
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Engineering and Information 
Sciences - Papers: Part A 

Faculty of Engineering and Information 
Sciences 

1-1-2014 

Investigation of closure of internal cracks during rolling by FE model Investigation of closure of internal cracks during rolling by FE model 

considering crack surface roughness considering crack surface roughness 

Hailiang Yu 
University of Wollongong, hailiang@uow.edu.au 

A Kiet Tieu 
University of Wollongong, ktieu@uow.edu.au 

Cheng Lu 
University of Wollongong, chenglu@uow.edu.au 

Ajit R. Godbole 
University of Wollongong, agodbole@uow.edu.au 

Follow this and additional works at: https://ro.uow.edu.au/eispapers 

 Part of the Engineering Commons, and the Science and Technology Studies Commons 

Recommended Citation Recommended Citation 
Yu, Hailiang; Tieu, A Kiet; Lu, Cheng; and Godbole, Ajit R., "Investigation of closure of internal cracks during 
rolling by FE model considering crack surface roughness" (2014). Faculty of Engineering and Information 
Sciences - Papers: Part A. 3150. 
https://ro.uow.edu.au/eispapers/3150 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers?utm_source=ro.uow.edu.au%2Feispapers%2F3150&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers%2F3150&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers%2F3150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers/3150?utm_source=ro.uow.edu.au%2Feispapers%2F3150&utm_medium=PDF&utm_campaign=PDFCoverPages


Investigation of closure of internal cracks during rolling by FE model considering Investigation of closure of internal cracks during rolling by FE model considering 
crack surface roughness crack surface roughness 

Abstract Abstract 
Internal cracks often appear in cast slabs, and their evolution during hot deformation directly affects the 
product quality. In this paper, the authors investigate the closure behavior of internal cracks during plate 
rolling using a finite element (FE) model that takes into account the roughness of the crack surface. 
Influences of the roughness and reduction ratio on the closure of cracks are analyzed. The simulated 
results show that the models with consideration of the initial crack roughness can be used to investigate 
the formation of residual voids around the crack after rolling. The simulation results are validated by 
experimental observations. Finally, we propose an explanation of the crack closure mechanism during 
rolling. 

Keywords Keywords 
internal crack, crack closure, surface roughness, rolling, finite element simulation 

Disciplines Disciplines 
Engineering | Science and Technology Studies 

Publication Details Publication Details 
Yu, H., Tieu, A. K., Lu, C. & Godbole, A. R. (2014). Investigation of closure of internal cracks during rolling 
by FE model considering crack surface roughness. International Journal of Advanced Manufacturing 
Technology, 75 (9-12), 1633-1640. 

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers/3150 

https://ro.uow.edu.au/eispapers/3150


Investigation of closure of internal cracks during rolling by FE model 

considering crack surface roughness* 

Hailiang YU1,2, A Kiet TIEU1, Cheng LU1, Ajit GODBOLE1 

1. School of Mechanical, Materials & Mechatronics Engineering, University of Wollongong, NSW 2500, Australia 

2. School of Mechanical Engineering, Shenyang University, Shenyang 110044, China 

Abstract: Internal cracks often appear in cast slabs, and their evolution during hot deformation directly affects the 

product quality. In this paper, the authors investigate the closure behavior of internal cracks during plate rolling 

using a Finite Element (FE) model that takes into account the roughness of the crack surface. Influences of the 

roughness and reduction ratio on the closure of cracks are analyzed. The simulated results show that the models 

with consideration of the initial crack roughness can be used to investigate the formation of residual voids around 

the crack after rolling. The simulation results are validated by experimental observations. Finally, we propose an 

explanation of the crack closure mechanism during rolling.  

Keywords: internal crack; crack closure; surface roughness; rolling; finite element simulation 

1. Introduction 

Internal cracks often occur in continuous cast slabs (Fig. 1) due to local non-uniform deformation, 

shrinkage, etc [1- 3]. These cracks must be closed in the subsequent hot rolling process to ensure 

high quality of the product. If the cracks are not closed and healed in the hot rolling process, their 

behavior during subsequent processes may have an adverse impact on the product, resulting in the 

rejection of the product. If the cracks go undetected, there is potential for a significant risk. In the 

rolling process, there are some favorable factors which promote crack closure and healing. The hot 

rolling temperature ranges from 1000°C to 1200°C (0.6~0.8 of the melting temperature). In this 

temperature range, the atoms have great ability to migrate and the energy of crack surfaces is large, 

which improves the tendency for crack healing. 

 

The behavior of cracks in materials under large plastic deformation has been investigated using 

the Finite Element Method (FEM). Features such as surface longitudinal cracks [4-7], surface 
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transversal cracks [8-12], edge cracks [13-18], corner cracks [19-20] and internal cracks [1] have 

been studied. Ervasti and Ståhlberg [9] simulated and analyzed the crack closure as well as growth 

of longitudinal and transversal surface cracks of different dimensions in the flat slab rolling 

process with different roll radii and friction coefficients. Yukawa et al [10] analyzed the 

deformation of micro-cracks in the rolling process using a two-dimensional rigid-plastic FEM 

code. Yu et al [19] simulated the behavior of transversal cracks in the corner of a slab in vertical 

and horizontal rolling processes by a three-dimensional FEM. They applied the contact pressure 

on the crack boundary to determine the crack shape and crack tip stress in order to analyze the 

closure and growth of cracks. Deng et al [1] simulated the evolution of internal cracks in the 

rolling process under various reduction ratios and deformation characteristics. However, to date 

there have been no reports on the study of internal crack closure, considering the effect of crack 

surface roughness. 

 

  

Fig. 1 Internal cracks in slabs  

Besides the studies on crack closure, some research has been carried out on the closure of voids 

during plastic deformation [21-29]. Nakasaki et al [21] introduced the integration of hydrostatic 

stress into the description of void closure at the center of a slab during rolling. They found that the 

cross-sectional area of the pore is proportional to the hydrostatic pressure in single-pass rolling. 

Jeong et al [22] used a modified Gurson model that incorporated damage accumulation under 

shear and compression to predict void closure in sintered material under compressive loading. 

Zhang et al [23, 24] developed an analytical model for the closing of a spherical void during axial 

compression of a cylinder. They used a ‘meso-mechanics’ approach to investigate this problem. A 



cell model was adopted to analyze the evolution of the void, arriving at a criterion for void closure. 

Using the criterion for void closure, process design and optimization in cast ingots could be 

conveniently carried out while ensuring the elimination of voids. The FE method was also used to 

simulate the closure of voids during plastic deformation [27-29]. Kakimotoa et al [27] used both 

two-dimensional and three-dimensional FE analyses to study the closure of centerline voids during 

axial compression and side pressing of forgings with circular and rectangular cross-sections. They 

proposed a criterion for void closure considering the effective strain, effective stress, hydrostatic 

stress as well as some flow properties of the material. Lee et al [28] used an FE model for void 

closure and measured the void size before and after the upsetting process using an X-ray scanner. 

Chen et al [29] developed a nonlinear-coupled FE model to investigate the deformation 

mechanism of internal void defects during plastic deformation. The predicted reductions for 

central longitudinal voids in hot rolling processes are in good agreement with experimental 

findings. The above studies have assumed that the voids are either circular or elliptic in shape, 

which makes it difficult to predict the residual voids.  

In this paper, the authors present an FE model that takes into account the crack surface 

roughness to analyze their evolution during rolling. The calculated results are compared with 

experimental observations. The comparisons show that the model considering the crack surface 

roughness is more accurate for prediction of the closure behavior of internal cracks.  

2. Numerical simulation 

In this study, we have assumed that the cracks occur in the plate center, as has been commonly 

observed in continuous slabs [1]. In the simulation, 450 mm diameter work rolls are considered as 

rigid. The plate thickness is 40 mm before rolling. The surface profile is chosen as a sinusoidal 

wave as in Eq. (1) [30, 31]: 



















L

D

W

x
cos

W
y

2
1

2

         (1) 

where, WD is the roughness depth, WL is roughness wavelength, and WD=AWL, A is a factor 

coefficient. Fig. 2 shows a schematic diagram of an internal crack. In the current version of the 

model, the crack length (CL) is set as 1 mm, WL is set as 30 μm. WD is artificially chosen as 1, 4 

and 24 μm to analyze the influence of crack surface roughness on the closure of cracks over a 

wide range of values. The corresponding values of A are 0.03, 0.13 and 0.8 respectively. In the 



experiments, a preset crack of roughness Ra1.6 is used to validate the FE model, in which the ratio 

(A=WD/WL) is 0.8. And the crack depth (CD) is half of WD. During rolling, the rolling reduction 

ratio is set as 20%, 30% and 50%.  

 

Fig. 2 Schematic diagram of an internal crack profile with sinusoidal roughness (before rolling) 

In the models, the rolls are assumed rigid, and the plate is represented by a bilinear isotropic 

material model. The yield stress is calculated by 
TT eFDCB

0 A     [32]. This equation is 

obtained by curve-fitting actual measured values of carbon steel with the chemical composition C 

0.18, Si 0.32 and Mn 0.82 under different values of true strain , strain rate  and deformation 

temperature T. The constants A, B, C, D and F are 1715.7 MPa.s, 0.17, 0.17 ºC-1, 0.05 and -0.26 

ºC-1 respectively [6]. In the rolling process, the temperature is set at 1150°C. The change in the 

plate temperature is neglected in the calculation of the yield stress of the plate.  

Because crack closure is mainly a surface phenomenon, a two-dimensional analysis assuming a 

plane stress state is usually adequate to simulate the onset of crack closure. Two-dimensional 

geometrical models of the plate with an internal crack before rolling are established with the 

above parameters and computational meshes with quadrilateral elements of plane strain 

formulation were created on the platform of LS-DYNA. Fig. 3 shows the FE meshing of a plate 

with an internal crack before rolling. The elements around the internal crack are much finer than 

elsewhere in order to accommodate the steeper gradients in parameters. The size of the elements 

around the crack is set as 1.6 μm. In the model, there are 46875 elements and 51084 nodes. In the 



rolling process, the rolls rotate with a constant angular speed (6.2 rad/s). The plate enters the gap 

between the rolls with an initial velocity of 1.4 m/s and exits under the action of friction force 

between the roll and the plate. The Coulomb friction model is employed for dealing with the 

contacts. For the plate rolling with flat roll, it is recommended that the friction coefficient be in the 

range from 0.27 to 0.40 [33]. In this study, the friction coefficient is set at 0.35 [6]. 

 

Fig. 3 Geometry and FE meshing of plate with an internal crack with surface roughness 

3. Results 

Figures 4(a) to 4(d) show the evolution of crack shapes and the equivalent strain distribution in 

the internal crack region at different cross sections in the rolling deformation zone when the 

reduction ratio is 30%. When the crack enters the rolling deformation zone (Fig. 4(a)), the peaks 

of the crack surface first make contact, the crack develops into many smaller voids. With 

progressive movement to positions “b” and “c”, the size of the voids in the wave troughs gradually 

decreases until they are eventually eliminated. After rolling, there still are small voids in the 

sample at the wave peaks owing to insufficient rolling reduction, and the residual void size is 

about 1.6 μm. In the rolling deformation zone, the equivalent strain in a plate without any defect is 

relatively uniform. However, as seen in Fig. 4, the initial presence of the crack renders the 

equivalent strain in the rolling deformation zone non-uniform. The equivalent strain reaches 2.1 

around the crack roughness peaks, and it is zero in the vicinity of the roughness troughs. With 

movement of crack from “a” to “c”, the maximum value of equivalent strain gradually increases. 

From “c” to “d”, the change of equivalent strain distribution is negligible.  

 

Figures 5(a), 5(b) and 5(c) show the equivalent strain distribution and the void shape in the 

internal cracks region after rolling, under different rolling reduction ratios of 20%, 30% and 50%. 

When the reduction ratio is 20%, there are many voids peak zones after rolling. With higher 



reduction ratio, the number of residual voids decreases after rolling. When the reduction ratio is 

50%, the crack appears to be completely healed as shown in Fig. 5 (c). The change in size of the 

residual voids after rolling is shown in Fig. 5(d). The higher the rolling reduction ratio, the higher 

the maximum equivalent strains. The maximum equivalent strain is 2.4 when the reduction ratio is 

20%, while 2.8 for 30% and 3.4 for 50%.  

 

Fig. 4 Crack closure and equivalent strain distribution of internal crack at different cross sections in the 

roll-plate contact region 

 

Fig. 5 Shape of residual voids and equivalent strain distribution of cracks after rolling under rolling 

reduction (a) 20%, (b) 30%, (c) 50%, and (d) residual void size vs reduction ratio 



Fig. 6 shows the characteristic features of internal cracks when the reduction ratio is 20% for 

various assumed initial crack depth values. When the initial crack roughness depth is 1 μm, the 

crack closes well after rolling and it is very difficult to find traces of residual voids, as shown in 

Fig. 6 (a). When the roughness depth is 4 μm, a few voids are revealed in the workpiece after 

rolling. However, when the initial crack roughness is 24 μm, the crack does not close well; there 

are many large residual voids, as shown in Fig. 6 (c). From these simulated results, it can be 

concluded that the number and size of residual voids in workpiece after rolling increases with the 

crack surface roughness, as shown in Fig. 6 (d). During the rolling process, the equivalent strain 

around the cracks increases with the crack wave depth. When the crack wave depth is 1 μm, the 

maximum equivalent strain is 0.45. And when the crack wave depth increases to 24 μm, the 

maximum equivalent strain reaches 2.4.  

 

Fig. 6 Shape of residual voids and equivalent strain distribution in the crack region after rolling for 

different crack profile depths (a) 1 μm, (b) 4 μm, (c) 24 μm; and (d) residual voids size vs crack profile depth 

Fig. 7 shows experimental results of crack healing when the reduction ratio is 5%, 20% and 

50%. These results were obtained on an experimental rolling mill with carbon steel specimens 

with the chemical composition C 0.15, Si 0.307, Mn 1.33. The diameter of the work roll is 450 

mm, and the rolling temperature is in the range of 1150°C - 1160°C. Although the chemical 

composition of the carbon steel used in FE model is slightly different from the experimental 



carbon steel, the yield stress of the experimental steel is expected be close to that in FE model. 

The surface roughness of the preset crack is Ra1.6. When the reduction ratio is 5%, the crack 

surfaces do not contact each other, which keep the initial crack surface conditions, as shown in Fig. 

7(a). When the reduction ratio is 20%, there are many residual voids at the preset crack location, 

as shown in Fig.7 (b). The size of residual voids is in the range of 1.6 μm to 2 μm. This 

experimental observation agrees well with the simulation result corresponding to an initial crack 

roughness depth of 4 μm and 24 μm, as shown in Fig. 6 (b) and (c). The size of residual voids is 

about 1.2 μm for the model with initial crack roughness depth 4 μm, and 2.2 μm for the model 

with initial crack roughness depth 24 μm. However, there are no residual voids in Fig. 6 (a) in 

which the initial crack roughness depth is only 1 μm. When the reduction ratio is 50%, it is 

difficult to notice any residual voids as shown in Fig. 7(c), indicating in good agreement with the 

simulation result in Fig. 5 (c). 

 

Fig. 7 Experimental results of crack healing after rolling under reduction ratio (a) 5%, (b) 20% and (c) 50% 

4. Discussion 

Residual defects after hot rolling result in a degradation of the product quality. Many studies on 

the closure of cracks and voids in rolled products have been carried out. Some studies show that 

high friction, large roll radius and high reduction ratios are conducive to the closure of defects in 

hot rolling [25, 26]. However, these defects are assumed to be V-shape [4-9], rectangular [1, 10, 

34], elliptical [21-24], or circular [25-29]. For these shapes, the closure mechanisms are listed in 

Table 1. Voids of such shapes undergo closure under certain reduction ratios. Deng et al [1] found 

that a rectangular crack closed well when the reduction ratio is larger than 13.9% for 140 mm 

thick ultra-heavy plates. Zhang et al [34] found that the threshold value of the rolling reduction 



ratio is 15.8% to ensure closure of rectangular-shape cracks in 400 mm thick continuous slabs. Fig. 

6 (a) presents similar findings. For circular voids, Stahlberg and Keife [25] reported a 64% 

reduction in void height after a rolling reduction of 18%. Such large voids are difficult to close 

due to their initial size [25, 35]. However, it is obvious that they cannot explain the appearance of 

residual voids in samples when the reduction ratio is 20% as shown in Fig. 7 (b). As shown in Fig. 

1 and Fig. 7 (a), the surface of the actual cracks is rough. This will directly affect the residual void 

size and distribution. The crack will close well without residual voids when the crack surface has a 

small roughness as shown in Fig. 6(a). When the crack surface roughness depth increases to 4 μm 

or 24 μm, the simulated results can be used to explain the phenomenon of residual voids after 

rolling. The newly proposed model is more comprehensive and will overcome the shortcomings of 

the models listed in Table 1. 

Table 1. Closure mechanism for single shape defects 

Defect shape  Closure of defects 

V‐shape 
 

Rectangular   

Ellipse 
 

Circle 

 

 

In this paper, our models focus on the effect of crack surface roughness. During rolling 

deformation, healing is initiated by the roughness peaks on opposite sides of the crack surface 

coming into contact. The internal crack thus assumes the form of many voids separated by 

contacts between the roughness peaks. In the rolling deformation zone, both compressive 

deformation and shear deformation occur in plates. It is very difficult to control a local zone 

deformation, which is accompanied by complex crack roughness peak movement. Fig. 8 shows 

possible alternative steps in peak movement mechanisms. Fig. 8 (a) shows a movement of the 

deformed peaks towards the left, and Fig. 8(b) shows a movement towards the right. When the 

roughness peaks come into contact with each other, two kinds of voids are formed at positions P1 



and P2 in Fig. 8 (a). With higher deformation, the void P2 gradually decreases (Fig. 4(b)). When 

the reduction ratio is larger than 20%, the voids at P2 closes well, as is also shown in Fig. 5. 

However, the voids in the P1 positions resist closure. In Fig. 8 (c) the roughness peaks move 

towards each other, while in Fig. 8(d) the roughness peaks move in away from each other. 

Movement such as in Fig. 8 (c) is conductive to void closure. However, for the case in Fig. 8 (d), 

such peak movement may result in larger residual voids in the workpiece after rolling, as indicated 

by ‘P3’. Because in any actual rolling process, the four mechanisms may occur simultaneously, the 

voids could be non-uniformly distributed in the workpiece during rolling process. 

 

 

Fig. 8 Movement of roughness peak in deformation (RD- parallel to rolling direction, ND-Normal to rolling 

direction), (a) and (b) movement along left and right side, (c) and (d) movement along opposite directions  

The strain change during rolling in the deformation zone is shown in Fig. 9. After rolling, the 

maximum strain appears in the wave trough zone for both 20% and 30% reduction ratios. The 

mean value of the strain when the reduction ratio is 20% is less than that for the 30% reduction 

ratio. When the reduction ratio is 20%, the minimum strain appears at ‘P10’, where there is still a 



void after rolling, as shown in Fig. 5 (a). When the reduction ratio is 30%, the strains at P1, P8 

and P9 are less than that at other positions. These strain levels are less than 0.6, which may 

explain why some small voids persist in the workpiece after rolling, as shown in Fig. 5 (b). It is 

also seen that the strain near the peak of the roughness profile is less than that near the trough. In 

addition, the strain in the trough region is still non-uniform. The large difference in strain at P5 

and P6 may result in residual voids in the trough zone.  

 

(a)                                                                                            (b) 

 

Fig. 9 Strain at different points on the roughness profile during rolling, for two reduction ratios: (a) 20% 

and (b) 30% 

Chen et al [36] developed a mathematical model for the diffusion bonding between two pieces 

of the same materials. Their model shows that plastic deformation plays a major role in the 

diffusion bonding process. It is obvious that the bonding strength increases with increasing crack 

surface pressure and decreasing void size. Although the void shape after rolling in Fig. 6 (b) and 

(c) is different from that in Fig. 7 (b), such shape change mainly occurs after rolling. In 

comparison to a workpiece without defects, the residual voids generate a free energy delta of the 

system in the material. Based on the minimum energy principle, to seek a way to make free energy 

reduced is useful for void elimination in the system. In addition, owing to the stress gradient 

around the residual voids and the high temperature of the samples, voids of randomly generated 

shapes (Fig. 6(c)) will transform into small circular voids through the surface source mechanism, 

interface source mechanism, and creep mechanism [36-38], as shown in Fig. 7 (b). The 

transformation of the void shape enables effective crack healing. In addition, there are some other 

factors that might affect the crack closure and healing such as strain rate [39], which is related to 



the rolling speed. As seen in Ref. [39], with a decreasing strain rate, the crack healing condition 

improves greatly.  

5. Conclusions 

(1) An FE rolling model for internal crack closure is presented, with consideration of the effect of 

crack surface roughness on the healing process. The simulation results compare well with 

experimental results. 

(2) There appear to be four kinds of relative motions of the roughness peaks during the plastic 

deformation process. Consideration of the crack surface roughness allows formulation of a better 

explanation of residual voids in the workpiece after rolling. 

(3) In the rolling process, most of the voids reside in the vicinity of peaks and troughs of the 

roughness elements. Greater crack surface roughness results in a greater number of residual voids 

in the workpiece after rolling. In addition, the cracks close better with increasing rolling reduction 

ratio. 
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