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In this work, we employed an in-situ spray pyrolysis 
approach to fabricate metal oxide-graphene composites with 
highly porous morphologies. The materials exhibited unique 
globular lettuce-like structures comprising metal oxide 10 

nanoparticles embedded between graphene sheets with high 
capacitance. 

Supercapacitors along with Li-ion battery research have 
experienced a massive growth over the past few years due to the 
emergent demand for cleaner energy storage devices. The main 15 

focus has been directed towards portable energy devices and 
hybrid vehicles. Despite the massive attention, the challenge for 
these devices has been the development of functional materials 
that enhance the overall performance of the electrodes. Although 
a large variety of energy storage materials used in Li-ion batteries 20 

and supercapacitors have been reported, these still have their 
limitations.  
Supercapacitors operate on almost the same principle as batteries. 
However, the charge storage mechanisms of the two devices 
differ. While supercapacitors store energy by charge separation, 25 

batteries rely on chemical energy stored in the bulk of the 
electrode material which is a limiting factor for long cycle life 
and fast charging [1]. Supercapacitors have much longer cycle life, 
fast charge and higher power density than batteries, although their 
energy density is still very low making them heavy and bulky.  30 

To overcome this problem, today’s research focuses on two main 
fronts. The first one is the combination of pseudocapacitor (metal 
oxides) and EDL (carbonaceous materials) materials while the 
second focuses on the engineering of new structures and 
morphologies. Both approaches allow us to maximise the 35 

materials performance almost reaching their theoretical 
capacitances. 
Since the discovery of graphene, a new generation of nano 
materials and composites based on metal oxides (MO), graphene 
[2],graphene oxide (GO) [3] and reduced graphene oxide (rGO) [4] 40 

have being intensively studied. These materials, apart from being 
less bulky, offer an enhanced surface area and good cycling 
stability for both supercapacitors and batteries [5]. Many authors 
have reported methods for engineering of GO/MO 
nanocomposites [3, 6], such as co-precipitation and  template 45 

methods [7]  or hydrothermal based technology [8], where the 
obtained materials generally consist of randomly mixed 
structures. To address this problem, some groups have recently 

investigated surfactant directed self-assembly [9], layer-by-layer 
deposition [10] and other techniques such as liquid crystalline 50 

route [11] to prepare layered materials but these methods are either 
time-consuming and/or difficult for bulk-materials synthesis. 
Moreover, there are still obstacles involved in the large-scale 
fabrication of these composites which render them impractical for 
real applications. Therefore, the engineering and development of 55 

ordered particles on a large-scale is still an unstudied field. 
In the present paper we report the large scale engineering of 
globularly shaped rGO-MO nanocomposites (MO = Co3O4 or 
NiO) using an efficient and versatile in-situ spray pyrolysis 
approach. These structures demonstrate superior energy storage 60 

performance and good structural stability after cycling. We show 
that this approach can be applied to a range of metal oxide 
materials and demonstrate that the electrochemical properties can 
be much improved. Previously, we [12]  demonstrated the 
advantages of the spray pyrolysis engineering to obtain other type 65 

of Si/Carbon composites with superior performance as anode 
material in Li-ion batteries.  
Graphene oxide for the composites in this work was prepared in 
the same way as earlier reported in our work [11a]. To obtain the 
composites, cobalt hydroxide (Co(OH)2, 95%, Aldrich) powder 70 

was dissolved in 1 M nitric acid solution. The solution was then 
added into a diluted GO dispersion in water and stirred for 30 
minutes using a magnetic stirrer. The hybrid materials were then 
obtained in situ by spraypyrolyzing the suspension into a vertical 
type spray pyrolysis reactor to obtain 20% rGO-Co3O4 75 

composite. The same procedure was performed for the 
preparation of the rGO-NiO composite. Details of all 
experimental procedures, electrode preparation and 
characterization methods are outlined in the supporting 
information. 80 

The structure of the obtained hybrid composite was evaluated 
employing X-ray diffraction and Scanning electron microscopy 
techniques. All the diffraction peaks of both rGO–Co3O4 and 
rGO-NiO were perfectly indexed to cubic Co3O4 and NiO 
structures (see Figure S1 in supporting information). 85 

Additionally, no peak of graphene was detected thus suggesting 
that graphene sheets were homogeneously dispersed in the 
composite [13]. This was also supported by the EDS mapping for 
the rGO-Co3O4 composite (See Figure S2 in supporting 
information). 90 

Being amphiphilic in nature [11a, 11b], the hydrophilic parts of GO 
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sheets can quite easily interact with hydrophilic metal nitrates 
resulting in strong bonding between GO sheets and the starting  
precursor. 
 

 5 

Fig.1 SEM images of (a) Co3O4 and (b) NiO after spraying. TEM images 
of rGO-Co3O4 and rGO-NiO composites with highlighted areas expanded 

in figures (e) and (f).  

Therefore, the nucleation and growth of MO nanocrystals during 
the spray pyrolysis take place predominantly on the surface of 10 

GO sheets. The solid matrix of graphene then prevents these 
particles from excessive coagulation and coalescence into larger 
aggregates. Furthermore, the reduction of GO to rGO occurs 
during the process and this is confirmed by XPS spectra (see 
Figure S3 in supporting information). 15 

The introduction of large GO sheets which are typically in the 
size of 30 µm [11b], resulted in the formation of composite 
globules.  (Figure 1a, b). HRSEM was used to investigate the 
morphology of the composites. In figure 1 a and b, the rough 
globular surface due to the presence of nanoparticles and porous 20 

nature of the MO contribute significantly to the overall 
electrochemical performance of the materials. This structure 
allows the penetration by the electrolyte and consequently 
facilitating Faradaic reactions. The incorporation of larger rGO 
sheets (Figure 1a) in the composite structure which are observed 25 

to form a lettuce-like structure is also advantageous in terms of 
enhanced electrical conductivity. Additionally, their presence 
leads to an increase in both double layer capacitance and 
electrochemical stability of the composites.  
The typical TEM images, shown in Figures 1c and d reveal the 30 

globular lettuce-like structure of the composite particles. The 
images in low magnification (Figures 1c and d) elucidate the 

envelopment of MO particles within bended rGO sheets resulting 
in the formation of an interconnected three dimensional network 
structure. This interconnected structure offers the unique 35 

advantages of both introducing conductive pathways through the 
whole structure and simultaneously improving the mechanical 
strength of the final composite. It can also be observed from the 
highlighted areas in Figures 1c and 1d in high magnification 
(Figures 1e and f) that metal oxide nanoparticles grown on rGO 40 

sheets are quite homogeneously and densely distributed.  
The graphene encapsulated spheres showed crinkled and rough 
textures that were associated with the presence of flexible and 
ultrathin graphene sheets. Although, it is almost impossible to 
rule out the possibility of some degree of restacking of reduced 45 

graphene oxide sheets into graphene stacks during the spray 
pyrolysis process, TEM observation of the edge of one individual 
globular structure demonstrated the monolayer nature of rGO 
obtained by this method. Nevertheless, an ordered, layered 
nanostructure with metal oxide and the graphene materials is 50 

formed.  
This particular arrangement is responsible for the high capacitive 
behaviour as the contribution of pseudocapacitance of the MO 
and double layer contribution of the carbonaceous material is 
exploited. Furthermore, rGO provides good conductivity which is 55 

supported by the small charge transfer resistance shown in the 
Nyquist plots. 
Cyclic voltammetry was used as the first diagnostic test to study 
the electrochemical properties of the composites. Figure 2 shows 
CV results with figure 2(a) and (b) showing the individual CV 60 

curves for the two rGO-MO nanocomposites.  

 
Fig.2 Comparative CVs at 5mVs-1 (a) and (c). Variation of 
specific capacitance with scan rate (b) and (d) for the rGO-MO 
composites. 65 

 
From figure 2(a) the cyclic voltammograms for both NiO and  
rGO-NiO nanocomposite show redox peaks at 0.45 V and 0.22 V 
due to the Ni(OH)2/NiOOH redox reaction[14] [15]. These peaks are 
accompanied by a broad shoulder peak between 0.1 and 0.35 V 70 

probably due to oxygenated groups on the rGO. In Figure 2(b), 
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redox peaks observed for rGO-CO3O4 are believed to be from 
reactions reported earlier [6b]. The effect of the rGO is clearly 
visible from the increase in background current in the CVs. 
Both the rGO-MO CVs deviate from the rectangular shape 
expected for typical EDLCs. This is due to the pseudocapacitance 5 

contribution from the metal oxides as reduced graphene oxide has 
a capacity of about 205 Fg-1 [16]. The large current separation 
therefore indicates increased capacitive behaviour which was 
calculated by integrating the area covered by the CV [11a]. A total 
capacitance of 687 Fg-1 was obtained for the rGO-Co3O4 10 

composite while that of rGO-NiO was 656 Fg-1 composite at 5 
mVs-1 which is much higher compared to other graphene based 
supercapacitors reported in literature (Table 1).  
 

Table 1. Graphene based composites used for supercapacitors. 15 

Composite Electrolyte Method of 
preparation 

Specific 
capacitance 

(Fg-1) 

Ref. 

rGO- 
Co3O4 

1 M KOH Spray Pyrolysis 687 Current 
study 

rGO- 
Co3O4 

6 M KOH Surfactant and 
post annealing 

163.8 [4] 

GNS- 
Co3O4 

6 M KOH Microwave 
assisted method 

243.2 [17] 

Graphene – 
Co3O4 

2 M KOH In-situ solution 
based method 

478 [18] 

Graphene-
MnO2 

1 M 
Na2SO4 

Microwave 
Irradiation 

310 [6a] 

rGO- NiO 1 M KOH Spray Pyrolysis 656 Current 
study 

GO-NiO 1 M KOH Electrophoretic 
deposition and 
chemical-bath 

deposition 

400 [19] 

Graphene 
Sheet-
RuO2 

1 M H2SO4 Sol-gel + low 
temperature 
annealing 

570 [6c] 

GO-SnO2 1 M KCl ultrasonic spray 
pyrolysis 

42.7 [20] 

GO-ZnO 1 M KCl ultrasonic spray 
pyrolysis 

61.7 [20] 

     
 
The charge storage mechanism of the two metal oxides has been 
described in previous reports as being analogous [21]. The spray 
pyrolysis route enables excellent encapsulation of metal-oxide 
particles within graphene sheets thus leading to remarkable 20 

performance and cyclability. Graphene clearly enhances the 
electrochemical properties of the nanocomposites by first acting 
as a conductive support ideal for electron and ion transportation. 
Secondly, the graphene capsule stabilizes the electrode structure 
with a good electric contact between the metal oxide particles and 25 

conductive graphene during the charge−discharge process.   
Additional tests showed a reduction in capacitance with increase 
in scan rate being more pronounced for the NiO composite while 
the rGO-CO3O4 shows better capacitance retention (see Figure S4 
a and b in supporting information). A specific capacitance of 580 30 

Fg-1 for rGO-CO3O4 at 100 mVs-1 reflects good rate capacity and 
power density. We therefore concluded that the three-dimensional 
conducting network formed by the interaction between CO3O4 
particles and graphene oxide, coupled with the high porosity of 
the composite facilitated OH− soaking into the bulk material. This 35 

resulted in a decrease in the ionic and electronic transportation 
distances thus improving the electrode kinetics consequently 
enhancing the rate capability [22]. 
rGO-NiO electrodes showed poor rate capability due to the 
insertion of OH- ions being limited to the electrode surface. The 40 

inner active sites within the electrode therefore do not get 
accessed at high scan rates by the electrolyte and cannot precede 
the redox transitions completely. Both electrodes however, show 
ideal capacitive behaviour as shown in the plots for current 
density vs. scan rate (see Figure S4c and d) in supporting 45 

information).  
Electrochemical impedance spectroscopy tests were performed 
for both rGO-MO electrodes to understand the capacitive 
behaviour and resistance associated with the electrodes. 
Supercapacitors generally behave as pure resistors at high 50 

frequencies and typical capacitors at low frequencies.  

 
Fig.3 (a) Nyquist plots for GO-Co3O4 composite before and after 
1000 cycles. (b)  Nyquist plots for GO-NiO composite before and 
after 1000 cycles. (Inset: expanded high frequency region). 55 

Variation of specific capacitance with cycle number for GO-
Co3O4 (c) and GO-NiO (d) obtained at 50 mVs-1. 
 
In the high frequency region, a semicircle due to charge transfer 
resistance on the electrode/electrolyte interface is observed. The 60 

region between the high frequency and low frequency regions is 
called the Warburg region and this is a combination of both 
resistive and capacitive behaviour characterized by diffusive 
resistance. The low frequency region is mainly characterized by 
purely capacitive behaviour. The Nyquist plots generated from 65 

the impedance data for the composites are shown in Figure 3. 
Both impedance spectra are similar, exhibiting the characteristic 
high frequency region semicircle and low frequency vertical line. 
The insets show the expanded high frequency region where in 
both figures, an increase in the semicircle radius implying an 70 

increase in the Rct with increase in scan number is highlighted. 
At low frequencies, the Nyquist plots become more vertical, 
implying purely capacitive behaviour. However, after 1000 
cycles the slopes decrease towards an angle of 45° implying a 
decrease in the phase angle and a deviation from ideal capacitive 75 

behaviour and a domination of Warburg diffusion.  
Cyclic voltammetry was employed to determine the stability of 
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the rGO-MO composites at 50 mVs-1. As shown in figure 3 b the 
specific capacitance for the rGO-Co3O4 electrode decreased by 
6.9 % demonstrating ideal stability for supercapacitors. 
Interestingly, the specific capacitance of the rGO-NiO electrode 
increased gradually by 48% of the initial value during the first 5 

600 cycles. This is a due to the activation of the rGO-NiO active 
material. This phenomenon has also been observed by Yuan et al. 
[14]. The stability profiles of the two electrode materials entail the 
suitability of the materials for practical supercapacitor electrodes. 

Conclusions 10 

In conclusion, we have synthesized globularly shaped rGO-MO 
composites with high performance for supercapacitor electrodes 
using spray pyrolysis method. Additionally, the spray pyrolysis 
method proved to be an efficient method to effectively 
encapsulate MO particles with rGO simultaneously. The resulting 15 

composites exploit the benefits of pseudocapacitive nature of the 
metal oxide and conductive EDLC nature of the rGO. The 
technique also presents an opportunity to produce industry 
scalable ordered rGO-MO composites using a variety of metal 
oxides for both batteries and supercapacitors.  20 

 

Acknowledgements 
The authors thank the Australian Research Council for the 
financial support provided through DP (1093952). The authors 
thank Dr. Sima Aminorroaya-Yamini for  assistance with SEM. 25 

Notes and references 
a Institute for Superconducting & Electronic Materials (ISEM), 
Innovation Campus, University of Wollongong, Wollongong, NSW 2519, 
Australia, Fax: 0061242215731; Tel: 0061242215730; E-mail: 
konstan@uow.edu.au 30 
b ARC Centre of Excellence in Electromaterials Sciences, Institute for 
Superconducting & Electronic Materials (ISEM), Innovation Campus, 
University of Wollongong, Wollongong, NSW 2519, Australia, Fax: 
0061242215731; Tel: 0061242215730; E-mail: hua@uow.edu.au 
† Electronic Supplementary Information (ESI) available: [details of any 35 

supplementary information available should be included here]. See 
DOI: 10.1039/b000000x/ 
‡ Footnotes should appear here. These might include comments relevant 
to but not central to the matter under discussion, limited experimental and 
spectral data, and crystallographic data. 40 

 
 
[1] M. Winter, R. J. Brodd, Chemical Reviews 2004, 104, 4245. 
[2] H. M. Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Shin, J. K. 

Kang, J. W. Choi, Nano Letters 2011, 11, 2472. 45 

[3] S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, ACS Nano 2010, 4, 2822. 
[4] W. Zhou, J. Liu, T. Chen, K. S. Tan, X. Jia, Z. Luo, C. Cong, H. 

Yang, C. M. Li, T. Yu, Physical Chemistry Chemical Physics 
2011, 13, 14462. 

[5] E. Yoo, J. Kim, E. Hosono, H.-s. Zhou, T. Kudo, I. Honma, Nano 50 

Letters 2008, 8, 2277. 
[6] a)J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang, F. Wei, Carbon 2010, 

48, 3825; b)X.-h. Xia, J.-p. Tu, Y.-j. Mai, X.-l. Wang, C.-d. 
Gu, X.-b. Zhao, Journal of Materials Chemistry 2011, 21, 
9319; c)Z.-S. Wu, D.-W. Wang, W. Ren, J. Zhao, G. Zhou, F. 55 

Li, H.-M. Cheng, Advanced Functional Materials 2010, 20, 
3595. 

[7] H.-W. Wang, Z.-A. Hu, Y.-Q. Chang, Y.-L. Chen, H.-Y. Wu, Z.-Y. 
Zhang, Y.-Y. Yang, Journal of Materials Chemistry 2011, 21, 
10504. 60 

[8] X. Yang, C. Lu, J. Qin, R. Zhang, H. Tang, H. Song, Materials 
Letters 2011, 65, 2341. 

[9] D. Wang, R. Kou, D. Choi, Z. Yang, Z. Nie, J. Li, L. V. Saraf, D. Hu, 
J. Zhang, G. L. Graff, J. Liu, M. A. Pope, I. A. Aksay, ACS 
Nano 2010, 4, 1587. 65 

[10]  X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai, Nat 
Nano 2008, 3, 538. 

[11]  a)S. H. Aboutalebi, A. T. Chidembo, M. Salari, K. Konstantinov, D. 
Wexler, H. K. Liu, S. X. Dou, Energy & Environmental 
Science 2011, 4, 1855; b)S. H. Aboutalebi, M. M. Gudarzi, Q. 70 

B. Zheng, J.-K. Kim, Advanced Functional Materials 2011, 
21, 2978; c)J. E. Kim, T. H. Han, S. H. Lee, J. Y. Kim, C. W. 
Ahn, J. M. Yun, S. O. Kim, Angewandte Chemie International 
Edition 2011, 50, 3043. 

[12]  S.-H. Ng, J. Wang, D. Wexler, K. Konstantinov, Z.-P. Guo, H.-K. 75 

Liu, Angewandte Chemie International Edition 2006, 45, 
6896. 

[13]  S. Yang, X. Feng, S. Ivanovici, K. Müllen, Angewandte Chemie 
International Edition 2010, 49, 8408. 

[14] C. Yuan, X. Zhang, L. Su, B. Gao, L. Shen, Journal of Materials 80 

Chemistry 2009, 19, 5772. 
[15]  M.-S. Wu, Y.-A. Huang, C.-H. Yang, J.-J. Jow, International 

Journal of Hydrogen Energy 2007, 32, 4153. 
[16]  Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, 

The Journal of Physical Chemistry C 2009, 113, 13103. 85 

[17]  J. Yan, T. Wei, W. Qiao, B. Shao, Q. Zhao, L. Zhang, Z. Fan, 
Electrochimica Acta 2010, 55, 6973. 

[18]  B. Wang, Y. Wang, J. Park, H. Ahn, G. Wang, Journal of Alloys and 
Compounds 2011, 509, 7778. 

[19]  X. Xia, J. Tu, Y. Mai, R. Chen, X. Wang, C. Gu, X. Zhao, Chemistry 90 

– A European Journal 2011, 17, 10898. 
[20]  T. Lu, Y. Zhang, H. Li, L. Pan, Y. Li, Z. Sun, Electrochimica Acta, 

2010, 55, 4170. 
[21]  V. Srinivasan, J. W. Weidner, Journal of Power Sources 2002, 108, 

15. 95 

[22] J. Lang, X. Yan, Q. Xue, Journal of Power Sources 2011, 196, 7841. 
 
 

4  |  Journal Name, [year], [vol], 00–00 This journal is © The Royal Society of Chemistry [year] 

mailto:konstan@uow.edu.au
mailto:hua@uow.edu.au

	Globular reduced graphene oxide-metal oxide structures for energy storage applications
	Recommended Citation
	Authors

	RSC Communication Template (Version 3.2)

