
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Engineering and Information 
Sciences - Papers: Part A 

Faculty of Engineering and Information 
Sciences 

1-1-2014 

On the security of text-based 3D CAPTCHAs On the security of text-based 3D CAPTCHAs 

Vu Duc Nguyen 
University of Wollongong, dvn108@uowmail.edu.au 

Yang-Wai Chow 
University of Wollongong, caseyc@uow.edu.au 

Willy Susilo 
University of Wollongong, wsusilo@uow.edu.au 

Follow this and additional works at: https://ro.uow.edu.au/eispapers 

 Part of the Engineering Commons, and the Science and Technology Studies Commons 

Recommended Citation Recommended Citation 
Nguyen, Vu Duc; Chow, Yang-Wai; and Susilo, Willy, "On the security of text-based 3D CAPTCHAs" (2014). 
Faculty of Engineering and Information Sciences - Papers: Part A. 3072. 
https://ro.uow.edu.au/eispapers/3072 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers?utm_source=ro.uow.edu.au%2Feispapers%2F3072&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers%2F3072&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers%2F3072&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers/3072?utm_source=ro.uow.edu.au%2Feispapers%2F3072&utm_medium=PDF&utm_campaign=PDFCoverPages


On the security of text-based 3D CAPTCHAs On the security of text-based 3D CAPTCHAs 

Abstract Abstract 
CAPTCHAs have become a standard security mechanism that are used to deter automated abuse of 
online services intended for humans. However, many existing CAPTCHA schemes to date have been 
successfully broken. As such, a number of CAPTCHA developers have explored alternative methods of 
designing CAPTCHAs. 3D CAPTCHAs is a design alternative that has been proposed to overcome the 
limitations of traditional CAPTCHAs. These CAPTCHAs are designed to capitalize on the human visual 
system's natural ability to perceive 3D objects from an image. The underlying security assumption is that 
it is difficult for a computer program to identify the 3D content. This paper investigates the robustness of 
text-based 3D CAPTCHAs. In particular, we examine three existing text-based 3D CAPTCHA schemes that 
are currently deployed on a number of websites. While the direct use of Optical Character Recognition 
(OCR) software is unable to correctly solve these textbased 3D CAPTCHA challenges, we highlight certain 
patterns in the 3D CAPTCHAs can be exploited to identify important information within the CAPTCHA. By 
extracting this information, this paper demonstrates that automated attacks can be used to solve these 
3D CAPTCHAs with a high degree of success. 

Keywords Keywords 
text, 3d, security, captchas 

Disciplines Disciplines 
Engineering | Science and Technology Studies 

Publication Details Publication Details 
Nguyen, V., Chow, Y. & Susilo, W. (2014). On the security of text-based 3D CAPTCHAs. Computers and 
Security, 45 (September), 84-99. 

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers/3072 

https://ro.uow.edu.au/eispapers/3072


On the Security of Text-based 3D CAPTCHAs

Vu Duc Nguyen, Yang-Wai Chow, Willy Susilo∗

School of Computer Science and Software Engineering, University of Wollongong, NSW
2522, Australia

Abstract

CAPTCHAs have become a standard security mechanism that are used to
deter automated abuse of online services intended for humans. However,
many existing CAPTCHA schemes to date have been successfully broken. As
such, a number of CAPTCHA developers have explored alternative methods
of designing CAPTCHAs. 3D CAPTCHAs is a design alternative that has
been proposed to overcome the limitations of traditional CAPTCHAs. These
CAPTCHAs are designed to capitalize on the human visual system’s natural
ability to perceive 3D objects from an image. The underlying security as-
sumption is that it is difficult for a computer program to identify the 3D con-
tent. This paper investigates the robustness of text-based 3D CAPTCHAs.
In particular, we examine three existing text-based 3D CAPTCHA schemes
that are currently deployed on a number of websites. While the direct use of
Optical Character Recognition (OCR) software is unable to correctly solve
these text-based 3D CAPTCHA challenges, we highlight certain patterns
in the 3D CAPTCHAs can be exploited to identify important information
within the CAPTCHA. By extracting this information, this paper demon-
strates that automated attacks can be used to solve these 3D CAPTCHAs
with a high degree of success.

Keywords: 3D CAPTCHA, character extraction, optical character
recognition, automated attack, security

∗Corresponding author. School of Computer Science and Software Engineering, Uni-
versity of Wollongong, NSW 2522, Australia. Tel.: +61 2 4221 5535; fax: +61 2 4221
5550.

Email address: vdn108@uowmail.edu.au, caseyc@uow.edu.au,

wsusilo@uow.edu.au (Vu Duc Nguyen, Yang-Wai Chow, Willy Susilo)

Preprint submitted to Computers & Security March 24, 2014



1. Introduction

CAPTCHAs (Completely Automated Public Turing test to tell Comput-
ers and Humans Apart) are essentially automated challenge-response tests
that are used to ascertain whether or not an online transaction is being car-
ried out by a human. While the concept of ‘Automated Turing Tests’ has
been around for some time, the term CAPTCHA was originally introduced
by von Ahn et al. (2003) in their seminal work on CAPTCHAs as hard Arti-
ficial Intelligence (AI) problems that can be exploited for security purposes.
Since its inception, CAPTCHAs have now become a ubiquitous part of the
Internet and are used on many web-based services as a standard security
mechanism to deter automated abuse of online services intended for humans.
For example, it is used to deter malicious bot programs from signing up for
thousands of accounts from free email services and sending out thousands of
spam messages every minute (Yan and Ahmad, 2007).

Over the years, various CAPTCHA schemes have been developed and
deployed on numerous web services, including online services provided by
major companies such as Google, Yahoo! and Microsoft, and social networks
like Facebook, to provide some level of security against online abuse (Yan
and Ahmad, 2008). Of the different types of CAPTCHAs (e.g. text-based,
image-based, audio-based) that are currently used in practice, 2D text-based
CAPTCHAs are the most widespread form in use. The popularity and per-
vasiveness of this form of CAPTCHA stems from its intuitiveness and low
implementation cost (Chellapilla et al., 2005b). Text-based CAPTCHAs
generally consist of a sequence of characters (i.e. alphabetical letters and/or
digits) that are presented within an image. The image may contain some sort
of visual noise (e.g. a textured background) and the characters are typically
distorted to deter automated computer attacks.

However, many of these CAPTCHA schemes have been found to be vul-
nerable to attacks, including the use of machine learning, computer vision,
pattern recognition or other techniques (Yan and Ahmad, 2007, 2008; Ah-
mad et al., 2012; Nakaguro et al., 2013). In addition, Optical Character
Recognition (OCR) technology is ever improving and OCR programs are be-
coming increasingly effective in recognizing text. As such, in order to over-
come the limitations of traditional 2D text-based CAPTCHAs and to produce
CAPTCHA schemes that are more secure and robust against OCR programs,
some CAPTCHA developers have explored the design of CAPTCHAs based
on 3D. The perceived robustness of 3D CAPTCHAs stems from the under-



lying assumption that it is difficult for computer programs to identify 3D
content, while at the same time, the perception of 3D is an inherent part
of the human visual system. Hence, 3D CAPTCHAs satisfy the fundamen-
tal requirement of a CAPTCHA scheme, i.e. easy for humans to solve but
difficult for computer programs.

While there is much research on the security of traditional 2D text-based
CAPTCHAs, the robustness of 3D CAPTCHAs has not received much at-
tention. This paper focuses on investigating the security of text-based 3D
CAPTCHAs and their robustness against automated attacks. To this end, we
have identified three existing text-based 3D CAPTCHAs that are currently
being used on a number of websites. These 3D CAPTCHAs are assumed to
be secure as they cannot be solved by OCR programs directly. However, this
paper shows that by exploiting certain features in the CAPTCHA schemes
it is possible to identify and extract key information about the CAPTCHA
that can subsequently be used to solve the CAPTCHA challenge with a high
success rate. This highlights the fact that these text-based 3D CAPTCHAs
are indeed susceptible to automated attacks and are no more secure than
their 2D counterparts.

In our previous work (Nguyen et al., 2011), we demonstrated an attack
on the Teabag3D CAPTCHA (OCR Research Team, 2006). In that study we
focused on attacking version 1.0.1 of Teabag3D and presented some prelim-
inary findings on attacking Teabag3D version 1.2 using the same approach.
This gave rise to the possibility that other text-based 3D CAPTCHAs were
also vulnerable to automated attacks by extracting key information from
the CAPTCHA. In this paper, we describe our approach to attacking two
other text-based 3D CAPTCHAs. In addition, this paper also presents the
essential pseudocode for attacking Teabag3D, as well as updated results on
attacking Teabag3D version 1.2. These attacks are based on similar princi-
ples, in that we identified variations in the regular pattern of the text-based
3D CAPTCHA in order to extract information about the characters embed-
ded within the pattern.

The rest of this paper is organized as follows. Section 2 presents exist-
ing work in the area of CAPTCHA security and also introduces various 3D
CAPTCHA schemes that have been proposed by a number of researchers.
In Section 3, three representative text-based 3D CAPTCHA schemes are
described along with details of our approach on how to attack each of the
respective schemes. Experimental results of automated attacks conducted
for each of the 3D CAPTCHA schemes are presented in Section 4. Section



5 presents a summary of the key features highlighted in our approach along
with a discussion of their limitations. Finally, Section 6 concludes the paper
and summarizes the main findings of this research.

2. Related Work

2.1. CAPTCHA Security

The robustness and security of CAPTCHAs has been the topic of much
scrutiny by researchers and practitioners alike. To date, a number of re-
searchers investigating the security of various CAPTCHA designs have demon-
strated that many existing CAPTCHA schemes are vulnerable to automated
attacks. Much of this vulnerability is due to certain flaws in the design of
these CAPTCHA schemes, several of which are described in this section.

The popular Gimpy family of CAPTCHAs developed at Carnegie Mellon
University has been subject to a number of automated attacks. Mori and
Malik (2003) were able to successfully break the EZ-Gimpy CAPTCHA (pre-
viously used by Yahoo!) 92% of the time, as well as the Gimpy CAPTCHA at
a success rate of 33%. Their work was based on matching shape contexts of
characters, in the midst of a background texture, using an image database of
known objects. Using the knowledge that the text in this CAPTCHA scheme
was based on a set of English words, they then proceeded by ranking a set of
candidate words and selecting the one with the best matching score. They
also demonstrated a holistic approach of recognizing entire words at once,
instead of attempting to identify individual characters. This was because in
severe clutter, attempting to identify characters itself was often not enough as
parts of characters could be occluded or ambiguous (Mori and Malik, 2003).
Among other things, this work highlights the fact that CAPTCHAs based
on language models are susceptible to dictionary attacks.

In fact, with full knowledge of font and lexicon, the Mori-Malik attack
also produced reasonably high success rates in solving two other CAPTCHAs
schemes; namely, PessimalPrint (Baird et al., 2003) and BaffleText (Chew
and Baird, 2003). Both of these pioneering CAPTCHAs were designed in
the research community, and represent research effort exploring the question
of how to design text-based CAPTCHAs properly (Yan and Ahmad, 2009).

Chellapilla and Simard (2004) demonstrated that machine learning algo-
rithms could be used to break a variety of CAPTCHAs (or Human Inter-
action Proofs (HIPs)). In their work, they deliberately avoided exploiting
language models to break these CAPTCHAs. The aim was to develop a



generic method that could automate the task of segmentation (i.e. finding
the characters), thus reducing the challenge to a pure recognition problem
which is a trivial task using machine learning. This work, by the research
team in Microsoft (Chellapilla et al., 2005a), has led to the segmentation-
resistant principle that is now widely accepted as a requirement in the design
of more secure text-based CAPTCHAs (Ahmad et al., 2010).

Following on from their work, the team developed a well thought out
CAPTCHA scheme that was deployed on a number of Microsoft’s online
services. While this CAPTCHA was meant to be segmentation-resistant, it
was unfortunately shown to be susceptible to a low-cost attack (Yan and
Ahmad, 2008). Among the lessons to be learnt from this work, is that
it becomes easier to segment a CAPTCHA in which the total number of
characters is known, or can be ascertained, a priori. Nonetheless, despite
breaking the CAPTCHA, Yan and Ahmad (2008) pointed out that their
attack did not overturn or negate the segmentation-resistant principle. In-
stead, upon closer examination certain CAPTCHAs that are designed to be
segmentation-resistant, can actually be segmented after some pre-processing
(Ahmad et al., 2010).

Yan and Ahmad (2007, 2009, 2011) also showed that a number of other
CAPTCHAs could be defeated using novel attacks like pixel-count attacks,
where characters could be distinguished by simply counting the number of
pixels that constituted each individual character. Their work emphasized
that in addition to segmentation-resistance, it is good practice to use local
and global warping to distort characters in CAPTCHAs. Evidently, local
and global distortions alone are not sufficient to deter effective attacks. Moy
et al. (2004) demonstrated breaking EZ-Gimpy and Gimpy-r using distortion
estimation techniques. The first step in their approach involved background
removal, to separate the text from the background clutter without losing
important information. This is also a step that many other attacks em-
ploy. Thus, the importance of making it hard to separate the text from the
background is also highlighted as a factor that has to be considered when
designing secure CAPTCHAs (Yan and Ahmad, 2009).

In a systematic study regarding the strengths and weaknesses of text-
based CAPTCHAs, Bursztein et al. (2011b) observed that the segmentation-
resistant principle alone is not enough to guarantee that a CAPTCHA scheme
is secure against automated attacks. In other recent work, Li et al. (2010)
demonstrated the use of image processing and pattern recognition algorithms,
such as k-means clustering, digital image in-painting, character recognition



based on cross-correlation, etc. to successfully break a variety of e-Banking
CAPTCHAs. The popular Google reCAPTCHA has also been broken using
a holistic approach of recognizing shape contexts of entire words (Baecher
et al., 2011) and an approach using heuristic character segmentation and
recognition (Cruz-Perez et al., 2012). Furthermore, Gao et al. (2013) ana-
lyzed and discussed how simple attacks could be used to break a number of
hollow CAPTCHAs, thus casting doubt on the viability of current hollow
CAPTCHA designs.

While this paper focuses on text-based CAPTCHAs, other categories of
CAPTCHAs are by no means immune to automated attacks. For example,
an overview of attacks against a number of image-based CAPTCHAs can be
found in Zhu et al. (2010), Hernandez-Castro and Ribagorda (2010) describe
their attack against the ‘Math CAPTCHA’ and others have also worked on
breaking audio-CAPTCHAs (Tam et al., 2008; Bursztein et al., 2011a). In
addition, techniques for breaking CAPTCHAs based on moving objects are
presented in Xu et al. (2012) and other animated CAPTCHAs have been
broken in Nguyen et al. (2012a,b).

2.2. 3D CAPTCHAs

A number of attempts at designing and developing 3D CAPTCHAs have
recently emerged in literature and in practice. These approaches typically
generate CAPTCHA challenges by rendering 3D models of text-objects or of
other objects.

Kaplan (n.d.) proposed a 3D CAPTCHA approach based on identify-
ing labelled parts of 3D models. However, Ross et al. (2010) pointed out
that this approach is unlikely to scale due to the manual effort involved in
modelling and labelling parts. The social networking site YUNiTi (2013)
adopts a CAPTCHA that uses Lambertian renderings of 3D models. Users
are presented with an image containing 3D objects and are required to select
matching objects, in the sequence that they appear in the CAPTCHA, from
a provided set of images. The 3D objects in the CAPTCHA are rendered
using different parameters (e.g. different orientation and colour) from those
in the selection set. Unfortunately, this approach is likely to be susceptible
to attacks using basic computer vision techniques (Ross et al., 2010).

The same method of attack applies to the approach proposed by Im-
samai and Phimoltares (2010). In their paper, they presented a number of
3D CAPTCHA scheme variants based on renderings of 3D text-objects. It
can be seen that the characters in their approach do not undergo any form



of distortion and, more importantly, the entire front face of characters are
rendered using the same shade. Moreover, 3D object recognition is a well
studied field, for example, Mian et al. (2006) presented an approach to view-
point independent object recognition and segmentation of 3D model-based
objects in cluttered scenes. It is possible that attacks adopting such computer
vision techniques will be able to successfully defeat these 3D CAPTCHAs.

Among 3D CAPTCHA ideas that have been proposed in the research
community, Mitra et al. (2009) proposed a technique of generating ‘emerging
images’ by rendering extremely abstract representations of 3D models placed
in 3D environments. This approach is based on ‘emergence’, the unique
human ability to perceive objects in an image not by recognizing the object
parts, but as a whole (Mitra et al., 2009). Ross et al. (2010) presented a pilot
usability study and security analysis of a prototype implementation of their
CAPTCHA called ‘Sketcha’. Sketcha is based on oriented line drawings of
3D models and the user’s task is to correctly orient images containing these
3D model line drawings.

3. Our Approach

To investigate the security of text-based 3D CAPTCHAs, three represen-
tative 3D CAPTCHA schemes were identified for the purpose of this study.
The reason for selecting these particular 3D CAPTCHA schemes is primarily
due to the fact that they are currently being used on several websites. As
such, a large number of samples could be obtained from these websites. Other
proposed 3D CAPTCHA schemes have a limited number of prototypes, as
they are merely ideas for 3D CAPTCHAs that have not been fully developed
or used in practice.

The 3D CAPTCHA schemes investigated in this study were essentially
built from similar concepts, which involved perturbing a regular pattern in
order to give rise to the perception of 3D text embedded within the pattern.
While this approach is purported to be difficult for computers to solve, its
human usability stems from the human cognitive ability to perceive 3D from
cues present in a 2D image.

In general, the process that was taken to attack these CAPTCHA schemes
can be divided into a number of stages. An overview of these stages is de-
picted in Fig. 1. The purpose of the pre-processing stage is to convert the
image into a form that is suitable for character extraction, while the post-
processing stage focuses on preparing the image for character recognition.



This is undertaken to improve the accuracy of the character recognition pro-
cess. For example, removing impediments and noise from the image before
passing it to the character recognition stage can increase the success rate of
accurate recognition.

A description of each of the text-based 3D CAPTCHA schemes along a
method of attacking the respective scheme is presented in the subsections to
follow.

3.1. Super CAPTCHA

Super CAPTCHA is listed as a product of Goldsboro Web Development
(2013). While previous versions of Super CAPTCHA were text-based 2D
schemes, the scheme became a text-based 3D CAPTCHA as of version 2.3.0.
At the time of writing, the latest version is version 2.4.2 and it is available as
a plug-in for WordPress.org (2013), which is a popular online blogging and
content management system. Consequently, this is the version that was used
for this research.

The developers state that this type of 3D CAPTCHA requires human
intervention by forcing the use of linear recognition algorithms that only the
human mind can decipher (Goldsboro Web Development, 2013). In addition,
the developers have tested its robustness against 37 different OCR programs
(WordPress.org, 2013). Examples of the Super CAPTCHA scheme can be
seen in Fig. 2. Fig. 2(a) is an example of the CAPTCHA with a plain
background, whereas Fig. 2(b) shows an example that uses a textured back-
ground. As can be seen from the examples, for different CAPTCHAs the
angle of the CAPTCHA challenge is slanted at different angles.

To attack this CAPTCHA, the pre-processing stage simply involves re-
moving any background texture, if present, and converting the image into
a black-and-white image. This can be done easily as the lines forming the
CAPTCHA challenge are always rendered in a color that is distinct from the
background texture. An illustration of this process is shown in Fig. 3, where
Fig. 3(a) shows the original image and Fig. 3(b) shows the black-and-white
image after background removal and binarization. The background removal
and binarization process simply involves defining a color intensity threshold,
and any pixel that has a color above this threshold are converted to white,
i.e. the lines forming the CAPTCHA challenge, whereas pixels with colors
below the threshold are converted to black.

After binarizing the CAPTCHA into a black-and-white image, the next
stage involves extracting the text from the white lines in the image. A



human can perceive the text due to perturbations made to the lines. This
also means that for a computer to attack the CAPTCHA, the perturbed
sections of the lines can be separated from the linear sections. This can be
done by first approximating the slope of the lines using the white corner
pixels in the CAPTCHA challenge, since the slope for each CAPTCHA is
different. Fig. 4 illustrates two lines that approximate the gradient of the
CAPTCHA challenge. The pseudocode for approximating the gradient and
obtaining the starting positions of the whites lines is provided in Algorithm
1.

Algorithm 1 Approximating the gradient and starting positions of the lines
for Super CAPTCHA

function FindGradient(Image)
/* Find the starting positions of the white lines */
for all Pixels in Image do

if Pixel = white then
if Pixel has no neighboring white pixels on its left then

LineStartList← Pixel
else if Pixel has no neighboring white pixels on its right then

LineEndList← Pixel
end if

end if
end for
/* Calculate the gradient from the lowest line */
Gradient ← Calculated from the lowest pixels in LineStartList and

LineEndList
end function

Using the approximate gradient, parallel lines can then be produced
to overwrite many of the white pixels that form the straight lines in the
CAPTCHA. This is depicted in Fig. 5, where parallel lines were used to
overwrite white pixels located along the straight lines. As can be seen from
the figure, the parallel lines do not cover all the pixels along the straight
lines. Therefore, the white pixels that are connected to, and in the direction
of, the parallel lines also have to be identified. This is illustrated in Fig. 6.
Once this is done, it is a simple matter of identifying potential pixels that
belong to the characters. The end result of the character extraction phase is
shown in Fig. 7, where one can clearly see that the remaining white pixels



are related to the characters, while the other pixels belong to the lines. Al-
gorithm 2 depicts pseudocode for distinguishing between pixels belonging to
the characters and pixels belonging to the lines.

Algorithm 2 Identifying pixels related to the characters, by using parallel
lines to overwrite unrelated pixels for Super CAPTCHA

/* Note that Gradient and LineStartList are from Algorithm 1 */
function IdentifyCharPixels(Image, Gradient, LineStartList)

/* Overwrite unrelated white pixels by constructing parallel lines */
for all Pixels in LineStartList do

Construct a line using Gradient
for each pixel position along the constructed line do

if Pixel in Image = white then
Set Pixel to green

end if
end for

end for
/* Identify connected pixels in the direction of the line */
repeat

NoChange← true
for all Pixels in Image do

if Pixel = white then
if left or right neighbor of Pixel = green then

NoChange← false
Set Pixel to orange

end if
end if

end for
until NoChange = true
/* At this stage, all remaining white pixels are related to the characters,

while the other pixels belong to the lines */
end function

A post-processing stage was used to make the characters clearer and easier
to recognize. For this, the average pixel distance, λ, between the consecu-
tive lines was determined. Using this value, λ pixels below any character
pixels were determined to belong the characters. This is depicted in Fig. 8.
Additionally, pixels in large empty regions below the character pixels were



also determined as belonging to the characters, as shown in Fig. 9. The
resulting image shown in Fig. 10(a) shows the pixels that were determined
to constitute the characters. Fig. 10(b) shows the image after reorientation
and filling in small holes.

The final stage is the character recognition stage. Character recognition
can be performed by passing the post-processed image through any good
OCR program. The ABBYY FineReader 11 Professional Edition (ABBYY,
2013), which is widely recognized to be one of the best OCR programs cur-
rently available on the market, was used in this research. The ABBYY
FineReader uses a machine learning approach that can be trained from a
training set of character samples. To improve the character recognition ac-
curacy, a training set was created to be used in conjunction with the ABBYY
FineReader’s existing embedded training database.

3.2. 3dcaptcha

This is a text-based 3D CAPTCHA that is currently used on several web-
sites (Cafe Milenium, 2009; Café Charlotte, 2006; EnterMir, 2013; SACHY-
online.cz, 2010; HyperMedia, 2012). It is not known whether or not this
CAPTCHA scheme was given an actual name. As such, this paper will
simply refer to this CAPTCHA scheme as ‘3dcaptcha’. Two examples of
3dcaptcha are shown in Fig. 11. It can be seen that this CAPTCHA scheme
uses diagonal lines to form a regular pattern. These diagonal lines are per-
turbed to give rise to the perception of 3D characters.

It should be noted that the CAPTCHA challenge for the scheme always
appears within a certain region. Therefore, the pre-processing stage in at-
tacking 3dcaptcha simply involves cropping the image to the specific region
containing the challenge, as depicted in Fig. 12. This is not absolutely neces-
sary, however, it helps to improve accuracy by potentially reducing peripheral
noise in the processed image and speeds up the attack because of the reduced
image size.

Unlike the lines in Super CAPTCHA where the distances between lines
were relatively uniform, the distances between lines in 3dcaptcha appear to
change with distance away from the viewpoint. This is because 3dcaptcha
was rendered with a perspective camera in 3D space. As such, due the
location and orientation of the camera where the image for 3dcaptcha was
rendered, the distances between lines at the bottom of the image are further
apart compared to distances between lines at the top of the image. Line
distances also get closer and closer towards the right of the image.



Nevertheless, it can be seen that the distances between lines related to
the characters are different from the regular pattern. Thus, key regions
that are related to the characters can be identified by first calculating an
average number of pixels between lines. Then by scanning the pixels in
the vertical and horizontal directions, any section containing more white
pixels than this average is determined to belong to a character. Results of
a vertical and horizontal scan can be seen in Fig. 13(a) and Fig. 13(b)
respectively. Fig. 13(c) in turn shows the combined results. The pseudocode
presented in Algorithm 3 outlines the steps for performing a horizontal scan
to identify pixels belonging to characters. For a vertical scan, the same steps
in Algorithm 3 are performed for each column in the CAPTCHA image
instead of each row.

Algorithm 3 Scanning pixels in the horizontal direction to identify pixels
belonging to characters for 3dcaptcha

function HorizontalScan(Image)
AvgNumOfPixels ← Average number of pixels between black pixels

in the horizontal dimension
/* Identify pixels belonging to characters */
for all rows in Image do

PreviousBlackP ixel ← null
for all Pixels in row do

if Pixel = black and PreviousBlackP ixel ̸= null then
if (number of pixels between PreviousBlackP ixel and

Pixel) > AvgNumOfPixels then
TextP ixelList ← all pixels between

PreviousBlackP ixel and Pixel
end if
PreviousBlackP ixel ← Pixel

end if
end for

end for
end function

In addition, since the regular pattern is made up of diagonal lines, regions
related to the characters can be extracted based on changes in line direction.
Fig. 14 illustrates this, where regions in between sections of lines that change
direction are identified. Furthermore, perturbations to the regular pattern



result in some character boundaries having a higher pixel density. These re-
gions can be identified based on areas with a high density of connected pixels,
as depicted in Fig. 15. Finally, additional useful information can be obtained
by drawing vertical lines to create a grid like pattern. An adaptive threshold
is computed based on an average pixel count within the neighboring cells,
and cells contain more pixels than this threshold are identified as belonging
to characters. This is illustrated in Fig. 16. The pseudocode in Algorithm 4
shows the steps used to identify pixels belonging to the characters based on
these changes in the regular pattern.

Fig. 17 shows an image resulting from a combination of all the key
features that were identified. Before passing the image through an OCR
program for character recognition, a post-processing stage was performed
to reoriented the characters and to fill in small holes. Fig. 18 shows the
post-processing results.

3.3. Teabag 3D

This 3D CAPTCHA scheme was designed by the OCR Research Team
(2006). On their website (OCR Research Team, 2006), the team states that
their aim is to break known CAPTCHAs to identify weaknesses and to cre-
ate new secure CAPTCHAs. As such, their website gives a good overview
of a number of text-based 2D CAPTCHAs along with their corresponding
weaknesses. Additionally, some of the team’s valuable experiences have been
documented in Kolupaev and Ogijenko (2008). By analyzing the design flaws
and weaknesses seen in traditional text-based 2D CAPTCHAs, Teabag 3D
was designed to overcome these limitations.

While there are a number of versions of Teabag 3D (OCR Research Team,
2006), the research in this paper deals with the commercial version, version
1.0.1, as implemented on rediff.com (Rediff.com India, 2013), as well as ver-
sion 1.2. Examples of Teabag 3D version 1.0.1 and version 1.2 are shown in
Fig. 19(a) and Fig. 19(b) respectively.

As can be seen from Fig. 19(a), in Teabag 3D version 1.0.1 the CAPTCHA
challenge emerges from a regular grid pattern in 3D space. There are small
variations in terms of the grid direction between challenges. Teabag 3D ver-
sion 1.2 is an improved version of the scheme. It can be seen from Fig.
19(b) that in this version, the grid is warped using a wave like pattern. This
gives rise to greater variations in the cell sizes of the grid. In both versions
of this CAPTCHA scheme, characters in close proximity may touch, thus
connecting them together.



Algorithm 4 Identifying pixels that belong to the characters based on
changes in the regular pattern for 3dcaptcha

function IdentifyTextPixels(Image, TextPixelList)
/* Areas with changes in line direction */
for all Pixels in Image do

if Pixel = white then
Perform a 4-connected flood-fill algorithm
if number of connected pixels > 5 and (lowest connected pixel

- highest connected pixel) < threshold then
TextP ixelList← all the connected pixels

end if
end if

end for
/* Identify areas with a high density of connected pixels */
for all Pixels in Image do

if Pixel = black then
Perform a 4-connected flood-fill algorithm
if number of connected pixels > 5 and close to pixels in

TextP ixelList then
TextP ixelList← all the connected pixels

end if
end if

end for
/* Create grid and identify cells belonging to characters */
Construct grid pattern by drawing equidistant vertical lines
for all Cells do

Count the number of white pixels in the cell and its neighboring
cells

AvgNumPixels← Average number of pixels per cell
if number of white pixels in cell > AvgNumPixels then

TextP ixelList← all cell pixels
end if

end for
end function



Here, we will describe our approach to attacking Teabag 3D. Note that
this can also be found in Nguyen et al. (2011). In this paper, we provide
key pseudocode which outlines the steps involved in our attack. The pre-
processing stage of attacking Teabag 3D involves determining the regions
that contain text and separating these regions from the background grid.
This can be done by identifying and extracting key features in the image.
First, a binarization process is performed to convert the image into a black-
and-white image. Then, the side surfaces of the characters are identified.
This was done by determining the average number of white pixels per cell,
and any cell containing a white pixel count above this average is identified as
a side surface. Fig. 20(a) shows an example of the results obtained through
this side surface identification process. The steps for performing side surface
identification are shown in Algorithm 5.

Algorithm 5 Identifying the side surface pixels that belong to the text for
Teabag3D

/* Side surface identification */
function IdentifySideSurfaces(Image)

for all Cells in Image do
Count the number of pixels in Cell

end for
AvgNumPixels← Average number of pixels per cell
for all Cells in Image do

if number of pixels in Cell > AvgNumPixels then
SideSurfaceP ixelList← all pixels in Cell

end if
end for

end function

This is followed by a front surface identification process, where clusters of
black pixels are determined to belong to the front surface of a character. This
is because some of the borders around the characters are clearly darker than
the rest of the image. Hence, if a black pixel is immediately connected to 4-
neighboring black pixels (i.e. the pixel’s top, down, left and right neighboring
pixels are also black), then all these pixels are deemed to belong to the front
surface of a character. This is illustrated in Fig. 20(b). The front surface
identification process is outlined in Algorithm 6.

The pixels identified as belonging to the front and side surfaces are only



Algorithm 6 Identifying the front surface pixels that belong to the text for
Teabag3D

/* Front surface identification */
function IdentifyFrontSurfaces(Image)

for all Pixels in Image do
if Pixel = black then

if top, down, left and right pixels immediately connected to
Pixel = black then

FrontSurfaceP ixelList← Pixel and its 4-neighboring pix-
els

end if
end if

end for
end function

the borders of the front character surfaces. To extract the full face of the
text, each pixel column of the image was scanned from top to bottom. In
each column, whenever a section that started with a front surface pixel and
ended with either a front or side surface pixel was encountered, all the pixels
in between would be filled in the as front surface of the text. Algorithm
7 shows the process of identifying full character surfaces and an example
depicting the results from this process is shown in Fig. 20(c).

As can be seen from Fig. 20(c), the characters may be connected together.
To improve character recognition, the text had to be segmented into their
constituting characters. Segmentation was performed by trying to separate
the characters using a vertical line, a diagonal line corresponding to the
gradient of the grid, or by tracing the pixels along the side surfaces of the
characters. Note that at this stage the side surfaces would have already been
identified using the process depicted in Algorithm 5. Examples depicting
these segmentation approaches are shown in Fig. 21(a), Fig. 21(b) and Fig.
21(c) respectively.

Post-processing involved reorienting the characters and refining the result-
ing image by removing noise and filling in small holes. This was followed by
the character recognition stage, where the post-processed image was passed
to an OCR program.

The processed used to attack Teabag 3D version 1.2 was similar to attack-
ing version 1.0.1. The main difference was that since the grid was distorted



Algorithm 7 Extracting the full character faces using the front and side
surface pixels for Teabag3D

/* Extract the full faces of the characters */
/* Note that SideSurfaceP ixelList is from Algorithm 5 and
FrontSurfaceP ixelList is from Algorithm 6 */
function ExtractFullFaces(Image, SideSurfacePixelList, FrontSur-
facePixelList)

for all columns in Image do
StartingP ixel← null
for all Pixels in column from top to bottom do

if StartingP ixel = null and Pixel is in
FrontSurfaceP ixelList then

StartingP ixel ← Pixel
else if StartingP ixel ̸= null and (Pixel is in

FrontSurfaceP ixelList or Pixel is in SideSurfaceP ixelList) then
FrontSurfaceP ixelList← all pixels from StartingP ixel to

Pixel
StartingP ixel ← null

end if
end for

end for
TextP ixelList ← all pixels in SideSurfaceP ixelList and

FrontSurfaceP ixelList
end function



using a wave like pattern, there were greater variations in cell sizes. Thus,
instead of using a fixed threshold for the side surface identification process,
in which cell containing a number of pixels greater than the threshold were
identified as belonging to a characters’ side surface, an adaptive threshold
was used. This adaptive threshold was determined by averaging the cell sizes
of the neighboring cells. This can be seen in Fig. 22, where Fig. 22(a) shows
an image of the original CAPTCHA challenge and Fig. 22(b) shows an image
of the extracted front and side surfaces. The pseudocode for this adaptive
local neighborhood averaging is depicted in Algorithm 8.

Algorithm 8 Adaptive threshold for identifying the side surface pixels for
Teabag3D version 1.2

/* Adaptive side surface identification */
function IdentifySideSurfaces2(Image)

for all Cells in Image do
Count the number of pixels in the cell and its neighboring cells
LocalAvgNumPixels ← Local neighborhood average of the num-

ber of pixels per cell
if number of pixels in Cell > LocalAvgNumPixels then

SideSurfaceP ixelList← all pixels in Cell
end if

end for
end function

4. Results and Discussion

To test the effectiveness of our methods in attacking these text-based
3D CAPTCHAs, experiments using the techniques described in the previous
section were conducted. For the experiments, 1000 samples for each of the re-
spective CAPTCHA schemes were downloaded from actual websites. For the
case of Super CAPTCHA, we collected samples from two different sources.
The first was from a customer’s website. In addition to this, WordPress pro-
vides a downloadable plug-in on their website (WordPress.org, 2013). Using
this plug-in, another set of 1000 samples was generated using the default
CAPTCHA settings. For the Teabag 3D CAPTCHA, we collected samples
for each of the two versions, i.e. version 1.0.1 and version 1.2.



Table 1: Experimental results.

CAPTCHA Scheme Accuracy Average Time
Super CAPTCHA (from website) 27% 3 secs
Super CAPTCHA (from plug-in) 32% 3 secs

3dcaptcha 58% 4 secs
Teabag 3D version 1.0.1 76% 7 secs
Teabag 3D version 1.2 31% 4 secs

Table 1 shows the results of the CAPTCHA attacking experiments. In
the table, accuracy refers to the success rate of correctly solving the entire
CAPTCHA challenge, i.e. all characters successfully recognized, while aver-
age time refers to the average duration of an attack, i.e. the average period
of time that it took to complete an attack on a single CAPTCHA of that
particular scheme. The experiments were conducted on an Intel Core 2 Duo
3.33GHz PC.

As a measure of CAPTCHA effectiveness, Chellapilla et al. (2005a) sug-
gest that automated bots should not be able to correctly solve a CAPTCHA
at a success rate of higher than 0.01%. However, Bursztein et al. (2011b) state
that this security goal is too ambitious and instead assert that a CAPTCHA
scheme is broken when the attacker is able to reach a success rate of at least
1%. The results in Table 1 show that the results of our attacks are well above
either of these benchmarks. In addition, the time that it takes to attack the
CAPTCHAs is well within the duration that a normal human would take to
solve a CAPTCHA.

In general, the success of our attacks stems from the fact that these 3D
CAPTCHAs were designed based on the concept of perturbing a regular pat-
tern in order to enable humans to perceive 3D characters amidst the pattern.
While this may seem secure as it prevents OCR programs or automated bots
from solving the CAPTCHA challenge directly, due to the noise created by
the background pattern, in this paper we have shown that the perturbations
made to a regular pattern can in fact be exploited. Our attacking techniques
rely on the fact that key information that can be used to identify the char-
acter, and consequently be used to solve the CAPTCHA, can be extracted
from these perturbations. Upon extracting this information, the resulting
image can be fed into any good OCR program, which can then recognize the



characters with a high success rate. Some of the common 3D CAPTCHA fea-
tures that were exploited in our approach where changes in line direction for
patterns with linear lines, changes in pixel density which typically indicated
the edges or corners of characters, as well as changes in cell size (for grid like
patterns) or distances between lines (for patterns with parallel lines).

From the experimental results, it can be seen that our attack on Teabag
3D version 1.0.1 had the highest success rate. This was because in addition
to the features mentioned above, our method could also identify the side
and front character surfaces, making it easier to clean up the image dur-
ing the post-processing stage before character recognition. Furthermore, the
3D character models in this CAPTCHA scheme were very rigid characters,
as such it made it easier to identify characters with straight lines as these
characters would uniformly change a number of connected cells in the grid
pattern. This became more difficult in the updated version of this scheme,
i.e. Teabag 3D version 1.2, as evident from the experimental results where
the success rate dropped by around half. In this version, the wave like pat-
tern distorted the grid, which in turn created more variation in the cell sizes
and warped straight lines thus reducing the accuracy of our approach. Nev-
ertheless, there is still a significant difference in the size and shape of the
cells which form the characters compared to the background grid, and our
method of attack still results a high success rate.

Overall, the success rate of attacking Super CAPTCHA was lower than
the rest. This is because the lines that are used to build Super CAPTCHA
are generated using Markov-chains. This gives rise to some randomness in the
lines, which makes it more difficult to distinguish between pixels that belong
to the parallel lines and those that belong to the characters. As such, using
larger distortion parameters for the lines will certainly make the CAPTCHA
more difficult to break. However, this also means potentially reducing the
human usability of the resulting CAPTCHA.

It is widely recognized that the state of the art in traditional 2D CAPTCHA
design suggests that crowding or overlapping characters is currently the most
effective approach to deterring automated attacks (Ahmad et al., 2010). We
believe that these principles also apply to the design of 3D CAPTCHAs, as
it would make it more difficult to extract information about individual char-
acters. Nevertheless, one has to bear in mind that crowding, overlapping
or joining characters together also makes it more difficult for a human to
recognize the characters in a 3D CAPTCHA.



5. Summary

The fundamental requirement of a practical CAPTCHA scheme neces-
sitates that humans must be able to solve the CAPTCHA challenges with
a high degree of success, while the likelihood that a computer program can
correctly solve them must be very small. Unfortunately, many studies have
shown that various traditional 2D text-based CAPTCHA schemes can be
solved by automated computer programs at high success rates. As such,
some CAPTCHA designers have proposed 3D CAPTCHA schemes to over-
come this problem, as 3D CAPTCHAs are assumed to be secure because
they cannot be solved by OCR programs directly.

However, we have shown approaches that can be used to attack 3D
CAPTCHA schemes. The 3D CAPTCHA schemes examined in this research
were in essence built from the concept that by perturbing a regular pat-
tern, a human will be able to perceive the 3D text which is embedded in
the pattern, while a computer will have difficulty in determining the text.
By examining three different 3D CAPTCHA schemes, we have demonstrated
techniques that can be used to identify and extract key information from such
3D CAPTCHAs. Essentially, the information that we wanted to identify and
extract from the CAPTCHAs was the pixels that belong to the characters.
This is because once the characters can be extracted from the pattern, the
characters can simply be passed through any good OCR program which will
then be able to recognize the text with a high degree of success.

5.1. Main methods

In general, the following methods were used to identify and extract key
information from the respective 3D CAPTCHA schemes. Despite being used
for different CAPTCHA schemes, it can be seen that the notions underlying
some of these methods are relatively similar.

Super CAPTCHA

• Changes in line direction - by estimating the gradient of the parallel
lines, we could identify pixels that did not conform to this gradient.

• Variation in the number of pixels between lines - since the lines were
parallel, we could identify regions between consecutive lines that were
greater than the average pixel distance.



3dcaptcha

• Variation in the number of pixels between lines - by calculating the
average number of pixels between consecutive lines, we could identify
irregular regions between lines which contained a greater number of
pixels.

• Changes in line direction - the regular pattern consisted of straight
lines, hence we could identify regions that belonged to the characters
based on changes in the direction of the lines.

• Pixel densities - character boundaries could be determined based on
regions which contained a high density of connected pixels.

• Variation in cell sizes - by dividing regions into grids, we could identify
cells which had a higher pixel count compared to their neighboring
cells.

Teabag 3D

• Variation in cell sizes - we could identify the side surfaces of characters
based on cells which contained a higher number of pixels compared to
their neighboring cells.

• Pixel densities - pixels belonging to the front surface of characters were
determined based on regions which contained a high density of con-
nected pixels.

• Segmentation - we could perform segmentation by trying to separate
characters using a vertical line, a diagonal line which corresponded to
the gradient of the grid, or by tracing the pixels along the side surfaces
of the characters.

5.2. Limitations

The methods discussed above for extracting key information were all
based on the notion of identifying variations amidst a regular pattern. It
is anticipated that the success of our approaches can potentially be reduced
by adding greater randomness to the patterns. For example, instead of using
a pattern that consists of a collection of straight lines with similar gradients,
if the text were to be embedded in a pattern which consisted of randomly



curving lines, this would significantly reduce the accuracy of some of our
methods. In particular, changes in line direction as well as variation in the
number of pixels between lines would not necessarily be due to an embed-
ded character. As an example, it can be seen that the improved version of
Teabag 3D, i.e. version 1.2, adopted a wave like pattern rather than a regular
grid pattern. This meant that there was greater variation in the cell sizes
between adjacent cells. While our attack was still able to break this version,
the success rate of our attack dropped significantly.

However, one also has to consider the fact that adding greater random-
ness to the underlying pattern may adversely affect the human usability of
the resulting 3D CAPTCHA scheme. This is because the human visual sys-
tem may have difficulty perceiving text which is embedded in an irregular
background pattern. This would undoubtedly make the resulting scheme
frustrating to use as humans would not be able to solve it with a high degree
of success.

6. Conclusion

This paper investigates the robustness of text-based 3D CAPTCHAs
against automated attacks. By identifying key features in the construction
of the 3D CAPTCHA scheme, it is possible to extract information about
the CAPTCHA challenge. A number of methods for doing this have been
described in this paper. Common methods include identifying variations in
the background pattern, such as changes in line direction, distances between
lines, pixel density, cell sizes, etc. This paper demonstrates that although the
concept of text-based 3D CAPTCHA schemes may appear to be secure as
OCR programs cannot be used to directly solve the 3D CAPTCHA, informa-
tion can first be extracted from the CAPTCHA before passing it to an OCR
program. The results presented in this paper show that by doing so, auto-
mated attacks can solve 3D CAPTCHAs with a high degree of success. While
CAPTCHA developers constantly seek to produce new CAPTCHA alterna-
tives, these results appear to negate the assumption that 3D CAPTCHAs
are really more secure than their traditional 2D counterparts.

Acknowledgment

Willy Susilo would like to acknowledge the support of ARC Future Fel-
lowship FT0991397.



References

ABBYY, 2013. ABBYY FineReader, http://finereader.abbyy.com, viewed 29
June 2013 .

Ahmad, A. S. E., Yan, J., Marshall, L., 2010. The robustness of a new
CAPTCHA. In: Costa, M., Kirda, E. (Eds.), EUROSEC. ACM, pp. 36–
41.

Ahmad, A. S. E., Yan, J., Ng, W.-Y., 2012. CAPTCHA design: Color, us-
ability, and security. IEEE Internet Computing 16 (2), 44–51.

Baecher, P., Buscher, N., Fischlin, M., Milde, B., 2011. Breaking re-
CAPTCHA: A holistic approach via shape recognition. In: Camenisch,
J., Fischer-Hubner, S., Murayama, Y., Portmann, A., Rieder, C. (Eds.),
Future Challenges in Security and Privacy for Academia and Industry. Vol.
354 of IFIP Advances in Information and Communication Technology. pp.
56–67.

Baird, H. S., Coates, A. L., Fateman, R. J., 2003. PessimalPrint: a reverse
turing test. IJDAR 5 (2-3), 158–163.

Bursztein, E., Beauxis, R., Paskov, H., Perito, D., Fabry, C., Mitchell, J. C.,
2011a. The failure of noise-based non-continuous audio captchas. In: IEEE
Symposium on Security and Privacy. IEEE Computer Society, pp. 19–31.

Bursztein, E., Martin, M., Mitchell, J. C., 2011b. Text-based CAPTCHA
strengths and weaknesses. In: Chen, Y., Danezis, G., Shmatikov, V. (Eds.),
ACM Conference on Computer and Communications Security. ACM, pp.
125–138.

Café Charlotte, 2006. Café Charlotte, http://www.cafe-
charlotte.cz/en/fanclub, viewed 29 June 2013.

Cafe Milenium, 2009. Bar 21 Lounge, http://www.barlounge21.sk/kniha-
navstev, viewed 29 June 2013.

Chellapilla, K., Larson, K., Simard, P. Y., Czerwinski, M., 2005a. Building
segmentation based human-friendly human interaction proofs (HIPs). In:
Baird, H. S., Lopresti, D. P. (Eds.), HIP. Vol. 3517 of Lecture Notes in
Computer Science. Springer, pp. 1–26.



Chellapilla, K., Larson, K., Simard, P. Y., Czerwinski, M., 2005b. Designing
human friendly human interaction proofs (HIPs). In: van der Veer, G. C.,
Gale, C. (Eds.), CHI. ACM, pp. 711–720.

Chellapilla, K., Simard, P. Y., 2004. Using machine learning to break visual
human interaction proofs (HIPs). In: NIPS.

Chew, M., Baird, H. S., 2003. BaffleText: a human interactive proof. In:
Kanungo, T., Smith, E. H. B., Hu, J., Kantor, P. B. (Eds.), DRR. Vol.
5010 of SPIE Proceedings. SPIE, pp. 305–316.

Cruz-Perez, C., Starostenko, O., Uceda-Ponga, F., Aquino, V. A., Reyes-
Cabrera, L., 2012. Breaking reCAPTCHAs with unpredictable collapse:
Heuristic character segmentation and recognition. In: Carrasco-Ochoa,
J. A., Trinidad, J. F. M., Olvera-López, J. A., Boyer, K. L. (Eds.), MCPR.
Vol. 7329 of Lecture Notes in Computer Science. Springer, pp. 155–165.

EnterMir, 2013. Enter Mir, http://entermir.com.ua/cs/reg.php, viewed 29
June 2013.

Gao, H., Wang, W., Qi, J., Wang, X., Liu, X., Yan, J., 2013. The robustness
of hollow CAPTCHAs. In: Sadeghi, A.-R., Gligor, V. D., Yung, M. (Eds.),
ACM Conference on Computer and Communications Security. ACM, pp.
1075–1086.

Goldsboro Web Development, 2013. Super CAPTCHA,
http://goldsborowebdevelopment.com/product/super-captcha/, viewed
29 June 2013.

Hernandez-Castro, C. J., Ribagorda, A., 2010. Pitfalls in CAPTCHA design
and implementation: The math CAPTCHA, a case study. Computers &
Security 29 (1), 141–157.

HyperMedia, 2012. xicht.cz, http://www.xicht.cz/index.php?stranka=registrace,
viewed 29 June 2013.

Imsamai, M., Phimoltares, S., 2010. 3D CAPTCHA: A next generation of
the CAPTCHA. In: Proceedings of the International Conference on Infor-
mation Science and Applications (ICISA 2010), Seoul, South Korea, 21-23
April, 2010. IEEE Computer Society, pp. 1–8.



Kaplan, M. G., n.d. The 3D-CAPTCHA,
http://spamfizzle.com/CAPTCHA.aspx, viewed 21 June 2010.

Kolupaev, A., Ogijenko, J., 2008. CAPTCHAs: Humans vs. bots. IEEE
Security & Privacy 6 (1), 68–70.

Li, S., Shah, S. A. H., Khan, M. A. U., Khayam, S. A., Sadeghi, A.-R.,
Schmitz, R., 2010. Breaking e-banking CAPTCHAs. In: Gates, C., Franz,
M., McDermott, J. P. (Eds.), ACSAC. ACM, pp. 171–180.

Mian, A. S., Bennamoun, M., Owens, R. A., 2006. Three-dimensional model-
based object recognition and segmentation in cluttered scenes. IEEE Trans.
Pattern Anal. Mach. Intell. 28 (10), 1584–1601.

Mitra, N. J., Chu, H.-K., Lee, T.-Y., Wolf, L., Yeshurun, H., Cohen-Or, D.,
2009. Emerging images. ACM Trans. Graph. 28 (5).

Mori, G., Malik, J., 2003. Recognizing objects in adversarial clutter: Break-
ing a visual CAPTCHA. In: CVPR (1). IEEE Computer Society, pp.
134–144.

Moy, G., Jones, N., Harkless, C., Potter, R., 2004. Distortion estimation
techniques in solving visual CAPTCHAs. In: CVPR (2). pp. 23–28.

Nakaguro, Y., Dailey, M. N., Marukatat, S., Makhanov, S. S., 2013. Defeat-
ing line-noise CAPTCHAs with multiple quadratic snakes. Computers &
Security 37 (0), 91 – 110.

Nguyen, V. D., Chow, Y.-W., Susilo, W., 2011. Breaking a 3D-based
CAPTCHA scheme. In: Kim, H. (Ed.), ICISC. Vol. 7259 of Lecture Notes
in Computer Science. Springer, pp. 391–405.

Nguyen, V. D., Chow, Y.-W., Susilo, W., 2012a. Attacking animated
CAPTCHAs via character extraction. In: Pieprzyk, J., Sadeghi, A.-R.,
Manulis, M. (Eds.), Cryptology and Network Security. Vol. 7712 of Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg, pp. 98–113.

Nguyen, V. D., Chow, Y.-W., Susilo, W., 2012b. Breaking an animated
CAPTCHA scheme. In: Bao, F., Samarati, P., Zhou, J. (Eds.), ACNS.
Vol. 7341 of Lecture Notes in Computer Science. Springer, pp. 12–29.



OCR Research Team, 2006. TEABAG 3D, http://ocr-research.org.ua,
viewed 29 June 2013.

Rediff.com India, 2013. Rediffmail, http://register.rediff.com/register/register.php,
viewed 29 June 2013.

Ross, S. A., Halderman, J. A., Finkelstein, A., 2010. Sketcha: a CAPTCHA
based on line drawings of 3D models. In: Rappa, M., Jones, P., Freire, J.,
Chakrabarti, S. (Eds.), WWW. ACM, pp. 821–830.

SACHYonline.cz, 2010. SACHY online.cz,
http://www.sachyonline.cz/?action=register, viewed 29 June 2013.

Tam, J., Simsa, J., Hyde, S., von Ahn, L., 2008. Breaking audio CAPTCHAs.
In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (Eds.), NIPS. MIT
Press, pp. 1625–1632.

von Ahn, L., Blum, M., Hopper, N. J., Langford, J., 2003. CAPTCHA: Using
hard AI problems for security. In: Biham, E. (Ed.), EUROCRYPT. Vol.
2656 of Lecture Notes in Computer Science. Springer, pp. 294–311.

WordPress.org, 2013. Super CAPTCHA security suite - one and only 3D
CAPTCHA, http://wordpress.org/extend/plugins/super-capcha/, viewed
29 June 2013.

Xu, Y., Reynaga, G., Chiasson, S., Frahm, J.-M., Monrose, F., Van Oorschot,
P., 2012. Security and usability challenges of moving-object CAPTCHAs:
decoding codewords in motion. In: Proceedings of the 21st USENIX confer-
ence on Security symposium. Security’12. USENIX Association, Berkeley,
CA, USA, pp. 4–4.

Yan, J., Ahmad, A. S. E., 2007. Breaking visual CAPTCHAs with naive
pattern recognition algorithms. In: ACSAC. IEEE Computer Society, pp.
279–291.

Yan, J., Ahmad, A. S. E., 2008. A low-cost attack on a Microsoft CAPTCHA.
In: Ning, P., Syverson, P. F., Jha, S. (Eds.), ACM Conference on Computer
and Communications Security. ACM, pp. 543–554.

Yan, J., Ahmad, A. S. E., 2009. CAPTCHA security: A case study. IEEE
Security & Privacy 7 (4), 22–28.



Yan, J., Ahmad, A. S. E., 2011. CAPTCHA robustness: A security engineer-
ing perspective. Computer 44 (2), 54–60.

YUNiTi, 2013. YUNiTi - do something good,
http://www.yuniti.com/register.php, viewed 29 June 2013.

Zhu, B. B., Yan, J., Li, Q., Yang, C., Liu, J., Xu, N., Yi, M., Cai, K., 2010.
Attacks and design of image recognition CAPTCHAs. In: Al-Shaer, E.,
Keromytis, A. D., Shmatikov, V. (Eds.), ACM Conference on Computer
and Communications Security. ACM, pp. 187–200.



Figure 1: Overview of the stages.



(a) Without background image (b) With background image

Figure 2: Examples of Super CAPTCHA



(a) Original image

(b) After background removal and binarization

Figure 3: Pre-processing stage in attacking Super CAPTCHA



Figure 4: The approximate gradient of the white lines (shown in blue).



Figure 5: Parallel lines (illustrated in green) used to overwrite the white lines.



Figure 6: Connected pixels (illustrated in orange) in the direction of the parallel lines.



Figure 7: Separation between the pixels related to the characters (in white) and the pixels
that belong to the lines (in green).



Figure 8: Pixels (in red) that were determined to belong to the characters.



Figure 9: Additional pixels (in red) in large empty regions below the character pixels.



(a) Pixels determined to belong to the charac-
ters.

(b) Final post-processed image.

Figure 10: Results of the post-processing stage.



Figure 11: Examples of 3dcaptcha.



Figure 12: Processing area (inner red line).



(a) Result of a vertical scan.

(b) Result of a horizontal scan.

(c) Combined results

Figure 13: Extracting key features based on the distances between lines.



Figure 14: Extracting key features based on changes in line direction.



Figure 15: Character boundaries determined based on the high density of connected pixels.



Figure 16: Cells containing more pixels than their neighbors.



Figure 17: Combining all identified key features.



Figure 18: Post-processed image.



(a) Teabag 3D version 1.0.1 (b) Teabag 3D version 1.2

Figure 19: Examples of Teabag 3D CAPTCHA



(a) Side surface identification. (b) Front surface identification from
clusters of black pixels.

(c) Final results showing the front
and side surfaces of the characters.

Figure 20: Extracting key features for a Teabag 3D version 1.0.1 challenge.



(a) Vertical seg-
mentation.

(b) Diagonal segmen-
tation.

(c) Side surface segmentation.

Figure 21: Different segmentation approaches.



(a) Original challenge.

(b) Final results showing the front and side sur-
faces of the characters.

Figure 22: Extracting key features for a Teabag 3D version 1.2 challenge.


	On the security of text-based 3D CAPTCHAs
	Recommended Citation

	On the security of text-based 3D CAPTCHAs
	Abstract
	Keywords
	Disciplines
	Publication Details

	tmp.1417561044.pdf.co_Vq

