
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Engineering and Information
Sciences - Papers: Part A

Faculty of Engineering and Information
Sciences

1-1-2013

A decentralized service discovery approach on peer-to-peer network A decentralized service discovery approach on peer-to-peer network

Qiang He
Swinburne University of Technology

Jun Yan
University of Wollongong, jyan@uow.edu.au

Yun Yang
Swinburne University of Technology, yyang@it.swin.edu.au

Ryszard Kowalczyk
Swinburne University of Technology

Hai Jin
Huazhong University Of Science And Technology

Follow this and additional works at: https://ro.uow.edu.au/eispapers

 Part of the Engineering Commons, and the Science and Technology Studies Commons

Recommended Citation Recommended Citation
He, Qiang; Yan, Jun; Yang, Yun; Kowalczyk, Ryszard; and Jin, Hai, "A decentralized service discovery
approach on peer-to-peer network" (2013). Faculty of Engineering and Information Sciences - Papers: Part
A. 500.
https://ro.uow.edu.au/eispapers/500

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online

https://core.ac.uk/display/37019007?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers?utm_source=ro.uow.edu.au%2Feispapers%2F500&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers%2F500&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers%2F500&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers/500?utm_source=ro.uow.edu.au%2Feispapers%2F500&utm_medium=PDF&utm_campaign=PDFCoverPages

A decentralized service discovery approach on peer-to-peer network A decentralized service discovery approach on peer-to-peer network

Abstract Abstract
Service-Oriented Computing (SOC) is emerging as a paradigm for developing distributed applications. A
critical issue of utilizing SOC is to have a scalable, reliable, and robust service discovery mechanism.
However, traditional service discovery methods using centralized registries can easily suffer from
problems such as performance bottleneck and vulnerability to failures in large scalable service networks,
thus functioning abnormally. To address these problems, this paper proposes a peer-to-peer-based
decentralized service discovery approach named Chord4S. Chord4S utilizes the data distribution and
lookup capabilities of the popular Chord to distribute and discover services in a decentralized manner.
Data availability is further improved by distributing published descriptions of functionally equivalent
services to different successor nodes that are organized into virtual segments in the Chord4S circle.
Based on the service publication approach, Chord4S supports QoS-aware service discovery. Chord4S also
supports service discovery with wildcard(s). In addition, the Chord routing protocol is extended to support
efficient discovery of multiple services with a single query. This enables late negotiation of Service Level
Agreements (SLAs) between service consumers and multiple candidate service providers. The
experimental evaluation shows that Chord4S achieves higher data availability and provides efficient query
with reasonable overhead.

Keywords Keywords
era2015

Disciplines Disciplines
Engineering | Science and Technology Studies

Publication Details Publication Details
He, Q., Yan, J., Yang, Y., Kowalczyk, R. & Jin, H. (2013). A decentralized service discovery approach on
peer-to-peer network. IEEE Transactions on Services Computing, 6 (1), 64-75.

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers/500

https://ro.uow.edu.au/eispapers/500

A Decentralized Service Discovery Approach
on Peer-to-Peer Network

Q. He, J. Yan, Y. Yang, R. Kowalczyk and H. Jin

Abstract—Service-oriented computing (SOC) is emerging as a paradigm for developing distributed applications. A critical issue
of utilizing SOC is to have a scalable, reliable and robust service discovery mechanism. However, traditional service discovery
methods using centralized registries can easily suffer from problems such as performance bottleneck and vulnerability to
failures in large scalable service networks, thus functioning abnormally. To address these problems, this paper proposes a peer-
to-peer based decentralized service discovery approach named Chord4S. Chord4S utilizes the data distribution and lookup
capabilities of the popular Chord to distribute and discover services in a decentralized manner. Data availability is further
improved by distributing published descriptions of functionally equivalent services to different successor nodes that are
organized into virtual segments in the Chord4S circle. Based on the service publication approach, Chord4S supports QoS-
aware service discovery. Chord4S also supports service discovery with wildcard(s). In addition, the Chord routing protocol is
extended to support efficient discovery of multiple services with a single query. This enables late negotiation of service level
agreements between service consumers and multiple candidate service providers. The experimental evaluation shows that
Chord4S achieves higher data availability and provides efficient query with reasonable overhead.

Index Terms— Web-based services, Search process

—————————— ——————————

1 INTRODUCTION

ervice-Oriented Computing (SOC) is emerging as a
new paradigm for developing distributed applica-
tions. Service discovery, among the most fundamental

elements of SOC, is critical to the success of SOC as a
whole. Traditional service discovery approaches of the
Web services technology are based on Universal Descrip-
tion, Discovery and Integration (UDDI) [10]. However,
centralized service registries used by UDDI may easily
suffer from problems such as performance bottleneck and
vulnerability to failures as the number of service consum-
ers and requests increase in an open SOC environment.
This inherent disadvantage prevents Web services from
being applied in large scalable service networks. As SOC
environment is largely distributed, a decentralized ap-
proach appears to be the most natural way to address the
above issues and achieve scalable, reliable and robust
service discovery.

The peer-to-peer (P2P) technology provides a univer-
sal approach to improving reliability, scalability and ro-

bustness of distributed systems by removing centralized
infrastructures. In areas such as file sharing [26], Voice
over Internet Protocol (VoIP) [6, 25] and video streaming
[32, 33], P2P has achieved great success. Very recently,
innovative research has also been carried out in the SOC
field to leverage P2P computing and Web services for
improved service discovery. In particular, structured P2P
systems such as Chord [29], CAN [21], Pastry [24] and
Tapstry [35], have some characteristics that are suitable
for facilitating efficient decentralized service discovery.
Based on distributed hashing table (DHT), structured P2P
systems can achieve even data distribution and efficient
query routing by controlling the topology and imposing
constraints on the data distribution.

Naturally, a P2P-based decentralized service discovery
approach consists of a set of distributed nodes that form a
structured P2P overlay network. Upon registration, the
description of a service is distributed to a relevant node to
be stored in its repository. A service query can be submit-
ted to any node, and this node, if does not store the re-
quired service description, is able to route the query to an
appropriate node for resolution. Descriptions of matched
services are retrieved and returned to the service con-
sumer as the result of the query.

Although structured P2P can potentially improve the
scalability of service discovery, directly applying DHT-
based P2P approaches to decentralized service discovery
may be weak in guaranteeing the availability of published
service descriptions. This is because DHT-based systems
often distribute descriptions of functionally equivalent

————————————————
• Qiang He is with the Faculty of Information and Communication Technol-

ogies, Swinburne University of Technology, Melbourne, Australia 3122
and School of Computer Science and Technology, Huazhong University of
Science and Technology, Wuhan, China 430074. E-mail: qhe@swin.edu.au.

• Jun Yan is with the School of Information Systems and Technology, Uni-
versity of Wollongong, Australia 2522. E-mail: jyan@uow.edu.au.

• Yun Yang is with the Faculty of Information and Communication Technol-
ogies, Swinburne University of Technology, Melbourne, Australia 3122. E-
mail: yyang@swin.edu.au.

• Ryszard Kowalczyk is with the Faculty of Information and Communica-
tion Technologies, Swinburne University of Technology, Melbourne, Aus-
tralia 3122. E-mail: rkowalczyk@swin.edu.au.

• Hai Jin is with the School of Computer Science and Technology, Huazhong
University of Science and Technology, Wuhan, China 430074. E-mail:
hjin@hust.edu.cn.

Manuscript received (insert date of submission if desired). Please note that all
acknowledgments should be placed at the end of the paper, before the bibliography.

S

————————————————
1 This paper is an extension of “Chord4S: A P2P-based Decentralised Ser-
vice Discovery Approach”, published in the proceeding of the 2008 IEEE
International Conference on Services Computing (SCC 2008), 8-11 July
2008, Honolulu, Hawaii, USA.

2

services to the same successor node, as they have the
same or similar hashing values. If such a node fails, a ser-
vice consumer will not be able to discover any of these
services. This disadvantage may result in serious prob-
lems in open and dynamic SOC environments where un-
expected failure of nodes cannot be avoided.

This paper proposes Chord4S, a Chord-based decen-
tralized service discovery approach that supports service
description distribution and discovery in a P2P manner.
Chord is selected because it is well recognized for its flex-
ibility and scalability and is considered suitable in large-
scale SOC environments. Chord4S takes advantages of
the basic principles of Chord for nodes organization, data
distribution and query routing. The main aim of design-
ing Chord4S is to largely improve the availability of ser-
vice descriptions in volatile environments by distributing
descriptions of functionally equivalent services to differ-
ent successor nodes. In case one node fails, a service con-
sumer is still able to find functionally equivalent services
that are stored at other successor nodes. Another two fea-
tures of Chord4S are to support service discovery with
wildcard(s) and QoS awareness. Furthermore, Chord4S
extends Chord’s original routing protocol to support dis-
covery of multiple functionally-equivalent services at dif-
ferent successor nodes with one query, which is necessary
for negotiation of a service level agreement (SLA) and
selection of optimal service providers [5].

The rest of the paper is organized as follows. Section 2
introduces major related work. Section 3 presents the
unique service description of Chord4S. Then, Section 4
addresses the service publication approach. After that, the
new routing protocol of Chord4S for service discovery is
proposed in Section 5, followed by discussion of experi-
mental results in Section 6. Finally, Section 7 summarizes
the major contribution of this paper and outlines future
work.

2 RELATED WORK
Our research aims at providing a scalable, reliable and
robust approach for Web service discovery. An overview
of Web service discovery can be found in [3].

2.1 Centralized Service Discovery
The centralized client/server model has been adopted for
service discovery since SOC emerged. UDDI [10] has been
recognized as the most popular discovery mechanism for
Web services. At present, several software vendors have
included UDDI support as a key feature of their software
products to provide comprehensive solution for applica-
tion and service integration challenges. The software in-
cludes Windows Server 2003 from Microsoft, WebSphere
Studio from IBM, Oracle Enterprise Manager from Oracle,
SAP Web Application Server from SAP, etc. However, as
briefly discussed in Section 1, centralized infrastructures
inherently suffer from poor performance in an open SOC
environment that demands high scalability. Measure-
ments have been taken to tackle the problem by employ-
ing distributed UDDI registries. In [23], the authors pro-
pose a federation of UDDI registries to enlarge the search

space for service queries. Although a UDDI Federation
Agent is added as an extension to a standard UDDI regis-
try to forward queries to other federating nodes, the au-
thors did not provide any experimental evaluation. [31]
describes an interoperable model of distributed UDDI
which divides UDDI servers into three types: root server,
super domain server and normal server. The authors
adopt the philosophy of domain name system (DNS).
Super domain servers, managed by a root server, are used
to maintain normal servers. Since the model imitates DNS,
it is still exposed to the same threats that DNS faces, e.g.
distributed denial of service (DDoS) attack. A Web Ser-
vice Crawler Engine is proposed to address the perfor-
mance issue caused by employing an enormous number
of UDDI registries [4]. The engine crawls accessible UDDI
registries and collects information in a centralized reposi-
tory via which service consumers can efficiently discover
required Web services. The proposed approach does im-
prove the efficiency of Web service discovery by pooling
distributed information, as demonstrated by provided
experimental results. However, it jumps back to the issue
of reliability caused by single point failure.

2.2 Decentralized Service Discovery
Decentralized service discovery is considered as a prom-
ising approach to addressing the problems caused by cen-
tralized infrastructures. In particular, some preliminary
research has been conducted to utilize P2P computing for
service discovery. To name a few, [36] presents
ServiceIndex, an enhanced Skip Graph using WSDL-S as
the semantic description language. Semantic attributes of
Web services are extracted as indexing keys to build the
Skip Graph. To balance the load on peer nodes, a multi-
layer P2P overlay network is constructed to aggregate
similar indexing keys. Similar keys are inserted into the
same ServiceBag to enhance the ServiceIndex. In this way,
the loss of a ServiceBag will lead to the missing of all the
keys in the ServiceBag, severely jeopardizing the overall
availability of the keys. Web Services Dynamic Discovery
(WS-Discovery) [7], a multicast discovery protocol to lo-
cate services on a local network, is developed by BEP Sys-
tems, Canon, Intel, Microsoft and WebMethods. In WS-
Discovery, a client sends a request to the corresponding
multicast group to locate a target service. A proxy-specific
protocol is also defined and can be switched on if a dis-
covery proxy is available on the network. WS-Discovery
is becoming popular and is already being used by some
software vendors, such as the “People Near Me” contact
location system in Microsoft’s Windows Vista operating
system. Yet WS-Discovery is tailored for ad-hoc networks
and there is no successful experience in applying WS-
Discovery in large-scale SOC environments. [27] proposes
a distributed Web service discovery architecture based on
the concept of distributed shared space and intelligent
search among a subset of spaces. In its current implemen-
tation, the shared space – the core of the architecture - is
still centralized and no experimental evaluation is pro-
vided to evaluate the proposed architecture.

Chord has been used to facilitate decentralized Web
service discovery [11, 14, 18, 28]. [11] presents a P2P

3

framework based on Chord for Web service discovery
which uses finite automata to represent Web services. A
scalable reputation model is incorporated to rank Web
services based on both trust and service quality. In [14],
the authors propose that service providers themselves
should take the responsibility to maintain their own ser-
vice descriptions in a decentralized environment. Based
on this concept, a decentralized service directory infra-
structure is built with hashing descriptive strings into the
identifiers. By doing so, peer nodes are grouped by ser-
vice categories to form islands on the Chord ring. Island
Table and Native Table are created on every peer node to
handle routing across islands and within islands respec-
tively. [18] presents PSWD, a distributed Web service dis-
covery architecture based on an extended Chord algo-
rithm called XChord. PSWD uses XML to describe Web
service descriptions and to express the service requests.
The basic P2P routing algorithm of Chord is extended
with XML to enable XML-based complicated queries. [28]
describes a system that implements an Internet-scale
DHT. The system supports searches using keywords, par-
tial keywords and wildcard(s). To preserve the locality
while mapping date elements to the index space, the sys-
tem uses recursive, self-similar Space Filling Curves
(SFC). M-Chord [20] utilizes iDistance [15] to transform
the metric search problem into the interval search prob-
lem in one dimension. It provides Chord with the ability
to perform metric-based similarity search. We observe
that none of the above has addressed the issue of data
availability in open and volatile SOC environments. Node
failures would lead to severe data loss when the above
approaches are adopted to facilitate service discovery
because descriptions of functionally equivalent services
would be stored at the same successor nodes.

The research reported in this paper is similar to the
work presented in [14] in using layered service identifiers
to control the distribution of service descriptions. How-
ever, this research addresses the issue of data availability
in open and volatile SOC environments. The proposed
approach supports efficient QoS-aware service discovery
and service discovery with wildcard(s), as detailed in Sec-
tions 3, 4 and 5.

3 SERVICE DESCRIPTION
The service description supported by Chord4S consists of
three main parts: service identifier, QoS specification and
syntax specification. The service identifiers are the identi-
fications of the services as the basis for routing query
messages. The QoS specification specifies the quality of
the service that the service provider can offer. The syntax
specification describes the syntax of the service, e.g. the
names and data types of the input and output parameters.
This paper only focuses on the former two concepts, i.e.
service identifier and QoS specification. The syntax speci-
fication is usually used during the invocation of service
which is beyond the scope of this paper, and hence is not
addressed.

3.1 Service Identifier
Description and categorization of services can be based
on either taxonomies, e.g., UNSPSC – United Nations
Standard Products and Service Codes [2] and NAICS –
North American Industry Classification System [1] or
semantics, e.g., OWL – Web Ontology Language [8] and
WSML – Web Service Modeling Language [22]. Unfortu-
nately, none of them has been approved as general com-
mercial or industrial standards. Chord4S supports distri-
bution and query for hierarchical service description, e.g.,
“Booking.Hotel.America.USA.Texas.Huston” and “Mul-
timedia.Video.Encoder.AVI2RM”. The number and the
order of the layers are application specific and can be de-
termined by the designers of the applications. Based on
this hierarchical service description, a service identifier in
Chord4S is divided into two parts, function bits and pro-
vider bits. The former is used to refer to the functionality
of the service while the latter is utilized to describe pro-
vider-specific information. When hashing a service de-
scription to generate the service identifier, Chord4S allo-
cates certain bits of a service identifier for the function
descriptions and the rest for provider bits. A sample of
service identifier consisting of five layers is presented in
Figure 1. The function bits are used for the functional ser-
vice matchmaking in service discovery. The main func-
tion of the provider bits is to distinguish and distribute
functionally equivalent services. Using SHA-1, one of the
general consistent hashing functions, the probability of
hashing two service descriptions to a same value is negli-
gible as long as the length of the provider bits is large
enough.

Identifiers generated from functionally equivalent ser-
vices differ from each other in a certain number of the
lowest bits, i.e., the provider bits. Therefore ideally 2m (m
being the length of provider bits) functionally equivalent
services will yield 2m consecutive service identifiers. Note
that in Chord4S the identifiers are organized into a circle
in an ascending order. Therefore, descriptions of the func-
tionally equivalent services will be distributed to succes-
sor nodes adjacent to each other within a certain virtual
segment of the identifier circle. From a global viewpoint,
a Chord4S circle can be viewed as composed by a number

Service identifierm = hashm1(“Multimedia”)

+hashm2(“Video”)
+hashm3(“Encoder”)
+hashm4(“AVI2RM”)
+hashm5(“10.0.0.1”)

(m1 + m2 + m3 + m4 + m5 = m)
Note: Here “+” executes connection of bits.

1100…0010 0010...1101 1000...1010 1001...0011 1011...1000

Provider Bits

m1 bits m2 bits m3 bits m4 bits

0

Function Bits

Multimedia Video Encoder AVI2RM 10.0.0.1

SHA-1m1

m5 bits

SHA-1m2 SHA-1m3 SHA-1m4 SHA-1m5
m-1

Fig. 1. Service identifier generated from hierarchical service descrip-
tion.

4

of virtual segments, each of which contains service identi-
fiers from a group of functionally equivalent services.
With the virtual segments, the distribution of service de-
scriptions is even because SHA-1 is applied.

Chord4S allows service descriptions in mixed struc-
tures. For example, in an application with a maximum of
5-layered (4 layers for functional bits and 1 layer for pro-
vider bits) service description, a service description like
“Multimedia.Video.AVIPlayer” is also acceptable. When
generating service identifier for this service description,
the first three layers of the service identifier will be gener-
ated by using hashm1(“Multimedia”), hashm2(“Video”),
and hashm3(“AVIPlayer”). The fourth layer would be zero
by default. In this case, the service description will be
placed in a virtual segment containing all the service de-
scriptions starting with “Multimedia.Video”. A simplified
Chord4S circle is presented in Figure 2 to illustrate the
specific situation.

3.2 QoS Specification
QoS awareness is a critical issue in a SOC environment.
Service discovery approaches should take it into consid-
eration because service consumers usually have specific
QoS requirements. QoS-aware service discovery should
filter out the services that cannot meet service consumer’s
QoS requirements and only return the ones that can.

Chord4S allows service providers to publish their ser-
vices with quality specifications attached as advertise-
ments. However, the quality specifications are not in-
volved in the generation of service identifier. After find-
ing a service description that matches its functional re-
quirements according to the service identifier, the service
consumer can look over the attached quality specification.

Chord4S supports three types of QoS attributes, de-
fined as follows.
1. Numeric QoS attributes. A numeric QoS attribute is a

QoS attribute that can be assigned with any value
selected from a numeric interval. Many QoS attrib-
utes fall into this category, such as price, execution
time, availability, etc. Comparison operators, e.g.
<, >, <=, >= etc, are often used to specify service
consumer’s QoS requirements of this type, such as
“Price <= $1,000.00” and “Availability >= 0.95”.

2. Boolean QoS attributes. A Boolean QoS attribute is a
QoS attribute that can be assigned with one of the

two values: true and false. For example, a hotel
booking service may have a QoS attribute named
Cancellable that can be assigned with either true or
false specifying that the booking can or cannot be
cancelled. Two comparison operators, == and != can
be used to specify QoS requirements of this type,
such as “Cancellable == True”.

3. Enumerated type. An enumerated type of QoS attrib-
ute is a QoS attribute that can be assigned with any
of the enumerators as a value. For example, the
types of an international postal service can be de-
clared an enumerated type of QoS attribute that can
be assigned with one of the three enumerators: Air-
mail, Registered Mail or Express Mail. Two compar-
ison operators, == and !=, as well as set operators
can be used to specify QoS requirements of this type,
such as “Type == Registered Mail” and “Type Є
{Registered Mail, Express Mail}“.

When a service consumer has requirements of multiple
QoS attributes, logical connectives can be used to com-
bine individual QoS requirements. For example, a service
consumer that requires an registered or express mail to be
delivered at a price no more than $100.00 can specify a
combination of QoS requirements as “Type Є {Registered
Mail, Express Mail} AND Price <= $100.00”. In addition,
conditional constructs can be used. For example, “IF De-
livery Lead Time (Days) <= 2 THEN $100.00 <= Price <=
$200.00” expresses the semantics that if the product can
be delivered within 2 days the acceptable price for the
delivery service is between $100.00 and $200.00.

Besides QoS specifications, other service-specific in-
formation can be published by service providers, e.g. the
behavior of services in the context, such as how a Web
service is used in a business process and how services
interact with each other in a service composition scenario.
This kind of information can be taken into consideration
when looking up service providers in complicated appli-
cations. To name a few, BPEL and OWL-S descriptions
can be converted to finite automata through several
methods [9, 12, 19]. Then the results from hashing the
finite automata or the path finite automata (PFA) generat-
ed from the finite automata can be incorporated into the
service description to enable semantic-enhanced service
discovery [11].

4 SERVICE PUBLICATION
In this section, we present the mechanisms for distributed
service publication.

4.1 Traditional Approach in Chord
In Chord, data distribution is based on DHT. The basic
principle is to store the data or the pointer to the data at
the first node whose identifier is equal to or follows the
identifier of the data in the identifier space. Chord uses
SHA-1 as its hashing function to generate identifiers for
the data and nodes. Chord organizes all the nodes into a
circle modulo 2m, with m being the length of the identifi-
ers. Along the circle the routing of query is performed.
The generic primitives used in Chord are as follows:

346
223

Virtual Segment for
“Multimedia.Video”

Virtual Segment for
“Multimedia.Video.Encoder”

“Multimedia.Video.Encoder.AVI2
RM”with Service Identifier 346

“Multimedia.Video.AVIPlayer”
with Service Identifier 223

: Service Description

Fig. 2. Virtual segments for “Multimedia.Video” and “Multime-
dia.Video.Encoder”.

5

identifiernode = hashSHA-1(IPnode)
identifierdata = hashSHA-1(Descriptiondata)

When distribution or lookup needs to be performed,
the following primitives will be used:

put(identifierdata, data/pointer to data)
lookup(identifierdata)

The put function will store the data or the pointer to
the data at the successor node whose identifier is equal to
or follows the parameter identifier, while the lookup
function will yield the IP address of the node responsible
for the required identifier.

To enable decentralized service discovery, information
about available services, i.e., service description, needs to
be distributed at different nodes. However, DHT focuses
on routing correctness and efficiency instead of data
availability. Therefore, there is an issue of data availabil-
ity that prevents this model from being applied directly in
a SOC environment. In most systems, services are re-
quired to be described in a uniform structure and style. In
those cases, service descriptions from different service
providers providing the same service may have the same
content, e.g., in the form of “Multime-
dia.Video.Encoder.AVI2RM”. When these service de-
scriptions are hashed, the returned identifiers will be the
same. Hence, these service descriptions will be stored at
the same successor node. Similar to single point failure,
failure of this successor node will lead to inaccessibility of
all the services of “Multimedia.Video.Encoder.AVI2RM”.

4.2 Service Publication in Chord4S
There are two traditional approaches to address the data
availability issue discussed in Section 4.1, replication (i.e.,
storage of multiple copies of a service description at dif-
ferent nodes) [13] and redundancy (i.e., storage of redun-
dant information along with the service description) [30,
34]. In an open SOC environment, they both have disad-
vantages. The replication approach leads to sophisticated
maintenance for data availability. The redundancy ap-
proach requires significant change to the original service
descriptions which may not be acceptable by the service
providers. Both approaches may result in a considerably
large burden on the system.

Chord4S improves data availability by distributing de-
scriptions of functionally equivalent services to different
nodes. In this way, a failed node would just have limited
impact on data availability. A service consumer has the
opportunity to locate the functionally equivalent services
from those available nodes.

To guarantee the data availability of Chord4S-based
systems and applications, some design specification can
be taken into consideration. In this section, how to design
Chord4S-based systems and applications to facilitate even
service description distribution is discussed.

Consider a Chord4S-based overlay network consisting
of n nodes, let the length of the service identifier be m and
the maximum number of functionally equivalent services
be k. The length of the provider bits x should be carefully
calculated to achieve even service description distribu-
tion. Obviously, a smallest virtual segment should be ca-

pable of accommodating all the functionally equivalent
services, as constraint (1) below.

 1k2 x −≥ (1)
Hence,

)1k(logx 2 −≥ (2)
Hashed into the identifier space, n nodes are distribut-

ed on the Chord4S circle with
m2
n

 as the average distance

between each other. So to accommodate k functionally
equivalent services in a smallest virtual segment, the ca-
pability of the virtual segment is supposed to be

n
2)1k(

m

⋅− . Then to allocate enough bits for provider

bits, constraint (3) below should be satisfied.

n
2)1k(2

m
x ⋅−≥ (3)

Hence,

)2
n

1k(logx m
2 ⋅

−
≥ (4)

With constraints (2) and (4) satisfied, the descriptions
of functionally equivalent services can be evenly distrib-
uted in a virtual segment which means that all of them
are distributed to different successor nodes.

In certain situations, Chord4S cannot guarantee abso-
lute even distribution. For example, some successor nodes
may store more than one service of the same function.
This is because that if there is no successor node with the
equal node identifier to the service identifier, the service
description will be stored at the successor node that has
the identifier following the service identifier. Figure 3
shows a simple sample of this situation where an identifi-
er circle consisting of four nodes, namely 0, 1, 3 and 6. In
this example, descriptions of functionally equivalent ser-
vices with identifiers 5 and 6 are both stored at node 6
even their service identifiers have different contents in
provider bits. When the number of nodes that joined the
Chord4S circle is small, situations similar to what is pre-
sented in Figure 3 may often occur. Consequently, the
effect of data distribution may be reduced. However, the
more nodes joined the system, the more effective the data
distribution mechanism would be. This is also the essence
of all P2P-based applications.

0

1

2

3

4

5

6

7

5
6

Service
description that
has identifier 5.

Service
description that
has identifier 6.

1: Service Description

: Successor Node

Fig. 3. Uneven distribution example.

6

5 SERVICE QUERY
This section presents how routing of query messages is
performed in Chord4S based on the service publication
approach described in Section 4.2.

5.1 Query Types
Chord4S supports two types of query: service-specific
queries and queries with wildcard(s).

5.1.1 Service-Specific Query
A service-specific query contains complete details of a
service description and is used to look up a specific ser-
vice. In a system that allows four-layered function bits in
the service descriptions, “Multimedia.Video.Encoder.
AVI2RM” is a typical example of service-specific query.

To initiate a service-specific query, the service con-
sumer needs to fill in all the layers that compose the que-
ry with explicit service information. Then each of those
layers will be hashed and the results will be connected to
generate the function bits of the target service identifier.
Since the objective of using service-specific queries is
usually to look up a group of functionally equivalent ser-
vices provided by different service providers, the provid-
er bits of the query will be stuffed with 0s instead of being
explicitly specified. The generation of target service iden-
tifier for query “Multimedia.Video.
Encoder.AVI2RM” is given in Figure 4 as an example.

5.1.2. Query with Wildcard(s)
Sometimes service consumers need to search for categories of
services. For example, an amplifier service that amplifies
the audio of an RM movie file can be composed using
three component services which correspond to three spe-
cific steps: audio extraction, audio amplification and vid-
eo/audio combination. Therefore, the service consumer
needs to find the component services from three catego-
ries: “Multimedia.Video.AudioExtractor”, “Multime-
dia.Audio.Amplifier” and “Multimedia.Combiner”, and
select the ones whose inputs and outputs match. In such
cases, service queries using wildcard(s) are necessary, e.g.
“Multimedia.Video.AudioExtractor.*”, “Multimedia. Au-
dio.Amplifier.*” and “Multimedia.Combiner.*.*”.

When solving a query with wildcard(s), it is actually
looking up a virtual segment composed by nodes suc-
ceeding service descriptions that fall into the target ser-
vice category. The generation of target service identifier –

or more specifically target service category identifier – for
a query with wildcard(s) is similar to that for a service-
specific query. The difference is that the layers corre-
sponding to the wildcard(s) will be stuffed with 0s.

5.2 Query Forwarding

5.2.1 Forwarding Service-Specific Queries
In Chord, a service consumer could easily get a list of
matched service descriptions stored at the same successor
node. However, the service publication approach de-
scribed in Section 4.2 eliminates Chord’s capability of
returning multiple matched services, as the query stops at
the node where the first matched service is located. In
Chord4S, for a service consumer to find multiple func-
tionally equivalent services with one query, the query
must be routed across the corresponding virtual segment
of the identifier circle until sufficient services required by
the service consumer have been found. In this research,
an improved routing protocol is designed for Chord4S,
which supports further routing of a query to other nodes
when it reaches a matched successor node. The routing
performance degradation caused is reasonable where
details are addressed in Section 6.

Each initiated query message contains the following
basic information: a counter and a target service identifi-
er. The target service identifier includes function bits and
provider bits with the provider bits stuffed with 0’s. To
find out if a service matching succeeds, a node performs a
binary AND operation between each of its succeeding
service identifiers and the target service identifier in the
query. If the result equals to the target service identifier,
then the matching succeeds. Logically, this AND opera-
tion is used to extract the identifier of the virtual segment
that the node belongs to and to find out if this identifier
equals to the function bits in the required service identifi-
er. A sample of matched service identifier is shown in
Figure 5. As the result from the AND operation is equal to
the target service identifier, the service description that
the node stores meet the service consumer’s requirements.

After a matched service description is found, a query
will still be passed along the circle until sufficient service
providers are found. Encountered matched successor
nodes must perform three tasks:
1. Get a copy of the min(m, query.counter) matched ser-

vice descriptions it contains, with m being the num-
ber of matched service descriptions, and add it into
the query message as entries of the list of candidate
service providers.

2. Subtract the value of the counter by min(m, que-
ry.counter).

Target Service Identifierm = hashm1(“Multimedia”)

+ hashm3(“Encoder”)
+ hashm4(“AVI2RM”)
+ (0000...0000)m5

1001…1110 0100...0100 0110...0101 1100...1001 0000...0000

m1 bits m2 bits m3 bits m4 bits

0

Multimedia Video Encoder

SHA-1m1

m5 bits

SHA-1m2 SHA-1m3
m-1

+ hashm2(“Video”)

AVI2RM

SHA-1m4

 Fig. 4. Generation of target service identifier.

111001001110111010

000000Target Service Identifier

Succeeding Service Identifier
AND

Function Bits Provider Bits

111001001110111010

110010

111001001110111010 000000
11

 Fig. 5. Service matching operation for forwarding a service-specific
query.

7

3. Check whether the counter equals to 0. If so, send
the query message back to the service consumer and
the routing of this query message ends. Otherwise,
route the query message to the next node according
to its finger table (a routing table maintained by the
Chord node).

As defined in Section 3.1, in a service identifier, the
function bits are used to refer to the functionality of the
service while the provider bits are used to distinguish
service providers. With provider bits stuffed with 0’s, the
required service identifier actually represents the identifi-
er of the virtual segment that target successor nodes be-
long to. Therefore, given a target virtual segment identifi-
er, the identifiers of target successor nodes can be speci-

fied by enumerating legitimate node identifiers in the
target virtual segment. For example, assuming that the
service identifier length l is 10, the lengths of function bits
and provider bits are 8 and 2 respectively. Hence the
identifiers of the possible successor nodes that succeed
required service identifiers with function bits “11000101”
and provider bits “00” (i.e., decimal code: 788), which is
also the virtual segment identifier, include 11000101 00
(i.e., decimal code: 788), 11000101 01 (i.e., decimal code:
789), 11000101 10 (i.e., decimal code: 790), 11000101 11
(i.e., decimal code: 791). Therefore, when resolving a que-
ry of service “1100010100”, node n needs to find successor
nodes in the target virtual segment consisting of nodes
788, 789, 790 and 791.

The pseudocode that implements the service discovery
process is shown in Figure 6. When looking for matched
successor nodes, node n checks the entries of its finger
table to find the node with the smallest identifier in the
target virtual segment which is about to take responsibil-
ity of keeping routing the query. Thus the algorithm al-
ways makes progress until sufficient service descriptions
have been found. Function closest_preceding_finger is used
to request n to find the node known by n that most closely
precedes message.id. However, the implementation is dif-
ferent from Chord as a result of our novel hierarchical
structure for service descriptions.

To request services with QoS constraints, service con-
sumers include their pre-specified QoS requirements in
the query messages along with the target service identifi-
er. The process of looking up services is then divided into
two steps: functional and non-functional. At the first step,
the query message is forwarded by nodes following the
routing protocol. When the query message reaches a suc-
cessor node that stores a matched service description, the
service discovery proceeds to the second step where the
successor node checks the entries of the QoS requirements
one by one to see if the service meets the QoS require-
ments specified in the query message. Figure 7 presents
the pseudo code that implements the match making func-
tion (Line 7 in Figure 6).

If the service meets the QoS requirements, the succes-
sor nodes first adds the corresponding service description
into the list of candidate service providers in the query

Fig. 6. Pseudocode for finding successor operation.

return true

//the match making function
n.match_making(message, services[j])

for i = 1 upto message.QoS.entries.length
3.
4.
5.
6.
7.
8.

if is_unmatched(message.QoS.entries[i],
 services[j].QoS.entries[i])

end for

return false;
end if

end n.match_making(message, services[j])

9.
11.
12.
13.

if is_matched(message.identifier, services[j].identifier)2.
1.

return false
end if

//check if a service meets the QoS requirements

14.

 Fig. 7. Function of match making.

8

message and then forwards the query message (or returns
the query message to the service consumer if the discov-
ery process completes). Otherwise, the query message
will be simply forwarded according to the routing proto-
col.

Usually, after the process of service discovery, service
consumers may want to negotiate with candidate service
providers over the negotiable QoS attributes of the ser-
vices to establish SLAs for future service provision [16,
17]. In such cases, during the process of service discovery,
service consumers can specify flexible QoS requirements,
e.g. $250.00 <= Price <= $350.00, instead of stringent QoS
requirements, e.g. Price == $300.00, to look up service
providers that they may be able to strike a bargain via
SLA negotiation.

5.2.2 Forwarding Queries with Wildcard(s)
The process of forwarding queries with wildcard(s) is
similar to that of forwarding service-specific queries. In-
stead of all the function bits, only the bits generated from
explicit service information will be taken into considera-
tion. Because a query with wildcard(s) is used to look up
services that belong to a specified service category, dur-
ing the process of forwarding this type of queries, all the
successor nodes storing service descriptions that fall into
the specified service categories are considered matched.
An example is given in Figure 8 to demonstrate the AND
operation between a target service category identifier and
an unmatched service identifier. As the result from the
AND operation equals to the target service category iden-
tifier, the service descriptions that are stored at the node
fall into the service category required by the service con-
sumer.

Since a service category corresponds to a virtual seg-
ment in the Chord4S circle, to serve for a service query
with wildcard(s), the corresponding virtual segment
needs to be traversed. For example, to serve for the ser-
vice query “Multimedia.Video.AudioExtractor.*”, the
query must be passed through the virtual segment “Mul-
timedia.Video.AudioExtractor”. The forwarding of query
message of this type proceeds as follows:

1. Obtain the identifier of the target virtual segment
by hashing the explicit part of the query.

2. Calculate the maximum node identifier in the vir-
tual segment.

3. Look up the successor node whose identifier is
equal to or follows the identifier of the target vir-
tual segment.

4. Pass on the query through starting from the node
found at step 3 until the identifier of the next node
that exceeds the maximum node identifier.

An example of forwarding the query “Multimedia.

Video.AudioExtractor.*” is given in Figure 9 where all the
five service descriptions that fall into the service category
“Multimdeia.Video.AudioExtractor” are traversed one
after another.

The implementation of forwarding queries with wild-
card(s) is similar to that of forwarding service-specific
queries, albeit with the matching making function (Line 7
in Figure 6) replaced with the one that implements the
matching operation exampled in Figure 8.

5.3 Performance Analysis
The analysis follows the assumption, without losing the
generality, that all service descriptions strictly conform to
the structure described in Section 3.

The service discovery process in Chord4S is different
from traditional approaches based on the original Chord.
The main difference is that successor nodes may need to
forward the query message based on their own routing
information. Suppose that node d wishes to resolve a que-
ry for m successor nodes of service s. Let p1, p2, … pm be
the successor nodes that succeed service description s,
sorted by ascending node identifiers. Assume that func-
tionally equivalent services be completely distributed at
different successor nodes, i.e., each successor node can
only store one matched service. In general, node p1, the
one with the lowest node identifier, will be populated at
the edge of the certain virtual segment that aggregates
descriptions of service s. Therefore, p1 will be the first one
to be found when the query message is routed clockwise
into the virtual segment. Because Chord4S is based on
Chord, it inherits the desirable properties of Chord: tak-
ing O(logN) hops to find the first successor node p1,
where N is the number of nodes that constitute the sys-
tem based on Chord. For a Chord4S circle that allows a
maximum of 5-layer service description, the maximum
path length from p1 to another arbitrary node in the same
virtual segment is 2N/5, which is the maximum distance
between two edge nodes of the virtual segment. To find
all the other matched successor nodes, p1 only needs to
traverse the virtual segment it belongs to, which consists
of at most 2N/5 nodes. Using its finger table, in the worst
case, the maximum hops needed for p1 to find the next
matched successor node (if there is any) is O(log(N/5)). In
this case, the maximum number of hops will be O(logN) +
O(log(N/5)) = O(logN).

1001…1110 0100...0100 0110...0101 0000...00001100...0111

1001…1110 0100...0100 0010...1101 0000...0000 0000...0000Target Service
Category Identifier

Succeeding Service
Identifier

AND

1001…1110 0100...0100 0010...0101 0000...0000 0000...0000
Fig. 8. Service matching operation for forwarding a service query
with wildcard(s).

221

200

Virtual Segment for
“Multimedia.Video.AudioExtractor”

: Service Description

205
213

227
Multimedia.Video.Audio

Extractor.RM2MP3

Multimedia.Video.Audio
Extractor.AVI2WAV

Multimedia.Video.Audio
Extractor.AVI2MP3

Multimedia.Video.Audio
Extractor.MPEG2WAV

Multimedia.Video.Audio
Extractor.RM2WAV

: Success Node

Fig. 9. Forwarding query for “Multimedia.Video.AudioExtrator.*”.

9

When there are several matched successor nodes in
p1’s finger table, i.e., p2, p3, …, pm, p1 will route the query
message directly to its closest successor, i.e., p2. Following
this, p2 may route the query message directly to p3 if p3

exists. The query message will be passed along the virtual
segment until sufficient services have been found. This
greatly reduces the forwarding overhead. Thus, it is con-
cluded that the total number of necessary hops is
O(logN), regardless of the number of services the con-
sumer needs to discover with one query.

For service discovery with wildcard(s), a query mes-
sage has to traverse a virtual segment in order to look up
the service descriptions that fall into a category. Therefore,
the hops taken for a service discovery with wildcard(s) to
complete consists of two parts: the hops taken to find the
target virtual segment and the hops taken to traverse the
target virtual segment. It is intuitive that the more wild-
card(s) there are in the query, the more hops will be taken
for the query to complete as the bigger the target virtual
segment is the more matched successor nodes it contains
that need to be traversed. For example, the query “Mul-
timedia.Video.*.*” takes more hops than the query “Mul-
timedia.Video.Encoder.*” to complete. The routing per-
formance of Chord4S for service discovery with wild-
card(s) also depends on the actual size of the target virtu-
al segment, which is determined by the size of the func-
tion bits in the service identifier for the virtual segment
(see Section 3.1). Bigger virtual segments can accommo-
date more successor nodes and hence it takes the query
messages more hops to traverse the segments. Let m1, m2,
m3, m4, m5 be the number of bits allocated for layers 1, 2,
3, 4 and 5 of the service identifiers respectively, where
m1+m2+m3+m4+m5=m and N=2m. When a query mes-
sage with wildcard(s) is issued, first of all, it takes
O(logN) hops to find the target virtual segment. Then the
query message has to traverse the entire target virtual
segment. The required hops depends on the size of the
target virtual segment: O(2m4), i.e. O(N), for virtual seg-
ment “Multimedia.Video.Encoder”, O(2m3+m4), i.e. O(N),
for “Multimedia.Video”, and O(2m2+m3+m4), i.e. O(N), for
“Multimedia”. Therefore, for service discovery with wild-
card(s) to complete, the maximum hops will be
O(logN)+O(N)= O(N). It is intuitive that with wildcard(s),
the hops required would potentially increase linearly
with the number of nodes in Chord4S in the worst case.

6 EXPERIMENTAL EVALUATION
To evaluate the performance of Chord4S, a Chord simula-
tor is extended to support Chord4S topology control, data
distribution and routing protocol. As the configuration
and operation of the underlying overlay network is based
on Chord, Chord4S inherits good scalability with low
communication cost and state maintenance cost for ser-
vice discovery, as demonstrated in [18]. Data availability
and routing performance were evaluated particularly
because they are of great importance in Chord4S. Simula-
tions were performed in overlay networks consisting of 27

(128), 211 (2048) and 215 (32768) nodes, in order to evaluate
the performance of Chord4S in environments on different

scales.

6.1 Data Availability
A unique feature, and also a main design goal of Chord4S
is the high data availability in volatile environments. To
set up the volatile environments, we randomly select a
fraction of nodes participating in the network to fail in
each experiment, increasing from 5% to 60% by steps of
5%. Then the remaining nodes were randomly selected to
send queries for services. The number of required func-
tionally equivalent services in each query is randomly
picked from the interval [1, 16]. To evaluate the data
availability, we measured the fraction of the failed que-
ries. We conducted two sets of experiments, one with
Chord and the other with Chord4S. Figure 10 compares
the results from the two sets of experiments, where the

(a) In networks consisting of 27 nodes.

(b) In networks consisting of 211 nodes.

(c) In networks consisting of 215 nodes.

Fig. 10. Data availability.

10

Chord4S curves always start at a much lower point and
continue to stay at lower points compared to Chord. It
can be observed that the fractions of failed queries are
higher than the fraction of failed nodes. This result indi-
cates that other than the service descriptions loss along
the failed nodes something else also caused failed queries.
The reason is that without stabilization some entries in
existing nodes’ finger tables became invalid. Those inva-
lid entries yielded some failed queries and decreased the
data availability in both cases of Chord and Chord4S be-
cause some queries could not be forwarded correctly. To
conclude, the experimental results demonstrate that
Chord4S provides better data availability than Chord in
different volatile environments on different scales.

6.2 Routing Performance
To evaluate the routing performance of Chord4S, the av-
erage number of hops needed for a query of a certain
number of functionally equivalent services was meas-
ured. The number of required services per query is ran-
domly picked from the interval [1, 16]. Note that when
only one service is required, the discovery process equals
to that of Chord and the routing completes when the first
matched service is found. In the experiments, nodes were
selected randomly to send queries for service. As shown
in Figure 11, the average number of hops increases pro-
portionally to the number of required services without
significant performance degradation. When a set of de-
scriptions of functionally-equivalent services are evenly
distributed within a virtual segment, it often takes only
one more hop to find another matched service because
they are distributed next to each other. It is clear that with
such reasonable extra hops, multiple functionally equiva-
lent services can be found with data availability main-
tained at a higher level than Chord. This feature makes
Chord4S more feasible for applications in a dynamic and

open SOC environment.
We also conducted experiments on the routing per-

formance of Chord4S for service discovery with wild-
card(s) and QoS awareness. Specifics of the experiments
can be found in Table 1. Figure 12 demonstrates the rout-
ing performance of Chord4S for service discovery with
wildcard(s) in the experiments where service identifiers
consist of 7, 11, 15 bits. The experimental results conform
to the analysis presented in Section 5.3. However, consid-
ering the fact that the service descriptions are evenly dis-
tributed and a query with wildcard(s) have to traverse the
entire target virtual segment, the average hops, up to 518
for a query like “Multimedia.Video.*.*” in a network con-
sisting of 215 nodes, are quite reasonable.

To assess the routing performance of Chord4S for QoS-

Fig. 11. Routing performance for service-specific queries.

TABLE 1
SPECIFICS OF EXPERIMENTS ON SERVICE DISCOVERY WITH

WILDCARD(S)

Service
Identifier

Function
Bits

Provider
Bits

11
15

8
12

3
3

7 4 3

of Nodes

211

215

27

of
Experiments

2
3

1

Fig. 12. Routing performance for queries with wildcard(s).

(a) For queries with QoS requirements for price2.

(b) For queries with QoS requirements for both price and process

time.

Fig. 13. Performance for QoS-aware service discovery.

11

aware service discovery, we also conducted three sets of
experiments. In these experiments, the services to be re-
quested have two QoS attributes: price and process time.
The service providers’ capacities for providing QoS com-
ply with predefined normal distribution. The service con-
sumers issued queries with different QoS requirements.
The values of the required QoS attributes are randomly
selected from the normal distribution used to generate the
service providers’ capacities for providing QoS. Based on
the above experimental configuration, Figure 13 presents
the routing performance of Chord4S for QoS-aware ser-
vice discovery. Compared to the performance of Chord4S
for service discovery without QoS awareness as presented
in Figure 11, the average hops needed for QoS-aware ser-
vice discovery increases by specifically 64% for the que-
ries with the price requirement and 82% for the ones with
both price and process time requirements. As the number
of QoS attributes that the service consumers have re-
quirements for increases, the average number of hops
needed for Chord4S to complete routing the query mes-
sages will increase accordingly. The reason is that re-
quirements for more QoS attributes increase the level of
difficulty to find satisfactory service descriptions, and
hence requires visiting more successor nodes. To con-
clude, the extra hops necessary for Chord4S to facilitate
service discovery with QoS awareness are acceptable.

7 CONCLUSION AND FUTURE WORK
Service discovery is a critical component in service-
oriented computing. Over recent years, peer-to-peer
based service discovery has attracted researchers’ atten-
tion after the deficiencies of centralized service discovery
are identified. This paper has proposed Chord4S, a peer-
to-peer based approach for decentralized service discov-
ery. To improve data availability, Chord4S distributes the
descriptions of functionally equivalent services. Chord4S
supports QoS-aware service discovery and service dis-
covery with wildcard(s). An efficient routing algorithm is
developed to facilitate queries of multiple functionally
equivalent services. Chord4S is scalable, reliable and ro-
bust due to the enhanced peer-to-peer architecture. Ex-
perimental results demonstrate that Chord4S can achieve
high data availability and efficient query of multiple func-
tionally equivalent services with reasonable overhead.

In the future, integration of semantic information of
services into Chord4S using popular tools, such as Petri
Net and WSMO, will be investigated in order to increase
the flexibility and accuracy of the service discovery.

ACKNOWLEDGMENT
This work is partly funded by the Australian Research
Council Discovery Project Scheme under grant No.
DP0663841, National Science Foundation of China under
grant No.90412010 and ChinaGrid project from Ministry
of Education of China. The authors are grateful for the
simulation implementation and English proof reading by

S. Hunter.

REFERENCES
[1] "North American Industrial Classification Scheme

(NAICS) codes", http://www.naics.com/.
[2] "Universal Standard Products and Services Classification

(UNSPSC)", http://www.unspsc.org/.
[3] Ahmed, R., Limam, N., Xiao, J., Iraqi, Y., Boutaba, R.:

"Resource and Service Discovery in Large-Scale Multi-
Domain Networks", IEEE Communications Surveys &
Tutorials, vol. 9, no. 4, pp. 2-30, 2007.

[4] Al-Masri, E., Mahmoud, Q. H. "Crawling Multiple UDDI
Business Registries", Proc of 16th international confer-
ence on World Wide Web (WWW2007), Banff, Alberta,
Canada, 2007, ACM, pp. 1255-1256.

[5] Ardagna, D., Comuzzi, M., Mussi, E., Pernici, B.,
Plebani, P.: "PAWS: A Framework for Executing Adap-
tive Web-Service Processes", IEEE Software, vol. 24, no.
6, pp. 39-46, 2007.

[6] Baset, S., Schulzrinne, H. "An Analysis of the Skype
Peer-to-Peer Internet Telephony Protocol", Proc of 25th
IEEE International Conference on Computer Communi-
cations, Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM'06), Barcelona,
Catalunya, Spain, 2006, pp. 1-11.

[7] Beatty, J., Kakivaya, G., Kemp, D., Kuehnel, T.,
Lovering, B., Roe, B., St. John, C., Schlimmer, J.,
Simonet, G., Walter, D., Weast, J., Yarmosh, Y., Yendluri,
P., "Web Services Dynamic Discovery (WS-Discovery)",
2005, http://specs.xmlsoap.org/ws/2005/04/discovery/ws-
discovery.pdf.

[8] Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I.,
McGuinness, D. L., Patel-Schneider, P. F., Stein, L. A.:
OWL Web Ontology Language Reference.
http://www.w3.org/TR/owl-ref/, 2004.

[9] Cheng, Z., Singh, M. P., Vouk, M. A.: "Verifying Con-
straints on Web Service Compositions", Real World Se-
mantic Web Applications, vol. no., pp. June 2002.

[10] Clement, L., Hately, A., von Riegen, C., Rogers, T.,
"UDDI Version 3.0.2", OASIS, 2004,
http://www.uddi.org/pubs/uddi_v3.htm.

[11] Emekçi, F., Sahin, O. D., Agrawal, D., Abbadi, A. E. "A
Peer-to-Peer Framework for Web Service Discovery with
Ranking", Proc of IEEE International Conference on Web
Services (ICWS'04), San Diego, California, USA, 2004,
IEEE Computer Society, pp. 192-199.

[12] Foster, H., Uchitel, S., Magee, J., Kramer, J. "Model-
based Verification of Web Service Compositions", Proc of
18th IEEE International Conference on Automated Soft-
ware Engineering (ASE'03), Montreal, Canada, 2003,
IEEE Computer Society, pp. 152-163.

[13] Gopalakrishnan, V., Silaghi, B. D., Bhattacharjee, B.,
Keleher, P. J. "Adaptive Replication in Peer-to-Peer Sys-
tems", Proc of 24th International Conference on Distrib-
uted Computing Systems (ICDCS'04), Hachioji, Tokyo,
Japan, 2004, IEEE Computer Society, pp. 360-369.

[14] Hu, T. H.-t., Seneviratne, A.: "Autonomic Peer-to-Peer
————————————————

2 The results from the experiments with QoS requirements for process time
are similar and hence are not presented.

http://www.unspsc.org/�

12

Service Directory", IEICE Transaction on Information
System vol. E88-D, no. 12, pp. 2005.

[15] Jagadish, H. V., Ooi, B. C., Tan, K.-L. Y., Cui, Zhang, R.:
"iDistance: An Adaptive B+-Tree Based Indexing Method
for Nearest Neighbor Search", ACM Transactions on
Database Systems, vol. 30, no. 2, pp. 364-397, 2005.

[16] Jin, L.-j., Machiraju, V., Sahai, A.: Analysis on Service
Level Agreement of Web Services. Technical Report, HP
Laboratories,
http://www.hpl.hp.co.uk/techreports/2002/HPL-2002-
180.pdf, 2002.

[17] K. Czajkowski, I. Foster, C. Kesselman, V. Sander, S.
Tueck. "SNAP: A Protocol for Negotiating Service Level
Agreements and Coordinating Resource Management in
Distributed Systems," 8th International Workshop on Job
Scheduling Strategies for Parallel Processing (JSSPP'02)
2002.

[18] Li, Y., Zou, F., Wu, Z., Ma, F. "PWSD: A Scalable Web
Service Discovery Architecture Based on Peer-to-Peer
Overlay Network", Proc of 6th Asia-Pacific Web Confer-
ence on Advanced Web Technologies and Applications
(APWeb'04), Hangzhou, China, 2004, pp. 291-300.

[19] Narayanan, S., McIlraith, S. A. "Simulation, Verification
and Automated Composition of Web Services", Proc of
11th International Conference on World Wide Web
(WWW'02), Honolulu, Hawaii, USA, 2002, ACM, pp. 77-
88.

[20] Novak, D., Zezula, P. "M-Chord: A Scalable Distributed
Similarity Search Structure", Proc of 1st International
Conference on Scalable Information Systems, Hong
Kong, 2006, ACM.

[21] Ratnasamy, S., Francis, P., Handley, M., Karp, R.,
Shenker, S. "A Scalable Content-Addressable Network",
Proc of Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication
(SIGCOMM'01), San Diego, CA, USA, 2001, ACM, pp.
161-172.

[22] Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R.,
Stollberg, M., Polleres, A., Feier, C., Bussler, C., Fensel,
D., "The Web Service Modeling Language (WSML)
v0.21", 2005, http://www.wsmo.org/TR/d16/d16.1/v0.21/.

[23] Rompothong, P., Senivongse, T. "A Query Federation of
UDDI Registries", Proc of 1st International Symposium
on Information and Communication Technologies, Dub-
lin, Ireland, 2003, ACM, pp. 561-566.

[24] Rowstron, A. I. T., Druschel, P. "Pastry: Scalable, Decen-
tralized Object Location, and Routing for Large-Scale
Peer-to-Peer Systems", Proc of IFIP/ACM International
Conference on Distributed Systems Platforms
(Middleware'01), Heidelberg, Germany, 2001, pp. 329-
350.

[25] S. Sanghan, M. M. Hasan. "Intelligent P2P VoIP through
Extension of Existing Protocols", Proc of 9th Internation-
al Conference on Advanced Communication Technology
(ICACT'07), Phoenix Park, Gangwon-Do, Republic of
Korea, 2007, pp. 1597-1601.

[26] S. Saroiu, P. K. Gummadi, S. D. Gribble. "A measure-

ment study of peer-to-peer file sharing systems", Proc of
9th Multimedia Computing and Networking (MMCN'02),
San Jose, CA, USA, 2002.

[27] Sapkota, B., Roman, D., Kruk, S. R., Fensel, D. "Distrib-
uted Web Service Discovery Architecture", Proc of Ad-
vanced International Conference on Telecommunications
and International Conference on Internet and Web Appli-
cations and Services, Guadeloupe, French Caribbean,
2006, IEEE Computer Society, pp. 136.

[28] Schmidt, C., Parashar, M.: "A Peer-to-Peer Approach to
Web Service Discovery", World Wide Web, vol. 7, no. 2,
pp. 211-229, 2004.

[29] Stoica, I., Morris, R., Karger, D., Kaashoek, M. F.,
Balakrishnan, H. "Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications", Proc of ACM Confer-
ence on Applications, Technologies, Architectures, and
Protocols for Computer Communication (SIGCOMM'01),
San Diego, California, United States, 2001, ACM Press,
pp. 149-160.

[30] Williams, C., Huibonhoa, P., Holliday, J., Hospodor, A.,
Schwarz, T. J. E. "Redundancy Management for P2P
Storage", Proc of 7th IEEE International Symposium on
Cluster Computing and the Grid (CCGrid'07), Rio de
Janeiro, Brazil, 2007, IEEE Computer Society, pp. 15-22.

[31] Wu, L., He, Y., Wu, D., Cui, J. " A Novel Interoperable
Model of Distributed UDDI", Proc of International Con-
ference on Networking, Architecture, and Storage
(NAS2008), Chongqing, China 2008, IEEE Computer So-
ciety, pp. 153-154.

[32] Xiaofei Liao, Hai Jin, Yunhao Liu, Lionel M. Ni, Dafu
Deng. "AnySee: Peer-to-Peer Live Streaming", Proc of
25th IEEE International Conference on Computer Com-
munications, Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM'06), Barcelona,
Catalunya, Spain, 2006, IEEE.

[33] Xinyan Zhang, Jiangchuan Liu, Bo Li, Tak-Shing Peter
Yum. "CoolStreaming/DONet: A Data-Driven Overlay
Network for Peer-to-Peer Live Media Streaming", Proc of
24th Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM'05), Miami, FL,
USA, 2005, IEEE, pp. 2102-2111.

[34] Zhao, B. Y., Huang, L., Stribling, J., Joseph, A. D.,
Kubiatowicz, J. "Exploiting Routing Redundancy via
Structured Peer-to-Peer Overlays", Proc of 11th IEEE In-
ternational Conference on Network Protocols (ICNP'03),
Atlanta, GA, USA, 2003, IEEE Computer Society, pp.
246-257.

[35] Zhao, B. Y., Kubiatowicz, J., Joseph, A. D.: Tapstry: An
Infrastructure for Fault-Tolerant Wide-Area Location and
Routing. Computer Science Division of University Cali-
fornia, Berkeley, 2001.

[36] Zhou, G., Yu, J., Chen, R., Zhang, H. "Scalable Web Ser-
vice Discovery on P2P Overlay Network", Proc of IEEE
International Conference on Services Computing
(SCC'07), Salt Lake City, Utah, USA, 2007, IEEE Com-
puter Society, pp. 122-129.

13

Qiang He received his first Ph. D.
degree in information and commu-
nication technology from Swin-
burne University of Technology
(SUT), Australia, in 2009 and his
second Ph. D. degree in computer
science and engineering from
Huazhong University of Science
and Technology (HUST), China, in
2010. He is now a research fellow at

SUT. His research interests include services computing,
cloud computing, P2P system, workflow management
and agent technologies.

Jun Yan received the B.Eng. and
M.Eng. degrees in computer applica-
tion Technologies from Southeast
University, Nanjing, China, in 1998
and 2001, respectively, and the Ph.D.
degree in information technology from
Swinburne University of Technology,
Melbourne, Australia, in 2004. He is
currently a Senior Lecturer in the
School of Information Systems and

Technology, University of Wollongong, Wollongong,
Australia. His research interests include software tech-
nologies, workflow management, service-oriented com-
puting, and agent technologies.

Yun Yang was born in Shanghai,
China. He received the B.Sci. de-
gree from Anhui University, Hefei,
China, in 1984, the M.Eng. degree
from the University of Science and
Technology of China, Hefei, Chi-
na, in 1987, and the Ph.D. degree
from the University of Queens-
land, Brisbane, Australia, in 1992,
all in computer science. He is cur-

rently a Full Professor in the Faculty of Information and
Communication Technologies at Swinburne University of
Technology, Melbourne, Australia. Prior to joining Swin-
burne as an Associate Professor, he was a Lecturer and
Senior Lecturer at Deakin University during 1996-1999.
Before that, he was a (Senior) Research Scientist at DSTC
Cooperative Research Centre for Distributed Systems
Technology during 1993-1996. He also worked at Beihang
University during 1987-1988. He has co-authored one
book and published more than 180 papers on journals
and refereed conferences. His current research interests
include software technologies, cloud computing,
p2p/grid/cloud workflow systems, and service-oriented
computing.

Ryszard Kowalczyk is a Full Profes-
sor of Intelligent Systems in the Fac-
ulty of Information and Communica-
tion Technologies (ICT) at Swin-
burne University of Technology,
Melbourne, Australia. He received a
PhD from the Silesian University of
Technology, Poland in 1990. His re-
search interests include intelligent
systems, agent technology and col-

lective intelligence, and their applications in a wide range
of complex real-world problems. Prof Kowalczyk has au-
thored 4 patents and more than 160 articles in interna-
tional journals and refereed conference proceedings. He is
a Editor-in-Chief of Transactions on Computational Col-
lective Intelligence (Springer) and has served on a num-
ber of Editorial and Advisory Boards of international
journals and scientific organisations.

Hai Jin is a Cheung Kung Scholars
Chair Professor of computer science
and engineering at the Huazhong
University of Science and Technology
(HUST) in China. He is now Dean of
the School of Computer Science and
Technology at HUST. Jin received his
PhD in computer engineering from
HUST in 1994. In 1996, he was award-
ed a German Academic Exchange Ser-
vice fellowship to visit the Technical

University of Chemnitz in Germany. Jin worked at The
University of Hong Kong between 1998 and 2000, and as
a visiting scholar at the University of Southern California
between 1999 and 2000. He was awarded Excellent Youth
Award from the National Science Foundation of China in
2001. Jin is the chief scientist of ChinaGrid, the largest
grid computing project in China, and the chief scientist of
National 973 Basic Research Program Project of Virtual-
ization Technology of Computing System. Jin is a senior
member of the IEEE and a member of the ACM. Jin is the
member of Grid Forum Steering Group (GFSG). He has
co-authored 15 books and published over 400 research
papers. His research interests include computer architec-
ture, virtualization technology, cluster computing and
grid computing, peer-to-peer computing, network stor-
age, and network security Jin is the steering committee
chair of International Conference on Grid and Pervasive
Computing (GPC), Asia-Pacific Services Computing Con-
ference (APSCC), International Conference on Frontier of
Computer Science and Technology (FCST), and Annual
ChinaGrid Conference. Jin is a member of the steering
committee of the IEEE/ACM International Symposium
on Cluster Computing and the Grid (CCGrid), the IFIP
International Conference on Network and Parallel Com-
puting (NPC), and the International Conference on Grid
and Cooperative Computing (GCC), International Con-
ference on Autonomic and Trusted Computing (ATC),
International Conference on Ubiquitous Intelligence and

14

Computing (UIC).

	A decentralized service discovery approach on peer-to-peer network
	Recommended Citation

	A decentralized service discovery approach on peer-to-peer network
	Abstract
	Keywords
	Disciplines
	Publication Details

	1 Introduction
	2 Related Work
	2.1 Centralized Service Discovery
	2.2 Decentralized Service Discovery

	3 Service Description
	3.1 Service Identifier
	3.2 QoS Specification

	4 Service Publication
	4.1 Traditional Approach in Chord
	4.2 Service Publication in Chord4S

	5 Service Query
	5.1 Query Types
	5.1.1 Service-Specific Query
	5.1.2. Query with Wildcard(s)

	5.2 Query Forwarding
	5.2.1 Forwarding Service-Specific Queries
	5.2.2 Forwarding Queries with Wildcard(s)

	5.3 Performance Analysis

	6 Experimental Evaluation
	6.1 Data Availability
	6.2 Routing Performance

	7 Conclusion and Future Work
	Acknowledgment
	References

