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Temperature dependent photoexcited carrier dynamics in multiferroic
BiFeO3 film: a hidden phase transition

Abstract
The ultrafast carrier dynamics of the multiferroic BiFeO3 film in a broad temperature range is investigated
using optical pump-probe spectroscopy. The photoexcited electrons release their energy with optical phonons
emission through electron-phonon coupling in about 1 ps. The following intermediate process is identified as
dynamical spin-lattice coupling in several picoseconds. Furthermore, the peak values of the optical reflectivity
and the time constants of carrier relaxation channels show significant changes while the temperature varies
from 137.5 K to around 195 K, this aligns with the previously reported hidden phase transition. Our study
demonstrates that ultrafast spectroscopy is a sensitive method to look into the dynamical interactions among
the on-site high-energy electrons accumulated in the p conduction band of Bi, coherent optical phonon, as
well as the spin degree of freedom. These features play crucial roles in the characterization of phase transitions.
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film: A hidden phase transition
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and Zhenxiang Cheng1,2,b)

1Department of Physics, Shanghai University, Shanghai 200444, China
2Institute for Superconducting and Electronic Materials, University of Wollongong, New South Wales 2500,
Australia
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The ultrafast carrier dynamics of the multiferroic BiFeO3 film in a broad temperature range is

investigated using optical pump-probe spectroscopy. The photoexcited electrons release their energy

with optical phonons emission through electron-phonon coupling in about 1 ps. The following

intermediate process is identified as dynamical spin-lattice coupling in several picoseconds.

Furthermore, the peak values of the optical reflectivity and the time constants of carrier relaxation

channels show significant changes while the temperature varies from 137.5 K to around 195 K, this

aligns with the previously reported hidden phase transition. Our study demonstrates that ultrafast

spectroscopy is a sensitive method to look into the dynamical interactions among the on-site

high-energy electrons accumulated in the p conduction band of Bi, coherent optical phonon, as well

as the spin degree of freedom. These features play crucial roles in the characterization of phase

transitions. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4871689]

Bismuth ferrite, BiFeO3 (BFO), has become a canonical

material in multiferroic magneto-electric research,1–3 not

only for its simultaneous ferroelectricity and antiferromag-

netism at room temperature (ferroelectric TC� 1100 K, anti-

ferromagnetic ordering temperatures TN� 640 K) and the

large ferroelectric polarization,4–7 but also for the intrinsic

magnetic-electric coupling at room temperature.8 Therefore,

the detailed exploration of BiFeO3’s phase diagram has

never stopped.6 Recently, a plausible electromagnon was

found below room temperature through low energy Raman

scattering.9 Hitherto, however, the phase transitions or

reported anomalies are still controversial issues. The anoma-

lies near 140 K and 201 K had been first observed by

Cazayous et al. and interpreted as spin reorientation transi-
tions.10 Although, an Almeida-Thouless line terminating at

140 K was attributed to spin-glass behavior.11 Sosnowska

and Przeniosł carefully measured the neutron diffraction but

failed to detect any magnetic structural anomaly below room

temperature.12 Raman,13 and THz spectroscopy measure-

ments suggested a magnetic phase transition which would

cause the similar behavior.14 Recently, a surface layer phase

transition caused by bismuth deficiency near 140 K in

BiFeO3 was proposed, it showed a sharp change in lattice pa-

rameter and charge density along surface plane. Meanwhile,

the 201 K anomaly appears to signal the onset of spin-glassy

behavior.15

In addition to the static spectra targeting at ground state,

ultrafast pump-probe spectroscopy aimed for exciting-state

properties was used to unravel the underlying spin-lattice-

charge coupling and the magnetic phase transition.16 In

recent years, ultrafast dynamical phenomena have inspired

valuable insights and motivated speed requisite for most

electronic devices. The completion of static- and dynamical-

optical characterization provides detailed information

regarding to the coupling between electronic and magnetic

properties in multiferroic materials. Recently, the ultrafast

depolarization of ferroelectric order in BFO produces the

ultrafast THz radiation.17 The rapid photo-induced mechani-

cal stress results in the excitation of coherent acoustic pho-

nons and magnons.18,19 The dynamics of photo-induced

strain was directly and quantitatively measured in a

synchrotron-based ultrafast X-ray diffraction.20 One of the

most straightforward implementations of ultrafast spectros-

copy is the hot electron transient relaxation following the

photo-excitation.21 In general, as the temperature is lower

than the one of a succession of phase transitions, besides the

conventional electron-phonon relaxation, additional scatter-

ing channels will modify the charge transport and relaxation

dynamics.22,30

For better design flexibility, the larger ferroelectric

polarization, more steerable magnetism, BFO films have

caught more attention.5,25,26 In our previous work, we have

observed the electron-phonon interaction of BiFeO3 thin film

at room temperature.27 In this Letter, we are interested in the

phase transition by characterizing the coupled magnetic and

ferroelectric orders in epitaxially grown BiFeO3 thin film on

SrTiO3 (STO) substrate, through the ultrafast optical

pump-probe spectroscopy. The temperature dependent tran-

sient differential reflectivity (DR(t)/R) allows us to disentan-

gle the different carrier relaxation dynamics in separated

phases of BiFeO3. We find that the electron-phonon and

spin-lattice interactions are keys to the carrier relaxation pro-

cess near the low-temperature anomalies, and the change in

the coupling time indicates a lattice-mediated magnetic-elec-

tric coupling. The surface magnetic phase transition in

BiFeO3 film is observed through changes in spin-lattice cou-

pling time constant by ultrafast pump-probe spectroscopy.

a)Present address: Max Planck Institute for Polymer Research, Ackermannweg

10, 55128 Mainz, Germany.
b)Authors to whom correspondence should be addressed. Electronic

addresses: ghma@staff.shu.edu.cn and cheng@uow.edu.au.
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APPLIED PHYSICS LETTERS 104, 151902 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

130.130.37.84 On: Thu, 01 May 2014 01:02:30

http://dx.doi.org/10.1063/1.4871689
http://dx.doi.org/10.1063/1.4871689
http://dx.doi.org/10.1063/1.4871689
mailto:ghma@staff.shu.edu.cn
mailto:cheng@uow.edu.au
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4871689&domain=pdf&date_stamp=2014-04-16


Our findings have clarified the competing interactions among

electricity, magnetism, and the crystal lattice in BiFeO3.

The BFO thin film investigated here was grown on

(001)-STO substrate using pulsed laser deposition (PLD)

with a 355 nm Nd: YAG laser source at a repetition rate of

10 Hz. The deposition was carried out at 600 �C with a

dynamic oxygen pressure of 20 mTorr. The film thickness is

about 150 nm. Figure 1 shows the X-ray diffraction pattern

of the polycrystalline BFO films deposited on (001)-STO.

The film is crystallized with rhombohedral-like phase and

presents a (012)h single crystal line orientation according to

Ref. 28, rather than previously regarded tetragonal struc-

ture.27,29 However, comparing with bulk BiFeO3 with a

rhombohedral structure, a slight shifting of (012)h diffraction

peaks to lower 2h angles was observed, which indicates a

trend of distortion toward to tetragonal structure.

The transient reflectivity experiments are carried out

with a dual-color pump-probe technique. The light source is

a commercial mode-locked Ti: sapphire laser (Spectra-

Physics, Spitfire Pro.) operated at a repetition rate of 1 kHz,

the pulse width of 120 fs, and the center wavelength of

800 nm. The pump beam with photo energy of 3.1 eV is

obtained from a frequency-doubled fundamental beam

(800 nm) in a 1-mm b-BaB2O4 crystal. The average pump

fluence is about 6 mJ/cm2 which is 30 times larger than that

of the probe. The pump beam which has a center wavelength

at 400 nm is normally incident on the sample surface, and

the probe beam has an incident angle of about 6� from the

normal. The sample was mounted in a closed-cycle

liquid-He cryostat in vacuum chamber with four optically ac-

cessible windows. The temperature range encompasses the

low temperature phase transitions of BFO film but was set

right beyond the structure phase transition temperature of

SrTiO3 (103 K).30

Figure 2(a) shows the typical transient reflectivity DR(t)/R

at temperatures of 294 K and 160 K, respectively. Electronic

photo-excitations by the pump pulses result in a swift rise of

DR(t)/R at zero time delay. The pump pulse with the energy of

3.1 eV is larger than the band edge transition (Eg� 2.48 eV) of

BFO film.27 The pump energy corresponds to a minority

dipole-allowed oxygen-iron charge transfer excitation and a

strongly hybridized majority channel of O 2pþFe 3d! Bi 6p

state excitation.31–33 The peak amplitude at zero time delay lin-

early depends on the number of the photoexcited electrons, as

evidenced by the experiment performed at different pump flu-

ence.27 As shown, the DR(t)/R marked by two dashed lines in

Fig. 2(a) following the initial photo-excitation. The carrier dy-

namics show three typical relaxations:23–25 (1) the

photo-excited electrons rapidly thermalize amongst themselves

(electron-electron scattering process, se-e� 100 fs) and subse-

quently relax to the minimum of conduction band via

electron-phonon coupling. This fast component (<1 ps) corre-

sponds to the electron-phonon thermalization; (2) the subse-

quent slow component corresponds to the energy exchange

between the lattice and spin system, a dynamical spin-lattice

coupling process as explained in more detail below; and (3) the

quasi-constant component (�ns) has been assigned to a combi-

nation of radiative recombination and the heat diffusion out of

the illuminated area of the sample,21 and this very slow relaxa-

tion is beyond the limit of our translation stage. The carrier dy-

namics are well fitted by a convolution of the Gaussian

function G(t) (laser pulse) with a bi-exponential decay func-

tion, DRðtÞ=R¼ ðA1 expð� t
sf ast
ÞþA2 expð� t

sslow
ÞþA3Þ�GðtÞ;

where A1 (A2) and sfast (sslow) are the amplitudes and time con-

stants of the fast and slow components, respectively. Fig. 2(b)

shows the two dimensional pump-probe spectroscopy with the

abscissas for the time and the ordinate for the temperature, a

distinct area between the two transition temperatures

(137.5–200K) could be distinguished by the color map. A

“slowing down” feature is expected in this temperature range

and a seeming step-like change is expected in the longest time

constant. This feature is due to the increasing of the peak value

and the “slowing down” feature for the former two processes.FIG. 1. The x-ray diffraction pattern of the BFO films on (001)-STO substrate.

FIG. 2. (a) Logarithmic plot of optical reflectivity change as a function of

time delay at two temperatures, 294 K and 160 K, at photoexcited energy of

3.1 eV and probed at 1.55 eV in a BFO film on STO substrate; (b) The opti-

cal reflectivity changes as a function of temperature at various time delay.

151902-2 Zhang et al. Appl. Phys. Lett. 104, 151902 (2014)
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It should be mentioned that the slight deviation from the fitting

of the long lifetime recombination and the highlight in tens of

picoseconds in Fig. 2(b) is due to the coherent acoustic phonon,

which was seen to be enhanced efficiently by La and Nb

codoped, as previously reported.18

Further analysis is provided in Figure 3, where the peak

value of DR (t¼ 0 ps) and the time constants, sfast and sslow,

extracted from the carrier relaxation process as functions of

the sample temperature was shown, respectively. Figure 3(a)

shows an abnormal (slowing down) temperature dependence

of DR (t¼ 0 ps) at zero time delay, and it is seen that the

anomalies occur with beginning at T1� 137.5 K and ending

at T2� 195 K. A maximum photo-transition probability

appears at around 160 K. The arising of the Rpeak at around

100 K could be attributed to the structural phase transition of

the SrTiO3 substrate.30 Apart from this instantaneous ampli-

tude, the onset of the two anomalies is further observed in

the extracted time constants, as shown in Fig. 3(c). It can be

found that magnitude of sslow slows down significantly,

from� 3 ps to �6 ps, as the magnetic phase of BiFeO3 enters

into the critical magnetic phase transition temperature at

T2� 195 K. The sslow remains nearly constant value of �6 ps

down to the other anomaly occurring at T1� 137.5 K. Our

experimental result is evident that the “slow” process can be

interpreted as arising from the interaction between the lattice

and the spin degree of freedom.

To understand the spin-lattice interaction in the mag-

netic phase transition of the multiferroic system, we first

consider the effects of lattice thermal expansion on the opti-

cal band gap, which is strongly related to the reflectivity at

probe wavelength. The lattice thermal expansion and

electron-phonon interaction are widely recognized as the rea-

son for the shrinkage in the optical band gap (�1.3%) with

the temperature decreasing from 300 to 100 K.34 The longi-

tudinal and transversal optical phonons are the main factors

to modify the interatomic distance along and perpendicular

to the direction of their propagation with the temperature,

respectively. In our case, when the surface magnetic phase

transition occurred, an in-plane stress is generated by the

magnetic-elastic coupling.13 The stress disturbs the lattice

constant of the BFO film, which correspondingly moves the

conduction band and the valence band downward and

upward, respectively. The modification of energy band struc-

ture is sensitively probed by the transient reflectivity

changes. Similar observations have been reported in multi-

ferroic manganite HoMnO3, the emergence of long- and

short-range magnetic order has been revealed in association

with an abnormal blueshift of Mn3þ 3d level and the temper-

ature dependent DR(t)/R around the N�eel temperature.35,36

By employing low-energy Raman scattering spectros-

copy, Cazayous et al. reported the anomalies in frequency

and intensity of Raman modes as a function of tempera-

ture.9,10 The anomaly at 140 K is assigned to the spin reor-

ientation transition but with a little coupling to the order

parameter in BFO single crystal, and the anomaly at 200 K

shows a strong elastic coupling. The temperature dependence

of anomalies in Raman mode is in accordance well with our

observation: temperature dependence of time constants

anomalies. The spin reorientation phase transition in RFeO3

(R¼ rare earth ion) is denoted as the rotation of Fe3þ mag-

netic moment from c-axis to a-axis with decreasing tempera-

ture. For the case of BFO crystal, the Fe3þ magnetic

moments are confined in the (121) cycloidal plane in the

pseudocubic representation at room temperature. With tem-

perature down to 140 K, a small spin reorientation out of this

plane is expected.9 Our temperature dependence of time con-

stants anomalies is observed to occur at 137.5 and 194 K in

BFO thin film, which shows a little lower than those (140 K

and 200 K, respectively) in BFO single crystal observed with

Raman spectroscopy. The lower magnetic phase transition

temperature observed in BFO thin film might come from

thermal fluctuations induced by the laser.34 Here, we men-

tion “surface magnetic phase transition” rather than “spin

reorientation transition” in BFO thin film in our case. We

would like to mention that the temperature dependence of

spin reorientation is not observed with neutron scattering in

our BFO film, which indicates that ultrafast spectroscopy is a

sensitive way to detect magnetic phase transition such as

spin reorientation by monitoring the dynamical spin-lattice

coupling.

In contrast to the result that the electron-phonon cou-

pling does not change significantly across the antiferromag-

netic transition (TN¼ 623–643 K) in BiFeO3 single crystal,21

We find a different and interesting feature of the carrier

relaxation in the film sample. The time constant of

electron-phonon interaction, sfast, has a similar temperature

dependence with the slow component, as shown in Fig. 3(b).

In other words, the electron-phonon coupling shows slowing

down feature in the magnetic phase transition process. As

formulated in first principle calculations,37,38 the coupling

between the magnetic and mechanical subsystems indicates

FIG. 3. (a) The amplitude of optical reflectivity at zero delay time DR(t¼ 0 ps)

as a function of temperature. (b) and (c) The temperature-dependent fast and

slow time constants, sfast and sslow, respectively.

151902-3 Zhang et al. Appl. Phys. Lett. 104, 151902 (2014)
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that the magnetic order has a significant influence on the me-

chanical systems and modulates the high-energy electrons

by releasing their energy through the emission of

longitudinal-optical phonons. Up to now, the observed cru-

cial slowing down behavior of the time constants has been

demonstrated to the real phase transitions at 195 K and

137.5 K, respectively.

The slow component of the relaxation time is supposed

to be the dynamical spin-lattice coupling process. Here, we

employ the “three-temperature-model” (TTM) to analysis

the pump-probe spectroscopy in magnetic materials.23–25

After the initial pump process, the electron temperature

raises in more than a thousand Kelvin, which render the two

system (electron and lattice) dropped into a nonequilibrium

state. The two systems turn into equilibrium state through

electron-lattice coupling in 1 ps which is known to be the

electron-lattice coupling time (sfast). Similarly, the lattice

and the spin system evolve into equilibrium in several pico-

seconds which is the dynamical spin-lattice coupling pro-

cess. After the magnetic phase transition occurs, the

magnetic state alters then the atomic lattice positions will be

altered for the intrinsic spin-lattice coupling. The tempera-

ture dependence of the electron-lattice coupling time clearly

shows the transition. From the TTM, the dynamical

spin-lattice coupling time is related to the lattice specific

heat Cl, spin specific heat Cs, and spin-lattice coupling con-

stant Gsl as ss�l � CsCl

GslðCsþClÞ.
23–25 The temperature dependent

specific heat measurement of BFO across the N�eel tempera-

ture indicates that Cs�Cl in our case.39,40 The formula could

be simplified to ss�l � Cs

Gsl
. Thus, the slowing down of the dy-

namical spin-lattice coupling process represents the change

of the spin state of BFO in the magnetic phase transition

temperature range independently.

As previous work in Mott-Hubbard insulator LaMnO3,

the energy of the d-d transitions depends on the spin align-

ment of the neighboring Mn3þ ions. The transitions with

spin parallel alignment have larger probability than that with

antiparallel alignment.41 The photo-induced magnon-assisted

hopping conductivity leads to a transient reduction of the

magnetic order in TbMnO3.42 Therefore, special care should

be taken because the probe beam could be absorbed by addi-

tional electronic transitions in BFO. It has been known that

the relevant transitions at 1.5 eV are the on-site d-d transition

of Fe3þ ions. The transitions should be forbidden due to the

total spin of change from S¼ 5/2 to S¼ 3/2. However,

because the parity selection rule is relaxed through the

spin-orbit coupling and the octahedral distortion caused

photo-excitations, the transition can occur in BFO.43 This

needs further studies to understand the optical transitions

under different magnetic structure controlled by epitaxial

strain or external magnetic fields.

In conclusion, a hidden magnetic phase transition in

BiFeO3 has been observed independently by ultrafast optical

pump-probe spectroscopy. We proffer the electron-phonon

and dynamical spin-lattice interaction as the dominant

effects in determining the fast and moderate temporal evolu-

tion of the carrier relaxation process. The similar tempera-

ture dependence of these two interactions suggests a

magnetic-electric coupling in multiferroic BiFeO3, which is

inferred to be the in-plane strain and magnetic-elastic

coupling. The dynamical coupling and the optical control of

either magnetism, ferroelectricity, or both in BiFeO3 have

implications for future ultrafast optical-electronic devices.
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