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Electrochemistry and Structure of the Cobalt-free 
Li1+xMO2 (M = Li, Ni, Mn, Fe) Composite Cathode 

Wei Kong Pang,ab Sujith Kalluri,b Vanessa K. Peterson,*a Shi Xue Dou,b and 
Zaiping Guo*b 

The development of cathode materials with high capacity and cycle stability is essential to emerging 

electric-vehicle technologies, however, of serious environmental concern is that materials with these 

properties developed so far contain the toxic and expensive Co. We report here the Li-rich, Co-free 

Li1+xMO2 (M = Li, Ni, Mn, Fe) composite cathode material, prepared via a template-free, one-step wet-

chemical method followed by conventional annealing in an oxygen atmosphere. The cathode has an 

unprecedented level of cation mixing, where the electrochemically-active component contains four 

elements at the transition-metal (3a) site and 20% Ni at the active Li site (3b). We find Ni2+/Ni3+/Ni4+ to 

be the active redox-center of the cathode with lithiation/delithiation occurring via a solid-solution reaction 

where the lattice responds approximately linearly with cycling, differing to that observed for iso-structural 

commercial cathodes with a lower level of cation mixing. The composite cathode has ~ 75% active 

material and delivers an initial discharge-capacity of ~ 103 mAh.g-1 with a reasonable capacity retention 

of ~ 84.4% after 100 cycles. Notably, the electrochemically-active component possesses a capacity of ~ 

139 mAh.g-1, approaching that of the commercialized LiCoO2 and Li(Ni1/3Mn1/3Co1/3)O2 materials. 

Importantly, our operando neutron powder-diffraction results suggest excellent structural stability of this 

active component, which exhibits ~ 80% less change in its stacking-axis than for LiCoO2 with 

approximately the same capacity, a characteristic that may be exploited to enhance significantly the 

capacity retention of this and similar materials.  

 

Introduction 

Since the introduction of the first commercial Li-ion battery 
containing LiCoO2 as the cathode and graphite as the anode by 
Sony in 1991,1 the Li-ion battery has become the preferred 
choice for powering portable electronic-devices. Despite a 
theoretical capacity of 274 mAh.g-1, the practical capacity of 
LiCoO2 is restricted to 140 mAh.g-1 as a consequence of 
structural stability issues, where only half of the Li can be 
removed before the structure decomposes into CoO2.

2-4 
Moreover, LiCoO2 has a relatively-poor rate capability and 
contains toxic and expensive Co. The world Co price is 
currently determined by Li-ion battery demands, and the 
present and significant research effort to find alternative, Co-
free cathodes that are environmentally-friendly with good 
electrochemical performance is of great global importance. Ni 
and Mn have been used to replace Co to form the alternative 
cathode materials LiNiO2

5 and LiMnO2
6, 7, respectively. 

Although Co-free, these materials are difficult to prepare and 
thermally unstable at their charged state. Importantly, to date 
Co-free cathodes have suffered significantly from poor 
structural stability. For example, the Li2MnO3 cathode and its 
derivatives exhibit severe capacity-decay, despite an initial 
discharge-capacity exceeding 200 mAh.g-1

 after charging 
beyond 4.6 V,8-10 with Jahn-Teller distortion of Mn3+ 
contributing significantly to instability on cycling.6, 11-13  
The cycling performance and stability of a battery is of utmost 
importance and in commercial use capacity is sacrificed to 
achieve this.14, 15 Cycle stability and good battery-lifetime are 

achieved industrially through constraints on the cycle depth,14, 

15 ensuring structural stability at the expense of capacity, where 
constraint of the discharge to 40% is commonplace. Whilst 
stabilizing the bulk of the cathode, this approach does not 
prevent cathode destabilization as a result of local clusters of 
fully-transformed material, with the macroscopic lithiation 
mechanism a significant influence on this. One method to 
overcome this is to incorporate redox-inert transition-metal 
centers into the material, which stabilize the structure during 
charge-discharge cycling. The mixed transition-metal 
Li(Ni1/3Mn1/3Co1/3)O2, iso-structural to LiCoO2 and reported by 
Yabuuchi and Ohzuku, is now commercially-used.16 Although 
Mn and Co are electrochemically inert in the active voltage 
range of Li(Ni1/3Mn1/3Co1/3)O2, the valence of Ni changes from 
2+ to 4+ and effectively doubles the capacity, with the 
reversible capacity of this cathode in excess of 200 mAh.g-1.16, 

17 The inert redox centers in Li(Ni1/3Mn1/3Co1/3)O2 make this 
material more stable than LiCoO2,

18 although the presence of 
Co and the relatively-poor rate performance of 
Li(Ni1/3Mn1/3Co1/3)O2 remain problems. Although mixed 
transition-metal oxides with a further reduced amount of Co 
have been synthesized, such as LiMn0.4Ni0.4Co0.2O2 and 
LiMn0.42Ni0.42Co0.16O2,

19-21 expensive and toxic Co remains. 
More recently, the novel, eco-friendly, and Co-free 
Li(Ni1/3Mn1/3Fe1/3)O2 was reported, with a theoretical capacity 
of 281 mAh.g-1, exceptional rate-performance, and the 
reasonably-high practical discharge-capacity of 170 mAh.g-1 in 
the presence of a conducting  polyaniline network. The 
evolution of metal-oxide cathodes from the first LiCoO2 
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material to Li(Ni1/3Mn1/3Co1/3)O2 and Li(Ni1/3Mn1/3Fe1/3)O2 
materials, stands testament to the importance of the serious 
environmental concerns in the interest of the application of 
cathodes for  low or zero-emission transportation such as to 
power hybrid-electric and electric vehicles, where both high 
capacity, cycle stability, and good rate-performance are 
required.  
An alternative to mixed transition-metal oxides as highly stable 
cathode materials is the use of an additional and inactive phase, 
such as the superlattice-structured Li2MnO3.

22-24 Here the 
cathode functions as a composite, where the Li2MnO3 offers 
additional stability during high-voltage charge.22-25 Following 
this theory, new cathodes with excess Li are being created, such 
as the Li2MnO3•LiNi0.5Mn0.5O2 composite, with the aim of 
improving both cycling stability and capacity for future Li-ion 
battery applications.26-28  
In order to direct the development of cathodes with improved 
performance, the atomic-level structural response of LiCoO2

2-4 
and Li(Ni1/3Mn1/3Co1/3)O2

29 during lithiation and delithiation 
have been studied. Delithiation in LiCoO2 is reported to 
proceed through a solid-solution reaction to form LixCoO2 (x = 
~ 0.5 with capacity ~ 140 mAh.g-1), with further Li extraction 
inducing the formation of CoO2 via a two-phase reaction.2-4 
During the solid-solution reaction, the lattice parameter c first 
increases, before decreasing at the charged state. This reversible 
non-linear behaviour is also observed in the iso-structural 
Li(Ni1/3Mn1/3Co1/3)O2 cathode.18, 29 Under further delithiation, 
Li(Ni1/3Mn1/3Co1/3)O2 decomposes via a two-phase reaction, 
forming the Li0.04(Ni1/3Mn1/3Co1/3)O2 material with space group 
P3m1.18 The generally-accepted explanation for the non-linear 
behaviour of the lattice of these layered cathodes is that during 
initial charging (delithiation) electrostatic repulsion of the 
oxygen-containing layers occurs, with the decreasing average 
charge of the O-ions at the high-charge state reducing the 
repulsion between the layers and consequently, the inter-layer 
distance. Although it is generally accepted that the capacity of  
Li(Ni1/3Mn1/3Co1/3)O2 arises from the Ni2+/Ni3+/Ni4+ redox 
centers within the 3-4 V operating window, the contribution of 
the Mn3+/Mn4+ and Co3+/Co4+ redox couples to this capacity is 
also reported.30-33   
In this work, we report a Li-rich Li1+xMO2 (xLi2MO3•(1-
x)(Li5/6Ni1/6)(Li1/6Ni1/6Mn1/3Co1/3)O2 composite material, M = 
Li, Ni, Mn, Fe) that is Co free. We study its electrochemical 
performance and function, determining the phase evolution of 
the active phase (Li5/6Ni1/6)(Li1/6Ni1/6Mn1/3Co1/3)O2 using 
operando neutron powder diffraction (NPD). We examine the 
lithiation/delithiation mechanism of the active phase within a 
whole battery alongside the typical two-phase transitions of the 
graphite anode during galvanostatic charge and discharge 
within the 2.0 – 4.5 V window (vs. graphite), noting that the Li-
rich Li2MO3 component (~ 25 wt.%) is electrochemically inert. 
By examining the oxygen positional-parameter during cycling, 
we establish the origin of the capacity of the 
(Li5/6Ni1/6)(Li1/6Ni1/6Mn1/3Co1/3)O2 phase. Our structural study 
is coupled with our examination of the cathode’s performance 

characteristics to establish the structure-function relation of this 
novel cathode material.   
 

Experimental  

The cathode powder was synthesized using a precursor solution 
prepared by dissolving stoichiometric amounts of LiNO3, 
Mn(CH3COO)2, Ni(CH3COO)2, and Fe(CH3COO)2 (Sigma-
Aldrich) in an adequate amount of ethanol and N,N-dimethyl 
formamide. 20% excess LiNO3 was added to form 
Li1+x(Mn1/3Ni1/3Fe1/3)O2. After stirring for 1.5 hr., 10 wt.% of 
polyvinylpyrrolidone (1,300,000 g.mol-1, Sigma-Aldrich) was 
added to the resultant solution. After overnight stirring, the 
precursor was dried at 100 °C for 24 hr. to evaporate solvents 
and then calcined at 900 °C for 2 hr. with a heating rate of 300 
°C h-1 in flowing oxygen to obtain the cathode powder.  
The phase composition and crystallographic structure of the as-
prepared cathode powder was obtained using XRPD with a 
GBC mini-material analyzer (U.S.A) with CuKα radiation. 
Morphological and particle size studies were performed using 
SEM with a JEOL JSM-7500 (Japan). High-resolution NPD 
data were collected using ECHIDNA, the high-resolution 
neutron powder diffractometer at the Open Pool Australian 
Light-water (OPAL) research reactor at the Australian Nuclear 
Science and Technology Organisation (ANSTO).34 The neutron 
beam wavelength was 1.6238(3) Å, determined using the 
La11B6 NIST standard reference material 660b. The NPD data 
were obtained in the 2θ angular range 4 to 164° with a step size 
of 0.125°. Fullprof with visualization in WinplotR35, 36 was 
employed to perform Rietveld analysis of the obtained XRPD 
and high-resolution NPD data. The parameters including 
background coefficients, zero-shift, peak shape parameters, 
lattice parameters, the O positional parameter, and isotropic 
atomic displacement parameters are optimized.  
A specially designed pouch-type battery was used in the 
collection of operando NPD data from the cathode. The 
cathode was prepared by casting a slurry of the cathode powder 
(80 wt.%), carbon black (Super P, TIMCAL, Switzerland) (10 
wt.%), and polyvinylidene difluoride (PVDF) binder (10 wt.%) 
onto Al foil. Commercial double-side coated MCMB anodes 
were used as the counter electrode. The electrodes were cut into 
1.5 × 7 cm strips with a coated area of 1.5 × 4.5 cm. 
Immobilon–P PVDF membrane (Millipore) was used as a 
separator due to its lower H content relative to the 
conventionally-used Celgard membrane, where the strong 
incoherent neutron-scattering of H is detrimental to the NPD 
signal. The battery was prepared by stacking 16 
anode/separator/cathode assemblies with a parallel connection. 
The stack was placed in an Ar-filled glove box for 24 h and 
then wrapped in a polypropylene-coated Al foil to form a 
pouch. The dimension of the prepared cell was 3 cm wide 
(including the sealing junction of the Al pouch), 10 cm long 
(including electrode handles), and ~ 0.8 cm thick. Prior to the 
operando NPD experiment, deuterated electrolyte solution (1 M 
lithium hexafluorophosphate (99.99%, Sigma-Aldrich) in a 1:1 
volume ratio of deuterated dimethyl carbonate (DMC) (99.5%, 
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The relatively-higher sensitivity of NPD to Li in this material 
compared to XRPD means that the R3m 104 and 018 
reflections are stronger in the NPD than the XRPD data (Figure 
1b) and that the Li2MO3 phase is more easily observed. 
Because of this, the final refined cathode-structure was 
obtained using the using NPD data. Whilst the structure of the 
second Li-rich C2/m phase could not be modelled using the 
NPD data, a Le Bail refinement of this phase was included 
alongside a constrained Rietveld-refinement of the main R3m 
structure, allowing the crystallographic detail of the R3m phase 
to be extracted as shown in Table 1 and Figure 2. The lattice 
parameters of the C2/m phase were determined to be a = 
4.9381(1), b = 8.6386(4), and c = 4.9849(2) Å, with  = 
108.872°, which differ slightly to that reported for Li2MnO3 

where a = 4.9292, b = 8.5315, and c = 5.0251 Å, with  = 
109.337°.22 Importantly, the intensity of the C2/m phase 
reflections in the NPD differ from that simulated for the 
reported Li2MnO3, likely as a result of the partial substitution of 
Mn by Ni and Fe. The R3m phase is found to be 
(Li0.80(4)Ni0.20(4))(Li0.20(4)Ni0.13(4)Mn0.33Fe0.33)O2 (LNMFO), in 
which Li atoms share the octahedral 3b site with Ni atoms, 
these being sandwiched between layers of hybrid Ni/Mn/FeO6 

octahedra. The hexagonal layered-structure of LNMFO is an 
O3-type, in good agreement with that reported for 
Li(Ni1/3Mn1/3Fe1/3)O2,

39, 40 with the major difference being the 
high level of Li/Ni cation mixing at both 3a and 3b sites (Figure 
2). This cation mixing can complicate the electrochemical 
function of the cathode as the active Li intercalation layer (3b 
site) contains inactive Ni which may lower capacity and block 
Li diffusion.30, 41 Nevertheless, it is the inactive Ni in this layer 
which is expected to increase structural stability and the 
subsequent cycling performance.  

 
Figure  2.  O3‐structure  of  the  R3m  LNMFO  phase  obtained  using  NPD  data. 

Shown are O  (red), Li  (green), Ni  (grey), Mn  (violet), and Co  (brown). The  (018) 

plane (orange)  is shown along with the two‐dimensional Li diffusion path along 

the a and b lattice directions (green arrows).    

 

Table 1. Crystallography of the as-prepared LNMFO powder obtained using 
the NPD (upper) and XRPD (bottom) data.  

(Li0.8Ni0.2)(Li0.2Ni0.13Mn0.33Fe0.33)O2 (R3m) with a = b = 2.9275(3) Å and c = 
14.344(3) Å 

Atom Site x y z Atomic displacement 
parameter (Å2) 

Site 
occupancy 

factor 
Li1 3b 0 0 0.5 0.79(4)* 0.80(4) + 
Ni1 3b 0 0 0.5 0.79(4)* 0.20(4)+,~ 
Li2 3a 0 0 0 0.2(1)# 0.20(4) ~,^ 
Ni2 3a 0 0 0 0.2(1)# 0.13(4)^ 
Mn2 3a 0 0 0 0.2(1)# 0.33^ 
Fe2 3a 0 0 0 0.2(1)# 0.33^ 
O1 6c 0 0 0.2580(3) 0.38(1) 1 

*,#, ~ constrained to be the same. 

+,^ constrained to add to 1. 

(Li0.75Ni0.25)(Li0.25Ni0.08Mn0.33Fe0.33)O2 (R3m) with a = b = 2.9227(1) Å and c 
= 14.3808(2) Å 

Atom Site x y z Atomic displacement 
parameter (Å2) 

Site 
occupancy 

factor 
Li1 3b 0 0 0.5 0.79@ 0.75(4)+ 
Ni1 3b 0 0 0.5 0.79@ 0.25(4) +,~ 
Li2 3a 0 0 0 0.2@ 0.25(4)~,^ 
Ni2 3a 0 0 0 0.2@ 0.08(4)^ 
Mn2 3a 0 0 0 0.2@ 0.33^ 
Fe2 3a 0 0 0 0.2@ 0.33^ 
O1 6c 0 0 0.2551(3) 0.38@ 1 

@ taken from refinement results using the NPD data. 

~ constrained to be the same. 

+,^ constrained to add to 1. 

To correlate the electrochemical performance with the 
structural evolution of the cathode, high-intensity NPD data of 
a neutron-friendly battery containing this cathode during charge 
and discharge were collected. These data are complicated by 
the same peak broadening affecting the high-resolution NPD 
data, but also from additional peaks and features in the data 
from the other components of the battery. Such features include 
a significant background from the hydrogen-containing 
separator and scattering from the liquid electrolyte, and 
reflections overlapping those of the cathode arising from the 
aluminum pouch. Detailed structural analysis of the cathode 
was therefore limited. A Rietveld refinement plot using the 
NPD data of the battery prior to electrochemical cycling is 
shown in Figure 3.  
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Figure 3. Refinement plot using the NPD data of the LNMFO‐containing battery 

before  cycling.  Figures‐of‐merit  include  2  =  2.53,  Rwp  =  13.3%, with  Bragg‐R 

factors 1.05% for LNMFO, 0.17% for graphite, 0.42% for Cu, and 0.28% for Al. 

There are, as expected, four identifiable phases in the as-
prepared battery, these being Al, graphite, Cu, and LNMFO. 
The second Li-rich phase of the cathode was not observed as a 
result of the significant background. The strongest LNMFO 
reflections in the high-resolution NPD data, the 006/012, 104, 
and 018/110 reflections, are identified in these high-intensity 
NPD data, although these are weak. During charging, these 
LNMFO reflections become less intense and are nearly 
unobservable at the charged state of the battery. Consequently, 
standard sequential Rietveld-refinement using the operando 
NPD data was difficult, and possible only using a highly-
constrained model with the background and oxygen positional-
parameter (z) the only refineable parameters, where the anode 
lattice was analyzed using Le Bail extraction. Rietveld analysis 
was also supplemented with single-peak fitting to understand 
the structural changes occurring to the LNMFO phase during 
charge/discharge cycling.  
The battery voltage during the operando experiment is shown 
in Figure S1. During the battery formation cycle (the first), 
electrolyte decomposition is observed at the battery’s high 
charge-state (4.48 V vs. MCMB), appearing as a drop in the 
liquid structure-factor contribution to the pattern arising from 
the electrolyte (arrow in Figure S1). During the first cycle, the 
large irreversible-capacity of 41.2 mAh (coulombic efficiency 
of 51%) was obtained, which may be ascribed to the electrolyte 
decomposition and the formation of a solid-electrolyte 
interface. After the first cycle, efficiencies of 89.1% and 87.0% 
are observed during cycling at 3 and 4.5 mA, respectively. The 
calculated charge (83.25 mAh) and discharge (41.2 mAh) 
capacities are equivalent to 104.1 and 52.6 mAh.g-1, 
respectively, for total composite-cathode. The use of deuterated 
electrolyte with a heavier molecular-mass and higher viscosity 
can be detrimental to battery performance, as noted in previous 
work.42-46 The incremental capacity-plot (Figure 4) exhibits 
features only from the couples expected to be redox-active 
between 3 and 4.3 V, which correspond to Ni2+/Ni3+ and 
Ni3+/Ni4+ transitions, respectively.47 The absence of a peak 
around 3 V indicates the Mn3+/Mn4+ redox couple is inactive 

and that no or minor amounts of Mn3+ are present in the 
cathode.48 The presence of electrochemically-inactive Mn4+ is 
expected to impart structural stability to the cathode, which 
alongside Fe3+, also not electrochemically active in the voltage 
range proposed for this cathode, promote structural stability.8  

Table 2. Ni-O bond lengths at various Ni valences.  

Ion Reported Ni-O bond 
length 

Reference 

Ni2+ 1.675 Brown and Altermatt, (1985) 49 
Ni3+ 1.750 I.D.Brown Private communication 
Ni4+ 1.780 I.D.Brown Private communication 

 

 
Figure 4. Incremental capacity‐plot for the LMNFO‐containing battery during the 

second cycle, identifying key voltages in the battery mechanism, where the black 

and red curves represent charge and discharge, respectively.  

To understand the battery function in terms of structure, we 
first examine the graphite 002 reflection of the anode (~ 42.0° 
in 2θ) in the operando NPD data for the battery (Figure S1). 
The shift in position of the graphite 002 reflection arises from 
lithiation and delithiation, with the observed phase 
transformation agreeing well with the battery voltage-curve. 
Given that the anode is in excess in the battery to ensure the 
complete reaction of cathode, the complete lithiation of 
graphite to the LiC6 phase is not observed, with the LiC6 001 
reflection (d ~ 3.70 Å)50 expected at ~ 38.0° in 2θ, not 
appearing. Fitting of the overlapping lithiated graphite 
reflections with Gaussian functions reveals peak positions 
corresponding to that of C, LiC18, and LiC12 (Figure S2 and 
S3).50 Based on the evolution of intensity of these peaks during 
charge/discharge, we note the presence of the two-phase C-
LiC18 and LiC18-LiC12 reactions that confirm the expected 
reversible lithiation of the anode.  
Gaussian peak-fitting of the LNMFO reflections in the 
operando NPD data is complicated by significant peak overlap. 
The contour plot of the operando data (see Figure S4 in the 
supporting information) reveals that the 006/012 reflections 
change during delithiation and lithiation. Figure 5a shows the 
evolution of the 2θ position of the LNMFO 006/012 reflections 
obtained through single Gaussian peak-fitting during 
charge/discharge cycling. Given the reported structural 
response of the R3m LiCoO2

2-4 and Li(Ni1/3Mn1/3Co1/3)O2
18, 29 
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during lithiation and delithiation, iso-structural to LNMFO, we 
expect the lattice parameter c for LNMFO to first increase and 
then decrease during the battery charging. This non-Vegard 
change of the lattice parameter c in the hexagonal-layered 
cathodes is ascribed to electrostatic repulsion between the O-
containing layers and the subsequent deficient average-charge 
of the O ions (Figure 2). Interestingly, no inflection point is 
observed in the position of the overlapping LNMFO 006/012 
reflections (Figure 5a), with the peak shifting to higher and 
lower angle during charge and discharge, respectively. Given 
the hexagonal-layered structure of the LNMFO and known 
lattice response of iso-structural cathodes during 
lithiation/delithiation,2, 29 the change in the position of the 
LNMFO 006/012 reflections is likely dominated by that of the c 
axis change as a result of changing Li content.51, 52 The 
substitution of Co by Fe is not expected to alter the 
electrochemistry of a R3m ternary cathode, and the dissimilar 
lattice evolution of the LNMFO and other iso-structural 
cathodes must therefore be attributed to the high level of Li/Ni 
cation mixing in LNMFO.  
Given the ~ 25% inert Li2MO3 phase and the specific charge 
capacity of 104.1 mAh.g-1 for the composite cathode during the 
first charge in the operando NPD experiment, we calculate a 
capacity of ~139 mAh.g-1 for the active LNMFO phase, which 
we note closely approaches that of LiCoO2 (~140 mAh.g-1).2-4 
For relatively equal capacity, the LNMFO exhibits a 
significantly smaller (~ 80%) change along the [00l] direction 
during charge/discharge compared with the LiCoO2

2-4, with the 
peak position of the LNMFO 006/012 reflections shifting by 
only 0.8% compared with ~ 4.0% for the LiCoO2 006 
reflection).2-4 
The LNMFO 018 and 110 reflections also overlap, and the 
evolution of the peak intensity of the Gaussian peak describing 
these is shown in Figure 5b. The contour plot of the operando 
data (see Figure S5 in the supporting information) reveals that 
the 018 and 110 reflections separate somewhat and their 
intensity decreases during delithiation, with the reverse 
occurring during lithiation. As the LNMFO 018 and 110 
reflections are broad and the inter-planar spacing of these is 
close, single-peak fitting is used to monitor the changes of the 
two reflections. The LNMFO (018) and (110) planes consist of 
all the elements in the material (Li, Fe, Mn, Ni, and O, Figure 
2). Considering that Li and Mn have negative coherent neutron-
scattering lengths (-1.9 and -3.7 fm, respectively) and that Fe, 
Ni, and O have positive coherent neutron-scattering lengths 
(9.5, 10.3, and 5.8 fm, respectively), if only the population of 
the active Li site (3b) during charge/discharge is considered, 
then the intensity of the LNMFO 018/110 reflections is 
expected to increase and decrease during Li 3b site 
depopulation and population, respectively. We observe the 
opposite here, with the changes in the intensity of the LNMFO 
018/110 reflections driven by changes in the oxygen positional-
parameter. During lithiation/delithiation (reduction/oxidation), 
the transition-metal to oxygen bond-length changes as a result 
of the valence change of the redox center. Our incremental 
capacity-plot (Figure 4) indicates that the Ni2+/Ni3+/Ni4+ is the 

active redox center in the LNMFO and therefore responsible for 
the average-valence change of the octahedral metal-sites. Table 
2 summarizes the reported length of the Ni-O bond at various 
Ni oxidation states obtained from bond-valence summation 
calculations.49 The Ni-O bond in similar materials is longest at 
higher oxidation-states of Ni, contrary to that expected from a 
simple electrostatic argument. 

 
Figure 5.    (a) Evolution of  the 2θ position of  the Gaussian peak describing  the 

LNMFO  006/012  reflections  and  (b)  the  evolution  of  intensity  of  the Gaussian 

peak describing  the  LNMFO 018/110  reflections, associated with  the  refined  z, 

during  charge/discharge  cycling  (see  Figure  S3  and  S1  in  the  supporting 

information). 

To understand further the structural response of the LNMFO 
during charge/discharge, the oxygen positional-parameter (z) 
was extracted using highly-constrained Rietveld refinement, 
and z is shown alongside the intensity change of the LNMFO 
018/110 peak in Figure 5b. The decrease and increase in 
018/110 peak intensity are associated with the increase and 
decrease, respectively, of z. To further support this finding, 
simulated NPD patterns of LNMFO with various z were created 
and the relative 018/110 peak intensity compared with that 
experimentally-obtained (Figure S6). The simulated NPD 
patterns for LNMFO with different z were calculated using the 
refined structure obtained from the high-resolution NPD data 
and with the same lattice parameter and atomic site-occupancy 
factors, despite these being known to vary alongside changes in 
z in iso-structural cathodes. The LNMFO 018/110 reflections in 
simulated patterns were fitted using a Gaussian function to 
examine the trend of intensity variation as a function of oxygen 
positional-parameter. This is shown alongside the measured 
intensity using NPD and the refined z in Figure 6, which 
expectedly show significant scatter due to the relatively-large 
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Figure 8. (a) Charge‐discharge curves and (b) the variation of discharge capacity 

of the cathode during the 1st and 100th cycle at 0.1 C. 

Conclusions 

Nano-sized Li-rich, Co-free Li1+xMO2 (M = Li, Ni, Mn, Fe) for 
application as a lithium-ion battery cathode was prepared using 
a simple and direct wet-chemical method. The as-synthesized 
powder was characterized and found to contain predominantly 
(Li0.80(4)Ni0.20(4))

3b(Li0.20(4)Ni0.13(4)Mn0.33Fe0.33)
3aO2, a phase with 

a layered R3m structure and a high level of cation mixing, 
alongside a more minor (~ 25%) inert Li2MO3 secondary phase. 
The performance characteristics of the Co-free cathode 
approach that of commercial and Co-containing counterparts, 
before optimization. We studied the structural evolution of the 
active (Li0.80(4)Ni0.20(4))(Li0.20(4)Ni0.13(4)Mn0.33Fe0.33)O2 phase 
using operando neutron powder-diffraction and found a lattice 
response that was dissimilar to iso-structural cathodes, 
attributable to the different level of cation mixing. We show 
that the capacity of this novel material comes from the 
Ni2+/Ni3+/Ni4+ redox centers. Notably, the operando powder-
diffraction results suggest excellent structural-stability of the 
active component, which exhibits a change of only ~ 0.8% (for 
~139 mAh.g-1) of the stacking axis of its layered structure, 
compared with the ~ 4% change in LiCoO2 (for ~140 mAh.g-1), 
a characteristic that may be exploited to enhance capacity 
retention of this and similar materials.  
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