
University of Wollongong
Research Online

Faculty of Science, Medicine and Health - Papers Faculty of Science, Medicine and Health

2014

Geochronological, morphometric and
geochemical constraints on the Pampas Onduladas
long basaltic flow (Payún Matrú Volcanic Field,
Mendoza, Argentina)
Venera Espanon
University of Wollongong, vre981@uowmail.edu.au

Allan Chivas
University of Wollongong, toschi@uow.edu.au

David Phillips
University of Melbourne, dphillip@unimelb.edu.au

Erin L. Matchan
University of Melbourne

Anthony Dosseto
University of Wollongong, tonyd@uow.edu.au

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library:
research-pubs@uow.edu.au

Publication Details
Espanon, V. R., Chivas, A. R., Phillips, D., Matchan, E. L. & Dosseto, A. (2014). Geochronological, morphometric and geochemical
constraints on the Pampas Onduladas long basaltic flow (Payún Matrú Volcanic Field, Mendoza, Argentina). Journal of Volcanology
and Geothermal Research, 289 114-129.

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/smhpapers
http://ro.uow.edu.au/smh
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Pampas Onduladas long basaltic flow (Payún Matrú Volcanic Field,
Mendoza, Argentina)

Abstract
The Pampas Onduladas flow in southern Mendoza, Argentina, is one of the four longest Quaternary basaltic
flows on Earth. Such flows (> 100 km) are relatively rare on Earth as they require special conditions in order
to travel long distances and there are no recent analogues. Favourable conditions include: a gentle topographic
slope, an insulation process to preserve the melt at high temperature, and a large volume of lava with relatively
low viscosity. This study investigates the rheological and geochemical characteristics of the ~ 170 km long
Pampas Onduladas flow, assessing conditions that facilitated its exceptional length. The study also reports the
first geochronological results for the Pampas Onduladas flow. 40Ar/39Ar step-heating analyses of groundmass
reveal an eruption age of 373 ± 10 ka (2σ), making the Pampas Onduladas flow the oldest Quaternary long
flow. The methods used to assess the rheological properties include the application of several GIS tools to a
digital elevation model (DEM) to determine the length, width, thickness, volume and topographic slope of
the flow as well as algorithms to determine its density, viscosity and temperature. The slope of the Pampas
Onduladas flow determined from the initial part of the flow on the eastern side of La Carbonilla Fracture to its
end point in the province of La Pampa is 0.84% (0.29°), the steepest substrate amongst long Quaternary
flows. The rheological properties, such as density viscosity and temperature from the Pampas Onduladas flow
are similar to values reported for other long Quaternary flows. However, the minimum volume calculated is
relatively low for its length compared with other long Quaternary flows. Therefore, the extension of the
Pampas Onduladas flow was probably controlled by a steep slope, combined with an insulating mechanism,
which helped in providing optimal conditions for a travel length of almost 170 km.
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Abstract  23 

The Pampas Onduladas flow in southern Mendoza, Argentina, is one of the four longest 24 

Quaternary basaltic flows on Earth. Such flows (>100 km) are relatively rare on Earth as 25 

they require special conditions in order to travel long distances and there are no recent 26 

analogues. Favourable conditions include: a gentle topographic slope, an insulation process 27 

to preserve the melt at high temperature, and a large volume of lava with relatively low 28 

viscosity. This study investigates the rheological and geochemical characteristics of the 29 

~170 km long Pampas Onduladas flow, assessing conditions that facilitated its exceptional 30 

length. This study also reports the first geochronological results for the Pampas Onduladas 31 

flow. 40Ar/39Ar step-heating analyses of groundmass reveal an eruption age of 373 ± 10 ka 32 

(2σ), making the Pampas Onduladas flow the oldest Quaternary long flow.  33 

The methods used to assess the rheological properties include the application of several 34 

GIS tools to a digital elevation model (DEM) to determine the length, width, thickness, 35 

volume and topographic slope of the flow as well as algorithms to determine its density, 36 

viscosity and temperature. The slope of the Pampas Onduladas flow determined from the 37 

initial part of the flow on the eastern side of La Carbonilla fracture to its end point in the 38 

province of La Pampa is 0.84% (0.29°), the steepest substrate amongst long Quaternary 39 

flows. The rheological properties, such as density viscosity and temperature from the 40 

Pampas Onduladas flow are similar to values reported for other long Quaternary flows. 41 

However, the minimum volume calculated is relatively low for its length compared with other 42 

long Quaternary flows. Therefore, the extension of the Pampas Onduladas flow was 43 

probably controlled by a steep slope, combined with an insulating mechanism, which helped 44 

in providing optimal conditions for a travel length of almost 170 km. 45 

1  Introduction 46 

Long basaltic flows (>100 km) produced in a single volcanic eruption are unusual on Earth 47 

(but common on Mars), as they require relatively large lava volumes and steep slopes 48 

(Keszthely and Self, 1998; Keszthely et al., 2004). For the Quaternary (<2.6 Ma), only four 49 

flows have been reported to be longer than 100 km, and there are no historic analogues of 50 

long flows. The four long Quaternary flows recognised are: the Toomba and Undara flows in 51 

Queensland, Australia (Stephenson et al., 1998); the Thjorsa flow in Iceland 52 

(Vilmundardottir, 1977); and the Pampas Onduladas flow in Mendoza, Argentina (Pasquarè 53 

et al., 2005). These have reported volumes greater than 12 km3 and a pahoehoe character. 54 

Some of the basic requirements for long basaltic flows are: i) an insulating mechanism to 55 

maintain the lava at high temperature; and ii) a large volume of erupted lava (Pikerton and 56 

Wilson, 1994). The four long Quaternary basaltic flows exhibit inflation structures such as 57 



lava rises and/or tumuli and in some cases lava tubes such as in the Toomba and Undara 58 

flows (Stephenson et al., 1998) that insulate the lava, thereby reducing its cooling by 59 

<50°C/100 km according to the models of Keszthely and Self (1998). Of special interest is 60 

the Pampas Onduladas flow as it has been described as the longest on Earth during the 61 

Quaternary (Pasquarè et al., 2008). It has a relatively narrow (~5 km) tongue-like structure 62 

that dominates for more than 70% of its length and lacks lava tube structures.  63 

Despite the significance of the Pampas Onduladas flow, rheological, geochemical and 64 

geochronological analyses are lacking. Previous investigations mainly dealt with recognising 65 

and describing this flow from a morphological view point (Pasquarè et al., 2005; Pasquarè et 66 

al., 2008). The purpose of this investigation is to assess some of the physical parameters 67 

and geochemical characteristics of this flow, in order to comprehend the factors that have 68 

facilitated its length, and to also determine the eruption age.  69 

2  Background  70 

 71 

2.1 Regional geological setting 72 

The Andean volcanic arc occupies the western margin of South America and is dominated 73 

by andesitic lavas with abundant pyroclastic ejecta. This volcanism mainly results from the 74 

dehydration of the subducting oceanic plate to the west of the South American plate 75 

(Thorpe, 1984). The subducting oceanic plates are the Nazca plate from ~5°N to ~46°S and 76 

the Antarctic plate from ~46°S. The volcanic arc is not continuous along the Andes as in 77 

areas of flat (sub-horizontal) subduction volcanic activity is absent. The Nazca plate 78 

subducts at a shallow angle long the Peruvian and the Pampean flat slab segments 79 

constituting the divide between the Northern and Central volcanic zones and between the 80 

Central and the Southern volcanic zone, respectively (Stern, 2004). The Southern and 81 

Austral volcanic zones are separated by the Chile rise which constitutes the boundary 82 

between the Nazca and the Antarctic plates.  83 

Despite the abundance of arc volcanism, alkali basaltic volcanism also occurs behind the 84 

main Andean volcanic arc, this volcanism is termed continental back-arc volcanism. In this 85 

setting, the subduction signature decreases in an easterly direction from the arc (Stern et al., 86 

1990; Rivalenti et al., 2004; Jacques et al., 2013). A high density of continental back-arc 87 

volcanism is found in the Southern volcanic zone mainly due to changes in subduction 88 

regime (Kay et al., 2006). The current investigation is based on the northernmost back-arc 89 

basaltic province from the Southern volcanic zone called the Payenia Basaltic Province 90 

(PBP), defined by Polanski (1954) (also described as the Andino-Cuyana Basaltic Province 91 

by Bermúdez and Delpino, 1989). The PBP covers an area of approximately 40,000 km2, 92 



with more than 800 volcanic cones, the majority of them being monogenetic (Ramos and 93 

Folguera, 2011). The PBP is classified into several volcanic fields (Figure 1) including 94 

Nevado, Llancanelo, Payún Matrú and Rio Colorado (Ramos and Folguera, 2011; Gudnason 95 

et al., 2012) mostly based on their geochemical diversity. In this sense, the Nevado volcanic 96 

field has a defined subduction signature while the Rio Colorado volcanic field has a typical 97 

intraplate signature resembling that of ocean island basalts (Kay et al., 2013; Søager et al., 98 

2013). The Llancanelo volcanic field has weak subduction signature while the same type of 99 

signature was not recognised in the Payún Matrú Volcanic Field (PMVF; Espanon et al., 100 

2014). The basalts from the Payún Matrú volcanic field have an intraplate geochemical 101 

signature similar to that of the Rio Colorado volcanic field (Espanon et al., 2014). The 102 

Pampas Onduladas flow is part of the PMVF and is located on the eastern side of this 103 

volcanic field where the oldest basaltic flows are found (Figure 1). The PMVF covers an area 104 

of 5200 km2 and is located approximately 400 km from the trench and 140 km to the east of 105 

the Andean volcanic arc (Inbar and Risso, 2001). 106 

2.2 Payún Matrú volcanic field (PMVF) and Pampas Onduladas flow 107 

The back-arc volcanism in the PMVF is associated with an enriched mantle similar to an 108 

ocean island basalt-type (Kay et al., 2004; Germa et al., 2010; Søager et al., 2013) 109 

associated with an intraplate setting comparable to the Rio Colorado volcanic field (Figure 110 

1). The volcanic cones in the PMVF are mainly aligned in an E-W direction corresponding to 111 

La Carbonilla Fracture (Figure 1; Llambías et al., 2010). This fracture was formed by crustal 112 

relaxation after a period of compression associated with flat subduction during the Miocene 113 

(Kay et al., 2006). La Carbonilla Fracture is exposed in its eastern part, interrupted by the 114 

Payún Matrú caldera in its central part (Figure 1) and completely covered along its western 115 

part (inferred to underlie a field of aligned scoria cones; Hernando et al., 2014). The Pampas 116 

Onduladas flow is located on the eastern side of the PMVF (Figure 1) and its eruption point 117 

is associated with the far eastern end of La Carbonilla Fracture.  118 

As volcanic activity continues, younger flows generally cover older flows. For example, the 119 

Thorsa long flow (~140 km) in Iceland constitutes a more recent (Holocene) example where 120 

the source craters have been covered by successive lava flow (Halldorsson et al., 2008). 121 

The eastern end of La Carbonilla fracture has been one of the major feeding systems for 122 

basaltic flows in this sector and has been active since probably the early Quaternary 123 

(Pasquarè et al., 2008). The oldest basalts erupted from La Cabonilla fracture pre-date the 124 

formation of the Payún Matrú caldera (Llambías et al., 2010; Hernando et al., 2012) which 125 

were then partially covered by the ignimbrite during the caldera formation stage and later 126 

partly overlain by younger basaltic flows. Despite the difficulty in determining the eruption 127 



point for the extensive Pampas Onduladas flow, it has been assigned to La Carbonilla 128 

fracture (Núñez, 1976; Pasquarè et al., 2005; 2008).  The basement beneath the Pampas 129 

Onduladas flow is composed of older basaltic flows from the mid to late Miocene Palauco 130 

Formation (Narciso et al., 2001) and with a thickness ranging from 150 m to 800m (Méndez 131 

et al., 1995).  132 

The volcanism in the PMVF is understood to be older on its eastern side; however, the 133 

geochronology is poorly constrained. Flows from the eastern side of the PMVF have 134 

reported K-Ar ages ranging from 600 ± 100 ka (2σ) (Berttoto, 1997) to 950 ± 500 ka (2σ) 135 

(Núñez, 1976). A single age estimate comes from a basaltic flow located stratigraphically 136 

below the Pampas Onduladas flow dated to 400 ± 100 ka (2σ) by K-Ar (Melchor and 137 

Casadio, 1999). Furthermore, the Pampas Onduladas flow pre-dates the Payún Matrú 138 

caldera (Figure 1) as the Portezuelo Ignimbrite stratigraphically overlies the Pampas 139 

Onduladas flow. The caldera-forming event is recognised to have occurred between 168 ± 4 140 

ka and 82 ± 2 ka based on K-Ar dating (Germa et al., 2010), providing a minimum age 141 

constraint for the Pampas Onduladas flow. Therefore, its age is possibly younger than 400 142 

ka and older than 168 ka. 143 

The Pampas Onduladas flow as well as most of the older flows in the PMVF, has a 144 

pahoehoe character, in contrast to the younger flows (<10 ka), which are dominated by a’a 145 

morphology (Inbar and Risso, 2001; Figure 2). The Pampas Onduladas flow has been 146 

described by Pasquarè et al. (2005; 2008) as a compound flow, having an external 147 

morphology dominated by tumuli and lava rises, which are typical of an internally inflated 148 

flow. The tumuli are elongated in the medial area, while in the distal areas elongated lava 149 

rises are abundant (Figure 3). The appearance of the tumuli (~40km from the initial part) is 150 

similar to those described in the Llancanelo volcanic field (Nemeth et al., 2008) as they are 151 

flow-lobe tumuli generally less than 9 metres in height with relatively steep angles and a 152 

central crack from which lava outpour was not recognised (Figure 3). The lava rises are 153 

randomly oriented long the flow and with a range of dimensions and they generally have a 154 

central cleft (Figure 3). Lava rises are recognised on the side of the kipukas (Figure 3) in the 155 

proximal to medial section of the flow where higher pre-existing topography was engulfed by 156 

the flowing lava. The internal structure is composed of a thin, highly vesicular crust, which is 157 

on average less than 1 metre thick and the vesicles are rounded to subrounded with a 158 

maximum diameter of 2 cm. This upper zone is underlain by a dense layer in some parts 159 

heavily jointed which is approximately 2-3 m thick (Pasquarè et al., 2008). Below this layer, 160 

the jointing diminishes and the lava is more vesicular (elongated aligned vesicles), gradually 161 

changing to a massive layer formed by co-mingling of the elongated vesicles (Pasquarè et 162 



al., 2008). The flow has a hawaiite composition with low phenocryst content (Figure 4; 163 

Pasquarè et al., 2008). 164 

 165 

Figure 1: a) Geographical setting of the Pampas Onduladas flow. LCF indicates La Carbonilla Fracture in the 166 
Payún Matrú Volcanic Field (PMVF). The hexagons are towns. Red triangles are volcanoes from the Andean arc.  167 
b) Map of the southern Mendoza region with the Pampas Onduladas flow in green. The numbers on the Pampas 168 
Onduladas flow indicate sections 1 to 5 into which it has been divided. Dashed purple lines indicate the location 169 
of each of the cross sections (refer to Figure 5). The red crosses indicate exposures of the San Rafael Block. The 170 
white circles within the flow are samples from Pasquarè et al. (2008) and from Espanon et al. (2014), while the 171 
two blue circles are the samples used for 

40
Ar/

39
Ar dating. The two green stars (A and B) represent the initial and 172 

final points of the flow; between which the length was calculated. 173 

174 



 175 

Figure 2: Examples of basaltic morphotypes from the Payún Matrú volcanic field. a) Proximal to central part of 176 
Pampas Onduladas flow, showing a pahoehoe morphology; b) Proximal to central part of Santa Maria flow, 177 
showing an a’a morphology. Note the smooth surface of the pahoehoe Pampas Onduladas flow in contrast to the 178 
rough surface of the Santa Maria flow.   179 

The magmatic source region for this extensive flow has been inferred to be affected by 180 

metasomatism associated with the subduction of the Nazca plate (Pasquarè et al., 2008), 181 

although recent studies suggest that the Payún Matrú Volcanic Field (PMVF, Figure 1) 182 

shows minimal (Jacques et al., 2013; Søager et al., 2013) to negligible (Espanon et al., 183 

2014) evidence for subduction signatures. The basalts in the PMVF have geochemical 184 

characteristics similar to the local ocean island basalt (OIB) source (Espanon et al., 2014), 185 

taken as the Rio Colorado Volcanic Field previously described by Søager et al. (2013) as 186 

OIB-type. In addition, lower crustal assimilation has been suggested (Espanon et al., 2014) 187 

for the Pampas Onduladas flow.  188 

3  Methods 189 

Available geochemical data from the Pampas Onduladas flow are summarised in Table 1 190 

(Pasquarè et al., 2008; Espanon et al., 2014). The extent of the Pampas Onduladas flow 191 

was determined using existing maps (Pasquarè et al., 2008) as well as a digital elevation 192 

model and surface maps. The length was calculated along the medial axis of the mapped 193 

flow from the inferred eruption and terminal points (Cashman et al., 2013). The eruption 194 

point is inferred to be close to the eastern limit of La Carbonilla fracture (point A; Figure 1) 195 

while the inferred terminal point is located in the province of La Pampa (point B; Figure 1) 196 

with the following geographical coordinates: 36.33778°S, 68.93918°W, 1852 MASL (Point 197 

A); and 37.00509°S, 67.45564°W, 445 MASL (Point B).  198 

 199 

 200 



 201 

 202 

Figure 3: Morphological structures along the Pampas Onduladas flow. a) Outline of Pampas Onduladas flow 203 

showing the location for images b) to h). b) One of several kipukas located in the proximal-medial part of the flow. 204 

Note how the basaltic flow engulfed the pre-existing volcanic cone forming lava rises. c) Slabby pahoehoe flow; 205 

note the highly vesicular top layer. Geological hammer for scale is 32 cm long. d) Side view of a basaltic tumulus. 206 

Person on the right for scale. e)  Groove on the surface of Pampas Onduladas flow. Note circled shoe for scale ~ 207 

28 cm. f) view of a Pampas Onduladas surface and a tumulus in the background. Note the central crack in the 208 

tumulus. g) View of several kipukas in the northern margin of Pampas Onduladas. The pre-existing topography is 209 

part of the San Rafael block and the flow has formed lava rises in the margins of the kipukas. h) longitudinal lava 210 

rise with a central groove. The base satellite photo for a) is a mosaic contrast sharpening from preview images 211 

LC82300862013145LGN00, LC82310852013168LGN00, LC82310862013136LGN01 and 212 

LC82300852013145LGN00 from Landsat 8.  213 



3.1 40Ar/39Ar geochronology 214 

Two samples were collected for 40Ar/39Ar geochronological analysis; sample VRE20 from the 215 

initial to medial part of the flow (36.40847°S, 68.58000°W), and sample VRE46a from the 216 

lower end of the flow (36.97117°S, 67.49233°W) (Figure 1). These samples are fine-grained, 217 

hypocrystalline alkali basalts with 1.0 wt % K2O (VRE20) and 0.9 wt % K2O (VRE46a), 218 

respectively (petrographic descriptions are provided in Section 4.1 and Figure 4). Following 219 

procedures described in Matchan and Phillips (2014), sample preparation involved crushing 220 

approximately 300 g of whole-rock to a grain-size of 180-250 μm followed by magnetic 221 

separation and hand picking to isolate unaltered groundmass from the phenocrysts. The 222 

groundmass separate and the neutron flux monitor Alder Creek Rhyolite (ACR) sanidine 223 

(1.186 ± 0.012 Ma (1σ); Turrin et al., 1994) were irradiated at the USGS TRIGA reactor for 224 

0.5 MWH in the Cd-lined facility. Irradiated samples and the ACR flux monitor were analysed 225 

in the School of Earth Sciences at the University of Melbourne using a multi-collector 226 

Thermo Fisher Scientific ARGUSVI mass spectrometer linked to a gas extraction/purification 227 

line and Photon Machines Fusions 10.6 μm CO2 laser system (Phillips and Matchan, 2013), 228 

following procedures described by Matchan and Phillips (2014). Blanks were measured after 229 

every third analysis and yielded <2.9 fA for 40Ar, corresponding to 0.21% of the measured 230 

40Ar in the experiments. Mass discrimination was determined by automated air pipette 231 

aliquots before analysis assuming an atmospheric 40Ar/36Ar of 295.5 ± 0.5 (Nier, 1950). The 232 

ages were calculated relative to the ACR flux monitor, which determines the production of 233 

39Ar from 39K during the radiation process and the 40K decay constant of 4.962 x 10-10 yr-1 234 

(Steiger and Jäger, 1977). 235 

 236 

 237 

 238 

 239 

 240 

 241 

 242 

 243 

 244 

 245 

 246 

 247 

 248 

 249 



 
Table 1: Major- and trace-element analysis of the Pampas Onduladas flow. The major-elements are in wt % and 
the trace elements are in ppm. The major-elements are recalculated to an anhydrous basis (original data Pasquarè 
et al., 2008; Espanon et al., 2014). 

Sample VRE19 VRE20 VRE21 VRE46 (A) VRE47 PY16 PY20 

Latitude(°) -36.4124 -36.4085 -36.3732 -36.9712 -36.9987 -36.3939 -36.2919 
Longitude(°) -68.5789 -68.5800 -68.5754 -67.4923 -67.4992 -68.6413 -68.7628 

SiO2 47.16 48.22 49.51 49.01 48.86 47.82 47.73 

TiO2 1.97 1.96 1.91 1.78 1.54 1.63 1.65 

Al2O3 17.36 17.45 18.09 17.23 16.30 17.88 18.28 

FeOt 11.78 11.49 10.75 11.55 11.98 10.86 10.03 

MnO 0.15 0.15 0.15 0.15 0.15 0.14 0.16 

MgO 7.21 6.94 5.90 7.01 8.82 7.91 7.61 

CaO 8.91 8.79 8.61 8.75 8.01 8.36 9.53 

Na2O 3.93 3.50 3.23 3.24 3.39 3.82 3.27 

K2O 1.04 1.01 1.33 0.89 0.67 1.04 0.84 

P2O5 0.48 0.49 0.48 0.38 0.27 0.39 0.32 

V 221 225 242 221 186 133 192 

Cr 197 190 244 247 293 298 196 

Ni 81 77 105 144 216 109 73 

Rb 14.5 14.8 22.8 12.7 9.5 18.0 15.0 

Sr 642 638 626 557 367 600 587 

Y 23.5 23.1 22.6 20.8 18.4 16.0 16.0 

Zr 148 149 199 135 104 123 123 

Nb 19.0 19.3 22.3 13.6 9.5 15.0 14.0 

Cs 0.3 0.3 0.3 0.2 0.2 0.3 0.5 

Ba 308 475 510 320 183 305 356 

La 18.7 18.4 20.4 14.0 10.7 14.9 16.0 

Ce 37.6 36.0 34.4 28.6 22.6 31.5 34.7 

Pr 5.0 4.9 5.1 3.9 3.1 3.9 4.5 

Nd 23.2 22.4 23.3 18.5 14.7 17.3 20.1 

Sm 5.6 5.5 5.6 4.8 4.0 4.3 5.0 

Eu 1.9 1.8 1.8 1.7 1.4 1.6 1.8 

Gd 5.5 5.4 5.3 5.0 4.1 4.3 4.9 

Tb 0.9 0.8 0.9 0.8 0.7 0.7 0.8 

Dy 4.9 4.7 4.6 4.3 3.8 3.9 4.4 

Ho 0.9 0.9 0.9 0.8 0.7 0.7 0.9 

Er 2.5 2.4 2.4 2.2 2.0 1.9 2.3 

Tm 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

Yb 2.1 2.1 2.1 1.9 1.6 1.5 1.8 

Lu 0.3 0.3 0.3 0.3 0.2 0.2 0.3 

Hf 3.7 3.7 4.9 3.4 2.7 2.5 3.3 

Ta 1.1 1.1 1.4 0.8 0.5 0.7 0.7 

Pb 3.5 3.4 4.8 3.8 2.6 3.0 
 

Th 2.0 2.0 3.2 1.7 1.3 1.5 1.6 

U 0.5 0.5 0.8 0.5 0.3   0.5 



 250 
Table 1 cont 

      Sample PY23 PY24 PY25 PY34a PY34b SAL1 SAL4 

Latitude(°) -36.4597 -36.4721 -36.5541 -36.9702 -36.9702 -36.2764 -36.2944 
Longitude(°) -68.3886 -68.1894 -68.1754 -67.4913 -67.4913 -68.7088 -68.7316 

SiO2 47.56 47.25 47.86 48.75 47.25 48.86 47.86 

TiO2 1.9 1.83 1.77 1.73 1.49 1.85 1.78 

Al2O3 17.53 17.2 17.56 17.49 16.83 16.48 16.2 

FeOt 10.74 10.65 11.15 10.65 10.81 11.21 11.1 

MnO 0.16 0.16 0.16 0.16 0.18 0.17 0.16 

MgO 6.87 7.35 7.3 7.62 9.14 6.96 7.05 

CaO 9.5 9.39 8.96 8.75 9.32 9.78 10.17 

Na2O 3.47 3.5 3.46 3.5 3.43 3.74 3.61 

K2O 1.01 0.91 0.93 0.86 0.82 1.28 1.22 

P2O5 0.37 0.35 0.35 0.29 0.26 0.44 0.44 

V 179 187 188 152 197 210 217 

Cr 221 256 256 247 417 240 220 

Ni 82 97 103 115 190 110 110 

Rb 15.0 15.0 15.0 14.0 18.0 23.0 26.0 

Sr 583 571 564 553 518 627 621 

Y 16.0 16.0 18.0 15.0 16.0 21.6 23.5 

Zr 130 124 125 119 118 151 144 

Nb 18.0 17.0 17.0 14.0 11.0 16.2 15.1 

Cs 0.3 0.3 0.4 0.3 0.7 0.7 0.8 

Ba 293 257 251 238 298 303 443 

La 17.7 16.9 16.6 14.4 16.2 19.0 19.1 

Ce 37.8 36.2 36.1 30.9 35.0 40.2 40.8 

Pr 4.6 4.5 4.4 3.9 4.4 5.1 5.4 

Nd 20.9 20.0 20.5 17.5 19.5 20.9 21.6 

Sm 5.0 4.9 5.1 4.5 4.8 5.1 5.4 

Eu 1.8 1.8 1.9 1.6 1.7 1.8 1.9 

Gd 4.9 4.8 5.0 4.4 4.5 4.8 5.1 

Tb 0.8 0.8 0.8 0.7 0.8 0.8 0.8 

Dy 4.4 4.4 4.5 4.0 4.2 4.5 4.5 

Ho 0.8 0.8 0.8 0.7 0.8 0.8 0.8 

Er 2.2 2.2 2.2 2.0 2.1 2.2 2.3 

Tm 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

Yb 1.8 1.7 1.8 1.6 1.8 2.0 2.0 

Lu 0.3 0.3 0.3 0.2 0.3 0.3 0.3 

Hf 3.4 3.2 3.3 3.0 3.1 3.6 3.6 

Ta 1.0 1.0 0.9 0.7 0.6 1.3 1.1 

Pb 2.0 2.0 1.0 
 

6.0 
  

Th 1.7 1.6 1.6 1.4 2.3 3.0 2.7 

U 0.5 0.5 0.5 0.4 0.7 0.7 0.7 

 251 



3.2 Rheological characterisation 252 

The rheological parameters were calculated using the Magma® program from K. Wohletz 253 

(www.ees1.lanl.gov/Wohletz/Magma.htm). This program uses the major-element 254 

composition, crystal volume and crystal or vesicle size to calculate the density, liquidus 255 

temperature and viscosity of lava flows. The following values are used based on 256 

petrographic observations: phenocryst volume = 15 %; and crystal or vesicle maximum 257 

average size = 5 mm.  The phenocrysts volume is based on hand specimens and 258 

photomicrograph observations (Figure 4) showing low phenocryst content as also noted by 259 

Pasquarè et al. (2008). The vesicle size is based on an average from field observations 260 

(Figure 3b, e) and hand specimens (Figure 4). Magma® calculates the liquidus temperature 261 

based on the method of Sisson and Grove (1993) and the density based on the method 262 

described by Bottinga and Weil (1972). A 20% vesicle volume correction (average vesicle 263 

volume of Pampas Onduladas flow) was applied to the density calculation which also 264 

correlated with observations from other large basaltic flows (Keszthelyi and Pieri 1993). The 265 

parameters here used to calculate the viscosity (15% phenocryst volume, 5mm phenocryst 266 

or vesicle size and 20% vesicle volume) are based on field observations. It is important to 267 

consider that the exposed part of the Pampas Onduladas flow is the uppermost highly 268 

vesicular layer (Figure 4a) which does not fully represent the characteristic of the long flow, 269 

therefore the values used were also correlated with those presented by Pasquarè et al. 270 

(2008) and other estimates on long lava flows (Keszthelyi and Self, 1998). The viscosity was 271 

calculated using Magma® and the algorithms proposed by Bottinga and Weil (1972).  272 

Furthermore, the flow velocity was calculated using Jeffrey’s Law equation: 273 

  274 

where ρ is the density of the flow (in kg/m3), g is the gravitational acceleration (9.8 m/s2), θ is 275 

the slope (0.0084), H is the thickness (variables used: 20m, 15m, 10m and 5m) and η is the 276 

viscosity (in Pa.s). The 20m thick variable used is based on, the preserved Pampas 277 

Onduladas thickness above the surrounding topography (Figure 5) which also corresponds 278 

to the minimum thickness proposed by Pasquarè et al. (2008). However, the 20m thick 279 

variable is the preserved thickness of the flow after inflation and cooling, therefore it does not 280 

represent the original thickness. In order to account for the velocity several hypothetical 281 

thickness values of less than 20m, were chosen at regular set intervals.    282 

http://www.ees1.lanl.gov/Wohletz/Magma.htm


 283 

Figure 4: Images of samples from the Pampas Onduladas flow. a) Sample VRE20 uppermost layer. White arrow 284 
indicates way up, note the roundness of the vesicles (scale in cm and mm). b) Sample VRE46a uppermost layer. 285 
Note the vesicles are not rounded and some are filled by carbonates. c) photomicrograph of a cut surface of 286 
sample VRE21. d)  photomicrograph of the surface of sample VRE46a showing the high crystal content of the 287 
rock. e) and f) polarised photomicrographs of samples VRE20 and VRE46a, respectively. g) and h) cross-288 
polarised photomicrographs of samples VRE20 and VRE46a, respectively. 289 



 290 

Figure 5: Cross sections of the Pampas Onduladas flow. North is to the left in each case and the vertical scale is 291 
exaggerated. Cross sections a) to e) correspond to sections 1 to 5 of the flow. Red dashed lines in each of the 292 
cross sections delimit the margins of the Pampas Onduladas flow. The San Rafael block (SRB) outcrops on the 293 
northern side of cross sections A-A’ and B-B’. 294 

3.3 Volume Calculation 295 

The topographic slope was calculated using the difference in elevation from the initial point A 296 

(1852 MASL) to the final point B (445 MASL) divided by the total calculated length of the 297 

flow. The elevation of points A and B and volume calculation were based on the digital 298 

elevation model (DEM), Shuttle Radar Topography Mission (SRTM) 90 m (30m x 30 m) with 299 

an absolute vertical error of less than 9 m and a relative vertical error of less than 10 m 300 

(Rodriguez et al., 2006). Five cross-sections (Figure 1) were made along the flow in order to 301 



assess the topographic correlation between the flow and the adjacent pre-existing surfaces, 302 

as well as to estimate its thickness. The volume was calculated using the procedure 303 

described by Smith et al. (2009) based on the SRTM digital elevation model and employing 304 

the ArcGIS® software. To calculate the volume, the Pampas Onduladas flow was divided 305 

into 5 segments (Figure 1) in order to account for the changes in slope and adjacent 306 

topography. The volume was calculated for each individual segment and then summed to 307 

provide the total. There are areas of the flow, especially in its proximal part, where it is 308 

interrupted by the pre-existing topography (kipukas) such as scoria cones and elevated 309 

landscapes (i.e. parts of the flow where the underlying substrate has not been covered; 310 

Figure 3a, f). The volumes of each of the kipukas was calculated and later subtracted from 311 

the total (see following section for further details). The errors associated with the volume 312 

calculations have not been determined as this is a first-order estimate of the volume (see 313 

Smith et al., 2009) and there are several potential sources of error that are difficult to 314 

quantify. The possible sources of error include: (i) the SRTM has an absolute height error of 315 

less than 9 m in a global scale and 6.2 m for South America (Rodriguez et al., 2006); (ii) 316 

digitalisation is based on user interpretation; (iii) topographic highs on the sides of the flow 317 

may give inaccurate base surfaces; and (iv) data point interpolation. The interpolation 318 

algorithm uses the values from the sides of the flow to create a planar estimate of the 319 

underlying surface; however the interpolation does not consider topographic lows that may 320 

have existed before the lava emplacement. 321 

3.3.1 Detailed volume calculation method 322 

The volume was calculated by modifying the approach of Smith et al. (2009). The procedure 323 

used is described in several steps.  324 

1- The Pampas Onduladas flow was digitised using Landsat7 imagery Google Earth® 325 

and then divided into 5 segments. In addition, features such as kipukas, were also digitised.  326 

2- The files created where exported to ArcGIS10® and the remaining analyses were 327 

performed using this software. The volume was calculated individually for each sector and 328 

kipuka. The total volume was determined by summing all the sector volumes. The same 329 

principle was applied to all the kipukas. Finally, the total volume of the kipukas was 330 

subtracted from the total volume.  331 

3- The SRTM 90m (30 m x 30 m) digital elevation model covering the area of interest 332 

was uploaded to ArcGIS10®. Using the Windows tool, selecting the sector shapefile and 333 

employing the create-a-void command a cavity covering the area of the sector was created 334 

in the DEM. Basically, in this step, the sector of the flow being calculated was removed from 335 

the DEM. The same principle was applied for the kipukas.  336 



4- After removing the sectors, the surrounding topography was interpolated to create an 337 

approximate base surface. In order to do this, all the values of each cell in the SRTM were 338 

converted to point values using the conversion tool. Once the new point layer was created, 339 

interpolation between point values was carried out. The interpolation tool used is the spline 340 

(Smith et al., 2009) and the output cell size was set with the default value for sector 1. The 341 

default value used for sector 1 was then used for all sectors from 2 to 5.  342 

5- The hypothetical basal surface created, was isolated from the rest of the DEM. This 343 

was done using the Windows tool and employing the clip option. The resulting layer should 344 

only contain the interpolated base area of the sector. The same principle was applied to the 345 

original DEM so that the top surface of the sector was isolated from the rest of the DEM.  346 

6- Once the base and top part of a particular section were isolated, the volume and area 347 

of the top and the base surface were calculated separately using the Area and Volume 348 

statistics option. In the calculation, the plane height differed from sector to sector as they 349 

have different elevations; therefore the default value for each particular sector was used. 350 

The calculated volume and area from the top and base of the sector were exported into 351 

Excel.  352 

7- The final volume of each sector was calculated using Excel by subtracting the base 353 

volume from the top volume. The volume from the 5 sectors was summed and the volume 354 

from the kipukas that interrupted the Pampas Onduladas flow was subtracted.  355 

4  Results 356 

4.1  Petrographic description of Pampas Onduladas Flow  357 

The Pampas Onduladas samples are highly vesicular in the uppermost layer (Figure 4) with 358 

well developed roundness in the proximal-middle part of the flow (Figure 4a) while the 359 

vesicles are longitudinally deformed in the distal part (Figure 4b). Nevertheless, a sub-360 

angular vesicle can be observed in sample VRE46a (Figure 4f and h). The rocks from the 361 

flow are fine grained and hypocrystalline (Figure 4c and d) with sparse phenocrysts; the 362 

groundmass is composed of microliths. The photomicrographs show a subophitic texture for 363 

sample VRE20 (Figure 4e and g), which is generally found in the central part of basaltic 364 

flows (Llambías, 2008). Sample VRE46a has an interstitial texture (Figure 4f and h).  The 365 

rocks are mainly composed of plagioclase, olivine, and orthopyroxene with some 366 

clinopyroxene (Figure 4g, h). Olivine phenocrysts are euhedral to subhedral, and some of 367 

show alteration on the margins to iddingsite. All the samples contain opaque minerals.     368 

4.2  Ar-Ar results 369 



A summary of the results from the 40Ar/39Ar analysis is shown in Table 2 (including plateau, 370 

inverse isochron and total gas ages) and Figure 6, while the full data set is presented in 371 

Supplementary Data 1. Plateau age plots (Figure 6a), step heating spectra (Figure 6b) and 372 

inverse isochron graphs were produced using the Isoplot 3.75 add-in for Microsoft Excel 373 

(Ludwig, 2012). 374 

The age spectrum for VRE20 comprises an essentially flat profile followed by successively 375 

older apparent ages for high-temperature steps. A plateau age of 373 ± 10 ka (2σ) was 376 

calculated for sample VRE20 (Table 2), using the plateau criteria of Singer and Pringle 377 

(1996). The slightly higher apparent age calculated for the initial step most likely reflects 378 

release of excess 40Ar from fluid inclusions at low temperature. The older apparent ages 379 

calculated for the high temperature steps most likely reflect outgassing of incompletely 380 

removed plagioclase and clinopyroxene phenocrysts, consistent with elevated Ca/K ratios 381 

and observations in other whole-rock basalt 40Ar/39Ar studies (e.g. Cassata et al., 2008). An 382 

inverse isochron generated for all data, excluding the anomalous result from the final fusion 383 

step, suggests a trapped argon component (40Ar/36Ari) with a near-atmospheric composition 384 

of 299.2 ± 2.9 (95% CI; MSWD = 5.5). However, the high MSWD of this fit reflects the 385 

discordance of the data, indicating the presence of at least two trapped argon components. 386 

A well-constrained atmospheric 40Ar/36Ari ratio of 296.6 ± 1.7 (2σ; MSWD=1.2) is revealed by 387 

data from the plateau-forming steps (2-6), supporting the interpretation of the plateau age as 388 

an eruption/cooling age. Owing to the extremely low radiogenic 40Ar* concentration in this 389 

sample (40Ar* comprises ~3% of total 40Ar), the corresponding inverse isochron age has a 390 

poorly constrained value of 349 ± 68 ka (2σ), within error of the plateau age. The 391 

significantly older total-gas age of 434 ± 10 (2σ) reflects the extraneous 40Ar* released in the 392 

initial and high-temperature heating steps.  393 

In contrast to VRE20, the age spectrum for VRE46a is highly discordant and a plateau age 394 

could not be resolved (Figure 6b). The monotonic decrease in apparent ages implicates 395 

recoil loss/redistribution of 39Ar and 37Ar from secondary phases and/or fine-grained 396 

magmatic phases during irradiation (e.g. Koppers et al., 2000). The older apparent ages 397 

calculated for the high-temperature steps likely reflect release of extraneous 40Ar during 398 

degassing of plagioclase and clinopyroxene phenocrysts, as for sample VRE20. Due to the 399 

recoil issue apparent in this sample, inverse isochron analysis is of limited value in 400 

constraining the trapped argon composition (Koppers et al, 2000). The data are highly 401 

discordant in three-isotope space (Figure 6), but suggest a atmospheric 40Ar/36Ari ratio of 402 

295.6 ± 3.0 (95% CI; MSWD=35). Therefore, assuming negligible loss of 39Ar from the 403 

sample, the total gas age of 370 ± 8 ka (2σ) can be regarded as a maximum age estimate 404 

for sample VRE46a. 405 



Table 2: 
40

Ar/
39

Ar results for groundmass samples from the Pampas Onduladas 
basaltic  flow 

Sample VRE20 VRE46a 

Flow sector 2 5 

Plateau age  

age (ka) 373 ± 10 (2σ) N/A 

MSWD 1.4 N/A 

cum
39

Ar (%) 68.2 N/A 

Inverse 
Isochron age  

age (ka) 349 ± 68 (2σ) 374 ± 76 (95% Cl) 

MSWD 1.2 35 

steps included 5 of 9 9 of 9 

Total-gas age age (ka) 434 ± 10 (2σ) 370 ± 8 (2σ) 

N/A not applicable  

    406 

 407 



Figure 6: 
40

Ar/
39

Ar results for samples of the Pampas Onduladas basaltic flow. a) Plateau diagram for sample 408 
VRE20. b) Spectrum diagram for sample VRE46a. c) and d) Inverse isochron diagrams for samples VRE20 and 409 
VRE46a, respectively. e) and f) large-scale inverse isochron diagrams for samples VRE20 and VRE46a, 410 
respectively. The heating steps in green are those which were accepted while those in blue were rejected.  Error 411 
symbols in e) and f) are 1σ. 412 

4.3  Geochemistry of Pampas Onduladas 413 

Major-element concentrations of the Pampas Onduladas flow suggest a primitive 414 

composition with low and restricted SiO2 content (Table 1). The MgO content ranges from 415 

9.1 wt % (Sample PY34b, Pasquarè et al., 2008) to 6.0 wt % (Espanon et al., 2014). The 416 

MgO concentration is negatively correlated with TiO2, P2O5 and K2O concentrations (not 417 

shown), while no correlation was established with Al2O3, CaO, Na2O and FeOt contents. A 418 

positive correlation is apparent between TiO2 and K2O contents (Figure 7a). Rare Earth 419 

Element (REE) concentrations normalised to the primitive mantle (values from McDonough 420 

and Sun, 1995) show enrichment in light REEs over heavy REEs (Figure 7e). This pattern is 421 

generally associated with the presence of residual garnet in the magmatic source. In 422 

addition, a small Eu peak is noticeable in Figure 7e. Trace-element concentrations, 423 

normalised to the primitive mantle (values from McDonough and Sun 1995; Figure 7f), 424 

display enrichment for Ba and Sr while some samples have a positive Pb anomaly. The 425 

negative Nb-Ta anomaly typical of arc volcanism is not apparent (except for sample PY34b, 426 

from Pasquarè et al., 2008) among samples of the Pampas Onduladas flow (Figure 7f). Sr 427 

isotope values are low, ranging from 0.703747 (Espanon et al., 2014) to 0.704151 428 

(Pasquarè et al., 2008), which are comparable with 87Sr/86Sr values reported by Hernando et 429 

al. (2012) for pre-caldera basalts (0.703766 to 0.703906). 430 

4.4  Rheology  431 

The average calculated viscosity is 96 Pa.s at a mean temperature of 1170°C and with a 432 

15% phenocryst content correction, corresponding to a typical olivine basalt melt (Williams 433 

and McBirney, 1979). The value for viscosity and temperature inferred for the Pampas 434 

Onduladas are slightly higher than the range suggested by Pasquarè et al. (2008) of 3-73 435 

Pa.s for viscosity and 1130 - 1160°C for temperature. However, the viscosity values are 436 

within the range of those calculated for the Undara and Toomba flows in Queensland, 437 

Australia, which have a similar composition to the Pampas Onduladas flow (Stephenson et 438 

al., 1998). The calculated bulk density ranges from 2120 to 2466 kg/m3 after correction for 439 

20% vesicle volume. 440 



 441 

Figure 7: Geochemical data for Pampas Onduladas lavas. a) TiO2 vs K2O concentrations in wt %, b) Ba/Nb vs 442 
Th/Ta, c) La/Yb vs Nb/Yb, d) La/Nb vs Th/Nb, e) Rare earth element (REE) concentrations normalised to 443 
primitive mantle values (McDonough and Sun, 1995) and f) trace-element concentrations, normalised to 444 
primordial mantle values (McDonough and Sun 1995). The green triangles and lines are from Pasquarè et al. 445 
(2008), and the blue triangles and lines are from Espanon et al. (2014). The upper continental crust (UCC) and 446 
the lower continental crust (LCC) compositions are from Rudnick and Gao (2003). The ocean island basalt (OIB) 447 
composition is from Sun and McDonough, (1989). The Río Colorado volcanic field is taken as the local intraplate 448 
composition similar to an OIB endmember from Søager et al. (2013). Data from the basaltic Andean volcanic arc 449 
(ARC) are from Lopez-Escobar et al. (1977), Tormey et al. (1991) Ferguson et al. (1992), Tormey et al. (1995), 450 
Costa and Singer (2002) and Jacques et al. (2013). 451 



The calculated velocity of the Pampas Onduladas flow (assuming a mean density value of 452 

2300 kg/m3) is 99 (~355 km.h-1), 55, 25 and 6 m.s-1 for flow thicknesses of 20, 15, 10 and 5 453 

m, respectively (Table 3). These flow velocities were calculated assuming a laminar flow 454 

behaviour. The average velocities appear excessive in comparison to the fastest velocity 455 

recorded for basaltic lava flows such as for Mt. Nyiragongo (ultramafic flow) in 1977 with 456 

speeds of approximately 17 m.s-1 (60 km.h-1; Tazieff, 1977) or some of the Mauna Loa flows 457 

with speeds of up to 15 m.s-1 (55 km.h-1; Lipman and Banks, 1987). Because the average 458 

velocities calculated are excessive, Reynolds numbers (Re) (Reynolds, 1974) were 459 

calculated to determine whether the flow was turbulent (density = 2300 kg/m3 and viscosity = 460 

96 Pa.s). Using velocities calculated above, Re values do suggest a turbulent flow (Re 461 

values of 47000, 20000 and 6000 at 20 m, 15 m and 10 m flow thickness; Table 3). For a 5 462 

m thick flow, the Re number is 700, which is regarded as laminar. In order to calculate the 463 

velocity of a turbulent flow, a different equation must be applied that incorporates the friction 464 

coefficient (Cf) in the Chezy equation (Jeffreys, 1925) (see Appendix A for equations). Using 465 

the calculated Re numbers and employing the Gonacharov (1964) equation for turbulent 466 

sheet flow, a Cf value of 0.0021, 0.0025 and 0.0033 for a 20 m, 15 m and 10 m thick flow 467 

respectively were calculated. These values were incorporated into the Chezy equation to 468 

calculate the velocity of a turbulent flow: 28 (~101 km.h-1), 22 (~ 79 km.h-1) and 16 (58 km.h-469 

1) m.s-1 for a 20, 15 and 10 m thick flow, respectively (Table 3). The calculated average flow 470 

velocities are high even for a turbulent flow compared with observations from Mt Nyiragongo 471 

(Tazieff, 1977) and Mauna Loa (Lipman and Banks, 1987). Consequently some parameters 472 

were modified in order to examine the velocity change by increasing the maximum 473 

phenocryst and/or vesicle size and the vesicle volume proportion. By increasing the 474 

maximum phenocryst or vesicle size the velocity did not incur in much change (~1%) while 475 

increasing the vesicle volume to 30% the average viscosity increased to 133 Pa.s and the 476 

average bulk density decreased to 1924 kg/m3, therefore reducing the velocity by an 477 

average of 11% which is still elevated.   478 

Table 3: Velocity calculated at liquidus temperature for a laminar and turbulent flow, for the Pampas 
Onduladas flow. 

  

Re number 
Velocity @1170°C for  
laminar flow (m.s

-1
) 

Velocity @1170°C for 
turbulent flow  (m.s

-1
) 

Thickness (m) 

  

20 47000 99 28 

15 20000 55 22 

10 6000 25 16 

5 700 6 9 

 479 

4.5  Length and Volume  480 



The length of the Pampas Onduladas flow was measured from the far eastern end of La 481 

Carbonilla fracture to 35 km north of Puelén (Figure 1) in the province of La Pampa. The 482 

length is estimated to be 167 km (following the method by Cashman et al., 2013; see 483 

Section 3 Methods). This value is slightly less than previous measurements of 174 km and 484 

181 km (Pasquarè et al., 2005; Pasquarè et al., 2008, respectively). This variation is 485 

attributed to the uncertainty in assessing the initial eruption point and the final point of the 486 

Pampas Onduladas flow as the eruption point for the Pampas Onduladas flow has not been 487 

identified. In this sense Pasquarè et al. (2005 and 2008) provided some general description 488 

of the initial and terminal point of the flow determining that its proximal part belongs to the 489 

eastern end of the Payún fissure system (also referred to as La Carbonilla fracture) while the 490 

end point was located in the Salado river valley in the province of La Pampa (Pasquarè et 491 

al., 2008). The length of La Carbonilla fracture on its eastern side is ~ 14 km (Llambías et 492 

al., 2010) therefore, providing a wide area from which the Pampas Onduladas eruption point 493 

might be.  494 

The flow volume was calculated to be 7.2 km3, while the surface area was calculated as 739 495 

km2 (Table 4). The calculated volume should be regarded as a minimum as the base of the 496 

flow was extrapolated from the adjacent topography, which may not represent its true basal 497 

surface. The topographic slope from the initial to the final part of the flow is 0.84% or 0.24°; 498 

however, the slope is not constant along the length. The slope is much steeper in the initial 499 

part than in most of its length (Figure 8) as it changes from 1.6% in section 1, to 0.9% in 500 

section 2 and then to 0.6, 0.5 and 0.4% in sections 3, 4, and 5, respectively. The mean width 501 

of the flow decreases downhill from 9.4 km in section 1, to 5.1 km in section 2, then to 3.8, 502 

2.6 and 3.5 km in sections 3, 4 and 5, respectively.  503 

Table 4: Area and volume calculated for the 5 sections of the 
Pampas Onduladas flow, as well as for the volcanic cones and the 
void areas that interrupted the flow. 

Sector Area (km
2
) Volume (km

3
) 

1 303 3.9 

2 166 1.3 

3 100 1.1 

4 81 0.8 

5 102 0.3 

volcanic cones  4 0.1 

voids 8 0.1 

total for flow 739 7.2 

 504 



 505 

Figure 8: Elevation profile of the Pampas Onduladas flow from its initial (proximal) part to its final (distal) part. 506 
Dashed lines separate the five sectors into which the Pampas Onduladas flow was divided. 507 

5  Discussion 508 

5.1 Geochonology  509 

The 40Ar/39Ar dating results for the Pampas Onduladas flow, provide the first direct 510 

radiometric age for this long flow. The highly precise plateau age of 373 ± 10 ka (3%; 2σ) 511 

determined for sample VRE20 is considered to represent the eruption age of the basalt, 512 

supported by inverse isochron analysis. The argon isotopic ratios measured for VRE46a 513 

appear disturbed, and the decrease in apparent age with increasing temperature is attributed 514 

to significant recoil loss/redistribution in this sample. This is consistent with petrographic 515 

studies revealing minor alteration (Figure 4f and h) mainly of the interstitial microcrystalline 516 

to cryptocrystalline material in this sample. Therefore determination of an eruption age is not 517 

possible for this sample, as total gas ages for samples affected by recoil only can be good 518 

approximations for eruption age (although these are not so reliable as we cannot be sure 519 

that the trapped component is atmospheric, therefore they may overestimate the eruption 520 

age), as looks to be the case in this instance, due to consistency with VRE20 results. An 521 

eruption age of 373 ± 10 ka (3%; 2s) determined from the Pampas Onduladas flow is 522 

stratigraphically consistent with a K-Ar age of 400 ± 100 ka (2σ) previously reported for an 523 

underlying basalt flow (see section 2.2). 524 

5.2 Petrogenesis of the Pampas Onduladas Flow 525 



The origin of magma for the Pampas Onduladas flow has been regarded previously as 526 

having been affected by metasomatism of the subducting slab (Pasquarè et al., 2008). 527 

Trace-element compositions lack typical arc-related signatures such as negative Nb, Ta and 528 

Ti anomalies, high Ba/Ta and La/Ta, and enrichment in Th (inferred from slab sediments and 529 

slab partial melts, Jacques et al., 2013) or strong depletion in heavy rare earth elements 530 

(relative to slab partial melts; Figure 3 b, e). Therefore, the geochemical data suggest that 531 

the Pampas Onduladas flow does not exhibit signatures typical of the Andean arc (Figure 7). 532 

The volcanism in the Payún Matrú Volcanic Field (PMVF) is intraplate with a geochemical 533 

composition similar to that of ocean island basalts (Germa et al., 2010, Jacques et al., 2013; 534 

Søager et al., 2013; Espanon et al., 2014). The composition of the Pampas Onduladas flow 535 

also suggests some association with a local intraplate source (Figure 7b; local intraplate 536 

source is here taken as the Rio Colorado field). The trace-element ratios show values 537 

intermediate to those of the local intraplate (Rio Colorado field, Figure 7) and the lower 538 

continental crust (LCC) (Figure 7b, c, d). They also define a linear trend following the local 539 

intraplate-LCC regression line (Figure 7c and d), suggesting that some lower crustal 540 

assimilation has taken place. Typical LCC signatures include depletion in Th, K, Rb, Zr, Ba, 541 

LREE, Hf, and U relative to the local intraplate, slab components (sediments and partial 542 

melts) and Andean arc. The samples from the Pampas Onduladas flow show depletion in all 543 

of these elements and have high Th/U ratios (LCC = 6). Furthermore, Pasquarè et al. (2008) 544 

proposed sialic crustal assimilation for the Pampas Onduladas flow, based on Sr isotopic 545 

analyses. The issue of crustal contamination in the PMVF is not clear as there are no crustal 546 

Sr-isotopic values for this area (Espanon et al., 2014). The Sr isotope values for the Pampas 547 

Onduladas flow are in agreement with those previously presented for the PMVF (Pasquarè 548 

et al., 2008; Bertotto et al., 2009; Hernando et al., 2012; Jacques et al., 2013; Søager et al., 549 

2013; Espanon et al., 2014).  550 

As discussed above, geochemical data for the Pampas Onduladas flow are consistent with 551 

an intraplate volcanic signature of OIB affinity. It is noted that an intraplate signature is 552 

typical of other long (>100 km) basaltic flows such as the Toomba and Undara flows that are 553 

associated with mantle upwelling (Stephenson et al., 1998). This is intuitively predictable, as 554 

a magmatic body rising from the mantle, would be possessed of the high temperatures, low 555 

viscosity and high lava volumes expected to yield long lava flows. However, these magmatic 556 

characteristics are common to many volcanic settings, and yet long flows (>100 km) are not 557 

common. Rheological and topographical factors that may permit emplacement of a long flow 558 

are discussed in the following section 559 

5.3 Rheology of the Pampas Onduladas flow 560 



Formerly, it was generally accepted that long flows (>100 km, Keszthelyi and Self, 1998) 561 

require low viscosity, rapid emplacement (Walker, 1973) and large volumes (Pinkerton and 562 

Wilson, 1994). However, it has been proposed that effective insulation, in combination with a 563 

favourable topographic slope, can also contribute to form long basaltic flows (Keszthelyi and 564 

Self, 1998). Based on rheological characteristics, Keszthelyi and Self, (1998), modelled two 565 

types of emplacement for long lava flows (>100km); “rapid” and “insulated” models. “Rapid” 566 

emplacement requires less than 0.5°C/km of cooling at high velocities of 2 - 15 m.s-1  for a 567 

channel 2 - 19 m deep and high effusion rates 200 – 17000 m3/s (Keszthelyi and Self, 1998). 568 

On the contrary, “insulated” emplacement requires much lower velocities (0.1 - 1.4 m.s-1), 569 

slightly thicker flows 2 - 23 m and lower effusion rates 8 – 7100 m3/s (Keszthelyi and Self, 570 

1998). The calculated viscosity for the Pampas Onduladas flow is in agreement with 571 

previous viscosity calculations for long basaltic flows (Stephenson et al., 1998; Pasquarè et 572 

al., 2008). The viscosity of a flow increases with concentrations of solids, water and 573 

dissolved gases. Pinkerton and Stevenson (1992) suggested that for solid concentrations 574 

below 30%, the viscosity remains relatively constant and flow behaviour is approximately 575 

that of a Newtonian fluid. In the case of the Pampas Onduladas flow, the viscosity was 576 

calculated based on a 15% solid concentration, while Pasquarè et al. (2008) assumed a 577 

phenocryst-free magma in their calculation. In both cases the calculated average viscosity is 578 

similar (2- 73 Pa.s Pasquarè et al., 2008 and 96 Pa.s current study); therefore, provided the 579 

concentration of solids is less than 30%, viscosity values remain low. Nevertheless, the 580 

vesicle volume proportion affects the average viscosity of the Pampas Onduladas flow as it 581 

increases by from 20 to 30%. Nevertheless, in agreement with the internal morphology of a 582 

basaltic flow, the vesicles can be associated with a viscosity reduction, as the pressure 583 

imposed by spherical bubbles is not absorbed by the system, but released as the vesicles 584 

deform and collapse (Llambías 2008). In Section 2.2, the internal structure of the Pampas 585 

Onduladas flow is described as having disrupted and elongated vesicles forming the lower 586 

massive layer, agreeing with the previous statement. Despite, the possibility of keeping the 587 

flow at low viscosity by vesicle deformation and collapse as previously mentioned, the sub-588 

angular vesicle in Figure 4f and h suggest a transition to a more viscous character in the 589 

distal part. This constitutes the only evidence of a change in flow regime; therefore further 590 

studies along the flow are needed in order to fully assess the hypothesis of a viscosity 591 

change.  592 

The calculated velocity for the Pampas Onduladas flow (Table 3) is higher than previous 593 

open channel basaltic flow velocity estimates (4-12 m.s-1, Keszthelyi and Self, 1998). The 594 

high velocities determined here are regarded as maxima, as the velocity is dependent on 595 

thickness, slope and viscosity. The thickness of the flow is one of the largest sources of 596 



error. This is because inflation can take place after emplacement and cooling, hence 597 

resulting in an apparent thicker flow. In Hawaii, Hon et al. (1994) observed that a flow initially 598 

30 cm thick was inflated to a thickness of 3-7 m in a period of over a week. In the current 599 

study several thicknesses (20, 15, 10 and 5 m) were considered in order to estimate the flow 600 

velocity, showing that it becomes turbulent at thicknesses greater than 5 m (Table 3). The 601 

velocity calculated for a 5 m thick flow (6 m.s-1, Table 3) can be regarded as an appropriate 602 

value, as it is within the range of open-channel basaltic flows (see Keszthelyi and Self, 603 

1998). Velocities calculated here are higher than the estimate of 1.4 m.s-1 from Keszthelyi 604 

and Self (1998) for a sheet flow with a slope of 0.1%, an upper lava crust 1 m thick and a 605 

total thickness of 23 m. Furthermore, the same authors proposed that faster flows (>5 m.s-1) 606 

would tend to have a thinner upper crust (<1 m thick), which agrees with the average <1 m 607 

thin Pampas Onduladas crust (Pasquarè et al., 2008).  608 

In relation to other long basaltic flows on Earth, the calculated volume for the Pampas 609 

Onduladas flow is 7.2 km3, which is lower than the volume calculated for the Toomba (12 610 

km3) and for the Undara flow (approximately 25 km3; Stephenson et al., 1998). Furthermore, 611 

in their model Keszthelyi and Self, (1998) proposed that the minimum volume for a 10 m 612 

thick long flow (>100 km in length) is 10 km3. The calculated volume is much lower than 613 

previous calculated volumes for long flows on Earth, mostly resulting from the flat pre-flow 614 

topography assumption, therefore regarded as minimum.  615 

5.4 Aspects of Pampas Onduladas pre-flow topography   616 

The average slope of the Pampas Onduladas flow (0.84%) is greater than the slope of the 617 

Toomba, Undara and Thjotsa flows (0.4%, 0.5% and ~0.7% respectively, Keszthelyi and 618 

Self, 1998). Other Quaternary flows in the Pampas Onduladas region have been emplaced 619 

over an Andean piedmont topography that created a gradual and lengthy declining slope 620 

towards the east. The pre-existing topography is covered mainly by basaltic flows with some 621 

exposures of the uplifted San Rafael Block (SRB), characterised by Permian-Triassic 622 

volcanic and plutonic assemblages (Figure 1b and Figure 5a, b). The SRB acted as a wall 623 

on the northern part of sector 1 and 2, as is evident in cross section A-A’ and B-B’ (Figure 5). 624 

The eruption point for this flow has been associated with the activity in La Carbonilla 625 

Fracture (LCF in Figure 1; Pasquarè et al. 2008). Here, the topography is characterised by a 626 

high elevation resulting from uplift of the Payún Matrú eastern shield when it was 627 

magmatically active.  628 

The Pampas Onduladas basalt flowed from its initial point over an irregular topography 629 

following its steepest course down-slope. The high slope suggests that the flow followed an 630 

unencumbered path, inferred from the long profile (Figure 8), while the irregular topography 631 



can be partly inferred from the cross sections. Accordingly, the Pampas Onduladas flow has 632 

a positive relief in relation to the surrounding topography in the middle and distal sectors 633 

(Figure 5 cross sections C-C’, D-D’ and E-E’). Interestingly, the cross-section from sector 1, 634 

shows a rough surface corresponding to the flow, which has been confined on its northern 635 

side by the San Rafael Block and by a topographic high on its southern part (Figure 5, cross 636 

section A-A’). Furthermore, in the cross-section from sector 2 (Figure 5, cross-section B-B’) 637 

the topography adjacent to the flow shows higher elevation, suggesting that the flow has 638 

followed a pre-existing topographic depression at least in some areas. This observation is 639 

critical in the volume calculation which can lead to underestimation assuming a flat base. 640 

Furthermore by following a topographic depression, the flow is insulated possibly resembling 641 

the type of effective insulation observed in lava tubes. The Pampas Onduladas has inflation 642 

structures such as tumuli and lava rises which are generally associated with pahoehoe sheet 643 

flow. No lava tubes have been identified for this basaltic flow. However, it is likely that at 644 

least in the proximal part, the flow was confined enhancing the insulation process.     645 

The geochemical, rheological and topographical constraints presented here suggest that the 646 

Pampas Onduladas flow shows a combination of characteristics that assisted in the 647 

development of its great length. The extent of the Pampas Onduladas flow cannot be 648 

explained by its geochemical characteristics as it shares these with other basalts of the 649 

PMVF. Thus, it is likely that its exceptional length is related to a steep slope, aided by low 650 

viscosity and a good insulating system derived from its inflating nature and topographic 651 

confinement.   652 

6  Conclusions 653 

The Pampas Onduladas flow in southern Mendoza constitutes one of the four longest 654 

Quaternary lava flows on Earth. It was erupted during the pre-caldera basaltic volcanism of 655 

the Payún Matrú volcanic field (Hernando et al., 2012) as confirmed by the geochronological 656 

data. The 40Ar/39Ar analysis suggests an eruption age of 373 ± 10 ka (2σ), constituting the 657 

first direct age constraint for this flow. Geochemical characteristics are consistent with an 658 

intraplate setting. This corresponds to a negligible arc signature, an enriched mantle source 659 

similar to local ocean island basalts (Rio Colorado volcanic field; Søager et al., 2013) and 660 

possible lower continental crust assimilation (Germa et al., 2010; Jacques et al., 2013; 661 

Søager et al., 2013; Espanon et al., 2014) 662 

Rheological characteristics indicate that the viscosity was low and the average eruption 663 

temperature was 1170°C. An important feature is the topographic slope which is higher 664 

(0.84%) than that determined for the Undara (0.5%), Toomba (0.4%) (Stephenson et al., 665 



1998) and Thjorsa (~0.7) (Vilmundardottir, 1977) flows. The slope is likely to be the most 666 

important feature affecting the length (Keszthelyi and Self, 1998) and velocity. The 667 

calculated velocity varies depending on thickness, from 30 m.s-1 (>110 km.h-1) to 17 m.s-1 668 

(~60 km.h-1) for 20 m and 10 m thickness, respectively (turbulent velocities for flow thickness 669 

values >5 m). The proposed thickness is at least 20 m (Pasquarè et al., 2008), after the flow 670 

inflated and cooled. The original thickness however, could have been ten times smaller than 671 

that preserved, using the inflation ratios from Hon et al. (1994) for Hawaiian basalts. The 672 

volume calculated here (7.2 km3) is regarded as a minimum estimate, based on the method 673 

used, which assumes a flat surface below the flow. The length of the Pampas Onduladas 674 

flow is not governed by its geochemical characteristics, but by the steep and constant 675 

topographic slope supported by an effective insulating system and low viscosity.  676 
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Appendix A (equations used for turbulent flow calculations) 687 

1- Reynolds number (Re) 688 

 689 

Where ρ is density, H is the thickness,   is the velocity and η is the viscosity 690 

2- Chezy equation  691 

 692 

Where  is the velocity for a turbulent flow, g is the gravitational acceleration, H is the 693 

thickness, θ is the slope and  is the friction coefficient  694 

3- Goncharov equation (Goncharov, 1964) to determine the friction coefficient for a 695 

turbulent flow with Re < 105 696 

 697 
 698 

 699 
 700 

 701 
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