex surface shape and high steps. 

©2014 Optical Society of America 

OCIS codes: (100.2650) Fringe analysis; (120.5050) Phase measurement; (100.5088) Phase 
unwrapping. 
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1. Introduction 

As an enabling technology for noncontact three-dimension (3D) profile measurement, fringe 
projection profilometry (FPP) [1] has attracted increasing research efforts due to many 
potential applications. Figure 1 shows the structure of a FPP system, consisting of a digital 
video projector, a CCD camera and the reference plane. The project generates a set of images 
with a particular fringe pattern, which are casted respectively onto the reference plane and the 
surface of the object, and the reflections are captured by the CCD camera. Due to the variance 
of the height of the object surface, the image patterns reflected by the object surface are a 
deformed version of the ones from the reference plan. These deformed patterns carry the 
information of surface shape, and hence can be used to retrieve the profile of the object. 

Many approaches have been developed during the past decades for FPP, e.g., Fourier 
transform profilometry (FTP) [2], phase shifting profilometry (PSP) [3–5], modulation 
measurement profilometry (MMP) [6], spatial phase detection (SPD) [7, 8], phase lock loop 
(PLL) profilometry [9], Moiré technique (MT) [10], laser triangulation measurement [11], 
color-coded fringe projection [12–14] and other methods [15, 16]. Among these approaches, 
the most widely used are those based on analysis of the phase maps of the fringe patterns, 
such as FTP and PSP. With these phase based approaches, fringe patterns projected are 
sinusoidal or periodic, and the deformed fringe patterns are considered as the result of phase 
modulation of the original patterns projected. Detection of phase maps from original and 
deformed fringe patterns enables the retrieval of the 3D shape. 
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Fig. 1. Schematic diagram of FPP system. 

Although phase based approaches have many advantages, they also suffers from a number 
of weaknesses. A major problem is the influence of nonlinear distortions inherent to digital 
video projection [17, 18], which makes it difficult for the original fringe patterns to be either 
sinusoidal or even periodic, which are required by phase based approaches. As an effort to 
solve the problem, an approach was proposed by Hu, et al. [19–21], referred to as spatial shift 
estimation (SSE) profilometry. Rather than relying on the analysis of the two phase maps, the 
technique utilizes the spatial shift of the corresponding pixels on the two fringe patterns, thus 
leading to a great advantage. The projected fringe patterns are no longer required to be 
sinusoidal or even periodic, resulting in an increased flexibility for the selection of the fringe 
patterns. Recently, Wu, et al. [22] introduced a multiple-step triangular-pattern spatial shift 
estimation algorithm by combining inverse function based shift estimation (IFSE) [21] with 
the multiple-step triangular-pattern phase shifting algorithm [23]. Compared to the IFSE 
approach in [21], the measurement accuracy is greatly improved due to the use of multiple 
patterns. Also compared to the existing intensity ratio based techniques [23], the proposed in 
[22] does not suffer from the influence of non-linear distortion. 

While the multiple-step triangular-pattern spatial shift method is characterized by the 
above advantages, its performance relies on the result of shift unwrapping. This problem 
arises as the result of fringe reuse (that is, use of fringes with periodic light intensity 
variance). In the SSE based approaches, spatial shift between corresponding pixels on the two 
fringe patterns can only be detected within the range of [0, λ], where λ is the wavelength, or 
the width of the individual fringe, i.e., number of pixels per fringe stripe. Obviously, shift 
unwrapping is also required in order to correctly restore the 3D shape of the object surface 
[24], which is a challenging task particularly in the cases of noisy image patterns and 
discontinuities of the object surface. To solve the shift unwrapping problem, a multiple-
wavelength unwrapping algorithm was proposed in [25], where, in order to unwrap the shift 
of a pair of fringe patterns with frequency f (i.e., the number of fringes on the image), a set of 
fringe patterns with their frequencies between 1 and f are also projected. This method is not 
suitable for fast 3D measurement, as the number of image patterns can be rather large. 

The shift unwrapping problem is similar to the phase unwrapping problem in phase based 
FPP. Phase unwrapping problem arises because the phase can only be detected within the 
principle value range of [-π, π], but the true phase can exceed the range. In order to retrieve 
the actual surface shape of the object, phase unwrapping must be carried out to obtain the 
actual phase maps. Ding, et al. [26, 27] developed an approach to recover the absolute phase 
maps of two image patterns with selected frequencies. Inspired by the method [26], we 
introduce a new approach to unwrap the shift maps using two image patterns with selected 
frequencies. Based on this approach, we propose a novel 3D shape measurement method 
based on projection of a set of triangular patterns with a higher frequency, and a triangular 
pattern with a lower frequency. The former are utilized to yield a high frequency shift map by 
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the multi-step triangular pattern profilometry method in [22], and the latter is used to obtain a 
shift map of lower frequency using the single-step triangular-pattern spatial shift estimation 
algorithm [28]. With the method to be proposed, the corresponding absolute shift maps can be 
retrieved, enabling the measurement of the profile of object surface. Compared with the 
multiple frequency shift estimation algorithm in [25], the number of image patterns is greatly 
reduced since only one additional image is used. 

This paper is organized as follows. In Section 2 we firstly give a brief introduction on the 
conventional phase based fringe pattern profilometry and the spatial shift estimation based 
techniques. Then in Section 3 we indicate that the unwrapping problem in spatial shift 
estimation approach is similar to the phase unwrapping problem in phase based fringe pattern 
profilometry. The paper then introduces a method for unwrapping spatial shift maps of two 
fringe patterns with different frequencies. Based on this method, a novel 3D shape 
measurement approach is proposed. Finally in Section 4 a set of experimental results are 
presented to demonstrate performance of the proposed method. Section 5 concludes the paper. 

2. Principle of fringe pattern profilometry 

2.1 Phase based approaches for FPP 

FPP is based on the triangulation principle described as follows. Without loss of generality 
and for the simplicity in expression, we assume that the projector has a fringe structure, where 
the light intensity varies periodically alone x direction, while keeping constant along y 
direction, as shown in Fig. 1. We use ( )s x , ( )d x  and ( )h x  to denote the variance of light 

intensity of the fringe pattern on the reference plane, the object surface and the height 
distribution along x coordinate respectively. We also assume that the reference plane and the 
object surface have the same reflective characteristics. 

The phase based FPP utilize fringe patterns that are periodic and can be expressed as [29, 
30]: 

 0
0

( ) cos(2 )k k
k

s x b kf x Ψπ
+∞

=

= +  (1) 

and the deformed fringe pattern acquired from the object surface can also be expressed as: 

 0
0

( ) cos(2 ( ) )k k
k

d x b kf x k x Ψπ φ
+∞

=

= + +  (2) 

In the above equations, 0f  is the spatial frequency of the fringe patterns, and kb  is the 

amplitude of the k-th order harmonic component. kψ  is the initial phase of the k-th order 

harmonic component, and ( )xφ  denotes the phase difference between the fundamental 

component of these two fringe patterns. If ( )xφ can be detected, we are able to calculate the 

height distribution ( )h x  of the object surface by the following: 

 0

0 0

( )
( )

2

l x
h x

f d

φ
π

=  (3) 

where 0l  is the distance between the camera and reference plane and 0d is the distance 

between the camera and projector. 

2.2 SSE based approaches for FPP 

The phase based FPP methods suffer from some limitations. In particular, the fringe patterns 
used to project must be sinusoidal or periodic in order that the phase maps of ( )s x  and ( )d x  
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exist and can be detected. However, due to many undesired factors inherent to digital 
projection, such as geometrical distortion and nonlinear intensity distortion, purely sinusoidal 
fringe patterns are hard to produce. In order to solve these problems, Hu, et al. [19] 
introduced a method which is based on the SSE, where the 3D shape can be calculated by the 
following: 

 0

0

( )
( )

l u x
h x

d
=  (4) 

where ( )u x is the spatial distance between a point x  on ( )d x  and the corresponding point on 

( )s x  with the same light intensity, that is: 

 ( ) ( ( ))d x s x u x= −  (5) 

The SSE based approach is rather simple and straight forward. With ( )d x  and ( )s x  

available, if we are able to obtain ( )u x  to meet Eq. (5), we then can utilize Eq. (4) to 

determine ( )h x . 

The spatial shift based approach has a particular advantage. The projected fringe patterns 
are no longer required to be sinusoidal, thus leading to significant flexibility in the design of 
the fringe patterns. A number of approaches were proposed to retrieve the ( )u x  [19–21]. 

Among these approaches, the one referred to as IFSE [21] is particularly interesting. Base on 
this approach, a single-step triangular-pattern spatial shift estimation algorithm is proposed in 
[28]. Wu, et al. [22] also introduced a multiple-step triangular-pattern spatial shift estimation 
algorithm by combining IFSE with the multiple-step triangular-pattern phase shifting 
algorithm [23], which greatly improved the accuracy of measurement. 

3. The unwrapping problem 

With most phase based approaches, ( )xφ  can only be identified within the range of [-π, π]. In 

other words, ( )xφ is obtained by modulo 2π operation (called phase wrapping), resulting in 

discontinuities in its values. In order to recover the absolute phase ( )xΦ , we have: 

 ( ) 2 ( ) ( )x m x xπ φΦ = +  (6) 

where ( )m x is an integer indicating the number of 2π lost due to phase wrapping, and the 

procedure of retrieving ( )m x is referred to as phase unwrapping [26]. 

The wrapping problem also exists in SSE approaches. As ( )s x  has a fringe structure with a 

periodic fringe of width λ, ( )u x  can only be detected within the main value of [0, ]λ , where λ 

is the width of an individual fringe referred to as the spatial wavelength of the fringe pattern. 
In other words, ( )u x  is wrapped into[0, ]λ . Thus the true shift function, denoted as ( )U x , 

should be continues and recovered from ( )u x as follows: 

 ( ) ( ) ( )U x m x u xλ= +  (7) 

where ( )m x are integers. 

Similar to the phase unwrapping associated with PDE, we also must restore ( )U x from the 

wrapped ( )u x , and the process is referred to as shift unwrapping [24]. 
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3.1 Shift unwrapping of two fringe patterns with different frequencies 

In order to unwrap the spatial shift, a simple method was proposed in [24] based on the 
relationship between the adjacent pixels. However, the method does not work if the intensity 
difference of neighborhood pixels is greater than λ/2, and hence the method does not work for 
the objects with high steps on the surface. Recently, a new a multiple-wavelength unwrapping 
algorithm for spatial shift estimation approach is proposed [25]. In this method, a series of 
fringe patterns with their frequencies increasing by a constant factor are projected. The first 
image has only one fringe covering the whole measurement area (i.e., its frequency is 1), and 
the remaining ones are characterized by their frequency increasing by a constant factor (or 
their wavelengths decreasing by a constant factor). For example, for unwrapping an image 
pattern with 16 fringes, at least 5 image patterns are required. The method is not suitable for 
fast 3D measurement, as the number of image patterns can be rather large. Therefore, the 
reduction of the number of image patterns while maintaining the accuracy of shift unwrapping 
is still a challenging problem. 

To address this problem, inspired by the method proposed for phase unwrapping in [26], 
we introduce a method for unwrap the shift based on projection of two fringe patterns with 
different spatial frequency. We assume that the measurement area has a resolution of W × H, 
and that the normalized spatial frequencies of the two patterns are 1f  and 2f  respectively, 

which are positive integers representing the total number of fringes on the respective patterns. 
The corresponding wavelengths are 1 1/H fλ =  and 2 2/H fλ = . Combining this with Eq. (7) 

yields the following: 

 ( ) ( ) ( ), 1,2i i i
i

H
U x m x u x i

f
= + =  (8) 

As ( )U x  only depends on ( )h x , 0d  and 0l . The two unwrapped shift function should be 

same, that is, 2 1( ) ( ) ( )U x U x U x= = . 

 1 1 2 2
1 2

( ) ( ) ( ) ( )
H H

m x u x m x u x
f f

+ = +  (9) 

or 

 1 2
1 2 2 1 1 2[ ( ) ( )] ( ) ( )

f f
u x u x m x f m x f

H
− = −  (10) 

Using the similar reasoning to that in [26], we are able to derive a unique mapping from 
( )U x to 1( )m x and 2 ( )m x , as follows: 

 

( )1

1

1

1 1 1

1 1

1

1
1 ( )

2 3
2 ( )

( )

2
1 ( )

0 0 ( )

f H
f U x H

f

H H
U x

m x f f

H H
U x

f f

H
U x

f

−
− ≤ <

≤ <
=

≤ <

≤ <















 

 (11) 
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and 

 

( )2

2

2

2 2 2

2 2

2

1
1 ( )

2 3
2 ( )

( )

2
1 ( )

0 0 ( )

f H
f U x H

f

H H
U x

m x f f

H H
U x

f f

H
U x

f

−
− ≤ <

≤ <
=

≤ <

≤ <















 

 (12) 

Combing the right hand side of (11) and (12), the whole range [0, H] can be divided into 

1 2f f+  segments. With the same approach as in [26] we can show that each segment 

corresponds to different values of 2 1 1 2( ) ( )m x f m x f− as well as different combinations of 

1( )m x and 2 ( )m x . Hence a table can be generated forming a unique mapping from 

2 1 1 2( ) ( )m x f m x f− to 1( )m x and 2 ( )m x . 

As 1 2 1 2 2 1 1 2[ ( ) ( )] / ( ) ( )f f u x u x H m x f m x f− = − , we can uniquely determine 

1( )m x and 2 ( )m x from the value of 1 2 1 2[ ( ) ( )] /f f u x u x H− . Let us choose 1 5f =  and 2 8f = , 

the mapping relationship is shown in Table 1. 

Table 1. mapping from 2 1 1 2( ) ( )m x f m x f−  to 1( )m x and 2 ( )m x  

2 1 1 2( ) ( )m x f m x f−  1( )m x , 2 ( )m x  2 1 1 2( ) ( )m x f m x f−  1( )m x , 2 ( )m x  

7 1, 3 1 3, 5 

6 3, 6 0 0, 0 

5 0, 1 −1 2, 3 

4 2, 4 −2 4, 6 

3 4, 7 −3 1, 1 

2 1, 2 −4 3, 4 

 
From the above results we can reconstruct the absolute shift maps of two fringe patterns 

by following steps: 

1. Select two frequencies 1 2( , )f f  and construct a mapping table, making sure the table 

provides a unique mapping from 2 1 1 2( ) ( )m x f m x f−  to 1( )m x and 2 ( )m x . It should be 

noticed that the principle of frequency pair selection is similar to the principle 
mentioned in [27], where the selection of frequency pair has the restriction that two 
selected frequencies must be coprime, otherwise the mapping will not be unique. 
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2. Project two fringe patterns onto the object and acquire the two shift distance maps 

1( )u x and 2 ( )u x  by a spatial estimation algorithm. 

3. Calculate 1 2 1 2[ ( ) ( )] /f f u x u x H−  by rounding its value to the closest integer, denoted 

as M. Using the lookup table derived in Step 1, find the row (or entry) whose value 
of 2 1 1 2( ) ( )m x f m x f−  is the closest to M. Record the corresponding 

1( )m x and 2 ( )m x in the same row. 

4. Using 1( )m x and 2 ( )m x obtained in Step 3, reconstruct the absolute shift maps ( )U x  

using Eq. (8). 
Since the unwrapped spatial shift map is retrieved point by point, compared to algorithms 

which use neighborhood pixels to do the unwrapping [24], the method we propose here can 
measure the surface profile with larger steps or multiple separate objects. 

3.2 3D shape measurement based on projection of triangular patterns of two selected 
frequencies 

In this section, a novel 3D shape measurement method based on projection of triangular 
patterns of two selected frequencies is proposed. As both 1( )m x and 2 ( )m x can be used to 

reconstruct the absolute shift maps, we can select the one with lower measurement noise. 
Usually, the higher the spatial frequency used, the smaller the noise induced. Hence, we will 
project a set of triangular patterns with a higher frequency, from which a shift map can be 
obtained by the multiple-step triangular-pattern spatial shift estimation algorithm [22]. Then, a 
triangular pattern with a lower frequency is projected, and the shift map can be retrieved by 
the single-step triangular-pattern spatial shift estimation algorithm [28]. The absolute shift 
map of the higher frequency is recovered by the method described in 3.1, which is then used 
to determine the 3D shape. The procedure of the 3D shape measurement can be described 
using the flow chart in Fig. 2. 

From the flow chart in Fig. 2, we can find that two different methods are used for the 
retrieving of the wrapped shift map. For the image pattern with higher frequency, the 
multiple-step triangular-pattern spatial-shifting algorithm is used. Here N is the number of 
images captured, which depends on the steps of the algorithm. As mentioned in method [22], 
at least two steps are required. However, the measurement accuracy can be improved by 
increasing the number of the spatial-shift steps. On the other side, the single-step triangular-
pattern spatial-shifting algorithm is applied for the image pattern with the lower frequency, 
requiring only a single image pattern. 

It can be seen from the flow chart, compared the proposed method to the existing single 
frequency multiple-step triangular-pattern spatial-shifting algorithm, only one additional 
image pattern is projected, which is much more efficient in terms of the number of fringe 
patterns required in contrast to the existing multiple-frequency shift unwrapping method [25]. 
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Fig. 2. Flow chart of the proposed method. 

4. Experiments and results 

In order to test the performance of the approach proposed in Section 3, experiments were 
carried out in our laboratory. The triangular fringe patterns [22] are projected by a HITACHI 
CP-X260, and a Duncan Tech MS3100 3CCD digital camera is used to capture the fringe 
patterns. The digital camera is placed on top of the projector with a distance of 350.3 mm. 
The distance between the camera lens and the reference plane is 1295.1 mm. The resolution of 
the CCD camera is 1392 × 1039 pixels, and the field of vision for CCD camera is 250mm × 
187mm. Hence, the equivalent spatial resolution is 0.1796 mm/pixel. The fringe projection 
system is calibrated using method in [31]. 

To verify that the proposed method can measure the surface profile with arbitrary step 
height, we first chose a flat box of 84mm high as the measured object. Figure 3(a) shows the 
photograph of the object. Figure 3(b) shows the captured fringe image of object with spatial 
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frequency f = 5. Figures 3(c)–3(f) show the captured 4-step fringe images of object with 
spatial frequency f = 8. 

 

Fig. 3. Captured fringe images of flat box. (a) object; (b) fringe image (f = 5); (c)–(f) fringe 
images (f = 8). 

We firstly use single frequency multiple-step triangular-pattern spatial-shifting algorithm 
to reconstruct this object. The 4-step fringe images with normalized spatial frequency f = 8 are 
used, where the wrapped ( )u x is retrieved using method in [22], and it is unwrapped using 

method in [24]. In contrast, the proposed method is also used. An additional fringe images 
with normalized spatial frequency f = 5 is captured, and the wrapped ( )u x is retrieved using 

method in [28]. Figure 4 shows the cross section of the object and Fig. 5 shows the 3D 
reconstruct results. 
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Fig. 4. Cross Section of flat box. (a) result using single frequency algorithm(f = 8); (b) result 

using select frequency algorithm( 1f  = 5, 2f  = 8) 

 

Fig. 5. 3D reconstruct results of flat box. (a) result using single frequency algorithm(f = 8); (b) 

result using select frequency algorithm( 1f  = 5, 2f  = 8). 

Figure 4(a) and Fig. 5(a) show that, if we only use patterns of the higher frequency, the 
object step height is measured as about 24 mm, which is obviously incorrect in contrast to the 
true value of 84mm. However, with the proposed method, the step height can be measured 
successfully, with the result very close to 84mm. This experiment demonstrated that the 
proposed approach can successfully perform the measurement even when the surface profile 
has a large step. 

As mentioned in Section 3, since the measurement is performed on point-by-point basis, 
this technique can also be used to measure multiple separate objects or islands. To verify this, 
we measured two separate objects, a mask model and a plaster hand model. Both objects have 
complex surface shape. The proposed method is used with two spatial frequencies 1 8f =  and 
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2 13f =  respectively. We performed two experiments by fixing the higher frequency, but 

using different number of steps (3 and 6-steps) for retrieving the wrapped ( )u x . Figure 6(a) 

shows the two objects and Fig. 6(b) shows the captured fringe images of the objects with 
frequency 1 8f = . Figure 7 shows the captured images of the objects with 3-step triangular 

patterns with frequency 2 13f = , and Fig. 8 depicts the 6-step fringe images of objects with 

frequency 2 13f = . 

 

Fig. 6. Captured fringe images of separate objects with different wavelengths. (a) objects; (b) 

fringes image ( 1f  = 8). 

 

Fig. 7. Captured 3-step fringe images of objects with 2f  = 13. (a)–(c) fringe images in 

different step 
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Fig. 8. Captured 6-step fringe images of objects with 2f  = 13. (a)–(f) fringe images in 

different step 

Figure 9 and Fig. 10 show the reconstructed 3D surface shape of the object using the 
proposed unwrapping method, where Fig. 9 shows the result using 3-step fringe images and 
Fig. 10 gives the result using 6-step fringe images. It can be seen from these figures that two 
separated objects is reconstructed successfully in both measurements. The height information 
for those places with high step drops (edge of mask and hand, nose part) is retrieved correctly. 
Some details, such as mouth and eyes part, are also recovered. This result demonstrated that 
the proposed method can successfully measure those complex objects with arbitrary step 
height, even if two objects are completely separate. Besides, it is noticed that the quality of 
the reconstructed model is also improved with the increase of the number of steps for the 
higher frequency image. 
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Fig. 9. 3D reconstruct results of two separated objects using 3-step fringe images. (a)–(d) 
results in different angle of view 

 

Fig. 10. 3D reconstruct results of two separated objects using 6-step fringe images. (a)–(d) 
results in different angle of view 

5. Conclusion 

In this paper, we studied the shift wrapping problem associated with SSE based FPP. 
Compared to phase based approaches, SSE techniques are advantageous in that non-
sinusoidal fringe patterns can also be employed, and that they do not suffer from the nonlinear 
distortion associated with the digital fringe projection. However, similar to the phase 
unwrapping problem encountered in phase based approaches, a shift unwrapping problem also 
exists in SSE based approaches. Hence we presented a temporal shift unwrapping technique 
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to overcome this limitation. Based on this technique, we introduced a novel 3D shape 
measurement method. This method is an improvement of the existing multiple-step triangular-
pattern spatial shift estimation algorithm [22], by the projection of only one additional image 
with a lower frequency. In order to test the performance of our proposed method, we carried 
out experiments on three different objects with significant steps and complex surface shapes: 
a flat box, a mask, and a plaster hand-model. The results show that the proposed method 
works very well, where complex objects surface with significant step height or multiple 
separate objects can be measured successfully with the same accuracy as the method in [22]. 
Compare to the existing multiple-wavelength unwrapping algorithm for spatial shift 
estimation approach [25], the number of image pattern required is greatly reduced. 

It should be pointed out that similar to the method in [27], the selection of frequency pair 
has the restriction that two selected frequencies must be coprime. In order to meet such a 
requirement, the total number of pixels perpendicular to the fringe must be an integer multiple 
of the number of pixels within a fringe. However, such a selection may not be possible in 
some cases. Taking an example where the measurement area is 800 × 600 pixels, if the 
selected frequencies are 1 8f =  and 2 13f = , the numbers of pixels per fringe period will be 

about 75 and 46.1538, respectively, which are not integers and thus are not implementable. As 
a future work we will investigate the possibilities that the selected frequencies does not need 
to be an integer, thus yielding more flexibility for the design of the patterns. 
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