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Abstract 

In this study, semi-solid stir casting and ball milling processes are combined into an integrated composite 

fabrication process. Two different architectures were utilized to incorporate reinforcing particle into semi-

solid alloy i.e., (i) ball milling of K2TiF6 and aluminium powder for 5 h and subsequently with nano-alumina 

particles (Al2O3np) for 1 h and (ii) ball milling of K2TiF6, Al2O3np and aluminum powder for 2 h. Accordingly, 

the milled powders were incorporated into molten AlA206 alloy using a non-contact ultrasonic vibration 

method. The effect of milling procedure on microstructural evolution and tensile properties were then 

explored. Two different microstructures were characterized including well-distributed Al2O3np and Al3Ti 

particles (Al3Tip) and a network-structure containing Al3Tip+Al2O3np. This unique architecture of network-

structure brought about increment in tensile properties compared to well-distributed reinforcement particles, 

ascribed to the strewing of Al3Tip+Al2O3np around matrix grain boundaries, act as a three-dimension skeletal 

structure with high local volume fraction of Al3Tip+Al2O3np. 

Keywords: A206 Alloy; Semi solid processing; Metal matrix composites; Transmission Electron Microscopy; Fracture. 

 

1. Introduction 

One of the most important metal matrix composites (MMCs) are aluminum matrix composites (AMCs) 

reinforced alumina particulates, extensively being used in the aerospace and automobile industries [1-7]. 

AMCs, especially discontinuously reinforced aluminum matrix composites (DRAMCs) have received large 

attention because of their augmented tensile and tribological properties [1-8].  
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DRAMCs with uniformly distributed reinforcement exhibit a certain improvement in partial properties with 

respect to the matrix alloy [9]. Investigations in the past two decades confirmed that DRAMCs exhibited 

limited strengthening effect of reinforcement and augmented mechanical properties can be achieved by 

tailoring the microstructure at a higher level [10-12]. In order to increment the performance of DRAMCs, 

recent studies have been focused towards exploring three-dimensional microstructures such as bi-continuous, 

inter-penetrating and quasi-continuous composites [13-15]. As reported by Huang et al. in the case of Ti 

matrix composites, a controlled three-dimensional microstructure has the capability to enhance the properties 

of material, such as elastic modulus, tensile strength and fracture toughness, compared with well-distributed 

counterparts, [13, 15-19]. 

Beside ceramic reinforcements, trialuminide intermetallics such as Al3Zr and Al3Ti have been also used 

widely as reinforcement [20-24]. Trialuminide intermetallics have some important advantages over ceramic 

particulates such as low densities, higher thermal stability, good machinibility and formability [25,26]. 

However, the brittle nature of trialuminide intermetallics can preside over the properties of the composite 

giving rise to negligible increment in mechanical properties [22]. Therefore, microstructural control is needed 

to implement Al3Ti intermetallic as a useful reinforcement in MMCs. Furthermore, using two or more types 

of particulates in a single matrix, hybrid composites, the benefits of one type of particulates could supplement 

to what is lacking in the other [27]. 

This study shows how microstructural control can be used to exploit superior tensile properties of Al/A206-

5%Al2O3-Al3Ti hybrid composites. In order to achieve this, intelligent techniques with superior process 

control such as high energy ball milling coupled with stir casting was employed. The effect of using this 

process for incorporation of reinforcing particles on final nano/microstructure and tensile properties of the 

composite, produced using a process involve milling and semi-solid stir casting, was explored. 

 

2. Experimental procedure 

Commercial aluminium (74 µm, supplied by Phoniex company), α-alumina (100 nm, supplied by Phoniex 

company) and K2TiF6 (60 µm, supplied by Aldrich company) powders were used in this study. Milling was 

performed in a Fritsch Pulverisette P5 planetary ball mill under argon gas (high purity, 99.999%) in a liquid 
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nitrogen environment (cryomilling). Rotation speed of the mill was kept about 480 rpm. In order to avoid 

excessive cold welding during milling, process control agent (PCA) was used (Stearic acid 

(CH3(CH2)16CO2H) powder was supplied by Merck).  

To explore the behavior of K2TiF6 and aluminium powders against thermal exposure, differential scanning 

calorimetry (DSC) (at a rate of 10 ◦C/min and under flowing argon) was utilized. Four powder samples were 

used; Aluminum powder, K2TiF6 powder, mixed mixture of aluminium and K2TiF6 powders and milled 

mixture of aluminium and K2TiF6 powders. Volumes of mixed and milled aluminium/K2TiF6 powder blends 

were heated in a tube furnace at a rate of 10 ◦C/min (similar to DSC experiment) to temperatures 

corresponding to each major DSC signals for 1/2 h and subsequently quenched to room temperature to avoid 

microstructural changes during cooling.  

X-ray diffraction (XRD) analysis was performed on heat treated powders to determine possible reaction 

corresponding to each DSC signal. XRD analysis was performed using PHILIPS-binary diffractometer 

applying Cu Ka radiation.  

A206/5 % aluminap-Al3Ti hybrid composites were fabricated according to the following procedure:  

Initially, 99.7% pure aluminium, Cu and aluminium-80%Mn ingots were charged to the furnace and melted. 

After entire alloy in the crucible was melted, it was cooled down to 640°C. This temperature lies in the solid-

liquid range and corresponds to solid fraction of about 0.2. Then, stirring of the semi-solid alloy was initiated 

in 400 rpm, while prepared powders were injected in to the uniformly formed vortex over a time period of 

approximately 5 min. Simultaneously, the non-contact ultrasonic casting method was utilized in order to 

apply vibration into the prepared melt. It consists of an ultrasonic chamber (Bandelin-Germany Make – 

Model: RK – 100H), which can vibrate at a frequency of 35 kHz. Powder injection into molten A206 

aluminium alloy was performed under high purity argon atmosphere (99.999%, 6 lit/min). Two different 

architectures were utilized to incorporate reinforcing particle into semi solid alloy, i.e. (i) ball milling of 

K2TiF6 and aluminium powder for 5 h and subsequently with alumina for 1 h (denoted herein as 

(K2TiF6+Al)(5h)+Al2O3(1h)) and (ii) ball milling of K2TiF6, aluminum and alumina powder for 2 h (denoted 

herein as (K2TiF6+Al +Al2O3)(2h)). Indexes in parenthesis, hereafter, referred to milling time. 
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A proper mixture of the mentioned composition was selected so that after introducing powders in to the melt, 

melt composition reach to A206 alloy (Cu=4.20-5.00, Mg=0.20-0.35, Mn=0.20-0.50, Fe=0.07 max, Ni=0.03 

max and Al=balance). After completion of particle injection, mixing was continued for extra 2 min. Finally, 

the composite slurry was poured into a pre-heated mould by using a bottom-pouring system. The composites 

fabricated via technique (i) denoted herein as A206-(K2TiF6+Al)(5h)+Al2O3(1h) and that of prepared via 

technique (ii) as A206-(K2TiF6+Al +Al2O3)(2h).  

Morphology evolution of powders during milling and microstructure of the composite were studied by Field 

Emission Scanning Electron Microscopy (FE-SEM) performed in a HITACHI S4160, equipped with an 

energy dispersive X-ray analysis (EDX) accessory and Transmission Electron Microscopy ((TEM) Philips 

CM200).  

Tensile testing was carried by a Hounsfield universal test machine at a cross-head speed of 0.5 mms−1. The 

dog-bone shaped tensile specimens had a gauge size of 6 mm in diameter and 30 mm in length, according to 

ASTM: B557M-10. 

 

3. Results and discussion 

3.1. Thermal response of powders 

Fig. 1a shows DSC pattern of K2TiF6 salt, evincing three endothermic signals. Signals 1, 2 and 3, as 

demonstrated in Fig. 1a, was appeared around 360 ◦C, 610 ◦C and 840 ◦C, respectively.  Figs. 2 a and b exhibit  

XRD patterns of K2TiF6 salt held isothermally above signal 1 and 2 for 30 min at 450 ◦C and 650 ◦C, 

respectively, revealing K2TiF6 reflections alone. It is thus authenticated that K2TiF6 salt is stable up to 650 ◦C. 

The endothermic signals 1 and 2 are ascribed to the melting of impurities in K2TiF6 salt and that of signal 3 to 

the melting of K2TiF6 salt.  

Fig. 1b shows DSC pattern of aluminum powder, evincing a single endothermic peak around 660 ◦C (signal 4) 

attributed to the melting of aluminum. 

Fig. 1c shows DSC pattern of mixed mixture of aluminum and K2TiF6 salt. As is observed, by considering 

signal 5, DSC pattern of the mixture is not a simple superimposition of aluminum and K2TiF6. Signal 6 is 

ascribed to the melting of aluminum and K2TiF6 salt (between 630 ◦C and 650 ◦C). 
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Fig. 1. DSC patterns of (a) K2TiF6 salt, (b) aluminum powder, (c) mixed mixture of aluminum and K2TiF6 salt and (d) milled mixture of 

aluminum and K2TiF6 salt. 

 

Fig. 2c shows XRD pattern of mixed mixture of aluminum and K2TiF6 salt held isothermally below signal 5, 

evincing aluminum and K2TiF6 reflections. It can be concluded that aluminum and K2TiF6 has not reacted 

with each other up to this temperature.  

Fig. 2d demonstrates XRD pattern of mixed mixture of aluminum and K2TiF6 salt held isothermally at 600 ◦C. 

It can be deduced that signal 5 is responsible for reaction 1: 

3 K2TiF6 +13Al → 3Al3Ti +3KAlF4 +K3AlF6                                                                          (1) 

FE-SEM image was also validated the formation of Al3Ti in this temperature range (Fig. 3a). As is observed, 

Al3Ti particles fused together in aluminum matrix.  

Signal 6 in Fig. 1c is attributed to the melting of fluoride salts produced by reaction (1).  

Fig. 1d shows DSC pattern of milled mixture of aluminium and K2TiF6 powder. The endothermic signal 7 

starts at 220 ◦C and broaden to 450 ◦C. Signal 8 has also the same behavior as signal 6.  

Fig. 2e shows XRD pattern of milled mixture of aluminium and K2TiF6 powder held isothermally above 

signal 7 (550 ◦C), evincing Al3Ti, KAlF4 and K3AlF6 in addition to those of aluminium. It is thus inferred that 

XRD pattern of milled mixture of aluminium and K2TiF6 powder held isothermally at 550 ◦C is the same as 
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that of mixed mixture of aluminium and K2TiF6 powder held isothermally at 600 ◦C. XRD spectrum of milled 

aluminium/K2TiF6 powders heat treated at 550 ◦C, after the completion of signal 7, is identical to that of the 

aluminium/ K2TiF6 mixture heat treated at 600 ◦C, with Al3Ti, KAlF4 and K3AlF6 reflections in addition to 

those of aluminium (Fig. 2e). Thus, it can be deduced that signal 7 is responsible for reaction (1). As such, 

signal 8 to the melting of KAlF4 and K3AlF6, produced by reaction (1). The formation of Al3Ti is also 

validated in the milled mixture of aluminium/K2TiF6 powders heat treated at 350 ◦C (Fig. 3b). Comparing 

Figs. 3a with 3b reveal the difference between morphology of Al3Ti particles. Al3Ti particles in the former are 

relatively coarser than in the latter.  

This change in the morphology of Al3Ti particles and the shift of reaction (1) to 220 ◦C-450 ◦C in the milled 

mixture, authenticates that the milling process facilitates K2TiF6/aluminium interaction. 

 

 

Fig. 2. XRD patterns of (a) K2TiF6 salt held isothermally above signal 1 in Fig. 1, (b) K2TiF6 salt held isothermally above signal 2 in 

Fig.1, (c) mixed mixture of aluminium/K2TiF6 heat treated below signal 5 in Fig.1, (d) mixed mixture of aluminium/K2TiF6 heat treated 

above signal 5 in Fig.1 and (e) milled mixture of aluminium/K2TiF6 powders heat treated above signal 7 in Fig. 1. 
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Fig. 3. Morphology of (a) mixed mixture of aluminum and K2TiF6 salt held isothermally at 600 ◦C and (b) milled mixture of aluminum 

and K2TiF6 salt held isothermally at 350◦C. 

 

It is therefore plausible to use this unique process for synthesizing in situ/ex situ MMCs using melt processing 

routes. By considering the fact that milling alleviates the formation temperature of Al3Ti particles, inferior 

casting temperature can be utilized. Furthermore, as mentioned above, interaction between K2TiF6 and 

aluminium facilitates. In addition, this unique process has another surprising capacity in changing the 

morphology and distribution of Al3Ti particles. 

 

3.2. Morphology of milled powders  

Fig. 4 shows the morphology of K2TiF6 (Fig. 4a), (K2TiF6+Al +Al2O3)(2h) (Figs. 4b and c), (K2TiF6+Al)(2h) 

(Fig. 4d) and (K2TiF6+Al)(5h)+Al2O3 (1h) (Fig. 4e), respectively. 

Figs. 5a and b show XRD pattern of milled powders corresponding to Figs. 4b and e, respectively. Results of 

XRD analysis relieved KAlF4, K3AlF6 and Al3Ti in the case of (K2TiF6+Al)(5h)+Al2O3(1h) and K2TiF6, 

aluminium and Al2O3 in the case of (K2TiF6+Al +Al2O3)(2h). SAD patterns in Figs. 4b and e also confirmed 

the above findings. 
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Fig. 4. Morphology of (a) K2TiF6, (b) (K2TiF6+Al+Al2O3)(2h), (c) higher magnification of b, (d) (K2TiF6+Al)(2h), (e) (K2TiF6+Al)(5h)+Al2O3 

(1h). 
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Fig. 5. XRD patterns of (a) (K2TiF6+Al +Al2O3)(2h), (b) (K2TiF6+Al)(5h)+ Al2O3 (1h). 

 

In the case of (K2TiF6+Al +Al2O3)(2h) powder, nano alumina particles adhered to the sharp corners of K2TiF6 

powder (white arrows on Fig. 4c) which inhibiting the intimate contact between aluminium and K2TiF6 

powders and therefore impeding Al3Ti formation. Thus, in order to prepare a suitable condition for the 

formation of Al3Ti, at first, K2TiF6 and aluminium powders were milled and then alumina powder were added 

to the ball mill vial. As is observed in Fig. 4d, K2TiF6 and aluminium powders are in close contact with each 

other after 2 h milling time. After 5 h milling and addition of aluminium powder and milling for 1 h (Fig. 4e), 

the mixture contains Al3Ti, KAlF6, K3AlF6 and alumina (Fig. 5b). 

On the other hand, in the case of (K2TiF6+Al +Al2O3)(2h), as is observed in Fig. 4b, milled powders are 

integrated into capsule-shaped particles. During semi solid stir casting, capsule-shaped particles are 

disintegrated into molten alloy. The size of capsule-shaped particles after milling is lower than 20 µm that can 

accommodate better dissolution and lower agglomeration of them during subsequent semi-solid stir casting. 

Furthermore, inset in Fig. 4b, evincing cross section of capsule-shaped particles, substantiating uniform 

distribution of alumina particles inside them. In the other words, alumina particle were distributed not only on 

the outer surface of capsule-shaped particles but well-distributed underneath the surface. 
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Fig. 6. Morphology of alumina and Al3Ti particles in (a) A206-(K2TiF6+Al)(5h)+Al2O3(1h) and (b) A206-(K2TiF6+Al +Al2O3)(2h) 

composites. 

 

3.3. Composite microstructure 

Figs. 6a and b show FE-SEM microstructures of A206-(K2TiF6+Al)(5h)+Al2O3(1h) and A206-(K2TiF6+Al 

+Al2O3)(2h) composites, respectively. As is observed, the size of Al3Ti as well as the distribution of Al3Ti and 

alumina particulates is not the same. Figs. 7a, b and c show HRTEM images of A206-

(K2TiF6+Al)(5h)+Al2O3(1h), high magnification of (a) and schematic illustration of (a), respectively. Figs. 7d, e 

and f show HRTEM images of A206-(K2TiF6+Al+Al2O3)(2h) composites, high magnification of (d) and 

schematic illustration of (d), respectively. As can be seen in Figs.7a and c, the majority of alumina and Al3Ti 

particles in A206-(K2TiF6+Al)(5h)+Al2O3(1h) sample have a high propensity to reside in grain boundaries 

instead of grain interior. However, according to Figs. 7d and f, in the case of A206-(K2TiF6+Al+Al2O3)(2h) 

sample, the majority of well-dispersed alumina and Al3Ti particles are resided in the grain interior rather than 

grain boundaries, ascribed to following effects.  

By introducing (K2TiF6+Al+Al2O3)(2h) powders into molten alloy, three interesting phenomenon will occur: 

Firstly, aluminum powder in capsule-shaped particles melts and releases K2TiF6 and alumina particles into the 

melt. K2TiF6 reacts with metal melt by exothermic reaction 1, leading to local increment in temperature. This 

local increase in temperature fortifies the wettabilty of nano alumina particle with molten alloy as well as the 

willingness to particle engulfment [28]. 
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Fig. 7. (a) HRTEM images of A206-(K2TiF6+Al)(2h)+Al2O3(1h), (b) higher magnification of (a), (c) schematics illustration of (a), (d) 

HRTEM images of A206-(K2TiF6+Al+Al2O3)(5h) composites, (e) higher magnification of specified region in (d) and (f) schematics 

illustration of (d). 

 

Secondly, as result of reaction between K2TiF6 and molten alloy, fluorides components (according to reaction 

1) release to the melt leading to removing oxide layer on the melt surface [29], which enhances the wettabilty 

of nano alumina particle with molten alloy [30-32].  
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Secondly, Al3Ti has tetragonal structure with lattice parameters of a=0.3848 nm and c=0.8596 nm and α-Al 

has lattice parameter of a=0.4094 nm. Strain at interface in a and c direction is calculated through equation 2 

and 3 [33]: 

εaa=(1-aAl3Ti/aAl)×100=+4.96%                                                                                                                  (2) 

εcc=(1-cAl3Ti/2aAl)×100=-6.15%                                                                                                                 (3) 

These calculations authenticate that strain at interface is negligible and α-Al/Al3Ti interface is coherent. In the 

other word, Al3Ti is an appropriate site for secondary α-Al nucleation. Al3Ti has (001) plane with the lowest 

strain mismatch with α-Al (012) plane. Therefore, it can be concluded that Al3Ti is a suitable site for α-Al 

nucleation. Consequently, in the case of A206-(K2TiF6+Al +Al2O3)(5h), nucleation of Al3Ti in molten alloy 

occurs simultaneously throughout the molten alloy results in the uniform distribution of Al3Ti in the matrix. 

On the other hand, in the case of A206-(K2TiF6+Al)(2h)+Al2O3(1h) sample, when (K2TiF6+Al)(2h)+Al2O3(1h) is 

incorporated into semi solid alloy, Al3Ti particles releases into molten alloy. As Al3Ti particles have higher 

driving-power relative to alumina particles, they cut α-aluminum more easily (Fig. 8a), brings about residing 

Al3Ti particles in grain boundaries (Fig. 7a and c). The resultant microstructure of A206-

(K2TiF6+Al)(2h)+Al2O3(1h) composite is schematically shown in Fig. 8b. This composite demonstrates a 

microstructure with a unique combination of lean matrix region and reinforcement rich zone appeared in a 

network fashion around AlA206 matrix grain boundaries. 

In the case of A206-(K2TiF6+Al +Al2O3)(5h) sample, when (K2TiF6+Al +Al2O3)(5h) is incorporated into semi 

solid alloy, aluminum powder in capsule-shaped particles melts and releases alumina particles into molten 

alloy. As stirring proceeds, alumina particles entraps by α-aluminum. This can be ascribed to the lower 

driving-power of fine alumina particles rather than that of agglomerated particles. As depicted schematically 

in Fig. 9a, agglomerated alumina particles have higher driving-power giving rise to cut through α-aluminum 

more easily. The driving-power of alumina particles may not be adequate to do the same, and they may 

become entrapped in α-aluminum grain interior, Fig. 9b. Resultantly, a microstructure mainly containing 

Al3Ti and alumina in grains are formed, Fig. 9c. It is plausible to say that this hypothesis has a bottle neck in 

the case of A206-(K2TiF6+Al)(2h)+Al2O3(1h) where local increment in temperature is not co-exist to fortify 

driving-power of alumina particles in such a manner that observed in A206-(K2TiF6+Al +Al2O3)(5h) sample. 
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Resultantly, in A206-(K2TiF6+Al)(2h)+Al2O3(1h) sample, alumina particles were mainly found in grain 

boundaries. Therefore, this microstructure possesses a unique combination of alumina and Al3Ti in grain 

boundaries. 

Another difference between A206-(K2TiF6+Al +Al2O3)(5h) and A206-(K2TiF6+Al)(2h)+Al2O3(1h) is related to 

the size of Al3Ti particles. Al3Ti is smaller in the latter. Because in the former, Al3Ti is formed in situ in the 

semi solid state while in latter Al3Ti has been formed before powder addition (in the milling process). 

Temperature in the semi solid state is more enough to enlarge the in situ formed Al3Ti particles. However, in 

the case of A206-(K2TiF6+Al)(2h)+Al2O3(1h), Al3Ti particles was formed in the milling process. Ball mill has 

high enough energy to break Al3Ti particles. 

 

 

Fig. 8. Schematic illustration showing the distribution of (a) Al3Ti particle and (b) final microstructure of A206-(K2TiF6+Al)(2h)+Al2O3(1h). 

 

Fig. 9. Schematic illustration showing the distribution of (a) agglomerated alumina particle, (b) alumina particle and (c) final 

microstructure of A206-(K2TiF6+Al +Al2O3)(5h). 
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It is worth nothing that in the case of A206-(K2TiF6+Al +Al2O3)(5h) sample, a composite containing ex situ 

alumina particle and in situ Al3Ti particles was successfully tailored while in the case of A206-

(K2TiF6+Al)(5h)+Al2O3(1h), a composite containing ex situ alumina and Al3Ti particles was formed.  

 

3.4. Tensile properties 

Fig. 10 shows tensile properties of A206, A206-(K2TiF6+Al+Al2O3)(5h) and A206-(K2TiF6+Al)(2h)+Al2O3(1h) 

samples. As is observed, Al2O3np+Al3Tip improved tensile properties of AlA206 alloy, significantly.  

On the other hand, it can be observed that A206-(K2TiF6+Al)(2h)+Al2O3(1h) network-structure composite 

containing Al3TiP and Al2O3np displays superior strength compared to A206-(K2TiF6+Al +Al2O3)(5h) 

composite. A206-(K2TiF6+Al)(2h)+Al2O3(1h) composite shows 80.1% and 20.69% increase in ultimate tensile 

strength when compared to the as-received A206 and A206-(K2TiF6+Al +Al2O3)(5h) composite, respectively.  

These augmented tensile properties can be ascribed to the unique microstructure of the composite which 

contains two phases, as shown in Fig. 7a. The enhanced tensile properties of A206-(K2TiF6+Al)(5h)+Al2O3(1h) 

network-structure composite can be explicated by the (H-S) theorem (Hashin-Shtrikman) [34] where Al3TiP 

+Al2O3np stronger phase surrounds AlA206 matrix weaker phase. On the other word, Al3TiP and Al2O3np 

concentrated around grain boundaries of AlA206 matrix, act as a composite with high volume fraction of 

Al3TiP +Al2O3np. Resultantly, the surprising feature of this unique structure is a matrix with fortified grain 

boundaries. In such a structure, dispersed high local Al3TiP +Al2O3np in grain boundaries produces a 

synergistic effect via forming a three-dimension skeletal structure. The resistance to slip in such structure is 

high because this unique structure has a main contribution in barricading dislocation movement. That is to 

say, A206-(K2TiF6+Al)(5h)+Al2O3(1h) network-structure composite containing reinforcing particles around 

grain boundaries can effectively strengthen grain boundaries by enhancing dislocation accumulation density 

during tensile deformation (Figs. 11 a and b).  
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Fig. 10. Tensile properties of AlA206, A206-(K2TiF6+Al +Al2O3)(5h) and A206-(K2TiF6+Al)(2h)+Al2O3(1h) composites. 

 

 

Fig. 11. (a) HRTEM images of A206-(K2TiF6+Al)(2h)+Al2O3(1h) composite exhibiting dislocation accumulation behind grain boundary and 

(b) schematic illustration of (a). 

 

3.4.1. Fracture behavior 

Fig. 12 shows fracture side views of a network-structure A206-(K2TiF6+Al)(5h)+Al2O3(1h) hybrid composite. 

Crack propagation occurs through Al3TiP +Al2O3np network-structure. Formation of micro-crack away from 
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fracture surface in reinforcement network-structure brings to mind two interesting phenomenon; firstly, crack 

propagation take place via micro-crack coalescence through reinforcement network-structure and secondly, 

crack propagation to matrix-lean region is effectively barricaded by Al3TiP +Al2O3np network-structure 

(indicated by arrow), contributing to enhanced tensile strength of A206-(K2TiF6+Al)(5h)+Al2O3(1h) hybrid 

composite. 

Fig. 13 shows fracture surface of a network-structure A206-(K2TiF6+Al)(5h)+Al2O3(1h) hybrid composite. As 

can be observed in Fig. 13a, there is no sign of large AlA206 matrix rupture, fortifying crack propagation 

through reinforcement network-structure.  

As demonstrated in Fig. 13b, Al3Ti particle showed brittle cleavage fracture confirming strong interfacial 

bonding strength between matrix and reinforcement and consequently load bearing capacity of the composite. 

In tensile test, as load is proceeding, dislocation pile-up at matrix/reinforcement results in initiation and 

fracture of these particles. Thus, matrix cracking extended in to Al3Ti particle (indicated by arrow on Fig. 

13b). Subsequently, AlA206 matrix experienced plastic deformation appeared in the form of dimples. 

Formation of such dimples further authenticating that AlA206 matrix is continuous and interpenetrating. 

 

 

Fig. 12. Fracture side views of a network-structure A206-(K2TiF6+Al)(5h)+Al2O3(1h) hybrid composite. 
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Fig. 13. Fracture behavior of a network-structure A206-(K2TiF6+Al)(5h)+Al2O3(1h) hybrid composite, (a) overall view and (b) Al3Ti particle 

cracking. 

 

4. Conclusions 

Al/A206-5%Al2O3-Al3Ti hybrid composites were successfully synthesized using milled mixture of K2TiF6, 

alumina and aluminium powders and stir-casting technology. The following conclusions can be deduced: 

1- Milling of (K2TiF6+Al+Al2O3)(2h) mixture impedes Al3Ti formation, while milled mixture of 

(K2TiF6+Al)(5h)+Al2O3(1h) causes the formation of Al3Ti particles. 

2- Milling process reduced the formation temperature of Al3Ti particles and changed the morphology of Al3Ti 

particles. 

3- Injection of Milled (K2TiF6+Al+Al2O3)(2h) mixture in semi solid alloy results in the formation of well-

distributed alumina and Al3Ti in grain interiors while (K2TiF6+Al)(5h)+Al2O3(1h) milled mixture, brings about 

the formation of a reinforcement network structure. 

4- Formation of Al3Ti with coherent interface in injected milled (K2TiF6+Al +Al2O3)(5h) mixture caused the 

uniform distribution of Al3Ti in grain interior. Alumina nano particulate with low-driving power entrapped by 

α-aluminum and resided in grain interior.  
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5- In injected milled (K2TiF6+Al)(5h)+Al2O3(1h) mixture, released Al3Ti in molten alloy had higher driving-

power to cut α-aluminum and therefore, Al3Ti resided in grain boundaries. 

6- Network structured A206-(K2TiF6+Al)(2h)+Al2O3(1h) composite with fortified grain boundaries displayed 

superior tensile properties compared with (K2TiF6+Al +Al2O3)(5h) composite ascribed to fortified grain 

boundaries by Al3TiP +Al2O3np. 
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