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ABSTRACT 

Strengthening concrete columns by externally wrapping fibre reinforced polymer 

(FRP) around the perimeter of column sections is rapidly growing. This 

strengthening technique confines the column cores thus increases their carrying loads 

and ductility. This thesis is concerned with the confinement mechanism of FRP-

confined concrete. Particular attention is given to a new technique for strengthening 

existing concrete columns. 

The confinement mechanism of FRP-confined concrete is comprehensively 

investigated and analysed, which resulted in confinement models for FRP-confined 

concrete columns. The confinement model for FRP-confined circular concrete 

columns covers a wide range of unconfined concrete strengths with higher accuracy 

than other existing models. The confinement model for FRP-confined rectangular 

concrete columns takes the stress concentration at the corners of sections into 

account, which has not been done by previous studies. In addition, this study 

introduces the use of artificial neural network (ANN) to generate analytical equations 

for calculating the compressive strength and strain of FRP-confined rectangular 

concrete columns. These equations significantly increase the accuracy compared to 

existing models. 

Additionally, the progressive failure mechanism of FRP-confined concrete that has 

not been previously investigated is experimentally studied. Experimental results 

show that the maximum usable strain of 1% recommended by ACI 440.2R (2008) 

and Concrete Society (2012) is un-conservative for FRP-confined concrete. A new 

model is then proposed to calculate the residual strength of a concrete core at a given 

axial strain. 

Finally, a new practical method called circularisation technique is proposed to 

strengthen existing square reinforced concrete columns. The new technique 

significantly increases the axial capacity of the existing square columns. Through 

experimental studies, the proposed technique was verified for not only normal 

strength concrete but also high strength concrete. Two sets of experimental testing 

proved the viability of the proposed circularization technique. 
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1 INTRODUCTION 

1.1 Preamble 

The use of fibre reinforced polymer (FRP) in structural engineering has increased in 

recent years. FRP could be used for new constructions or retrofitting applications. 

The well-known advantages of FRP have resulted from a wide range of its 

applications in structural members. These advantages include high strength-to-weight 

ratio, excellent corrosion resistance and ease of site handling. 

FRP used in structural members usually consists of glass, carbon, or aramid fibre 

encased in a matrix of epoxy, polyester, or vinyl-ester. FRP has been used in a wide 

range of applications: structural profiles, internal reinforcing bars, and sheets (Bank 

2006). Among these applications, strengthening existing concrete columns by 

externally wrapping with FRP sheets has been attracted to the research society in the 

last two decades. This strengthening technique challenges material scientists and 

structural engineers to study structural behaviours. These challenges comprise 

understanding and prediction of the confinement mechanism of FRP-confined 

concrete columns. 

Confined concrete is a concrete which has closely-spaced transverse reinforcement 

which restrains the concrete in directions perpendicular to the applied load. Tri-axial 

compressive stresses delay expansion and damage propagation in concrete by 

restricting crack growth and decreasing dilation ratio of concrete. When the applied 

load approaches the uni-axial strength, the concrete becomes confined and 

commences effects of the transverse reinforcement which then applies a confining 

reaction to the concrete. Thus confined concrete damaged by a different mode as 

compared to unconfined concrete. It is well known that confinement effect increases 

the strength and ductility of concrete (Hadi 2006a; Hadi 2006b; Hadi 2007a; Hadi 

2009). FRP confinement is accomplished by wrapping the fibre sheets mainly 

transverse to the longitudinal axis of the columns providing passive confinement, 

which is activated once the concrete core starts expanding as a result of Possion’s 

effect and internal cracking. 
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The confinement mechanism of FRP-confined circular concrete columns has been 

investigated experimentally and theoretically by many studies (Toutanji 1999; Lam 

and Teng 2003a; Matthys et al. 2006; Teng et al. 2007; Wu and Zhou 2010; Hadi et 

al. 2013; Pham et al. 2013b; Pham and Hadi 2013c). However, there are only a few 

studies about FRP-confined high-strength concrete. Meanwhile, the confinement 

effect of non-circular columns is widely accepted to be less efficient than that of 

circular columns in which the jackets provide circumferentially uniform confining 

pressure to the column cores. In rectangular or square columns, the confining stress 

is transmitted to the concrete at the four corners of the section (Bakis et al. 2002; 

Csuka and Kollár 2012; Pham and Hadi 2014b). This mechanism results in low 

efficient confinement effect of FRP-confined rectangular or square concrete columns 

as compared to circular one. Therefore, this study investigates the confinement 

mechanism of FRP-confined either circular or non-circular concrete columns. The 

difference in confinement of these types of columns is stated and analysed. These 

analyses result in a new circularisation technique proposed to strengthen existing 

square concrete columns with FRP. 

1.2 Motivation and Objectives 

The confinement mechanism of FRP-confined circular concrete columns has been 

extensively discussed in the literature. Analytical studies have been proposed to 

predict the compressive strength and strain of FRP-confined circular columns 

(Toutanji 1999; Lam and Teng 2003a; Teng et al. 2007; Youssef et al. 2007; Wu and 

Zhou 2010). Most of these studies have focussed on FRP-confined normal strength 

concrete. The confinement effects of FRP on high strength concrete have not been 

comprehensively investigated (Lim and Ozbakkaloglu 2014). Thus, this study 

proposes a confinement model for FRP-confined normal- and high-strength concrete. 

Bisby et al. (2005) stated that existing models for FRP-confined concrete show poor 

correlation with experimental results. Bisby et al. (2005) revealed that the mean 

absolute error of strain estimations ranges from 35% to 250% while the error of 

strength estimation is less than 20%. Thus, it is necessary to develop strain models 

for FRP-confined concrete. 
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In addition, most of the existing models for FRP-confined concrete columns based on 

the confinement mechanism and calibrating test results to predict the compressive 

stress and strain (Lam and Teng 2003a; Ilki et al. 2008; Wu and Wang 2009; Wu and 

Wei 2010; Rousakis et al. 2012a; Yazici and Hadi 2012; Pham and Hadi 2013c; 

Pham and Hadi 2014b). Models developed by this approach provide a good 

understanding of stress-strain curve of the confined concrete, but their errors in 

estimating the compressive strength and strain are still remarkable. Ozbakkaloglu et 

al. (2013) had reviewed 88 existing FRP confinement models for circular columns. 

That study showed that the average absolute errors of the above models in estimating 

stress and strain are greater than 10% and 23%, respectively. Thus, it is necessary for 

the research community to improve the accuracy in estimating both the compressive 

stress and strain of FRP-confined concrete. This study introduces the use of artificial 

neural networks (ANN) to predict the compressive strength and strain of FRP-

confined concrete columns. 

As mentioned above, the difference in the confinement effects of circular and non-

circular columns has required much more studies to provide better understanding 

about the behaviours of FRP-confined rectangular or square columns. Since most of 

existing models for rectangular sections are quite similar to circular sections except 

that a shape factor is introduced to account for the non-uniform confinement, this 

study proposes a model for FRP-confined rectangular columns by focusing on the 

stress concentration at the corners of the sections. 

Experimental studies have shown that the axial strain of FRP-confined concrete 

varies in a broad range from 0.5% to 8.6% (Ilki et al. 2008; Lee and Hegemier 2009; 

Teng et al. 2009). However, these studies did not investigate the integrity of the 

concrete during testing. No study has investigated the precise nature of the 

progressive failure mechanisms occurring during experimental tests. In other words, 

the maximum usable strain of 1% recommended by two guidelines (ACI 440.2R-08 

2008; Concrete Society 2012) seems small as compared to the experimental results. 

Therefore, determining the nature of the progressive failure mechanisms and the 

maximum usable strain of FRP-confined concrete is essentially necessary. This study 
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conducted experimental tests to investigate the progressive failure mechanisms of 

FRP-confined concrete at many stages of testing. 

Finally, the confinement mechanism of both circular and rectangular sections has 

been investigated. There is consensus that the efficient confinement is better on 

circular sections than non-circular sections. So if a non-circular column could be 

circularised and then wrapped with FRP, the confinement effect could be maximised. 

Therefore, this study proposes a new technique to strengthen existing square columns 

by circularisation and FRP confinement. Based on the above analyses, the objectives 

of this study can be defined as the following: 

1. Investigate the effect of the jacket’s stiffness on the confinement mechanism 

of FRP-confined concrete. 

2. Develop a confinement model for FRP-confined circular columns in a broad 

range of unconfined concrete from normal-strength concrete to high-strength 

concrete. 

3. Investigate the mechanism of stress concentration at the corners of column 

sections in FRP-confined rectangular or square concrete columns. 

4. Develop a confinement model for FRP-confined rectangular columns by not 

using the common method that converts the confinement mechanism of 

circular columns to rectangular columns. 

5. Develop ANN-based confinement models to predict the compressive strength 

and strain of FRP-confined concrete and to compare with the results from the 

proposed models above. 

6. Investigate the maximum usable strain of FRP-confined concrete and propose 

a model to calculate the residual compressive strength of a concrete core at a 

given strain of a FRP-confined concrete column. 

7. Propose a new technique to strengthen existing square concrete columns by 

circularisation and FRP confinement. 



5 

 

 

1.3 Methodology 

To achieve these objectives, theoretical and experimental methods originating not 

only from civil engineering but also other interdisciplinary fields were employed as 

follows: 

- The energy approach was used to predict the compressive strain of FRP-

confined concrete. This study assumes that there is a linear relationship 

between the energy absorption of the column and the external FRP. Based on 

this relationship, a strain model was proposed to estimate the compressive 

strain of FRP-confined concrete. 

- The membrane hypothesis was employed to analyse the confinement 

mechanism of FRP-confined rectangular columns, which is a different 

approach from existing models for rectangular sections. 

- Artificial neural networks (ANN) were used to predict the compressive 

strength and strain of FRP-confined concrete. Mathematical derivation was 

developed from the ANN-based models to provide an alternative approach for 

predicting the ultimate conditions of confined concrete. 

- A practical technique was proposed to strengthen existing square columns by 

circularisation technique and FRP confinement. 

Meanwhile, regression analysis has been also employed in this study to obtain the 

above objectives. 

1.4 Thesis Outline 

Corresponding to the objectives listed above, the combined experimental and 

theoretical studies are presented in this thesis in seven chapters, details of which are 

summarised below: 

Chapter 2 proposes a new model for FRP-confined circular concrete columns. The 

scope of the proposed model covers a broad range of unconfined concrete strength 

from normal strength concrete to high strength concrete. The stiffness effects of the 

jacket are taken into account to calculate the compressive strength of confined 
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concrete. In addition, the compressive strain of confined concrete is estimated based 

on the energy approach. 

Chapter 3 is divided into two sections in which the first section is to calculate the 

compressive strength and the second section is to predict the compressive strain of 

FRP-confined rectangular concrete columns. The membrane hypothesis and the 

stress concentration at the corners of sections were taken into account for calculating 

the compressive strength. And the energy approach was employed to estimate the 

compressive strain of confined concrete. 

In order to compare with results from the two chapters above, Chapter 4 proposes 

confined models to calculate the compressive strength and strain of FRP-confined 

concrete using ANN. Chapter 4 is to focus on two main objectives in which the first 

objective is to calculate the compressive strength and strain of FRP-confined 

concrete using ANN that includes two separate models for the strength and strain, 

respectively. The second objective develops a methodology to generate predictive 

equations from the two trained ANN-based models above. 

Chapter 5 investigates the progressive failure mechanism of FRP-confined concrete. 

The maximum usable strain of FRP-confined concrete is discussed and a model is 

proposed to estimate the residual strength of concrete cores at a given strain of the 

confined concrete. 

Chapter 6 is also divided into two parts in which the first part proposes a new 

technique called “circularisation technique” to strengthen existing square concrete 

columns. A set of experiments was conducted to prove and verify the efficiency of 

the proposed technique with normal strength concrete. Additionally, the second part 

expands the use of the proposed technique for high strength concrete. 

In Chapter 7, a summary, concluding remarks and recommendations for future 

research studies are expressed. 
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2 MECHANISM OF FRP-CONFINED CIRCULAR CONCRETE COLUMNS 

Summary 

This study establishes a confinement model for FRP-confined normal- and high-

strength concrete circular columns. A new column parameter was suggested for 

estimating the compressive strength of FRP-confined concrete. The proposed model 

is able to predict the ultimate condition of FRP-confined concrete columns that have 

similar unconfined concrete strength and confining pressure but significant 

differences in the jacket stiffness. The proposed model was then verified using a 

database of 574 FRP-confined concrete circular columns with different types of FRP. 

This database covers unconfined concrete strength between 15 MPa and 170 MPa 

and specimens with a diameter ranging from 51 mm to 406 mm. Furthermore, this 

database includes specimens with a variety of FRP types: carbon FRP (CFRP), glass 

FRP, high-modulus carbon FRP, aramid FRP (AFRP), CFRP tube, ultra-high-

modulus CFRP tube, and AFRP tube. Finally, the model’s prediction fits the 

experimental results very well by verifying the proposed model with the extensive 

database. 

Citation 

This paper was published in Construction and Building Materials with the following 

citation: 

Pham, T.M., and Hadi, M.N.S. (2014). "Confinement Model for FRP-confined 
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3 MECHANISM OF FRP-CONFINED SQUARE CONCRETE COLUMNS 

3.1 Compressive Strength 

Summary 

The paper uses the “membrane hypothesis” to formulate the confining behaviour of 

FRP-confined rectangular columns. A model was developed to calculate the strength 

of FRP-confined rectangular concrete columns. The model was verified using a 

database of 190 FRP-confined rectangular concrete columns. The database covers 

unconfined concrete strength between 18.3 MPa and 55.2 MPa and specimens with 

dimensions ranging from 79 mm to 305 mm and 100 mm to 305 mm for short and 

long sides, respectively. The performance of the proposed model shows a very good 

correlation with the experimental results. In addition, the strain distribution of FRP 

around the circumference of the rectangular sections was examined to propose an 

equation for predicting the actual rupture strain of FRP. The minimum corner radius 

of the sections is also recommended to achieve sufficient confinement. 

Citation 

This paper was published in Journal of Composites for Construction with the 

following citation: 

Pham, T.M., and Hadi, M.N.S. (2014). "Stress Prediction Model for FRP-confined 
Rectangular Concrete Columns with Rounded Corners." Journal of Composites for 
Construction, 18(1), 04013019-1-04013019-10. 
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Abstract: The paper uses the membrane hypothesis to formulate the confining behavior of fiber-reinforced polymer (FRP) confined
rectangular columns. A model was developed to calculate the strength of FRP confined rectangular concrete columns. The model was verified
using a database of 190 FRP confined rectangular concrete columns. The database covers unconfined concrete strength between 18.3 and
55.2 MPa, and specimens with dimensions ranging from 79–305 mm and 100–305 mm for short and long sides, respectively. The perfor-
mance of the proposed model shows a very good correlation with the experimental results. In addition, the strain distribution of FRP around
the circumference of the rectangular sections was examined to propose an equation for predicting the actual rupture strain of FRP.
The minimum corner radius of the sections is also recommended to achieve sufficient confinement. DOI: 10.1061/(ASCE)CC.1943-
5614.0000407. © 2013 American Society of Civil Engineers.

Author keywords: Rectangular columns; Square columns; Membrane hypothesis.

Introduction

Fiber-reinforced polymers (FRPs) have been commonly used to
strengthen existing reinforced concrete (RC) columns. This use of
FRP has been proven to increase the strength, stiffness, and
ductility of the strengthened columns. The use of FRP in industry
has required design guidelines for these applications. Many
strength models for FRP confined concrete columns were therefore
proposed to simulate the behavior of confined concrete columns
(Spoelstra and Monti 1999; Chaallal et al. 2003a; Lam and Teng
2003a; Harajli et al. 2006; Wu and Wang 2009; Cui and Sheikh
2010; Lee et al. 2010; Wu and Zhou 2010; Yazici and Hadi
2012). Most of the existing models based on Richart et al. (1928)
are for circular sections causing uniform confining pressure, which
can be estimated based on the strength and thickness of the FRP
and the diameter of the sections.

There are far fewer models for FRP confined rectangular col-
umns as compared with circular columns (Lam and Teng 2003b;
Wu and Wang 2009; Toutanji et al. 2010; Wu and Wei 2010;
Wu and Zhou 2010). The confining pressure of a FRP confined
rectangular column around its perimeter is not uniform. This non-
uniform confining pressure leads to many difficulties to formulate
the pressure distribution by a mechanical solution. Most of the
existing models for rectangular sections are quite similar to circular
sections except that a shape factor is introduced to account for
the nonuniform confinement. In addition, the equivalent confining
pressure in such cases is calculated based on mechanism analysis

of circular sections. The differences between these models are the
shape factor and definition of the equivalent diameter of the
rectangular sections. Therefore, analyzing the mechanism of
FRP confined rectangular columns at the corners to create a model
is an interesting concern of the research society. This paper intro-
duces an approach to propose a model by focusing on the stress
concentration at the corners of the sections.

This paper first adopts the membrane hypothesis to analyze
the behaviors of FRP at the corners of rectangular sections. The
confining pressure of the confined columns at the middle of the
sides and at the corners of the sections is then examined. Next,
the confining pressure at the corners of the section is estimated
from the tensile properties of FRP and the corner radius. A model
is proposed to estimate the strength of the confined columns, which
was evaluated by a database from the literature.

Confining Mechanism

Confining Pressure of Shell Structures

An FRP jacket used in confined concrete columns could be
analyzed as a cylindrical shell structure subjected to hydrostatic
pressure. In general, the loads are carried in shell structures by
a combination of stretching and bending action. However, some-
times the bending effects are rather small when the shell structure
is thin enough for eligibility of the membrane hypothesis. For such
cases, the equilibrium of an infinitesimal section of the cylindrical
shell structure was analyzed by Calladine (1983) [Fig. 1(a)]. The
tension force of the shell structure is

T ¼ rp ð1Þ
where T = tension force in the hoop direction of the shell structure;
r = radius of the infinitesimal section; and p = hydrostatic pressure
applied on the structure.

This solution is also applicable for a rectangular prism with
rounded corners and confined with FRP. The applicability of this
solution is for thin shells, which could be expected when the ratio
of the round corner and the nominal jacket thickness is greater than
20 (r=t > 20) (Calladine 1983). It is assumed that when an axial
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load is applied on a FRP confined rectangular concrete column, the
confining pressure concentrates only at the corners of the section.
The confining pressure at middle of the section sides is rather small,
which could be negligible. For simplicity, the term rectangular
columns, used in this paper, is used for rectangular columns with
round corners.

Confining Pressure of FRP Confined Rectangular
Concrete Columns

When a FRP confined rectangular concrete column is subjected
to an axial load, the concrete laterally expands and is con-
fined by the FRP. The tension force of the jacket at the rupture
state is

ffe ¼ Efεfe ð2Þ

where ffe = actual tensile stress of FRP; Ef = elastic modulus of
FRP; and εfe = actual strain of FRP at rupture.

Substituting Eq. (2) into Eq. (1), the confining pressure of the
FRP confined rectangular concrete column at the corners is iden-
tical to that for a circular section

fl ¼
ntEfεfe

r
ð3Þ

where fl = nominal confining pressure of the confined column;
t = nominal thickness of FRP; n = number of FRP layers; and
r = corner radius.

It is assumed that the radius of the curvature at middle of the
section sides (as the column is bulging under an axial load)
is much greater than that at the corners. As a result, from
Eq. (3), the confining pressure of the column at the middle of
the sides is rather small and could be negligible. Therefore, the
appropriate confining stress of a FRP confined rectangular column
should be at the corners. Bakis et al. (2002) similarly concluded
that the confining stress is transmitted to the concrete at the four
corners of the section. The actual rupture strain of FRP at the cor-
ners of the columns should be considered and recorded, which
was recommended by Wang et al. (2012). Csuka and Kollár
(2012) analytically proved that the distribution of the confining
pressure of the FRP confined square columns is concentrated
at the section corners [Fig. 1(b)].

Experimental Behavior of FRP Confined Rectangular
Columns

Test Database

The number of specimens for an acceptable database was inves-
tigated before collating data of tested specimens. Table 1 sum-
marizes the number of specimens of a few published models
from the literature. Several experimental studies have been con-
ducted on FRP confined rectangular or square concrete columns
by researchers over the past few decades. The research described
in this paper collated a test database of 190 FRP confined
rectangular concrete columns (Table 2), reported by Rochette
and Labossière (2000), Shehata et al. (2002), Lam and Teng
(2003b), Ilki and Kumbasar (2003), Masia et al. (2004), Harajli
et al. (2006), Rousakis et al. (2007), Al-Salloum (2007), Wang
and Wu (2008), Tao et al. (2008), Wu and Wei (2010), and Wang
et al. (2012). The database covers unconfined concrete compres-
sive strength between 18.3 and 55.2 MPa. Different types of
FRP were tested in the previously noted experiments, namely
carbon FRP (CFRP), aramid FRP (AFRP), and glass FRP
(GFRP). The majority of specimens were plain concrete except
the reinforced specimens reported by Harajli et al. (2006) and
Wang et al. (2012). The effect of reinforcing-bars in confining
the concrete was deducted when calculating the FRP confined
concrete strength. The dimensions of the specimens range from
79–305 mm and 100–305 mm for shorter and longer sides,
respectively. The aspect ratio of the specimens ranged from
1–2.7, among them 1 (138 specimens), 1.3 (16 specimens),
1.5 (12 specimens), 1.7 (12 specimens), 2 (6 specimens), and
2.7 (6 specimens).

In the previously noted studies, reported FRP hoop strains
were the average values from strain gages at the critical re-
gions or were taken to be the same as lateral strains deduced
from measurement of LVDTs at the midheight of the specimens.
Only the hoop strains measured by strain gages were utilized
in creating a model for estimating the actual rupture strain
of FRP. Other strains deduced from the LVDTs are average
values and do not represent the hoop strains at the critical
points. The FRP hoop strains of those specimens were excluded
from the database, whereas other results were still used in the
verification.

For most specimens, the physical properties of FRP were deter-
mined from flat coupon tensile tests by the researchers themselves
with the exception of those by Masia et al. (2004), Harajli et al.
(2006), and Rousakis et al. (2007). However, the FRP properties
provided by manufacturers in these studies are quite similar to
the tensile properties of FRP tested by the other researchers. Those
test results also fit very well with the selected models such that they
were included in this database.

(a) (b)

Fig. 1. Confinement behavior at the corner of the section: (a) mechan-
ism of the tension force; (b) distribution of confining stress

Table 1. Summary of Published Models

Papers
Square

specimens
Rectangular
specimens

Total number
of specimens

Chaallal et al. (2003a) 19 — 19
Lam and Teng (2003b) 60 10 70
Al-Salloum (2007) 16 — 16
Youssef et al. (2007) — 38 38
Wu and Wang (2009) 170 — 170
Wu and Wei (2010) 22 60 82
Toutanji et al. (2010) 59 — 59
Proposed model 138 52 190
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Table 2. Test Results of FRP Confined Rectangular Specimens

Number Branchesa

Specimens Concrete Fiber-reinforced polymer

b (mm) h (mm) r (mm)
f 0
co

(MPa) Typeb
Number
of layers t (mm)

ff
(MPa)

εfu
(%)

Ef
(GPa)

εfe
(%)

f 0
cc

(MPa)

Rochette and Labossière (2000)
1 A 152 152 38 42.0 C 3 0.30 1,265 1.50 83 0.71 47.5
2 A 152 152 25 43.9 C 4 0.30 1,265 1.50 83 0.59 50.9
3 D 152 152 25 43.9 C 5 0.30 1,265 1.50 83 0.51 47.9
4 A 152 152 25 35.8 C 4 0.30 1,265 1.50 83 0.70 52.3
5 A 152 152 25 35.8 C 5 0.30 1,265 1.50 83 0.65 57.6
6 A 152 152 38 35.8 C 4 0.30 1,265 1.50 83 0.89 59.4
7 A 152 152 38 35.8 C 5 0.30 1,265 1.50 83 0.86 68.7
8 D 152 203 5 43.0 A 3 0.42 230 1.69 14 0.79 50.7
9 D 152 203 5 43.0 A 6 0.42 230 1.69 14 1.30 51.6
10 D 152 203 5 43.0 A 9 0.42 230 1.69 14 1.48 53.8
11 D 152 203 5 43.0 A 12 0.42 230 1.69 14 0.90 54.2
12 D 152 203 25 43.0 A 3 0.42 230 1.69 14 1.12 51.2
13 D 152 203 25 43.0 A 6 0.42 230 1.69 14 1.27 51.2
14 D 152 203 25 43.0 A 9 0.42 230 1.69 14 0.94 53.3
15 A 152 203 25 43.0 A 12 0.42 230 1.69 14 1.04 55.0
16 D 152 203 38 43.0 A 6 0.42 230 1.69 14 1.05 50.7
17 A 152 203 38 43.0 A 9 0.42 230 1.69 14 0.97 52.9

Harajli et al. (2006)
18 A 132 132 15 18.3 C 1 0.13 3,500 1.50 230 — 28.9
19 A 132 132 15 18.3 C 2 0.13 3,500 1.50 230 — 40.0
20 A 132 132 15 18.3 C 3 0.13 3,500 1.50 230 — 43.1
21 A 132 132 15 18.3 C 1 0.13 3,500 1.50 230 — 25.4
22 A 132 132 15 18.3 C 2 0.13 3,500 1.50 230 — 36.8
23 A 132 132 15 18.3 C 3 0.13 3,500 1.50 230 — 47.0
24 A 102 176 15 18.3 C 1 0.13 3,500 1.50 230 — 23.5
25 A 102 176 15 18.3 C 2 0.13 3,500 1.50 230 — 31.0
26 A 102 176 15 18.3 C 3 0.13 3,500 1.50 230 — 36.5
27 A 102 176 15 18.3 C 1 0.13 3,500 1.50 230 — 21.5
28 A 102 176 15 18.3 C 2 0.13 3,500 1.50 230 — 27.8
29 A 102 176 15 18.3 C 3 0.13 3,500 1.50 230 — 36.4
30 D 79 214 15 18.3 C 1 0.13 3,500 1.50 230 — 27.8
31 D 79 214 15 18.3 C 2 0.13 3,500 1.50 230 — 28.4
32 D 79 214 15 18.3 C 3 0.13 3,500 1.50 230 — 30.4
33 D 79 214 15 18.3 C 1 0.13 3,500 1.50 230 — 18.5
34 A 79 214 15 18.3 C 2 0.13 3,500 1.50 230 — 22.0
35 A 79 214 15 18.3 C 3 0.13 3,500 1.50 230 — 28.9

Rousakis et al. (2007)
36 D 200 200 30 33.0 C 1 0.12 3,720 1.55 240 — 38.4
37 A 200 200 30 33.0 C 3 0.12 3,720 1.55 240 — 45.9
38 A 200 200 30 33.0 C 5 0.12 3,720 1.55 240 — 55.6
39 D 200 200 30 33.0 G 3 0.14 1,820 2.80 65 — 42.6
40 A 200 200 30 33.0 G 6 0.14 1,820 2.80 65 — 44.4
41 A 200 200 30 33.0 G 9 0.14 1,820 2.80 65 — 51.9
42 D 200 200 30 34.0 C 1 0.12 3,720 1.55 240 — 42.2
43 D 200 200 30 34.0 C 3 0.12 3,720 1.55 240 — 45.2
44 A 200 200 30 34.0 C 5 0.12 3,720 1.55 240 — 54.6
45 D 200 200 30 38.0 G 6 0.14 1,820 2.80 65 — 52.8
46 D 200 200 30 38.0 G 9 0.14 1,820 2.80 65 — 59.8
47 D 200 200 30 40.0 G 6 0.14 1,820 2.80 65 — 54.2
48 D 200 200 30 40.0 G 9 0.14 1,820 2.80 65 — 59.5

Lam and Teng (2003b)
49 D 150 150 15 33.7 C 1 0.17 4,519 1.76 257 — 35.0
50 A 150 150 25 33.7 C 1 0.17 4,519 1.76 257 — 39.4
51 A 150 150 15 33.7 C 2 0.17 4,519 1.76 257 — 50.4
52 A 150 150 25 33.7 C 2 0.17 4,519 1.76 257 — 61.9
53 A 150 150 15 24.0 C 3 0.17 4,519 1.76 257 — 61.6
54 A 150 150 25 24.0 C 3 0.17 4,519 1.76 257 — 66.0

Masia et al. (2004)
55 A 100 100 25 25.5 C 2 0.13 3,500 1.50 230 — 55.9
56 A 100 100 25 22.8 C 2 0.13 3,500 1.50 230 — 48.7
57 A 100 100 25 25.1 C 2 0.13 3,500 1.50 230 — 45.7
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Table 2. (Continued.)

Number Branchesa

Specimens Concrete Fiber-reinforced polymer

b (mm) h (mm) r (mm)
f 0
co

(MPa) Typeb
Number
of layers t (mm)

ff
(MPa)

εfu
(%)

Ef
(GPa)

εfe
(%)

f 0
cc

(MPa)

Masia et al. (2004)
58 A 100 100 25 23.8 C 2 0.13 3,500 1.50 230 — 50.7
59 A 100 100 25 21.7 C 2 0.13 3,500 1.50 230 — 56.2
60 A 125 125 25 23.7 C 2 0.13 3,500 1.50 230 — 45.0
61 A 125 125 25 22.9 C 2 0.13 3,500 1.50 230 — 39.9
62 A 125 125 25 25.7 C 2 0.13 3,500 1.50 230 — 42.1
63 A 125 125 25 25.5 C 2 0.13 3,500 1.50 230 — 35.5
64 A 125 125 25 24.3 C 2 0.13 3,500 1.50 230 — 40.2
65 A 150 150 25 24.5 C 2 0.13 3,500 1.50 230 — 35.7
66 A 150 150 25 21.3 C 2 0.13 3,500 1.50 230 — 36.2
67 A 150 150 25 24.8 C 2 0.13 3,500 1.50 230 — 36.6
68 A 150 150 25 23.6 C 2 0.13 3,500 1.50 230 — 36.5
69 A 150 150 25 25.3 C 2 0.13 3,500 1.50 230 — 36.0

Wang and Wu (2008)
70 D 150 150 15 32.9 C 1 0.17 4,364 1.99 219 1.39 38.8
71 D 150 150 15 32.2 C 1 0.17 4,364 1.99 219 1.39 31.0
72 D 150 150 15 30.7 C 1 0.17 4,364 1.99 219 1.39 30.8
73 A 150 150 15 32.9 C 2 0.17 4,364 1.99 219 1.16 40.5
74 A 150 150 15 32.2 C 2 0.17 4,364 1.99 219 1.16 43.6
75 A 150 150 15 30.7 C 2 0.17 4,364 1.99 219 1.16 42.4
76 A 150 150 30 32.6 C 1 0.17 4,364 1.99 219 1.11 43.4
77 A 150 150 30 31.1 C 1 0.17 4,364 1.99 219 1.11 38.8
78 A 150 150 30 33.1 C 1 0.17 4,364 1.99 219 1.11 37.1
79 A 150 150 30 32.6 C 2 0.17 4,364 1.99 219 1.28 58.1
80 A 150 150 30 31.1 C 2 0.17 4,364 1.99 219 1.28 57.5
81 A 150 150 30 33.1 C 2 0.17 4,364 1.99 219 1.28 53.8
82 A 150 150 45 30.1 C 1 0.17 4,364 1.99 219 1.27 48.3
83 A 150 150 45 32.6 C 1 0.17 4,364 1.99 219 1.27 42.1
84 A 150 150 45 29.3 C 1 0.17 4,364 1.99 219 1.27 40.8
85 A 150 150 45 30.1 C 2 0.17 4,364 1.99 219 1.68 64.6
86 A 150 150 45 32.6 C 2 0.17 4,364 1.99 219 1.68 69.4
87 A 150 150 45 29.3 C 2 0.17 4,364 1.99 219 1.68 70.1
88 A 150 150 60 30.9 C 1 0.17 4,364 1.99 219 1.37 50.9
89 A 150 150 60 31.1 C 1 0.17 4,364 1.99 219 1.37 51.7
90 A 150 150 60 33.5 C 1 0.17 4,364 1.99 219 1.37 47.3
91 A 150 150 60 30.9 C 2 0.17 4,364 1.99 219 1.75 81.1
92 A 150 150 60 31.1 C 2 0.17 4,364 1.99 219 1.75 73.6
93 A 150 150 60 33.5 C 2 0.17 4,364 1.99 219 1.75 82.1
94 D 150 150 15 54.7 C 1 0.17 3,788 1.92 226 1.01 55.0
95 D 150 150 15 55.2 C 1 0.17 3,788 1.92 226 1.01 56.1
96 D 150 150 15 52.5 C 1 0.17 3,788 1.92 226 1.01 56.2
97 D 150 150 15 54.7 C 2 0.17 3,788 1.92 226 0.62 59.6
98 D 150 150 15 55.2 C 2 0.17 3,788 1.92 226 0.62 59.6
99 D 150 150 15 52.5 C 2 0.17 3,788 1.92 226 0.62 59.0
100 D 150 150 30 53.5 C 1 0.17 3,788 1.92 226 1.10 56.2
101 D 150 150 30 53.1 C 1 0.17 3,788 1.92 226 1.10 55.5
102 D 150 150 30 49.4 C 1 0.17 3,788 1.92 226 1.10 56.0
103 D 150 150 30 53.5 C 2 0.17 3,788 1.92 226 1.17 65.2
104 D 150 150 30 53.1 C 2 0.17 3,788 1.92 226 1.17 61.4
105 D 150 150 30 49.4 C 2 0.17 3,788 1.92 226 1.17 62.5
106 D 150 150 45 53.2 C 1 0.17 3,788 1.92 226 1.34 56.4
107 D 150 150 45 51.5 C 1 0.17 3,788 1.92 226 1.34 58.4
108 D 150 150 45 53.3 C 1 0.17 3,788 1.92 226 1.34 57.9

Wang and Wu (2008)
109 A 150 150 45 53.2 C 2 0.17 3,788 1.92 226 1.27 81.3
110 A 150 150 45 51.5 C 2 0.17 3,788 1.92 226 1.27 78.8
111 A 150 150 45 53.3 C 2 0.17 3,788 1.92 226 1.27 80.9
112 A 150 150 60 53.9 C 1 0.17 3,788 1.92 226 1.39 62.4
113 A 150 150 60 52.0 C 1 0.17 3,788 1.92 226 1.39 62.7
114 A 150 150 60 52.3 C 1 0.17 3,788 1.92 226 1.39 62.8
115 A 150 150 60 53.9 C 2 0.17 3,788 1.92 226 1.38 87.9
116 A 150 150 60 52.0 C 2 0.17 3,788 1.92 226 1.38 90.9
117 A 150 150 60 52.3 C 2 0.17 3,788 1.92 226 1.38 90.4
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Table 2. (Continued.)

Number Branchesa

Specimens Concrete Fiber-reinforced polymer

b (mm) h (mm) r (mm)
f 0
co

(MPa) Typeb
Number
of layers t (mm)

ff
(MPa)

εfu
(%)

Ef
(GPa)

εfe
(%)

f 0
cc

(MPa)

Wu and Wei (2010)
118 A 150 150 30 35.3 C 1 0.17 4,192 1.84 229 1.84 40.5
119 A 150 150 30 35.3 C 1 0.17 4,192 1.84 229 1.84 40.7
120 A 150 150 30 35.3 C 1 0.17 4,192 1.84 229 1.84 42.5
121 A 150 150 30 35.3 C 2 0.17 4,192 1.84 229 1.21 59.2
122 A 150 150 30 35.3 C 2 0.17 4,192 1.84 229 1.21 59.6
123 A 150 150 30 35.3 C 2 0.17 4,192 1.84 229 1.21 62.3
124 D 150 188 30 35.3 C 1 0.17 4,192 1.84 229 1.46 38.0
125 D 150 188 30 35.3 C 1 0.17 4,192 1.84 229 1.46 38.9
126 D 150 188 30 35.3 C 1 0.17 4,192 1.84 229 1.46 39.4
127 A 150 188 30 35.3 C 2 0.17 4,192 1.84 229 1.33 48.8
128 A 150 188 30 35.3 C 2 0.17 4,192 1.84 229 1.33 51.9
129 A 150 188 30 35.3 C 2 0.17 4,192 1.84 229 1.33 53.3
130 D 150 225 30 35.3 C 1 0.17 4,192 1.84 229 1.58 37.6
131 D 150 225 30 35.3 C 1 0.17 4,192 1.84 229 1.58 35.6
132 D 150 225 30 35.3 C 1 0.17 4,192 1.84 229 1.58 39.2
133 A 150 225 30 35.3 C 2 0.17 4,192 1.84 229 1.44 43.0
134 A 150 225 30 35.3 C 2 0.17 4,192 1.84 229 1.44 45.2
135 A 150 225 30 35.3 C 2 0.17 4,192 1.84 229 1.44 43.4
136 D 150 260 30 35.3 C 1 0.17 4,192 1.84 229 1.31 35.2
137 D 150 260 30 35.3 C 1 0.17 4,192 1.84 229 1.31 37.8
138 D 150 260 30 35.3 C 1 0.17 4,192 1.84 229 1.31 37.6
139 D 150 260 30 35.3 C 2 0.17 4,192 1.84 229 1.72 38.9
140 D 150 260 30 35.3 C 2 0.17 4,192 1.84 229 1.72 41.4
141 D 150 260 30 35.3 C 2 0.17 4,192 1.84 229 1.72 41.3
142 D 150 300 30 35.3 C 1 0.17 4,192 1.84 229 1.15 36.6
143 D 150 300 30 35.3 C 1 0.17 4,192 1.84 229 1.15 37.7
144 D 150 300 30 35.3 C 1 0.17 4,192 1.84 229 1.15 38.0
145 D 150 300 30 35.3 C 2 0.17 4,192 1.84 229 1.37 38.6

Wu and Wei (2010)
146 D 150 300 30 35.3 C 2 0.17 4,192 1.84 229 1.37 39.1
147 D 150 300 30 35.3 C 2 0.17 4,192 1.84 229 1.37 39.3

Wang et al. (2012)
148 D 305 305 30 25.5 C 1 0.17 4,340 1.81 240 0.88 17.2
149 D 305 305 30 25.5 C 2 0.17 4,340 1.81 240 0.70 24.4
150 D 305 305 30 25.5 C 1 0.17 4,340 1.81 240 0.37 19.4
151 D 305 305 30 25.5 C 2 0.17 4,340 1.81 240 0.28 26.0
152 D 305 305 30 25.5 C 3 0.17 4,340 1.81 240 0.60 29.2
153 D 305 305 30 25.5 C 1 0.17 4,340 1.81 240 — 24.9
154 D 305 305 30 25.5 C 2 0.17 4,340 1.81 240 0.33 26.2
155 D 305 305 30 25.5 C 3 0.17 4,340 1.81 240 1.24 31.1
156 D 204 305 20 25.5 C 1 0.17 4,340 1.81 240 0.86 25.0
157 A 204 305 20 25.5 C 2 0.17 4,340 1.81 240 0.62 31.4
158 D 204 305 20 25.5 C 1 0.17 4,340 1.81 240 — 29.7
159 A 204 305 20 25.5 C 2 0.17 4,340 1.81 240 — 35.3
160 D 204 305 20 25.5 C 1 0.17 4,340 1.81 240 — 26.9
161 A 204 305 20 25.5 C 2 0.17 4,340 1.81 240 1.42 36.1

Shehata et al. (2002)
162 D 150 150 10 23.7 C 1 0.17 3,550 1.50 235 — 27.4
163 D 150 150 10 23.7 C 2 0.17 3,550 1.50 235 — 36.5
164 D 150 150 10 29.5 C 1 0.17 3,550 1.50 235 — 40.4
165 D 150 150 10 29.5 C 2 0.17 3,550 1.50 235 — 43.7

Ilki and Kumbasar (2003)
166 D 250 250 40 32.8 C 1 0.17 3,430 1.50 230 — 32.7
167 D 250 250 40 32.8 C 1 0.17 3,430 1.50 230 — 32.3
168 A 250 250 40 32.8 C 3 0.17 3,430 1.50 230 — 41.4
169 A 250 250 40 32.8 C 3 0.17 3,430 1.50 230 — 40.6
170 A 250 250 40 32.8 C 5 0.17 3,430 1.50 230 — 56.7
171 A 250 250 40 32.8 C 5 0.17 3,430 1.50 230 — 53.6
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Failure Modes and Distribution of FRP Strain

The specimens in Table 2 failed suddenly by tensile rupture of the
FRP wrap within the midheight region. The rupture position was
experimentally confirmed at or near the corners of the sections
(Rochette and Labossiére 2000; Chaallal et al. 2003b; Wang
et al. 2012; Hadi et al. 2013). Thus, the mechanism of the FRP
confined rectangular columns should focus on the FRP hoop
strain at the corners.

The distribution of FRP hoop strain is not uniform around the
perimeter of the columns. The rupture of FRP always happens at
the corner regions such that the hoop strain of FRP was expected
to have the highest value at these zones. A few studies investigated
the FRP hoop strain at the middle of the sides and at the corners.
The FRP hoop strain at the middle of the sides is always greater
than at the corners (Rochette and Labossiére 2000; Smith et al.
2010; Wang et al. 2012). As a result, the mean value of all the hoop
strains (including the strains at the middle of the sides and at the
corners) overestimates the rupture strain and the confinement effec-
tiveness of FRP. In addition, the confinement is assumed to be
available at the high-curvature locations (e.g., corners of the sec-
tions) [Eq. (1)]. Confinement is therefore only appropriate at the
corners of the sections. For convenience, the phrase rupture strain
of FRP stands for the rupture strain of FRP at the corners of the
sections.

Rupture Strain of FRP in Rectangular Sections

Wang and Wu (2008) conducted experiments to investigate the
effect of corner radius on the rupture strain of FRP. They showed
that when the radius of the corners increases, the rupture strain of
FRP generally increases. An investigation was also conducted in
the database reported in this paper to yield the same result. It is
assumed that the FRP rupture strain is dependent on the ratio of
the corner radius and the side length, which could be 2r=b

or 2r=h. In addition, Wu and Wei (2010) investigated the effects
of the aspect ratio (h=b) on the rupture strain of FRP. They depicted
that when the aspect ratio (h=b) ranged from 1–2, the FRP rupture
strains at corners of rectangular sections were identical or close
together. This indicates that the FRP rupture strain maintained at
a certain value as tested columns had different long-side length
of sections but the same short-side length of section and material
properties (unconfined concrete strength, number of FRP layers,
and corners radius). In such cases, these columns had the same ratio
of the corner radius and the short-side length (2r=b). Therefore,
the writers assumed that the actual rupture strain of FRP is a
function of the ratio of the corner radius and the shorter-side
length (2r=b).

Furthermore, an investigation was conducted on the database to
show the dependence of the actual rupture strain of FRP on the
confinement stiffness ratios Rs (Rochette and Labossiére 2000;
Wang and Wu 2008; Wang et al. 2012). The confinement stiffness
ratio (Rs) was defined by Teng et al. (2009)

Rs ¼
2ntEf�
f 0
co

εco

�
D

ð4Þ

where f 0
co = unconfined concrete strength (MPa); εco = its

corresponding strain; and D = diameter of circular sections.
As this paper deals with rectangular sections, Eq. (4) was

modified by replacing D=2 with r, which is the corner radius of
rectangular sections

Rs ¼
ntEf�
f 0
co

εco

�
r

ð5Þ

To use Eq. (5), when the value of εco was not specified by
the database, it was calculated in accordance with Tasdemir
et al. (1998)

Table 2. (Continued.)

Number Branchesa

Specimens Concrete Fiber-reinforced polymer

b (mm) h (mm) r (mm)
f 0
co

(MPa) Typeb
Number
of layers t (mm)

ff
(MPa)

εfu
(%)

Ef
(GPa)

εfe
(%)

f 0
cc

(MPa)

Al-Salloum (2007)
172 D 150 150 5 28.7 C 1 1.20 935 1.25 75 — 41.2
173 D 150 150 5 30.9 C 1 1.20 935 1.25 75 — 42.5
174 A 150 150 25 31.8 C 1 1.20 935 1.25 75 — 48.3
175 A 150 150 25 28.5 C 1 1.20 935 1.25 75 — 45.6
176 A 150 150 38 27.7 C 1 1.20 935 1.25 75 — 57.0
177 A 150 150 38 30.3 C 1 1.20 935 1.25 75 — 55.0
178 A 150 150 50 26.7 C 1 1.20 935 1.25 75 — 61.7
179 A 150 150 50 28.3 C 1 1.20 935 1.25 75 — 63.7

Tao et al. (2008)
180 A 150 150 20 22.0 C 1 0.17 4,470 1.87 239 — 33.5
181 A 150 150 20 22.0 C 2 0.17 4,470 1.87 239 — 49.6
182 A 150 150 20 19.5 C 2 0.17 4,470 1.87 239 — 47.2
183 A 150 150 35 22.0 C 2 0.17 4,470 1.87 239 — 64.8
184 A 150 150 35 19.5 C 2 0.17 4,470 1.87 239 — 58.7
185 A 150 150 50 22.0 C 2 0.17 4,470 1.87 239 — 76.6
186 A 150 150 50 19.5 C 2 0.17 4,470 1.87 239 — 63.6
187 D 150 150 20 49.5 C 1 0.17 4,470 1.87 239 — 54.2
188 A 150 150 20 49.5 C 2 0.17 4,470 1.87 239 — 61.4
189 A 150 150 35 49.5 C 2 0.17 4,470 1.87 239 — 84.9
190 A 150 150 50 49.5 C 2 0.17 4,470 1.87 239 — 86.1
aA and D stand for ascending and descending branches of stress-strain diagrams, respectively.
bType of FRP (i.e., C, A, and G) stands for carbon FRP, aramid FRP, and glass FRP, respectively.
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εco ¼ ð−0.067f 02
co þ 29.9f 0

co þ 1,053Þ10−6 ð6Þ
In conclusion, it is assumed that the actual rupture strain of

FRP is a function of the ratio of the corner radius and the shorter-
side length (2r=b) in addition to the confinement stiffness ratio
(Rs). Fig. 2 shows the relationship between the FRP strain effi-
ciency factor (kε), which is the ratio of the actual rupture strain of
FRP and the ultimate strain of FRP from flat coupon tensile tests,
and the factor A

A ¼ 2r
bRs

ð7Þ

where b = shorter-side length of the column section. In accordance
with linear regression analysis, the value of the FRP strain effi-
ciency factor (kε) was obtained for FRP confined rectangular
columns

kε ¼ 0.5þ 0.0642 lnðAÞ ð8Þ
To generate Eq. (8), the rupture strain of FRP at the corners of

sections needs to be reported. Only a few specimens in Table 2
reported the FRP rupture strain at the corners of sections. Thus,
the database used to generate Eq. (8) is smaller than the database
used to verify the proposed model. Based on Fig. 2, the FRP strain
efficiency factor varied between 0.4 and 0.7. It is conservatively
recommended that the FRP strain efficiency factor be neither
less than 0.4 nor greater than 0.7.

Proposed Model

Equation for Confined Concrete Strength

As noted previously, the confining pressure of a FRP confined
rectangular column is not uniform around the perimeter of the
sections. Thus, the FRP confinement herein is only to account
for the confinement effect at the corners. The corner effect ratio
(kc) introduced by Pham and Hadi (2013) was utilized to calculate
the effective confining pressure (fl;e). The corner effect ratio is the
ratio of the total length of the four round corners and the circum-
ference of the section

fl;e ¼ flkc ð9Þ

kc ¼
πr

bþ h − rð4 − πÞ ð10Þ

where fl = nominal confining pressure, which was calculated from
Eq. (3); and b and h = short and long sides of the column section,
respectively.

The experimental stress-strain curves show two typical types,
as follows: (1) ascending branches, and (2) descending branches.
In most cases, a FRP confined concrete column is expected to pro-
vide an ascending-type curve that exhibits the well-known bilinear
shape. This curve ends with the rupture of the confining jacket
at the ultimate point defined by the compressive strength f 0

cc and
the ultimate axial strain εcc. Based on the results of the ascending-
type specimens in the database, the relationship between the
normalized compressive strength and the normalized confining
pressure is linear (Fig. 3). Eq. (11) formulates the previously noted
linear relationship

f 0
cc

f 0
co

¼ 0.68þ 3.91
fl;e
f 0
co

ð11Þ

In brief, Eq. (11) was used to calculate the compressive strength
of confined concrete for specimens that have sufficient confine-
ment. In such cases, the effective confining pressure (fl;e) of spec-
imens needs to be greater than a certain value estimated from
Eq. (12), to be presented in the next section.

Minimum Amount of FRP for Sufficient Confinement

A FRP confined concrete column that exhibits the ascending-type
curve is defined as the sufficient confinement. In such a case, a
significant improvement of the compressive strength and strain of
a FRP confined concrete column could be expected. Otherwise,
FRP confined concrete with a stress-strain curve of the descending
type illustrates a concrete stress at the ultimate strain less than the
compressive strength of unconfined concrete. A confined column
needs a minimum amount of FRP to obtain sufficient confinement.
Fig. 4 shows the relationship between the normalized compressive
strength and the normalized effective confining pressure. From
Fig. 4, to avoid the descending-type specimens, the normalized
effective confining pressure should not be less than 0.15

fl;e
f 0
co

≥ 0.15 ð12Þ

Briefly, the proposed model is summarized by the following
steps: (1) the FRP strain efficiency factor (kε) is estimated using
Eq. 8, (2) the effective confining pressure (fl;e) is calculated using
Eqs. (3), 9), and (10) the compressive strength of confined concrete
(f 0

cc) is computed as recommended in Eq. (11).

y = 0.5 + 0.0642ln(A)
R² = 0.6543
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Fig. 2. Relationship between factor A and FRP strain-efficiency
factor kε

y = 0.68 + 3.91( fl,e / fco
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R² = 0.7913
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Fig. 3. Relationship between normalized confining stress and normal-
ized confined strength (strength equation)
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Verification of the Proposed Model

The model performance was tested by using three statistical indica-
tors, as follows: (1) mean square error (MSE), (2) average absolute
error (AAE), and (3) standard deviation (SD), as determined by
Eqs. (13)–(15)

MSE ¼
P

N
1

�
prei−expi

expi

�
2

N
ð13Þ

AAE ¼
P

N
1

��� prei−expiexpi

���
N

ð14Þ

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
N
1

�
prei
expi

− preavg
expavg

�
2

N − 1

vuut ð15Þ

where pre = model predictions; exp = experimental results; the
subscript avg indicates the average value; and N = total number
of the test data. In general, the mean square error shows the errors
to be more significant compared with the average absolute error
such that it was used to emphasize the precision of the selected
models.

Fig. 5 shows 104 data points (ascending-type specimens) to as-
sess the performance of the existing models and the proposed
model. Five existing models were studied in this verification
(Chaallal et al. 2003a; Lam and Teng 2003b; Wu and Wang
2009; Toutanji et al. 2010; Wu and Wei 2010). The comparison
between the predictions and test results (Fig. 5) shows the improve-
ment of the selected models in calculating the strength of FRP con-
fined rectangular columns for a decade. Among the presented
models, the proposed model has the largest general correlation
(R2 ¼ 89%) for a linear trend between the predictions and test
results. In addition, the error of the models was statistically veri-
fied (Fig. 6).

Although the establishment of the proposed model was based on
the database of the ascending-type specimens, the proposed model
was also validated with the full database (including the descending-
type specimens) to verify its applicability to the descending-type
specimens. Fig. 7 illustrates that the proposed model predicts very
well the compressive strength of FRP confined rectangular columns
for both the ascending-type and descending-type of specimens (190
data points). The linear trend between the predictions and test re-
sults has the general correlation factor of 0.82 (R2 ¼ 82%), which
is a small decrease compared with Fig. 5.

As noted previously, the behavior of the FRP jacket comply
with the membrane hypothesis, in which the ratio of the round cor-
ners (r) and nominal jacket thickness (t) should be greater than 20
(r=t > 20). Four specimens had the dimensions of 152 × 203 mm2

and corner radius of 5 mm (Rochette and Labossiére 2000). These
specimens were wrapped with a number of FRP layers to have a
thickness of 1.2, 2.4, 3.6, and 4.8 mm (the r=t ratios ranges be-
tween 4.2 and 1), respectively. Two specimens presented in the
study of Al-Salloum (2007) also had a corner radius of 5 mm
(the r=t ratio was 4.2). Therefore, the predictions of the proposed
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model on the strength of six specimens are not accurate
(f 0

ccðpreÞ=f
0
ccðexpÞ ≈ 0.75). It is recommended that FRP confined

rectangular columns should be round to have a ratio of r=t
greater than 20.

Conclusions

A model was proposed to calculate the strength of FRP confined
rectangular columns. The predictions of the proposed model fit
very well with the experimental results. The research reported
in this paper addresses the approach to analyze the mechanism of
FRP confined rectangular columns, the actual rupture strain of FRP
at the corners of specimens, and the minimum amount of FRP to
obtain sufficient confinement. The findings presented in this paper
are summarized as follows:
• The membrane hypothesis was utilized to analyze the behavior

of FRP confined rectangular columns. The confining pressure of
confined columns is concentrated at the corners of the section
only. To comply with the membrane hypothesis, the corner of
the sections should be rounded to have a radius being at least
20× greater than the nominal FRP thickness.

• The corner effect ratio (kc) was accounted for the effects of
the nonuniform confining pressure around rectangular sections.
It was used to distribute equally the confining pressure at the
corners of rectangular sections to the entire circumference of
the sections.

• The actual rupture strain of FRP at the corners of the sections
depends on the ratio of the corner radius and the length of the
shorter side in addition to the confinement stiffness ratio as
presented in Eq. (5). Additional equations were proposed that
enable calculation of the actual rupture strain of FRP.

• The limit of the FRP amount to obtain sufficient confinement
was proposed. This limit is based on the ratio of the corner ra-
dius, length of the shorter side, and confinement stiffness ratio.
Finally, this paper used the membrane hypothesis to formulate

the confining behaviors of FRP confined rectangular columns. This
approach directly analyzes the behavior of confined square sections
without conversion from equivalent circular sections to create a
model for rectangular sections. The proposed model results in a
good correlation with experimental results.
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Notation

The following symbols are used in this paper:
A = factor defined in Eq. (7);
b = short side of column sections;
D = diameter of circular sections;
Ef = elastic modulus of FRP;
f 0
cc = confined concrete strength;

f 0
co = unconfined concrete strength;
ff = tensile strength of FRP;
ffe = actual tensile stress of FRP;
fl = nominal confining pressure of a column;

fl;e = effective confining pressure of a column;
h = long side of column sections;
kc = corner-effect ratio;
ks = shape factor;
kε = FRP strain efficiency factor;
N = total number of test data;
n = number of FRP layers;
p = hydrostatic pressure applied in a shell structure;
Rs = confinement stiffness ratio;
r = corner radius of a section;
T = tension force in a shell structure;
t = nominal thickness of FRP;

εcc = ultimate axial strain of confined concrete;
εco = axial strain of the unconfined concrete at the maximum

stress; and
εfe = actual strain of FRP at rupture.
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3.2 Compressive Strain 

Summary 

A new model is presented for calculating the axial strain of carbon fibre reinforced 

polymer (CFRP) confined concrete columns. An energy balance approach is 

introduced to establish a relationship of the energy absorption between a confined 

concrete column and CFRP. The proposed model was verified using a large database 

collected from 167 CFRP-confined plain concrete specimens. This database contains 

98 circular specimens with diameters ranging between 100 mm and 152 mm and 69 

square specimens having a side length ranging between 100 mm and 152 mm. The 

database covers unconfined concrete strengths from 20 MPa to 50 MPa. The 

proposed model shows very good correlation with the experimental results. In 

addition, the proposed model also provides comparative prediction of strain of 

CFRP-confined concrete columns in two extreme cases: insufficient confinement and 

heavy confinement, which are not usually well predicted by other models. 
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Abstract: A new model is presented for calculating the axial strain of carbon fiber-reinforced polymer (CFRP)-confined concrete
columns. An energy-balance approach is introduced to establish a relationship of the energy absorption between a confined con-
crete column and CFRP. The proposed model was verified using a large database collected from 167 CFRP-confined plain concrete
specimens. This database contains 98 circular specimens with diameters ranging between 100 and 152 mm, and 69 square specimens
having a side length ranging between 100 and 152 mm. The database covers unconfined concrete strengths from 20 to 50 MPa. The
proposed model shows very good correlation with the experimental results. In addition, the proposed model also provides a comparative
prediction of the strain of CFRP-confined concrete columns in two extreme cases, i.e., (1) insufficient confinement, and (2) heavy
confinement, which are not usually well predicted by other models. DOI: 10.1061/(ASCE)CC.1943-5614.0000397. © 2013 American
Society of Civil Engineers.

Author keywords: Carbon-fiber-reinforced polymer; Energy methods; Energy dissipation; Stress-strain relations.

Introduction

The use of carbon-fiber-reinforced polymers (CFRPs) in struc-
tural engineering has increased in recent years. However, estimat-
ing the capacity of FRP-confined concrete members is not
very well-correlated with their actual behavior; as such, more at-
tention must be paid to models for FRP-confined concrete. A
complete model includes formulas to calculate the ultimate
strength and ultimate strain of confined concrete and stress-
strain relationships. Most of these studies have focused on the
strength and stress-strain relationships of confined concrete.
Not many models deal with strain prediction. Bisby et al.
(2005) carried out an overview, and they conclude that existing
models show a poor correlation with experimental results of con-
fined concrete strain. Bisby et al. (2005) revealed that the mean
absolute error of strain estimations ranges from 35 to 250%,
whereas the error of strength estimation is less than 20%. The
literature of FRP-confined concrete is excellent for calculating
the confined concrete strength but not for calculating the corre-
sponding strain.

Richart et al. (1929) reported that the axial strain at the
compressive strength of confined concrete can be linearly related
to the maximum confining pressure. Early studies, based on this
assumption, that proposed formulas for strain estimation include
Karbhari and Gao (1997), Miyauchi et al. (1999), Toutanji
(1999), and Ilki et al. (2008). Another commonly used approach

is based on volume strain and dilation behavior (Lam and
Teng 2003a, b) or regression analysis of experiments (Shehata
et al. 2002). All of the previously noted studies used the mecha-
nism behavior of confined concrete to obtain strain estimations.
In addition, Mander et al. (1988) proposed an energy-balanced
method to calculate the strain of steel confined concrete. This
method assumes that the additional strain energy of a confined
concrete column is equal to the energy used to fracture the
hoops. A study by Saadatmanesh et al. (1994) adopted this
method to calculate the strain of FRP-confined concrete. The
writers’ paper develops relationships between the additional en-
ergy absorption of a confined concrete column and the energy
absorbed by the confinement material. A new methodology is
introduced to calculate the confined concrete strain in circular
and square sections.

Analytical Investigation

Strain Energy and Energy Absorption

Strain energy is the energy stored in a structural elastic member as a
result of the work performed on the member by an external load. It
is defined as the energy absorbed by the structural member during
the loading process. For an axially loaded column, the work done
by the applied load is equal to the area under the load-displacement
curve [Fig. 1(a) and Eq. (1)]. In a similar manner, the energy ab-
sorbed by the external FRP in an FRP-confined concrete column
can be estimated

U ¼ W ¼
Z

l

0

Pdl ð1Þ

where U = strain energy; W = work done by the applied load;
P = applied load; l = displacement; and dl is an increment of the
displacement.

The energy stored in the column core is transferred to compress
concrete, deform the FRP, create cracks in concrete, and vertically
compress the FRP. Some energy is also lost in unknown consump-
tions. Because of the limited understanding of the behavior inside
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FRP-confined concrete, it would be inappropriate to directly use
the balanced-energy approach proposed by Mander et al. (1988)
for steel confined concrete. In this paper, it is assumed that there
is a possible linear relationship between the energy absorption of
the column and the external FRP, which is discussed in a sub-
sequent section.

To further investigate the energy transfer, early studies fo-
cused on FRP tubes made from high-strength and high-stiffness
fibers. Unlike ductile metals, fibers and resins are brittle and
they fail by fracture after an initial elastic deformation. The
fracture strain of a typical carbon fiber is around 1.5–2.0% such
that they may absorb less energy than conventional metals.
However, they actually perform much better when a comparison
is made in terms of the specific energy absorption, which is the
energy per unit mass (Lu and Yu 2003). The specific energy
absorption of fiber is affected by fiber strength, elastic properties,
the diameter-to-thickness ratio of FRP, fiber orientation, and
sectional geometries (Wolff et al. 1994). These studies con-
firm that directly using the balanced-energy method (proposed
for steel confined concrete) for FRP-confined concrete is
inappropriate.

Energy in Structural Members

The widely accepted model [Fig. 1(b)] is recommended by
ACI 440-2R.08 (ACI 2008) for the stress-strain relationship of
FRP-confined concrete columns. It was adopted in the writers’
paper to calculate the energy absorption of a FRP-confined
concrete column

Wcc ¼ Acc

Z
εcc

0

fcdεc ð2Þ

where Wcc = strain energy of confined concrete; Acc = gross-
sectional area of confined concrete; fc = stress of confined
concrete; εc = strain of confined concrete; εcc = strain at peak
stress of confined concrete; and dεc is an increment of the axial
strain.

The stress-strain curve [Fig. 1(b)] has been slightly modified to
obtain a simple integration. An expression [Eq. (3)] was extracted
from Eq. (2) to calculate the energy absorption of the concrete core,
in which the volumetric strain energy equals the area under the
experimental stress-strain curves. When the strain of confined con-
crete is less than the peak strain of the corresponding unconfined
concrete, the effect of FRP is negligible. Thus, the writers assumed
that the additional energy in the column core equals the area under
the experimental stress-strain curves starting from the value of the
unconfined concrete strain [Fig. 1(b) and Eq. (3)]

Ucc ¼
Z

εcc

εco

fcdεc ¼
ðεcc − εcoÞðf 0co þ f 0ccÞ

2
ð3Þ

where Ucc = volumetric strain energy of confined concrete; f 0cc =
confined concrete strength; f 0co = unconfined concrete strength; and
εco = its corresponding strain.

Similarly, the energy absorbed by FRP can be calculated

Wf ¼ ρfAccð0.5ffεfÞ ð4Þ

whereWf = strain energy of FRP; ff and εf = rupture strength and
rupture strain, respectively, of FRP obtained from flat-coupon tests;
and ρf = volumetric ratio of FRP as shown in Eqs. (5) and (6).

The volumetric ratio (ρf) of FRP of circular and square sections
can be calculated.

For circular sections

ρf ¼
4t
d

ð5Þ

and for square sections

ρf ¼
t½4b − rð8 − 2πÞ�
b2 − r2ð4 − πÞ ¼ Ψt ð6Þ

where t = thickness of FRP; d = diameter of the section; and r =
radius of the round corner of the section.

The rupture strain of FRP on the confined concrete is much less
than that obtained from flat-coupon tests (Xiao and Wu 2000;
Pessiki et al. 2001; Carey and Harries 2005). Therefore, the
volumetric strain energy of FRP on a column can be estimated
as follows:

Uf ¼ ρfð0.5ffeεfeÞ ð7Þ
where Uf = volumetric strain energy of FRP; and ffe and εfe =
actual rupture strength and rupture strain, respectively, of FRP
on the columns.

The energy absorbed by the column was calculated using Eq. (3)
and the energy absorbed by FRP was estimated using Eq. (7). Next,
a regression analysis based on a database was used to obtain a linear
relationship between them. Based on that linear relationship, a
model to calculate the strain of confined concrete at peak stress
was derived.

Experimental Database

Test Database

Several experimental tests have been conducted on FRP-confined
concrete by researchers over the past few decades. The writers col-
lated a test database of 329 FRP confined plain concrete specimens
reported by Demers and Neale (1994), Watanabe et al. (1997),
Matthys et al. (1999), Rochette and Labossière (2000), Xiao and
Wu (2000), Suter and Pinzelli (2001), Parvin and Wang (2001),
Pessiki et al. (2001), Shehata et al. (2002), De Lorenzis et al.
(2002), Karabinis and Rousakis (2002), Lam and Teng (2003b),
Chaallal et al. (2003), Ilki and Kumbasar (2003), Masia et al.
(2004), Berthet et al. (2005), Lam et al. (2006), Saenz and
Pantelides (2006), Jiang and Teng (2007), Valdmanis et al. (2007),
Al-Salloum (2007), Rousakis et al. (2007), Wang and Wu (2008),
Tao et al. (2008), Wu and Wei (2010), Rousakis and Karabinis
(2012), and Hadi et al. (2013). The primary focus of this paper
is on CFRP; as such, test results of materials other than CFRP were
excluded from this database. Moreover, test results of circular
sections not reporting the actual rupture strain (εfe) of FRP were
excluded.

A few studies concluded that square columns confined with
FRP provide a little (Mirmiran et al. 1998) or no (Wu and Zhou
2010) strength improvement. Thus, this paper deals only with
round-corner square specimens; as such, specimens with sharp
corners were excluded from the database. Because the procedure
of calculating the strain of FRP-confined concrete is based on
the ascending type of specimen (Fig. 1), the test results of square
specimens that have a descending type were excluded from the
database. After excluding all of the previously noted test results,
the database contained the test results of 167 FRP confined plain
concrete specimens, as follows: (1) 98 circular specimens, and
(2) 69 square specimens. The circular specimens included in the
database have diameters d ranging from 100 to 152 mm and have
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unconfined concrete strengths f 0cc between 30 and 50 MPa. The
square specimens have a side length ranging between 100 and
152 mm, and unconfined concrete strength ranging between 20
and 50 MPa.

The confinement ratio was calculated by dividing the confining
pressure (fl) by the unconfined concrete strength (f 0cc), which var-
ied between 2 and 99% for circular specimens, and between 1 and
60% for square specimens. Tables 1 and 2 show the databases for
circular and square specimens, respectively.

Assumptions

The actual rupture strain of CFRP is usually reported for circular
sections but not for square sections. When the actual rupture strain
of CFRP was not included in the test results, it was assumed to be
0.55 of the rupture strain from flat-coupon tests, as recommended
by ACI 440.2R-08 (ACI 2008). In addition, when the axial strain at
the peak stress of unconfined concrete (εco) was not specified, εco
was assumed to be equal to 0.002 or values estimated by using the
equation of Tasdemir et al. (1998). The performance of the pro-
posed model was compared by using two different methods for es-
timating the values of εco. In the first method, εco was calculated
using the equation proposed by Tasdemir et al. (1998). In the sec-
ond method, εco was assumed to be 0.002. Results of using the first
method proved to be better than the second method. Therefore, the
equation proposed by Tasdemir et al. (1998) was used

εco ¼ ð−0.067f 02co þ 29.9f 0co þ 1,053Þ10−6 ð8Þ

Proposed Strain Model

A linear relationship was assumed between the energy absorbed by
a column core and CFRP for both circular sections and square sec-
tions. The energy absorption was calculated using Eqs. (3) and (7),
whereas a regression analysis was carried out to obtain an equation
for the energy absorbed in the form shown in Eq. (9). Based on this
regression analysis, a new formula is proposed to calculate the
strain at the peak stress of CFRP-confined concrete

Ucc − kUf ð9Þ
where k is the proportion factor, which is a function of fiber stiff-
ness and sectional geometries.

Strain Estimation for Circular Sections

The energy absorption of 98 circular specimens was estimated
using Eqs. (3) and (7), and Fig. 2 presents the results. Next, a
regression analysis was undertaken to attain

Ucc ¼ 7.6Uf ð10Þ

Substituting Eqs. (3) and (7) into Eq. (10) results in Eq. (11)

εcc ¼ εco þ
4ktffeεfe

dðf 0co þ f 0ccÞ
ð11Þ

where the proportion factor k ¼ 7.6. Eq. (11) can be used to cal-
culate the strain of CFRP-confined concrete columns in circular
sections. Using this calculated strain, any model can be utilized
to calculate the confined concrete strength. The Lam and Teng
model (2003a) was adopted to express another form of Eq. (11)

εcc ¼ εco þ
2ktffeεfe

df 0co þ 3.3ffet
ð12Þ

Strain Estimation for Square Sections

For circular sections, the methodology proposed in this paper was
used to establish a relationship between the energy absorption of
the entire column section and FRP. The energy absorption of the
FRP was calculated with respect to the perimeter of the section.
This calculation did not provide a comparable correlation between
the two energies in Eq. (9). Thus, the energy absorption of the col-
umn core at the effective area [Fig. 3(a)] was considered for the
square specimens, which accounts for stress concentration at the
corners. Details of the previously noted modifications are analyzed
in the subsequent sections.

The energy absorption is sensitive to the geometry of the column
(Wolff et al. 1994). Thus, equations simulating the relationship be-
tween the absorption energies of a column and CFRP distinguish
square from circular specimens. In addition, the confining pressure
of a square column confined with CFRP is not uniform. Karabinis
et al. (2008) and Csuka and Kollár (2012) proved that the con-
fining pressure primarily concentrates on round corners of the col-
umn, whereas this confining pressure is negligible at other zones
[Fig. 3(b)]. Therefore, the energy absorption used to rupture CFRP
is assumed to be only available at the round corners. In such a case,
a corner energy ratio kc, which is the ratio of the total length of four
round corners [Fig. 3(c)] to the circumference of the section, is in-
troduced to account for the reduction of energy absorbed by CFRP

kc ¼
πr

2b − rð4 − πÞ ð13Þ

where b = side length of a square section; and r = round radius at
the corners of the section.

(a) (b)

Fig. 1. (a) Load-displacement diagram; (b) typical stress-strain curve of FRP-confined concrete
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Table 1. Database of Circular Specimens

Number Source of data
d

(mm)
h

(mm)
f 0co

(MPa)
εco
(%)

t
(mm)

ff
(MPa)

Ef
(GPa)

εcc
(%)

εfe
(%)

fcc
(MPa)

1 Watanable et al. (1997) 100 200 30.2 0.23 0.17 2,716 225 1.51 0.94 46.6
2 Ibid 100 200 30.2 0.23 0.50 2,873 225 3.11 0.82 87.2
3 Ibid 100 200 30.2 0.23 0.14 1,579 629 0.57 0.23 41.7
4 Ibid 100 200 30.2 0.23 0.28 1,824 630 0.88 0.22 56.0
5 Ibid 100 200 30.2 0.23 0.42 1,285 577 1.30 0.22 63.3
6 Matthys et al. (1999) 150 300 34.9 0.21 0.12 2,600 200 0.85 1.15 44.3
7 Ibid 150 300 34.9 0.21 0.12 2,600 200 0.72 1.08 42.2
8 Ibid 150 300 34.9 0.21 0.24 1,100 420 0.40 0.19 41.3
9 Ibid 150 300 34.9 0.21 0.24 1,100 420 0.36 0.18 40.7
10 Rochette and Labossière (2000) 100 200 42 — 0.60 1,265 83 1.65 0.89 73.5
11 Ibid 100 200 42 — 0.60 1,265 83 1.57 0.95 73.5
12 Ibid 100 200 42 — 0.60 1,265 83 1.35 0.80 67.6
13 Xiao and Wu (2000) 152 305 33.7 — 0.38 1,577 105 1.20 0.84 47.9
14 Ibid 152 305 33.7 — 0.38 1,577 105 1.40 1.15 49.7
15 Ibid 152 305 33.7 — 0.38 1,577 105 1.24 0.87 49.4
16 Ibid 152 305 33.7 — 0.76 1,577 105 1.65 0.91 64.6
17 Ibid 152 305 33.7 — 0.76 1,577 105 2.25 1.00 75.2
18 Ibid 152 305 33.7 — 0.76 1,577 105 2.16 1.00 71.8
19 Ibid 152 305 33.7 — 1.14 1,577 105 2.45 0.82 82.9
20 Ibid 152 305 33.7 — 1.14 1,577 105 3.03 0.90 95.4
21 Ibid 152 305 43.8 — 0.38 1,577 105 0.98 0.81 54.8
22 Ibid 152 305 43.8 — 0.38 1,577 105 0.47 0.76 52.1
23 Ibid 152 305 43.8 — 0.38 1,577 105 0.37 0.28 48.7
24 Ibid 152 305 43.8 — 0.76 1,577 105 1.57 0.92 84.0
25 Ibid 152 305 43.8 — 0.76 1,577 105 1.37 1.00 79.2
26 Ibid 152 305 43.8 — 0.76 1,577 105 1.66 1.01 85.0
27 Ibid 152 305 43.8 — 1.14 1,577 105 1.74 0.79 96.5
28 Ibid 152 305 43.8 — 1.14 1,577 105 1.68 0.71 92.6
29 Ibid 152 305 43.8 — 1.14 1,577 105 1.75 0.84 94.0
30 Ibid 152 305 55.2 — 0.38 1,577 105 0.69 0.70 57.9
31 Ibid 152 305 55.2 — 0.38 1,577 105 0.48 0.62 62.9
32 Ibid 152 305 55.2 — 0.38 1,577 105 0.49 0.19 58.1
33 Ibid 152 305 55.2 — 0.76 1,577 105 1.21 0.74 74.6
34 Ibid 152 305 55.2 — 0.76 1,577 105 0.81 0.83 77.6
35 Ibid 152 305 55.2 — 1.14 1,577 105 1.43 0.76 106.5
36 Ibid 152 305 55.2 — 1.14 1,577 105 1.45 0.85 108.0
37 Ibid 152 305 55.2 — 1.14 1,577 105 1.18 0.70 103.3
38 De Lorenzis et al. (2002) 120 240 43 — 0.30 1,028 91 1.16 0.70 58.5
39 Ibid 120 240 43 — 0.30 1,028 91 0.95 0.80 65.6
40 Ibid 150 300 38 — 0.45 1,028 91 0.95 0.80 62.0
41 Ibid 150 300 38 — 0.45 1,028 91 1.35 0.80 67.3
42 Jiang and Teng (2007) 152 305 38 0.22 0.68 3,772 241 2.55 0.98 110.1
43 Ibid 152 305 38 0.22 0.68 3,772 241 2.61 0.97 107.4
44 Ibid 152 305 38 0.22 1.02 3,772 241 2.79 0.89 129.0
45 Ibid 152 305 38 0.22 1.02 3,772 241 3.08 0.93 135.7
46 Ibid 152 305 38 0.22 1.36 3,772 241 3.70 0.87 161.3
47 Ibid 152 305 38 0.22 1.36 3,772 241 3.54 0.88 158.5
48 Ibid 152 305 37.7 0.28 0.11 4,332 260 0.90 0.94 48.5
49 Ibid 152 305 37.7 0.28 0.11 4,332 260 0.91 1.09 50.3
50 Ibid 152 305 42.2 0.26 0.11 4,332 260 0.69 0.73 48.1
51 Ibid 152 305 42.2 0.26 0.11 4,332 260 0.89 0.97 51.1
52 Ibid 152 305 42.2 0.26 0.22 4,332 260 1.30 1.18 65.7
53 Ibid 152 305 42.2 0.26 0.22 4,332 260 1.03 0.94 62.9
54 Ibid 152 305 47.6 0.28 0.33 4,332 251 1.30 0.90 82.7
55 Ibid 152 305 47.6 0.28 0.33 4,332 251 1.94 1.13 85.5
56 Ibid 152 305 47.6 0.28 0.33 4,332 251 1.82 1.06 85.5
57 Lam et al. (2006) 152 304 41.1 0.26 0.17 3,795 251 0.90 0.81 52.6
58 Ibid 152.5 305 41.1 0.26 0.17 3,795 251 1.21 1.08 57.0
59 Ibid 152.5 305 41.1 0.26 0.17 3,795 251 1.11 1.07 55.4
60 Ibid 152.5 305 38.9 0.25 0.33 3,795 251 1.91 1.06 76.8
61 Ibid 152.5 305 38.9 0.25 0.33 3,795 251 2.08 1.13 79.1
62 Saenz and Pantelides (2006) 152 304 41.8 — 0.60 1,220 87 1.18 0.92 83.7
63 Ibid 152 304 47.5 — 0.60 1,220 87 0.88 0.93 81.5
64 Ibid 152 304 40.3 — 1.20 1,220 87 2.04 0.92 108.1
65 Ibid 152 304 41.7 — 1.20 1,220 87 1.76 1.08 109.5
66 Valdmanis et al. (2007) 150 300 40 0.17 0.17 1,906 201 0.63 0.89 66.0
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For square sections, the energy absorbed by CFRP (Fig. 4) was
modified by adding the corner energy ratio kc

Uf ¼
ffiffiffiffiffi
kc

p
ρfð0.5ffeεfeÞ ð14Þ

Early studies on steel confined concrete have reported the well-
known assumption that the concrete in a square section is confined
by the transverse reinforcement through arching actions (Mander
et al. 1988; Cusson and Paultre 1995). Consequently, only the
concrete contained by four second-degree parabolas [Fig. 3(a)]
is well-confined, whereas the confinement effect at other zones
is negligible. As further evidence, a few experimental (Mirmiran
et al. 1998; Rochette and Labossiére 2000) and analytical
(Karabinis et al. 2008) studies also confirmed that only part of
the section is fully confined in terms of FRP-confined concrete
columns. The writers assumed that the energy absorption of the ef-
fective area is proportional to the total energy absorbed of the entire
section [Eq. (3)]. In this paper, the energy absorption of square
specimens is assumed as the energy absorbed by the effective area
only. This energy can be calculated by combining Eq. (3) and the
shape factor ks, as introduced by ACI 440.2R-08 (ACI 2008)

Ucc ¼ ks
ðεcc − εcoÞðf 0cc þ f 0coÞ

2
ð15Þ

ks ¼ 1 − 2ðb − 2rÞ2
3½b2 − r2ð4 − πÞ� ð16Þ

The same methodology used in establishing the expression
for circular sections was utilized for square columns. Fig. 4
and Eq. (17) show the relationship of the energy absorption in
this case

Ucc ¼ 8.3Uf ð17Þ

Substituting Eqs. (14) and (15) into Eq. (17) results in Eq. (18)

εcc ¼ εco þ
tk

ffiffiffiffiffi
kc
p

Ψffeεfe
ksðf 0cc þ f 0coÞ

ð18Þ

where the proportion factor k ¼ 8.3. Eq. (18) can be used to cal-
culate the strain of CFRP-confined concrete columns in square sec-
tions. The Lam and Teng (2003b) model was adopted to express
another form of Eq. (18)

εcc ¼ εco þ
tk

ffiffiffiffiffi
kc
p

Ψffeεfe
ksð2f 0co þ 3.3ksflÞ

ð19Þ

where fl = equivalent confining pressure of a square section, which
can be estimated (Lam and Teng 2003b) as

fl ¼
ffiffiffi
2
p

tffe
b

ð20Þ

Table 1. (Continued.)

Number Source of data
d

(mm)
h

(mm)
f 0co

(MPa)
εco
(%)

t
(mm)

ff
(MPa)

Ef
(GPa)

εcc
(%)

εfe
(%)

fcc
(MPa)

67 Ibid 150 300 40 0.17 0.34 2,389 231 1.07 0.84 87.2
68 Ibid 150 300 40 0.17 0.51 2,661 236 1.36 0.69 96.0
69 Ibid 150 300 44.3 0.17 0.17 1,906 201 0.58 0.74 73.3
70 Ibid 150 300 44.3 0.17 0.34 2,389 231 0.54 0.43 82.6
71 Ibid 150 300 44.3 0.17 0.51 2,661 236 0.94 0.78 115.1
72 Berthet et al. (2005) 160 320 25 0.23 0.17 3,200 230 1.63 0.96 42.8
73 Ibid 160 320 25 0.23 0.17 3,200 230 0.93 0.96 37.8
74 Ibid 160 320 25 0.23 0.17 3,200 230 1.67 0.96 45.8
75 Ibid 160 320 25 0.23 0.33 3,200 230 1.73 0.90 56.7
76 Ibid 160 320 25 0.23 0.33 3,200 230 1.58 0.91 55.2
77 Ibid 160 320 25 0.23 0.33 3,200 230 1.68 0.91 56.1
78 Ibid 160 320 40.1 0.2 0.11 3,200 230 0.55 1.02 49.8
79 Ibid 160 320 40.1 0.2 0.11 3,200 230 0.66 0.95 50.8
80 Ibid 160 320 40.1 0.2 0.11 3,200 230 0.61 1.20 48.8
81 Ibid 160 320 40.1 0.2 0.17 3,200 230 0.66 0.88 53.7
82 Ibid 160 320 40.1 0.2 0.17 3,200 230 0.62 0.85 54.7
83 Ibid 160 320 40.1 0.2 0.17 3,200 230 0.64 1.04 51.8
84 Ibid 160 320 40.1 0.2 0.22 3,200 230 0.60 0.79 59.7
85 Ibid 160 320 40.1 0.2 0.22 3,200 230 0.69 0.83 60.7
86 Ibid 160 320 40.1 0.2 0.22 3,200 230 0.73 0.81 60.2
87 Ibid 160 320 40.1 0.2 0.44 3,200 230 1.44 0.92 91.6
88 Ibid 160 320 40.1 0.20 0.44 3,200 230 1.36 0.97 89.6
89 Ibid 160 320 40.1 0.20 0.44 3,200 230 1.17 0.89 86.6
90 Ibid 160 320 40.1 0.20 0.99 3,200 230 2.46 0.99 142.4
91 Ibid 160 320 40.1 0.20 0.99 3,200 230 2.39 1.00 140.4
92 Ibid 160 320 40.1 0.20 1.32 3,200 230 2.70 1.00 166.3
93 Ibid 160 320 52 0.23 0.33 3,200 230 0.83 0.93 82.6
94 Ibid 160 320 52 0.23 0.33 3,200 230 0.70 0.87 82.8
95 Ibid 160 320 52 0.23 0.33 3,200 230 0.77 0.89 82.3
96 Ibid 160 320 52 0.23 0.66 3,200 230 1.14 0.67 108.1
97 Ibid 160 320 52 0.23 0.66 3,200 230 1.12 0.87 112
98 Ibid 160 320 52 0.23 0.66 3,200 230 1.12 0.882 107.9
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Table 2. Database of Square Specimens

Number Source of data
b

(mm)
h

(mm)
r

(mm)
f 0co

(MPa)
t

(mm)
ff

(MPa)
Ef

(GPa)
εcc
(%)

εfe
(%)

f 0cc
(MPa)

1 Rochette and Labossière (2000) 152 500 25 42 0.90 1,265 83 0.94 0.56 50.9
2 Ibid 152 500 25 42 0.90 1,265 83 0.89 0.63 52.0
3 Ibid 152 500 38 42 0.90 1,265 83 1.08 0.71 55.4
4 Ibid 152 500 25 44 1.20 1,265 83 1.35 0.59 56.4
5 Ibid 152 500 25 36 1.20 1,265 83 2.04 0.70 50.6
6 Ibid 152 500 25 36 1.50 1,265 83 2.12 0.65 52.9
7 Ibid 152 500 38 36 1.20 1,265 83 1.92 0.89 58.1
8 Ibid 152 500 38 36 1.50 1,265 83 2.39 0.86 62.8
9 Lam and Teng (2003b) 150 600 25 34 0.17 1,577 105 0.96 1.05 37.6
10 Ibid 150 600 15 34 0.33 1,577 105 0.87 0.97 39.7
11 Ibid 150 600 25 34 0.33 1,577 105 0.85 1.08 41.8
12 Ibid 150 600 15 24 0.50 1,577 105 1.80 0.87 32.0
13 Ibid 150 600 25 24 0.50 1,577 105 1.52 1.16 37.1
14 Pessiki et al. (2001) 152 610 38 26 1.00 580 38 1.50 0.83 34.4
15 Ibid 152 610 38 26 2.00 580 38 1.90 0.90 43.7
16 Chaallal et al. (2003) 133 305 25 21 0.12 3,650 231 0.40 0.40 23.6
17 Ibid 133 305 25 21 0.24 3,650 231 0.40 0.50 27.8
18 Ibid 133 305 25 21 0.36 3,650 231 0.60 0.52 31.8
19 Ibid 133 305 25 21 0.48 3,650 231 0.70 0.53 35.8
20 Ibid 133 305 25 41 0.12 3,650 231 0.30 0.08 42.0
21 Ibid 133 305 25 41 0.24 3,650 231 0.30 0.11 43.0
22 Ibid 133 305 25 41 0.36 3,650 231 0.40 0.15 44.6
23 Ibid 133 305 25 41 0.48 3,650 231 0.40 0.20 47.1
24 Ibid 150 300 15 33 0.33 4,364 219 1.22 — 46.9
25 Ibid 150 300 15 32 0.33 4,364 219 1.22 — 46.2
26 Ibid 150 300 15 31 0.33 4,364 219 1.22 — 44.7
27 Ibid 150 300 30 33 0.17 4,364 219 1.34 — 41.9
28 Ibid 150 300 30 31 0.17 4,364 219 1.34 — 40.4
29 Ibid 150 300 30 33 0.17 4,364 219 1.34 — 42.4
30 Ibid 150 300 30 33 0.33 4,364 219 1.44 — 51.1
31 Ibid 150 300 30 31 0.33 4,364 219 1.44 — 49.6
32 Ibid 150 300 30 33 0.33 4,364 219 1.44 — 51.6
33 Ibid 150 300 45 30 0.17 4,364 219 1.39 — 41.0
34 Ibid 150 300 45 33 0.17 4,364 219 1.39 — 43.5
35 Ibid 150 300 45 29 0.17 4,364 219 1.39 — 40.2
36 Ibid 150 300 45 30 0.33 4,364 219 1.57 — 51.9
37 Ibid 150 300 45 33 0.33 4,364 219 1.57 — 54.4
38 Ibid 150 300 45 29 0.33 4,364 219 1.57 — 51.1
39 Ibid 150 300 60 31 0.17 4,364 219 1.65 — 42.8
40 Ibid 150 300 60 31 0.17 4,364 219 1.65 — 43.0
41 Ibid 150 300 60 34 0.17 4,364 219 1.65 — 45.4
42 Ibid 150 300 60 31 0.33 4,364 219 1.76 — 54.8
43 Ibid 150 300 60 31 0.33 4,364 219 1.76 — 55.0
44 Ibid 150 300 60 34 0.33 4,364 219 1.76 — 57.4
45 Ibid 150 300 30 54 0.33 3,788 226 1.37 — 69.6
46 Ibid 150 300 30 53 0.33 3,788 226 1.37 — 69.2
47 Ibid 150 300 30 49 0.33 3,788 226 1.37 — 65.5
48 Ibid 150 300 45 53 0.17 3,788 226 1.51 — 62.7
49 Ibid 150 300 45 52 0.17 3,788 226 1.51 — 61.0
50 Ibid 150 300 45 53 0.17 3,788 226 1.51 — 62.8
51 Ibid 150 300 45 53 0.33 3,788 226 1.65 — 72.1
52 Ibid 150 300 45 52 0.33 3,788 226 1.65 — 70.4
53 Ibid 150 300 45 53 0.33 3,788 226 1.65 — 72.2
54 Ibid 150 300 60 54 0.17 3,788 226 1.28 — 64.3
55 Ibid 150 300 60 52 0.17 3,788 226 1.28 — 62.4
56 Ibid 150 300 60 52 0.17 3,788 226 1.28 — 62.7
57 Ibid 150 300 60 54 0.33 3,788 226 1.37 — 74.6
58 Ibid 150 300 60 52 0.33 3,788 226 1.37 — 72.7
59 Ibid 150 300 60 52 0.33 3,788 226 1.37 — 73.0
60 Tao et al. (2008) 150 450 20 22 0.17 4,470 239 2.53 — 30.3
61 Ibid 150 450 20 22 0.34 4,470 239 3.95 — 38.5
62 Ibid 150 450 20 20 0.34 4,470 239 3.34 — 36.0
63 Ibid 150 450 35 22 0.34 4,470 239 3.66 — 42.8
64 Ibid 150 450 35 20 0.34 4,470 239 3.48 — 40.3
65 Ibid 150 450 50 22 0.34 4,470 239 3.87 — 45.9
66 Ibid 150 450 50 20 0.34 4,470 239 3.43 — 43.4
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Verification of the Proposed Model

Statistical Methods of Verification

In the writers’ paper, the model performance was tested by using
two statistical indicators, as follows: (1) mean square error (MSE),
and (2) average absolute error (AAE), as determined by Eqs. (21)
and (22):

MSE ¼
P

n
1

�
prei−expi

expi

�
2

N
ð21Þ

AAE ¼
P

n
1 j prei−expiexpi

j
N

ð22Þ

where pre =model predictions; exp = experimental results; and N =
total number of test data. In general, the mean square error shows
the errors to be more significant compared with the average abso-
lute error.

Circular FRP-Confined Concrete Columns

A total of 98 data points were plotted (Fig. 5) to assess the perfor-
mance of existing models and the proposed model. Seven existing
models were considered in this verification [Karbhari and Gao
1997; Toutanji 1999; De Lorenzis and Tepfers 2003; ACI
440.2R-08 (ACI 2008); Teng et al. 2009; Rousakis et al. 2012;
Yazici and Hadi 2012]. Because of the limited space in the writers’
paper, only four models that have comparable performance are
shown (Fig. 5). Fig. 6 presents all seven models to illustrate a com-
parison of the models’ performance.

Based on the two statistical indicators, the models of ACI
440.2R-08 (ACI 2008) and Rousakis et al. (2012) provide the best
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Fig. 2. Energy relationship of circular sections

(a) (b)

(c)

Fig. 3. (a) Effective confinement area; (b) confining pressure of square
sections; (c) round corners of square sections
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Fig. 4. Energy relationship of square sections

Table 2. (Continued.)

Number Source of data
b

(mm)
h

(mm)
r

(mm)
f 0co

(MPa)
t

(mm)
ff

(MPa)
Ef

(GPa)
εcc
(%)

εfe
(%)

f 0cc
(MPa)

67 Ibid 150 450 20 50 0.34 4,200 241 1.66 — 65.0
68 Ibid 150 450 35 50 0.34 4,200 241 2.08 — 69.1
69 Ibid 150 450 50 50 0.34 4,200 241 1.65 — 71.9
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strain prediction, followed by the models of Lam and Teng (2003a)
and De Lorenzis and Tepfers (2003). The model of Rousakis et al.
(2012) shows good agreement with experimental results, with the
exception of high-modulus (HM) CFRP such that three specimens
using HM CFRP were excluded from the verification of this model.
The proposed model in this paper shows slightly better estimates
than the model of ACI 440.2R-08 (ACI 2008) and Rousakis
et al. (2012).

The model of ACI 440.2R-08 (ACI 2008) suggests that the min-
imum confinement ratio fl=f 0co of 0.08 should be used. This mini-
mum limit was recommended based on increasing the strength of
CFRP-confined concrete. In particular, in earthquake-prone regions
the ductility of a column may need to be increased, leading to a case
of insufficient strength confinement, whereas the ductility enhance-
ment still could be expected (Mirmiran et al. 1998; Wang and
Wu 2008). Therefore, eight specimens (insufficient confinement)

having a confinement ratio of less than 0.08 were extracted from
the full database to verify the models in this case (Fig. 7). Based on
the strain-estimation equations of the subsequent models, if the
confinement pressure is equal to zero, the strain of confined con-
crete calculated by the models of ACI 440.2R-08 (ACI 2008)
would be 1.5× the unconfined concrete strain. Consequently, when
the confinement pressure fl reaches zero the strain prediction from
the model of ACI 440.2R-08 (ACI 2008) will overestimate the
actual strain. When that model was verified by the database, it
exhibited good predictions for insufficient confined specimens.
The prediction of the proposed model still shows a quite good
correlation with the test data, whereas other models show scatter
of the test data (Fig. 7).

98 data points
AAE = 0.21 
MSE = 0.06

Model V

Model I: De Lorenzis and Tepfers ( 2003) 
Model II: ACI-440.2R-08 (2008)
Model III: Teng et al. (2009)
Model IV: Rousakis et al. (2012)               
Model V: Proposed model      

where                                                 
AAE is the average absolute error              
MSE is the mean square error

95 data points
AAE = 0.22 
MSE = 0.10

Model IV

εεcc (experiment, %)

98 data points
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Fig. 5. Performance of models on circular specimens
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Fig. 6. Accuracy comparisons for strain prediction of circular speci-
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Fig. 7. Performance of models on circular specimens (insufficient
confinement)
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In addition, the models of ACI 440.2R-08 (ACI 2008) and Teng
et al. (2009) generally tend to overestimate the strain of confined
concrete when the confinement ratio (fl=f 0co) is large. The differ-
ences between the experimental and predicted values become con-
siderably larger when the confinement ratio was larger than 40%
(Fig. 5), remarked as heavy confinement. Thus, eleven heavy con-
fined specimens were extracted from the database to compare these
models (Fig. 8). The models of ACI 440.2R-08 (ACI 2008), Teng
et al. (2009), and De Lorenzis and Tepfers (2003) show that the
precision of these models are not good, whereas the model of
Yazici and Hadi (2012) exhibits good predictions in this case.
For further verification, Fig. 8 shows a very good correlation be-
tween the predicted and actual strain of heavily confined circular

sections. The average absolute error of the proposed model is 5×
less than the model of ACI 440.2R-08 (ACI 2008).

In summary, the proposed model predicts very close results for
the strain of CFRP-confined concrete. In addition, the proposed
model also shows good agreement with the test data in the range
of insufficient and heavy confinement as defined previously.

Square FRP-Confined Concrete Columns

The same procedure was carried out to verify the proposed model
for square sections. A total of 69 data points (Fig. 9) were plotted to
assess the performance of existing models and the proposed model.
Four existing models were considered in this verification [Shehata
et al. 2002; Lam and Teng 2003b; ACI 440.2R-08 (ACI 2008); Ilki
et al. 2008].

Comparing the existing models for square sections, the models
of Lam and Teng (2003a), ACI 440.2R-08 (ACI 2008), and Ilki
et al. (2008) show quite good predictions for the strain of
CFRP-confined concrete. Among these existing models, the results
from the model of Ilki et al. (2008) overestimate the actual values,
whereas the other models present a good general trend. However,
the proposed model gives a better precision than the other models in
estimating the strain of CFRP-confined concrete columns (Figs. 9
and 10).

For insufficient confined specimens (places close to the origin of
the coordinates), the models of Lam and Teng (2003b), ACI
440.2R-08 (ACI 2008), and the proposed model show good predic-
tions. The models of Ilki et al. (2008) and Shehata et al. (2002) do
not exhibit close correlation in this case. In addition, all five models
underestimate the strain of confined concrete when the confinement
ratio is high [six data points have a measured strain greater than 3
(Fig. 9)].
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Fig. 8. Performance of models on circular specimens (heavy
confinement)
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Fig. 9. Performance of models on square specimens
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Conclusions

From the theoretical analyses presented in this paper, the following
conclusions are drawn:
• The proposed model provides very good predictions compared

with the experimental results, and it also shows a good agree-
ment with the test data in the range of insufficient and heavy
confinement, which are usually not predicted well by other
models;

• Only a proportion of the energy absorbed by the entire column is
transferred to rupture the FRP; and

• The formula to calculate the strain of square sections is still not
as good as that of circular sections; thus, further study needs to
be carried out in this case.
Finally, a new model is proposed in this paper to calculate the

strain of confined concrete based on the energy-absorption method.
The performance of the proposed model shows very good correla-
tions with experimental results. However, the precision of the pro-
posed model should improve when it is calibrated with a larger
reliable database in the future. This methodology can be developed
to cover reinforced concrete columns confined with FRP.
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Notation

The following symbols are used in this paper:
Acc = gross-sectional area of confined concrete;
b = side length of a square section;
d = diameter of the section;
dl = increment of the displacement;

dεc = increment of the axial strain;
fc = stress of concrete;
ff = rupture strength of FRP obtained from flat-coupon tests;
ffe = actual rupture strength of FRP on the columns;
fl = confining pressure of the confined concrete specimen;
f 0cc = confined concrete strength;
f 0co = unconfined concrete strength;

k = proportion factor showing the relationship between the
energy absorption of the column core and external FRP;

kc = corner-energy ratio;
l = displacement;
P = applied load;
r = radius of the round corner of the section;
t = thickness of FRP;
U = strain energy;

Ucc = volumetric strain energy of confined concrete;
Uf = volumetric strain energy of FRP;
W = work done by the applied load;

Wcc = strain energy of confined concrete;
Wf = strain energy of FRP;
εc = axial strain of concrete;
εcc = axial strain at the peak stress of confined concrete;
εco = axial strain at the peak stress of unconfined concrete;
εf = rupture strain of FRP obtained from flat-coupon tests;
εfe = rupture strain of FRP on the columns; and
ρf = volumetric ratio of FRP.
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4 PREDICTING STRESS/STRAIN OF FRP-CONFINED SQUARE 
CONCRETE COLUMNS BY ARTIFICIAL NEURAL NETWORKS 

Summary 

This study proposes the use of artificial neural networks (ANNs) to calculate the 

compressive strength and strain of fiber reinforced polymer (FRP) confined 

square/rectangular columns. Modelling results have shown that the two proposed 

ANN models fit the testing data very well. Specifically, the average absolute errors 

of the two proposed models are less than 5%. The ANNs were trained, validated, and 

tested on two databases. The first database contains the experimental compressive 

strength results of 104 FRP-confined rectangular concrete columns. The second 

database consists of the experimental compressive strain of 69 FRP-confined square 

concrete columns. Furthermore, this study proposes a new potential approach to 

generate a user-friendly equation from a trained ANN model. The proposed 

equations estimate the compressive strength/strain with small error. As such the 

equations could be easily used in engineering designs instead of the “invisible” 

processes inside the ANN. 
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Predicting Stress and Strain of FRP-Confined Square/
Rectangular Columns Using Artificial Neural Networks
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Abstract: This study proposes the use of artificial neural networks (ANNs) to calculate the compressive strength and strain of fiber
reinforced polymer (FRP)–confined square/rectangular columns. Modeling results have shown that the two proposed ANN models fit
the testing data very well. Specifically, the average absolute errors of the two proposed models are less than 5%. The ANNs were trained,
validated, and tested on two databases. The first database contains the experimental compressive strength results of 104 FRP confined
rectangular concrete columns. The second database consists of the experimental compressive strain of 69 FRP confined square concrete
columns. Furthermore, this study proposes a new potential approach to generate a user-friendly equation from a trained ANN model.
The proposed equations estimate the compressive strength/strain with small error. As such, the equations could be easily used in engineering
design instead of the invisible processes inside the ANN. DOI: 10.1061/(ASCE)CC.1943-5614.0000477. © 2014 American Society of Civil
Engineers.

Author keywords: Fiber reinforced polymer; Confinement; Concrete columns; Neural networks; Compressive strength; Computer model.

Introduction

The use of FRP confined concrete columns has been proven in
enhancing the strength and the ductility of columns. Over the last
two decades, a large number of experimental and analytical studies
have been conducted to understand and simulate the compressive
behavior of FRP confined concrete. Experimental studies have
confirmed the advantages of FRP confined concrete columns in in-
creasing the compressive strength, strain, and ductility of columns
(Hadi and Li 2004; Hadi 2006a, b, 2007a, b; Rousakis et al. 2007;
Hadi 2009; Wu and Wei 2010; Hadi and Widiarsa 2012; Hadi
et al. 2013; Pham et al. 2013). Meanwhile, many stress-strain
models were developed to simulate the results from experimental
studies. Most of the existing models were based on the mechanism
of confinement together with calibration of test results to predict
the compressive stress and strain of FRP confined concrete col-
umns (Lam and Teng 2003a; Ilki et al. 2008; Wu and Wang
2009; Wu and Wei 2010; Rousakis et al. 2012; Yazici and Hadi
2012; Pham and Hadi 2013, 2014). Models developed by this ap-
proach provide a good understanding of stress-strain curve of the
confined concrete, but their errors in estimating the compressive
strength and strain are still considerable. Bisby et al. (2005) had
carried out an overview on confinement models for FRP confined
concrete and indicated that the average absolute error of strain
estimation ranges from 35–250%, whereas the error of strength
estimation is approximately 14–27%. In addition, Ozbakkaloglu
et al. (2013) had reviewed 88 existing FRP confinement models

for circular columns. That study showed that the average abso-
lute errors of the above models in estimating stress and strain are
greater than 10 and 23%, respectively. Thus, it is necessary for
the research community to improve the accuracy of estimating
both the compressive stress and strain of FRP confined concrete.
This study introduces the use of artificial neural networks (ANNs)
to predict the compressive strength and strain of FRP confined
square/rectangular concrete columns because of the input param-
eters including geometry of the section and mechanical properties
of the materials.

ANN can be applied to problems where patterns of information
represented in one form need to be mapped into patterns of infor-
mation in another form. As a result, various ANN applications can
be categorized as classification or pattern recognition or prediction
and modeling. ANN is commonly used in many industrial
disciplines, for example, banking, finance, forecasting, process en-
gineering, structural control and monitoring, robotics, and transpor-
tation. In civil engineering, ANN has been applied to many areas,
including damage detection (Wu et al. 1992; Elkordy et al. 1993),
identification and control (Masri et al. 1992; Chen et al. 1995), op-
timization (Hadi 2003; Kim et al. 2006), structural analysis and
design (Hajela and Berke 1991; Adeli and Park 1995), and shear
resistance of beams strengthened with FRP (Perera et al. 2010a, b).

In addition, ANN has also been used to predict the compressive
strength of FRP confined circular concrete columns (Naderpour
et al. 2010; Jalal and Ramezanianpour 2012). This study uses
ANN to predict both the compressive strength and strain of FRP
confined square/rectangular concrete columns. Furthermore, a
new potential approach is introduced to generate predictive user-
friendly equations for the compressive strength and strain.

Experimental Databases

The test databases used in this study is adopted from the studies by
Pham and Hadi (2013, 2014). Details of the databases could be
found elsewhere in these studies, but for convenience the main
properties of specimens are summarized. It is noted that when
the axial strain of unconfined concrete at the peak stress (εco)
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is not specified, it can be estimated using the equation proposed by
Tasdemir et al. (1998) as follows:

εco ¼ ð−0.067f 02co þ 29.9f 0co þ 1; 053Þ10−6 ð1Þ
In the literature, test results of the compressive strain of FRP

confined concrete is relatively less than that of the compressive
strength. If a database is used to verify both the strain and strength
models, the size of this database will be limited by the number of
specimens having results of the strain. Thus, to maximize the data-
base size, this study uses two different databases for the two pro-
posed models. In addition, studies about FRP confined rectangular
specimens focused on confined strength but not strain. Thus data
about confined strain of rectangular specimens reported are
extremely limited. When the number of rectangular specimens is
much fewer than that of square columns, it is not reliable to predict
the compressive strain of the rectangular specimens by using a
mixed database. Therefore, this paper deals with strain of square
specimens only.

All specimens collated in the databases were chosen based on
similar testing schemes, ratio of the height and the side length, fail-
ure modes, and similar stress-strain curves. The ratio of the height
and the side length is 2. The aspect ratio of the rectangular spec-
imens ranged between 1 and 2.7. Test results of the specimens
which have a descending type in the stress-strain curves were ex-
cluded from the databases. In addition, a few studies concluded that
square columns confined with FRP provide a little (Mirmiran et al.
1998) or no strength improvement (Wu and Zhou 2010). Thus, this
study deals only with specimens with round corner, as such spec-
imens with sharp corners were excluded from the databases. After
excluding all the above, the databases contained the test results of
104 FRP confined rectangular concrete columns and 69 FRP con-
fined square concrete columns for the strength and strain models,
respectively.

Artificial Neural Network Modeling

Compressive Strength of FRP Confined Rectangular
Columns

The ANN strength model was developed by the ANN toolbox of
MATLAB R2012b (MATLAB) to estimate the compressive strength
of FRP confined rectangular specimens. The data used to train, val-
idate and test the proposed model were obtained from the paper by
Pham and Hadi (2014). The database contained 104 FRP confined
rectangular concrete columns having unconfined concrete strength
between 18.3 and 55.2 MPa. The database was randomly divided
into training (70%), validation (15%), and test (15%) by the func-
tion Dividerand.

Following the data division and preprocessing, the optimum
model architecture (the number of hidden layers and the corre-
sponding number of hidden nodes) needs to be investigated. Hornik
et al. (1989) provided a proof that multilayer feed forward networks
with as few as one hidden layer of neurons are indeed capable of
universal approximation in a very precise and satisfactory sense.
Thus, one hidden layer was used in this study. The optimal number
of hidden nodes was obtained by a trial and error approach in which
the network was trained with a set of random initial weights and a
fixed learning rate of 0.01.

Because the number of input, hidden, and output neurons is
determined, it is possible to estimate an appropriate number of
samples in the training data set. Upadhyaya and Eryurek (1992)
proposed an equation to calculate the necessary number of training
samples as follows:

w
o
≤ n ≤ w

o
logw=o2 ð2Þ

where w is the number of weights, o is the number of the output
parameters, and n is the number of the training samples. Substitut-
ing the number of weights and the number of the output parameters
into Eq. (2), the following condition is achieved:

54 ≤ n ¼ 73 ≤ 310 ð3Þ
Once the network has been designed and the input/output have

been normalized, the network would be trained. The MATLAB
neural network toolbox supports a variety of learning algorithms,
including gradient descent methods, conjugate gradient methods,
the Levenberg-Marquardt (LM) algorithm, and the resilient back-
propagation algorithm (Rprop). The LM algorithm was used in this
study. In the MATLAB neural network toolbox, the LM method
(denoted by function Trainlm) requires more memory than other
methods. However, the LM method is highly recommended be-
cause it is often the fastest back-propagation algorithm in the tool-
box. In addition, it does not cause any memory problem with the
small training dataset though the learning process was performed
on a conventional computer.

In brief, the network parameters are: network type is feed-
forward back propagation, number of input layer neurons is eight,
number of hidden layer neurons is six, one neuron of output layer is
used, type of back propagation is Levenberg-Marquardt, training
function is Trainlm, adaption learning function is Learngdm, per-
formance function is MSE, transfer functions in both hidden and
output layers are Tansig. The network architecture of the proposed
ANN strength model is illustrated in Fig. 1.

In the development of an artificial neural network to predict the
compressive strength of FRP confined rectangular concrete spec-
imens (f 0cc in MPa), the selection of the appropriate input param-
eters is a very important process. The compressive strength of
confined concrete should be dependent on the geometric dimen-
sions and the material properties of concrete and FRP. The geomet-
ric dimensions are defined as the short side length (b in mm), the
long side length (h in mm), and the corner radius (r in mm). Mean-
while, the material properties considered are: the axial compressive
strength (f 0co in MPa) and strain (εco in %) of concrete, the nominal
thickness of FRP (tf in mm), the elastic modulus of FRP (Ef in
GPa), and the tensile strength of FRP (ff in MPa).

Compressive Strain of FRP Confined Square Columns

The ANN strain model was developed to estimate the compressive
strain of FRP confined square specimens. The data used in this

Input 
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fco
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Hidden
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Fig. 1. Architecture of the proposed ANN strength model
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model were adopted from the study by Pham and Hadi (2013). The
database contained 69 FRP confined square concrete columns hav-
ing unconfined concrete strength between 19.5 and 53.9 MPa.

The algorithm and design of the ANN strain model are the same
as the proposed ANN strength model with details as follows: net-
work type is feed-forward back propagation, number of input layer
neurons is seven, number of hidden layer neurons is six, one neuron
of output layer, type of back propagation is Levenberg-Marquardt,
training function is Trainlm, adaption learning function is
Learngdm, performance function is MSE, transfer functions in both
hidden and output layers are Tansig. The architecture of the pro-
posed model is similar to Fig. 1 with exclusion of variable h.

Once the network was designed, the necessary number of train-
ing samples could be estimated by using Eq. (2) as follows:

48 ≤ n ¼ 48 ≤ 268 ð4Þ

Performance of the Proposed Models

The performance of the proposed ANN strength model was verified
by the database of 104 rectangular specimens. Fig. 2 shows
the predictions of the ANN strength model as compared with
the experimental values. Many existing models for FRP confined
concrete were adopted to compare with the proposed model. How-
ever, because of space limitations of the paper, five existing models
were studied in this verification (Lam and Teng 2003b; Wu and
Wang 2009; Toutanji et al. 2010; Wu and Wei 2010; Pham and
Hadi 2014). These models were chosen herein because they have
had high citations and yielded good agreement with the database.
The comparison between the predictions and the test results in
Fig. 2 shows improvement of the selected models in predicting
the strength of FRP confined rectangular columns over the last de-
cade. The proposed ANN strength model has the highest general
correlation factor (R2 ¼ 96%) for a linear trend between the pre-
diction and the test results while the other models have a correlation
factor between approximately 78 and 88%.

To examine the accuracy of the proposed strength model, three
statistical indicators were used: the mean square error (MSE), the

average absolute error (AAE), and the standard deviation (SD).
Among the presented models, the proposed ANN strength model
depicts a significant improvement in calculation errors as shown in
Fig. 3. A low SD of the proposed ANN strength model indicates
that the data points tend to be very close to the mean values.

Meanwhile, the performance of the proposed ANN strain model
is verified by the database which had 69 square specimens. Fig. 4
shows the compressive strain of the specimens predicted by the
ANN strain model versus the experimental values. To make a com-
parison with other models, five existing models were considered in
this verification [Shehata et al. 2002; Lam and Teng 2003b; ACI
440.2R-08 (ACI 2008); Ilki et al. 2008; Pham and Hadi 2013].
The proposed ANN strain model outperforms the selected models
in estimating the compressive strain of confined square columns
as shown in Fig. 4. The highest general correlation factor
(R2 ¼ 98%) was achieved by the proposed model while the corre-
lation factor of the other models was less than 60%. For further
evaluation, the values of MSE, AAE, and SD were calculated
and presented. Fig. 5 shows that the proposed model significantly
reduces the error in estimating the compressive strain of FRP
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confined square specimens by approximately five times as com-
pared with the other models. The average absolute error (AAE)
of the existing models is approximately 30%, whereas the AAE
of the proposed model is approximately 5%.

Proposal of User-Friendly Equations

In the previous section, the Tansig transfer function was used in the
ANN as it provides better results than Pureline transfer function.
Although the simulated results from the proposed ANNs have a
good agreement with the experimental data, it is inconvenient
for engineers to use the networks in engineering design. It is logical
and possible that a functional-form equation could be explicitly de-
rived from the trained networks by combining the weight matrix
and the bias matrix. Nevertheless, the final equations will become
very complicated because the proposed ANN models contain com-
plex transfer functions, which are Tansig as shown in Eq. (5) below.

Therefore, to generate user-friendly equations to calculate stress
and strain of FRP confined concrete, the Tansig transfer function
used in the previous section was replaced by the Pureline transfer
function [Eq. (6)]. A method that uses ANNs to generate user-
friendly equations for calculating the compressive strength or strain
of FRP confined square/rectangular columns is proposed. As a re-
sult, the proposed equation could replace the ANN to yield the
same results. Once an ANN is trained and yields good results, a
user-friendly equation could be derived following the procedure
described below.

tan sigðxÞ ¼ 2

1þ e−2x
− 1 ð5Þ

purelinðxÞ ¼ x ð6Þ

Mathematical Derivations

The architecture of the proposed models is modified to create
a simpler relationship between the inputs and the output as
shown in Fig 6. The following equations illustrate the notation
in Fig. 6.

X ¼ ½bhrf 0coεcotfEfff�T ¼ ½x1x2x3x4x5x6x7x8�T ð7Þ

where X is the input matrix, which contains eight input parameters,
and superscript T denotes a transpose matrix. Functions that illus-
trate the relationships of neurons inside the network are presented
as follows:

u ¼ IWXþ b1 ¼
X6
j¼1

X8
i¼1

IWj;ixi þ b1j ð8Þ

u1 ¼ purelinðuÞ ¼ u ð9Þ

Fig. 4. Comparison of the selected strain models
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Fig. 5. Accuracy of the selected strain models
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u2 ¼ LWu1 þ b2 ¼
X6
i¼1

LWiu1i þ b2i ð10Þ

y ¼ purelinðu2Þ ¼ u2 ð11Þ
where u, u1, and u2 are the intermediary matrices; Purelin is the
transfer function; y is the output parameter which is the compres-
sive strength of FRP confined square/rectangular columns (f 0cc in
MPa); IW is the input weight matrix; b1 is the bias matrix of Layer
1; LW is the layer weight matrix; and b2 is the bias matrix of
Layer 2.

From Eqs. (7)–(11) and Fig. 6, the output could be calculated
from the input parameters by the following equation:

y ¼ LW × IW ×XþLW × b1 þ b2 ð12Þ
Based on Eq. (12), it is obvious that a user-friendly equation

could be derived from a trained network. To simplify the above
equation, another expression could be derived as follows:

y ¼W ×Xþ a ð13Þ
where W is a proportional matrix and a is a scalar, which are
calculated as follows:

W ¼ LW × IW ð14Þ

a ¼ LW × b1 þ b2 ð15Þ
where the matrix W is denoted as follows:

W ¼ ½w1 w2 w3 w4 w5 w6 w7 w8 � ð16Þ

Proposed Equation for Compressive Strength

A modified ANN strength model was proposed to estimate the
compressive strength of FRP confined rectangular concrete col-
umns. The modified ANN strength model was trained on the data-
base of 104 FRP confined rectangular concrete columns. All
procedures introduced in the previous sections were applied for this
model with exception of the transfer function. As described in
Fig. 6, the Purelin transfer function was used instead of the Tansig
transfer function. After training, the input weight matrix (IW), the
layer weight matrix (LW), and the bias matrices (b1 and b2) were
obtained. From Eqs. (14) and (15), the proportional matrix (W) and
the scalar (a) were determined as follows:

W¼LW×IW

W¼ ½−0.21 −0.36 0.39 5.68 −5.36 1.33 0.40 0.64 � ð17Þ

a ¼ LW × b1 þ b2 ¼ 0.24 ð18Þ

It is to be noted that the inputs and the output in Eq. (13) are
normalized. The relationship between the actual inputs and the
actual output is presented in the equations below:

y ¼ ymax þ ymin

2
þ ymax − yiin

2

�X8
i¼1

wi

�
2ðxi − ximinÞ
ximax − ximin

− 1

�
þ a

�

ð19Þ

y ¼
X8
i¼1

ðymax − yminÞwi

ximax − ximin
xi þ

�
ymax þ ymin

2
þ ymax − ymin

2
a

�

−X8
i¼1

�ðymax − yminÞwiximin

ximax − ximin
þ ymax þ ymin

2
wi

�
ð20Þ

Based on the equations above, the output could be calculated
from the inputs as follows:

y ¼
X8
i¼1

kixi þ c ð21Þ

where ki are proportional factors, and c is a constant.

ki ¼
X8
i¼1

ðymax − yminÞwi

ximax − ximin
ð22Þ

c ¼ ðymax þ yminÞ
2

þ ðymax − yminÞ
2

a

−X8
i¼1

�ðymax − yminÞwiximin

ximax − ximin
þ ðymax − yminÞ

2
wi

�
ð23Þ

Based on the trained ANN and Eqs. (22) and (23), the constant c
is 414.61, while the proportional factor ki is obtained as follows:

k¼ ½−0.1 −0.12 0.6 11.07 −4170.85 67.21 0.15 0.01 �
ð24Þ

In brief, the user-friendly equation was successfully derived
from the trained ANN. The compressive strength of FRP confined
rectangular concrete column now is calculated by using Eqs. (21)
and (24).

Proposed Equation for the Compressive Strain

A modified ANN strain model was proposed to estimate the com-
pressive strain of FRP confined square concrete columns. The pro-
posed ANN strain model was verified by the database which
contained 69 FRP confined square concrete columns having uncon-
fined concrete strength between 19.5 and 53.9 MPa. All procedures
introduced in the sections above were applied for this model with
the exception of the transfer function, which was the Purelin
function. The total number of input parameters herein is seven with
exclusion of one variable as shown in Fig. 6. The architecture of the
proposed ANN strain model and the size of the weight matrices and
biases are also similar to Fig. 6 but with seven inputs. Following the
same procedure of the proposed strength model, the proportional
matrix (W) and the scalar (a) are determined as follows:Fig. 6. Architecture of the proposed ANN strength equation
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W ¼ LW × IW

W ¼ ½ 1.49 0.05 −5.99 5.08 0.66 4.32 −3.30 � ð25Þ

a ¼ LW × b1 þ b2 ¼ −1.76 ð26Þ
The compressive strain now could be calculated by using

Eq. (21) in which the proportional factor ki and the constant c
are as follows:

k ¼ ½ 0.284 0.004 −0.618 209.593 1.24 0.076 −0.003 �
ð27Þ

c ¼ −66.012 ð28Þ
In brief, the user-friendly equation was successfully derived

from the trained ANN. The compressive strain of FRP confined
square concrete columns now is calculated by using Eqs. (21),
(27) and (28).

Performance of the Proposed User-Friendly
Equations

The performance of the proposed strength equation [Eqs. (21) and
(24)] is shown in Fig. 7. This figure shows that the proposed user-
friendly equation for strength estimation provides the compressive
strength that fits the experimental results well. In addition, the
proposed model’s performance was compared with other existing
models as shown in Fig. 7. The five existing models mentioned in
the section above were studied in this comparison. The perfor-
mance of these models is comparable in calculating the compres-
sive strength of FRP confined rectangular columns.

In addition, Fig. 8 shows the performance of the proposed strain
equation [Eqs. (21), (27) and (28)]. This figure illustrates the com-
pressive strain of the specimens estimated by the proposed strain
equation versus the experimental results. In addition, the proposed
strain equation’s performance was compared with other existing
models as shown in Fig. 8. The five models mentioned in the
above sections were adopted. The proposed ANN strain equation

outperforms the selected models in estimating the compressive
strain of confined concrete as shown in Fig. 8. The highest general
correlation factor (R2 ¼ 90%) was achieved by the proposed
model, although the corresponding number of other models is less
than 60%. This general correlation factor (R2) is less than that in the
above sections when the Tansig transfer function was replaced by
the Purelin transfer function. Although using the Purelin transfer
function reduces the accuracy of the proposed models, it provides
a much simpler derivation of the proposed equations. For further
evaluation, the values of AAE were calculated and are presented
in Fig. 8. It demonstrates that the proposed equation significantly
reduces the error in estimating the compressive strain of FRP con-
fined square specimens by approximately three times as compared
with the other models. The average absolute error of the selected
models is approximately 30%, whereas the corresponding number
of the proposed model is approximately 12%.

Analysis and Discussion

Effect of Corner Radius on the Compressive Strength
and Strain

Based on the proportional matrix (W) as presented in Eq. (12), the
contribution of the input parameters to the output could be exam-
ined. The magnitude of the elements in the proportional matrix of
the proposed ANN strength equation is comparable, which was
presented in Eq. (16). Thus all eight input parameters significantly
contribute to the compressive strength of the columns. On the other
hand, the element w2 of the proportional matrix in the proposed
ANN strain equation is extremely small as compared with the
others [Eq. (25)]. Hence, the contribution of the input r to the com-
pressive strain of the columns could be negligible.

The proposed ANN strain equation was modified by using six
input parameters, in which the input r was removed. The input
parameters are: the side length, the unconfined concrete strength
and its corresponding strain, the tensile strength of FRP, the nomi-
nal thickness of FRP, and the elastic modulus of FRP. The perfor-
mance of the modified strain equation is shown in Fig. 9 which
shows that the AAE of the predictions increased slightly from
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Fig. 7. Accuracy of the selected strength models
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12–13%. Therefore, it is concluded that the contribution of the cor-
ner radius to the compressive strain of the columns is negligible.
The proportional factor ki and the constant c are as follows:

k ¼ ½ 0.26 0.038 −51.314 1.329 0.059 −0.002 � ð29Þ

c ¼ −32.119 ð30Þ

Scope and Applicability of the Proposed ANN Models

From the performance of the proposed models, it can be seen that
artificial neural networks are a powerful regression tool. The pro-
posed ANN models significantly increase the accuracy of predict-
ing the compressive stress and strain of FRP confined concrete. The
distribution of the training data within the problem domain can
have a significant effect on the learning and generation perfor-
mance of a network (Flood and Kartam 1994). The function De-
viderand recommended by MATLAB was used to evenly distribute

the training data. Artificial neural networks are not usually able to
extrapolate, so the straining data should go at most to the edges of
the problem domain in all dimensions. In other words, future test
data should fall between the maximum and the minimum of the
training data in all dimensions. Table 1 presents the maximum
and the minimum values of each input parameter. It is recom-
mended that the proposed ANN models are applicable for the range
shown in Table 1 only. To extend the applicability of the proposed
ANN models, a larger database containing a large number of spec-
imens reported should be used to retrain and test the models. When
the artificial neural network has been properly trained, verified, and
tested with a comprehensive experimental database, it can be used
with a high degree of confidence.

Simulating an ANN by MS Excel

The finding in this study indicates that a trained ANN could be
used to generate a user-friendly equation if the following conditions
are satisfied. Firstly, the problem is well simulated by the ANN,
which yields a small error and high value of general correlation

Fig. 8. Accuracy of the selected strain models
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Fig. 9. Performance of the proposed strain model with or without the
input r

Table 1. Statistics of the Input Parameters for the Proposed Models

Input/output
parameters

Strength model Strain model

Maximum Minimum Maximum Minimum

b (mm) 250 100 152 133
h (mm) 305 100 — —
r (mm) 60 15 60 15
f 0co (MPa) 53.9 18.3 53.9 19.5
εco (%) 0.25 0.16 0.25 0.16
tf (mm) 1.5 0.13 2 0.12
Ef (GPa) 257 75.1 241 38.1
ff (MPa) 4,519 935 4,470 580
fcc (MPa) 90.9 21.5 — —
εcc (%) — — 3.9 0.4
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factor (R2). Secondly, the Purelin transfer function must be used in
that algorithm. A very complicated problem is then simulated by
using a user-friendly equation as followed in the proposed
procedure.

However, if using the Purelin transfer function instead of other
transfer functions increases significantly errors of the model, the
proposed ANN models that have the Tansig transfer function
should be used. So, a user-friendly equation cannot be generated
in such a case. The following procedure could be used to simulate
the trained ANN by using MS Excel

Step 1: Normalize the inputs to fall in the interval [−1, 1].
Step 2: Calculate the proportional matrix W and the scalar a by

using Eqs. (14) and (15), respectively.
Step 3: Calculate the normalized output y 0 by using Eq. (13).
Step 4: Return the output to the actual values.
By following the four steps above, a MS Excel file was built to

confirm that the predicted results from the MS Excel file are iden-
tical with those results yielded from the ANN.

Conclusions

Two ANN strength and strain models are proposed to calculate the
compressive strength and strain of FRP confined square/rectangular
columns. The prediction of the proposed ANN models fits well the
experimental results. They yield results with marginal errors, ap-
proximately half of the errors of the other existing models. This
study also develops new models coming up with a user-friendly
equation rather than the complex computational models. The find-
ings in this paper are summarized as follows:
1. The two proposed ANN models accurately estimate the

compressive strength and strain of FRP confined square/
rectangular columns with very small errors (AAE < 5%),
which outperform the existing models.

2. The proposed ANN strength equation provides a simpler pre-
dictive equation as compared with the existing strength models
with comparable errors.

3. The proposed ANN strain equation also delivers a simple-form
equation with very small errors. The proposed model’s error is
approximately 12%, which is one third in comparison with the
existing strain models.

4. For FRP confined rectangular columns, the corner radius
significantly affects the compressive strength but marginally
affects the compressive strain.

The ANN has been successfully applied for calculating the
compressive strength and strain of FRP confined concrete columns.
It is a promising approach to provide better accuracy in estimating
the compressive strength and strain of FRP confined concrete than
the existing conventional methods.
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5 MAXIMUM USABLE STRAIN OF FRP-CONFINED CONCRETE 

Summary 

This study investigates the progressive failure of FRP-confined concrete. Ten FRP-

confined concrete specimens were divided into two groups with different jacket 

stiffness. One specimen in each group was tested until failure while the others were 

loaded to target strains and then unloaded in order to monitor the residual strength of 

the concrete cores. At 1% axial strain of FRP-confined concrete, the residual strength 

of the concrete cores were reduced more than 56% compared to the reference 

specimens. Experimental results have shown that the maximum usable strain of 1% 

is un-conservative for FRP-confined concrete. A model is proposed to estimate the 

residual strength of concrete cores. Predictions from the proposed model fit the 

experimental results well. In addition, a new procedure is proposed to determine the 

maximum usable strain of FRP-confined concrete based on the maximum usable 

strain of unconfined concrete. 

Citation 

This paper was submitted for publication in Engineering Structures with the 

following citation: 

Pham, T.M., Hadi, M.N.S., and Tran, T.M. (2014). "Maximum Usable Strain of 
FRP-Confined Concrete." Engineering Structures, under review. 
  



1 

 

Maximum Usable Strain of FRP-Confined Concrete 1 

Thong M. Pham1, Muhammad N.S. Hadi2 and Tung M. Tran32 

                                                 

1 Ph.D. Candidate, School of Civil, Mining and Environmental Engineering, University of Wollongong, 
Wollongong, NSW 2522, Australia; Formerly, Lecturer, Faculty of Civil Engineering, HCMC University of 
Technology, Ho Chi Minh City, Vietnam. Email: mtp027@uowmail.edu.au 
2Associate Professor, School of Civil, Mining and Environmental Engineering, University of Wollongong, NSW 
2522, Australia (corresponding author). Email: mhadi@uow.edu.au 
3Lecturer, Department of Civil Engineering, Ton Duc Thang University, Ho Chi Minh, Vietnam, currently a PhD 
Scholar at the School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong 
NSW 2522, Australia. E-mail: tmt954@uowmail.edu.au  

 
1. Introduction 3 

Fiber Reinforced Polymer (FRP) has been commonly used to strengthen existing reinforced 4 

concrete (RC) columns in recent years [1-3]. In such cases, FRP is a confining material for 5 

concrete in which the confinement effect leads to increase the strength and ductility of 6 

columns. In early experimental studies of FRP retrofitted RC columns, the axial capacities of 7 

strengthened columns increased significantly as compared to reference columns. The database 8 

collected by Lee and Hegemier [4] showed that FRP-confined concrete cylinders have axial 9 

strain ranging from 0.6% to 4.2% while Teng et al. [5] showed that the axial strain of 10 

specimens varied from 0.8% to 3.7%. Pham and Hadi [6] collected a database of 167 FRP-11 

confined concrete columns where the axial strain of the columns ranged between 0.5% and 12 

4%. Ilki et al. [7] conducted experiments on FRP-confined circular and rectangular RC 13 

columns. Results from this study had shown that the axial strain of FRP-confined concrete 14 

ranged from 1.3% to 8.6%. The axial strain up to 9.66% was recorded from the experimental 15 

study carried out by Dai et al. [8] on RC columns confined with large rupture strain and the 16 

axial strain up to 10.4 % was reached in Ilki et al.’s study [9] on FRP confined low strength 17 

concrete members. From the literature, it can be seen that the axial strain of FRP-confined 18 

concrete varies in a broad range and no study has shown a maximum usable strain of confined 19 
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concrete [10-14]. Meanwhile, ACI-440.2R [15] and Concrete Society [16] provided 20 

maximum usable strain of 1% for FRP-confined concrete to prevent excessive cracking and 21 

the resulting loss of concrete integrity. 22 

As mentioned above, experimental studies have shown that the axial strain of FRP-confined 23 

concrete varies in a wide range from 0.5% to 10.4%. However, these studies did not 24 

investigate the integrity of the concrete during testing. No study has investigated the precise 25 

nature of the progressive failure mechanisms occurring during experimental tests. In other 26 

words, a limit of 1% recommended by two guidelines [15, 16] seems small as compared to the 27 

experimental results. Therefore, determining the nature of the progressive failure mechanisms 28 

and the maximum usable strain of FRP-confined concrete is essentially necessary. This study 29 

conducted experimental tests to investigate the progressive failure mechanisms of FRP-30 

confined concrete at many stages of testing. 31 

2. Axial Strain of Concrete 32 

A typical stress-strain relation of unconfined concrete is shown in Fig. 1. The stress-strain 33 

curve rises to a maximum stress, reached at a strain between 0.15% and 0.3%, followed by a 34 

descending branch [17]. The length of the descending branch of the curve is strongly affected 35 

by the test conditions. Usually, an axially loaded concrete cylinder fails at the maximum 36 

stress. In such cases, the stress-strain curve suddenly drops from the maximum stress. On the 37 

other hand, if a structural member is loaded in compression due to bending (or bending plus 38 

axial load), the descending branch might exist as shown in the solid line after the maximum 39 

stress in Fig. 1 [17]. This study deals with pure compression tests so that the failure of 40 

unconfined concrete is approximately determined at the maximum stress stage that has a 41 

corresponding strain between 0.15% and 0.3%. 42 

51



3 

 

In addition, stress-strain relations of FRP-confined concrete are also presented in Fig. 1. 43 

Based on the confinement ratio, the stress-strain relation of FRP-confined concrete may 44 

belong to an ascending branch or a descending branch. Specimens with low stiffness 45 

confinement yield a descending branch stress-strain curve as described by Concrete Society 46 

[16]. The axial stress of these specimens reaches the maximum stress before FRP rupture. 47 

Conversely, the axial stress of specimens that have stiff confinement reaches the maximum 48 

stress at the FRP rupture. Therefore, the ultimate axial strain of FRP-confined concrete is the 49 

measured axial strain of specimens as FRP ruptures due to hoop tension. There is a consensus 50 

that the core of FRP-confined concrete can resist the applied load until FRP ruptured without 51 

any investigation about the progressive failure mechanisms. No study about confined concrete 52 

has verified the integrity of the concrete core during testing. As a result, the failure indicator 53 

of FRP-confined concrete is controlled by the failure of the FRP jacket. This failure 54 

determination complies with the failure definition of concrete confined by helical steel 55 

reinforcement [18]. Mander et al. [18] defined that the maximum axial strain of confined 56 

concrete was reached when the first lateral reinforcement fractures. However, this study 57 

focuses on the failure of the concrete cores not the FRP. 58 

3. Experimental Program 59 

3.1. Design of Experiments 60 

A total of thirteen standard concrete cylinders were cast and tested at the High Bay laboratory 61 

of the University of Wollongong. The dimensions of the specimens were 150 mm by 300 mm 62 

and the design compressive strength of concrete was 50 MPa. The specimens were classified 63 

into three groups, namely, the reference group (R), two layers group (C2) and three layers 64 

group (C3). Details of the specimens are presented in Table 1. The notation of the specimens 65 

consists of two parts: the first part is “R”, “C2”, and “C3” stating the name of the groups. The 66 
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second part indicates the target strains of the specimens at which the loading was stopped. For 67 

example, Specimen C2-1.9 indicates the specimen which was wrapped with two layers of 68 

FRP and loaded up to 1.9% axial strain. 69 

After 28 days, each specimen was symmetrically bonded at midheight with two 60 mm strain 70 

gages in the vertical direction and two 60 mm strain gages in the horizontal direction. The 71 

specimens on group C2 and C3 were then fully wrapped with CFRP layers using wet lay-up 72 

method. The adhesive was a mixture of epoxy resin and hardener at 5:1 ratio and the amount 73 

of FRP layers in the specimens is described in Table 1. For each specimen, four CFRP rings 74 

of 75 mm width were applied in the hoop direction to ensure that the whole specimen (300 75 

mm length) was wrapped with layers of CFRP. Before the first layer of CFRP was attached, 76 

the adhesive was spread onto the surface of the specimen and CFRP was attached onto the 77 

surface. After the first layer, the adhesive was spread onto the surface of the first layer of 78 

CFRP and the second layer was continuously bonded. The third layer of CFRP was applied in 79 

a similar manner, ensuring that an overlap of 100 mm was maintained. 80 

In order to measure the lateral strain of the specimens, four strain gages were symmetrically 81 

bonded in the hoop direction of the jacket. Details of the positions of the strain gages are 82 

shown in Fig 2. During the testing, FRP jacket would cause confining pressure 83 

perpendicularly to the concrete surface and thus the strain gages on the concrete surface. This 84 

confining pressure could affect readings from these strain gages. 85 

3.2. Instrumentation 86 

The Denison 5000 kN testing machine was used for testing all the specimens. The columns 87 

were capped with high strength plaster at both ends to ensure full contact between the loading 88 

heads and the column. Calibration was then performed to ensure that the columns were placed 89 

at the center of the testing machine. The tests were conducted as displacement controlled with 90 
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a rate of 0.5 mm/min. All the strain gages were connected with a data logger and 91 

simultaneously saved in a control computer. 92 

Furthermore, the longitudinal compressometer as shown in Fig. 3 was used to measure the 93 

axial strain of the specimens and then these readings were compared to those from the strain 94 

gages. A linear variable differential transformer (LVDT) was mounted on the upper ring and 95 

the tip of the LVDT rests on an anvil. The readability, the accuracy, and the repeatability of 96 

the LVDT comply with the Australian standard [19]. This LVDT was also connected to the 97 

data logger and the readings were saved in the control computer. 98 

3.3. Testing Scheme 99 

The axial stress and strain of the specimens were predicted using the study by Jiang and Teng 100 

[20]. Since the maximum strain of the specimens was determined, each specimen was tested 101 

to reach the single target axial strain as described in Table 1. The first specimen in that group 102 

was tested until the axial strain reached 0.6% that was the average value between 0.2% and 103 

1%. The value of 0.2% was adopted from the widely accepted maximum axial strain of 104 

unconfined concrete while the value of 1% was proposed by ACI-440.2R [15] for the 105 

maximum usable strain of FRP-confined concrete. The other specimens were tested to a target 106 

axial strain that range equally from 1% to the maximum axial strain of the group. After the 107 

tested specimens were loaded to the target strains, these specimens were unloaded and 108 

unwrapped in order to investigate any cracks which may have developed during the testing. 109 

The concrete cores of these specimens were then tested again under compression load to 110 

examine their residual strengths. 111 

4. Experimental Results 112 

4.1. Preliminary tests 113 
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The actual compressive strength of unconfined concrete calculated from three reference 114 

Specimens (R-1, R-2, and R-3) was 52.08 MPa. The axial strain of unconfined concrete at the 115 

maximum load was 0.24%. CFRP used in this study was 75 mm in width with a unidirectional 116 

fiber density of 340 g/m2. Five CFRP coupons were made according to ASTM D7565 [21] 117 

and tested to determine their mechanical properties. The coupons were made of three layers of 118 

FRP and had a nominal thickness of 1.45 mm. The average width of the coupons was 24.86 119 

mm and the average maximum tensile force per unit width was 2037 N/mm. The strain at the 120 

maximum tensile force and the average elastic modulus were 0.0165 mm/mm and 123 121 

kN/mm, respectively. 122 

The axial strain of specimens was measured by both strain gages attached on the surface of 123 

concrete and LVDT mounted on the compressometer. Two readings were almost identical at 124 

early stages of the testing. However, the strain gages on the concrete failed at a strain about 125 

0.6 -0.7%, which may have resulted from the high confining pressure of the jacket. As a 126 

result, the experimental axial strains reported in this study are the readings from the LVDT. 127 

4.2. Stress-strain Relation 128 

Specimens C2-1.9 and C3-2.4 were tested until fail. These specimens failed by FRP rupture, 129 

resulting in loud explosive sounds. The rupture strain of FRP is the average values from three 130 

strain gages outside the overlap zone. The other specimens were loaded to the target strains 131 

and then their jackets were peeled off to investigate the damage level of the column cores. 132 

Specimens with high axial strain (C2-1.2, C2-1.4, C3-1.4, and C3-1.7) had wide and long 133 

cracks on the cores as shown in Fig. 4. These cracks were formed vertically and they cut 134 

throughout the core from the top to the bottom. These specimens were damaged and could not 135 

be used as the section of the cores was significantly reduced. Cores of the remaining 136 

specimens were loaded again until failure to examine the residual compressive strength and 137 
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the results are shown in Table 2. The residual strength of these specimens was less than 20% 138 

as compared to the reference specimens. Meanwhile, specimens with lower axial strain (C2-139 

0.6, C2-1.0, C3-0.6, and C3-1.0) had less serious cracks and the cores still kept the cylindrical 140 

shape as shown in Fig. 5. These cracks formed locally and they had small width and short 141 

length. The residual strength of these specimens ranged from 40% to 60% as compared to the 142 

reference specimens (Table 2). 143 

4.3. Residual Strength of the Cores 144 

It is obvious that FRP prevents the cores from expanding under the applied loads. At the same 145 

value of axial strain, the lateral strain of specimens in Group C3 is lower than that of 146 

specimens in Group C2. Thus the residual strength of specimens in Group C3 is expected to 147 

be higher than that of the corresponding specimens in Group C2. Fig. 6 shows the residual 148 

strengths of Group C2 and Group C3. These experimental results confirm that with a similar 149 

axial strain the core of specimens that were wrapped with a thicker jacket will have higher 150 

residual strength as compared to the one wrapped with a thinner jacket. Thus it can be seen 151 

that the damage level of the cores is due to both the axial strain and the lateral strain, which is 152 

controlled by the stiffness of the jacket. 153 

From the experimental results presented in Figs. 7-8, it can be seen that the residual strengths 154 

of the cores had values very close to the ordinate of the intersection between the unload curve 155 

and the unconfined concrete curve. These values are summarized in Table 2. Thus it is 156 

assumed that the residual strength of the column cores is equal to the ordinate of the 157 

intersection between the unload curve and the unconfined concrete curve. 158 

5. Theoretical Verification 159 

5.1. Behavior of FRP-confined Concrete under Cyclic Load 160 
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Theoretical models about behavior of FRP-confined concrete under cyclic loads are studied 161 

and summarized to simulate the experimental results [22, 23]. The loading scheme of this 162 

study is illustrated in Fig. 9. FRP-confined concrete specimens were tested to Point a, that has 163 

the unloading strain (un) and the unloading stress (un), and then unloaded until Point c. Point 164 

c is determined by the reloading strain (re) and the reloading stress (re) that is equal to zero 165 

in this study. When Point c lies on the horizontal axis, the loading strain (re) is equal to the 166 

plastic strain (pl) (or permanent strain). During the unloading process, the unloading curve 167 

intersects the stress-strain curve of unconfined concrete at Point b that has the intersect strain 168 

(in) and the intersect stress (in). 169 

The loading curve in Fig. 9 is the envelop curve in the study by Lam and Teng [22]. The 170 

model proposed by Lam and Teng [24] was adopted by Lam and Teng [22] to predict the 171 

envelop curve. However, this model did not yield good results as compared to the 172 

experimental results in this paper. Thus, the envelop curve (loading path) is estimated by the 173 

model proposed by Jiang and Teng [20], which is summarized in the section below. 174 

Meanwhile, the unloading path was calculated as follows [22]: 175 
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(5) 180 

where  is an exponent and Eun,0 is the slope of the unloading path at zero stress. The shape of 181 

an unloading path is controlled by the two parameters:  and Eun,0 that are calculated as 182 

follows [22]: 183 
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In addition, the stress-strain curve of unconfined concrete is predicted using the equations 186 

proposed by Sargin et al. [25] as follows: 187 
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where E0  is the Young’s modulus of elasticity (E0 = 4730 '
cof , MPa), Ec is the secant 191 

modulus of elasticity at the peak, and D = 1 is the parameter which primarily governs the 192 
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descending part of the stress-strain curve. The reloading path is predicted by the same 193 

equations proposed Sargin et al. [25] with the exception of replacing the Young’s modulus of 194 

elasticity (E0) by the reloading stiffness (Ere), which is discussed in the section below. It is 195 

noted that the residual strength of the column core (Point d) is assumed to be equal to the 196 

ordinate of Point b in Fig. 9. 197 

5.2. Envelop Curve and Reloading Stiffness 198 

The model for FRP-confined concrete proposed by Jiang and Teng [20] was adopted to 199 

predict the envelop curve of the stress-strain curve. In that model, the axial stress and the axial 200 

strain of FRP-confined concrete at a given lateral strain are the same as those of the same 201 

concrete actively confined with a constant confining pressure equal to that provided by the 202 

FRP jacket. Fig. 10 illustrates the concept of this incremental approach. The stress-strain 203 

curve of FRP-confined concrete is obtained as presented by Jiang and Teng [20]: 204 

1) For a given axial strain, find the corresponding lateral strain according to the lateral-205 

to-axial strain relationship; 206 

2) Based on force equilibrium and radial displacement compatibility between the 207 

concrete core and the FRP jacket, calculate the corresponding lateral confining 208 

pressure provided by the FRP jacket; 209 

3) Use the axial strain and the confining pressure obtained from Steps (1) and (2) in 210 

conjunction with an active-confinement base model to evaluate the corresponding 211 

axial stress, leading to the identification of one point on the stress–strain curve of 212 

FRP–confined concrete; 213 

4) Repeat the above steps to generate the entire stress–strain curve.  214 
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The following equations were adopted in the procedure above [20]: 215 
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(16) 221 

where l is the lateral strain, Ef is the elastic modulus of FRP, t is the thickness of FRP, d is 222 

the diameter of specimens, fcc
’* is the peak stress of concrete under a specific constant 223 

confining pressure fl, cc
* is the axial strain at fcc

’*, and r is the constant defined by Eq. 16. 224 

The reloading stiffness Ere presented in the study by Lam and Teng  [22] is shown in Fig. 11. 225 

The reloading stiffness is the slope of Line cd that is estimated as follows: 226 
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where  is the stress deterioration ratio for the unloading/reloading cycle and new is the new 229 

stress at the reference strain. 230 
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It is widely accepted that the confining effect of FRP is ignored as FRP-confined concrete is 232 

compressed at a stress level lower than the peak stress of unconfined concrete. Thus it is 233 

assumed that the Young’s modulus of elasticity of the FRP-confined concrete and the column 234 

core is the same. In this study, the specimens were unloaded and the FRP jacket was peeled 235 

off before reloading to the peak stress of the column cores. The reloading stiffness of the 236 

column cores now is estimated based on the equations above, which are used for reloading 237 

FRP-confined concrete. 238 

5.3. Comparison with Experimental Results 239 

The procedure presented above is used to predict the residual strength of a column core. The 240 

experimental results and theoretical calculations of specimens in Group C3 are presented in 241 

Fig. 12. The theoretical calculations fit the experimental results well. Thus at a given axial 242 

strain of FRP-confined concrete, the residual strength of the column core can be estimated. 243 

6. Maximum Usable Strain 244 

The progressive failure mechanisms of FRP-confined concrete are not due to the FRP failing 245 

progressively but rather due to the concrete failing progressively [26]. In addition, Priestley et 246 

al. [27] recommended that the lateral strain of FRP-confined concrete columns should be 247 

limited to the value of 0.4% to prevent the degradation of aggregate interlock action, which is 248 

essential to the concrete shear resisting mechanism. Based on the experimental observations 249 

and the arguments above, this study recommends that the maximum usable strain of confined 250 

concrete should be controlled by the maximum usable strain of the concrete cores. 251 
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The maximum usable strain of FRP-confined concrete must maintain the bond between 252 

reinforcement and the concrete core and the aggregate interlock. The specimens of Group C3 253 

could resist axial loads until the axial strain of 2.64% was reached. Specimen C3-0.6 was 254 

loaded to reach the axial strain at 0.66% and then reloaded. However, the residual strength of 255 

this specimen reduced significantly by 42%, which led to considerable decrease of the 256 

bonding between reinforcement and concrete as well as the aggregate interlock. This axial 257 

strain is much smaller than 1% as proposed by ACI 440.2R [15]. Therefore, the maximum 258 

usable strain of FRP-confined concrete should be controlled by the maximum usable strain of 259 

the concrete core. 260 

However, the maximum usable strain of the concrete core in FRP-confined concrete has not 261 

been investigated. The maximum usable strain of unconfined concrete (lim, u) proposed by 262 

ACI 318 [28] was adopted. ACI 318 [28] recommended that the maximum usable strain of 263 

unconfined concrete is 0.3%, which is equal to in in Fig. 9. Given a stress-strain curve of 264 

unconfined concrete, Point b in Fig. 9 can be determined (b (0.3, 50)). Next, the maximum 265 

usable strain at Point a is also determined by iterative processes (a (0.32, 57)) for specimens 266 

of Group C3). Fig. 13 describes a flow chart to determine the maximum usable strain of FRP-267 

confined concrete (lim, u). Therefore, the maximum usable strain of FRP-confined concrete 268 

(lim) given the properties of materials can be estimated if the maximum usable strain of 269 

unconfined concrete (lim, u) is proposed. It is necessary to investigate the maximum usable 270 

strain of the concrete core in FRP-confined concrete. 271 

7. Conclusions 272 

This study investigated the progressive failure of FRP-confined concrete based on the failure 273 

of the concrete cores. The residual strengths of the concrete cores were determined 274 
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experimentally and theoretically at many axial strain levels. The findings presented in this 275 

paper are summarized as follows: 276 

1. The residual strengths of the concrete cores were reduced more than 56% at the axial 277 

strain 1% of FRP-confined concrete. 278 

2. A model was proposed to estimate the residual strength of the concrete cores of a FRP-279 

confined concrete column at a certain axial strain. 280 

3. The maximum usable strain of FRP-confined concrete is much smaller than the value of 281 

1% proposed by ACI 440-2R [15]. 282 

Finally, the experimental results show that the maximum usable strain of FRP-confined 283 

concrete should be determined from that of unconfined concrete. The predictions of the 284 

proposed model fit the experimental results very well. 285 
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Table 1. Test matrix 373 

ID 
Unconfined 

concrete 
strength (MPa) 

Target 
axial strain 

(%) 

Actual 
axial strain 

(%) 

Predicted 
lateral 

strain (%) 

 Actual 
lateral 

strain (%) 

Predicted 
strength 
(MPa) 

Actual 
strength 
(MPa) 

No. of 
FRP 

layers 

C2-0.6 52 0.6 0.62 0.46 0.44 69 70 2 

C2-1.0 52 1.0 1.12 0.77 0.68 80 83 2 

C2-1.2 52 1.2 1.33 0.91 0.94 84 89 2 

C2-1.4 52 1.4 1.56 1.04 0.92 88 88 2 

C2-1.9 52 1.9 1.99 1.25 1.40 95 97 2 

C3-0.6 52 0.6 0.66 0.37 0.34 73 77 3 

C3-1.0 52 1.0 1.02 0.62 0.67 87 90 3 

C3-1.4 52 1.4 1.35 0.83 0.70 98 96 3 

C3-1.9 52 1.9 1.87 1.05 1.08 109 106 3 

C3-2.4 52 2.4 2.64 1.25 1.31 120 124 3 

  374 
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Table 2. Residual strength of tested specimens 375 

ID 
Residual 

strength (MPa) 
Compared to fc

’ (%) 
Ordinate of 

intersection* (MPa) 

C2-0.6 28 54 33 
C2-1.0 17 33 18 
C2-1.2 - - 13 
C2-1.4 9 17 8 
C3-0.6 30 58 32 
C3-1.0 23 44 20 
C3-1.4 9 17 12 
C3-1.7 9 17 - 

* The intersection was made between the unload curve of the corresponding specimen and the 376 
unconfined concrete curve. 377 
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6 CIRCULARIZING SQUARE COLUMNS TO CIRCULAR COLUMNS 

6.1 Circularizing by Normal Strength Concrete 

Summary 

This study investigates three methods of strengthening existing reinforced square 

concrete columns under different loading conditions. Four groups of sixteen 

reinforced concrete square columns were made from normal strength concrete. 

Reinforcement was kept at minimum ratio, simulating columns which need 

retrofitting. Columns of the first group were reference columns (Group N) while the 

corners of the second group columns (Group RF) were rounded and wrapped with 

three layers of Carbon Fiber Reinforced Polymers (CFRP). The sides of the columns 

of the third group (Group CF) were bonded with four pieces of concrete with a 

segmental circular shape, thus changing the cross section of the column from a 

square to a circle before each column was wrapped with three layers of CFRP. The 

columns of the last group (Group CS) were modified as the third group to result in a 

circular cross section, but were confined with steel straps. Results from the study 

showed that all confinement methods increased the capacity and ductility of 

columns. In particular, segmental circular concrete covers dramatically reduced the 

stress concentration at the corners and increased confinement efficacy. The 

Interaction (P-M) diagrams of experimental results and theoretical analysis all 

confirmed high performance of groups RF and CF. 
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Abstract: This study investigates three methods of strengthening existing reinforced square concrete columns under different loading
conditions. Four groups of sixteen reinforced concrete square columns were made from normal-strength concrete. Reinforcement was kept
at minimum ratio, simulating columns that need retrofitting. Columns of the first group were reference columns (Group N), while the corners
of the second group columns (Group RF) were rounded and wrapped with three layers of carbon-fiber-reinforced polymers (CFRPs). The
sides of the columns of the third group (Group CF) were bonded with four pieces of concrete with a segmental circular shape, thus changing
the cross section of the column from a square to a circle before each column was wrapped with three layers of CFRP. The columns of the
last group (fourth) were modified as the third group to result in a circular cross section, but were confined with steel straps. Results
from the study showed that all confinement methods increased the capacity and ductility of columns. In particular, segmental circular con-
crete covers dramatically reduced the stress concentration at the corners and increased confinement efficacy. The interaction (P–M)
diagrams of experimental results and theoretical analysis all confirmed high performance of groups RF and CF. DOI: 10.1061/(ASCE)
CC.1943-5614.0000335. © 2013 American Society of Civil Engineers.

CE Database subject headings: Fiber reinforced polymer; Eccentric loads; Reinforced concrete; Concrete columns; Experimentation.

Author keywords: Square columns; Steel straps; P–M interaction diagram.

Introduction

Retrofitting existing columns in bridges and buildings has become
an indispensable requirement in recent decades. Application of
fiber-reinforced polymers (FRPs) has been used to strengthen
existing reinforced concrete (RC) columns. This use of FRP has
been shown to increase the strength, stiffness, and ductility of
the strengthened columns. The behavior of FRP-confined concrete
has been previously investigated through both experimental tests
and theoretical methods (Lam and Teng 2003; Hadi 2006a, b;
Hadi 2007a, b; Wu and Zhou 2010; Csuka and Kollár 2012; Hadi
and Widiarsa 2012). These studies simulated stress-strain models
for FRP-confined concrete, particularly circular columns under
concentric load. These theoretical models were found to correlate
well with experimental data. Based on the models and experimental
results, it is evident that the efficacy of FRP confinement of a
circular column is higher than that of a square column. In such
cases, stress concentration at the corners of the square column
and the effective area of the confined section led to a decrease

in FRP efficacy. Therefore, it was found that converting a square
column to a circular one will increase the effectiveness of FRP
confinement.

Most of the existing columns are square or rectangular in cross
sections. However, early research studies indicated that FRP-
confined square or rectangular columns with sharp corners provide
little enhancement in their load-carrying capacity, while confine-
ment effectiveness increases proportionally with an increase in
the corner radius (Wu and Zhou 2010). Meanwhile, curvature of
the corners could cause stress concentration (Al-Salloum 2007).
Therefore, changing a square column to a circular column may
minimize the stress concentration, which was an objective of
this study.

The knowledge of eccentric load effects on FRP-confined con-
crete columns is considerably less than that of concentric load
effects. It is known that an eccentric load causes a pronounceable
varied distribution of the confinement stress (Csuka and Kollár
2012), thus possibly leading to pockets of less confined parts of
the cross section. As a result, the effectiveness of FRP in concentri-
cally loaded columns is much higher than eccentrically loaded
columns (Li and Hadi 2003; Hadi and Li 2004; Hadi 2006a, b; Hadi
2007a, b). To further investigate the effects of FRP confinement,
this study focuses on retrofitting structural members by comparing
three different approaches of strengthening.

Built structures sometimes are required to be retrofitted in cases
involving change of the use of the structures, change of design
codes, or construction errors. As most structures are built using
normal-strength concrete, the experiments of this study emulate
that by utilizing normal-strength concrete. This study investigates
the technique of changing the cross section of a RC column
from a square to a circle and compares the use of two wrapping
materials, namely, carbon-fiber-reinforced polymer (CFRP) and
steel straps.
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Theoretical Consideration

Confinement Model

Triaxial compressive stress provided by confinement delays expan-
sion and damage propagation by restricting crack growth and de-
creasing the dilation ratio of concrete. When the stress in concrete
approaches the uniaxial strength, the volume starts to increase due
to progressive internal fracturing and the concrete bears the trans-
verse reinforcement, at which point the concrete becomes confined
(Kent and Park 1971). This study uses a FRP-confined concrete
model to determine the compressive strength of FRP-confined con-
crete which was proposed by Lam and Teng (2003) as follows:

f 0
cc

f 0
co

¼ 1þ 3.3
fl;a
f 0
co

ð1Þ

where f 0
cc and f 0

co = compressive strength of confined and uncon-
fined concrete, respectively; and fl;a = effective confining pressure,
which can be estimated by the following equation:

fl;a ¼ ke
2ffrpt

d
ð2Þ

where ffrp and t = rupture stress and the thickness of FRP, respec-
tively; d = diameter of a column; and ke = FRP efficiency factor
which was defined by Harries and Carey (2003) and then taken as
0.586 by Lam and Teng (2003). This model was used for calculat-
ing the strength of full-CFRP-wrapped circular columns.

For steel straps–confined columns, the model proposed by
Mander et al. (1988) was used in this study to calculate the confined
strength of the specimens as follows:

f 0
cc ¼ f 0

co

 
−1.254þ 2.254

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 7.94fl;a

f 0
co

s
− 2

fl;a
f 0
co

!
ð3Þ

Similar to the model of FRP-confined columns, the confinement
pressure fl;a can be calculated as follows:

fl;a ¼ ks
2fstt
d

ð4Þ

where fst and t = yield strength and the thickness of steel straps,
respectively; d = diameter of the column; and ks = confinement
efficiency factor for steel straps as shown in Fig. 1. This factor
was modified to suit the case of steel straps confinement in this
study as follows:

ks ¼
Ae

A
¼ ð1 − s

2dÞ2
1 − ρ

ð5Þ

where ρ = ratio of longitudinal reinforcement and s = vertical
spacing between steel straps.

A continuous curve of the stress-strain model proposed by
Popovics (1973) was used to express the compressive stress in
concrete in terms of the strain:

fc ¼
f 0
ccxr

r − 1þ xr
ð6Þ

x ¼ εc
εcc

ð7Þ

r ¼ Ec

Ec − Esec
ð8Þ

Esec ¼
f 0
cc

εcc
ð9Þ

where εc = compressive strain of concrete corresponding to axial
stress fc; εco = strain of unconfined concrete corresponding
to the maximum stress, which can be taken as 0.002; and εcc =
compression strain of confined concrete at the peak stress, which
can be calculated from ACI 440.2R-08 [American Concrete
Institute (ACI) 2008].

The elastic modulus of unconfined concrete, Ec, can be calcu-
lated using the equation given by AS 3600 [Australian Standard
(AS) 2009]

f 0
co ≤ 40 MPa; Ec ¼ ρ1.5

�
0.043

ffiffiffiffiffiffiffi
f 0
co

p �
MPa ð10Þ

f 0
co > 40 MPa; Ec ¼ ρ1.5

�
0.024

ffiffiffiffiffiffiffi
f 0
co

p
þ 0.12

�
MPa ð11Þ

where ρ = density of concrete, which can be taken as 2;400 kg=m3

for normal-weight concrete.

Ductility

Ductility is the ability of a material to deform plastically without
fracturing. In this study, the ductility of concrete columns was
calculated using two methods, which were based on two different
definitions (Hadi 2009). For the first method, the ductility (λ) is
calculated as the ratio of the deflection at the 85% postultimate load
(δu) divided by yield deflection (δy), which can be written as
follows:

λ ¼ δu
δy

ð12Þ

For the second method, the ductility is calculated as the ratio
of A2 divided by A1, which is written as follows:

λ ¼ A2

A1

ð13Þ

where A1 and A2 = area under the axial load-deflection curve up to
the yield load and the 85% postultimate load, respectively. In both
cases, the yield deflection is assumed to be the deflection at the
limit of the elastic behavior, which was based on the definition
by Pessiki and Pieroni (1997).

Interaction Diagram

An axial load-bending moment (P–M) interaction diagram is a
continuous curve used to determine the axial load (P) and bendingFig. 1. Effective core for steel straps–confined columns
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moment (M) of a given RC column cross section. Each point on this
curve includes two components, namely, the value of the axial
loading and the corresponding bending moment. In this study, an
experimental interaction diagram was drawn based on four points:
(1) a pure axial load of the column under a concentric load, (2) two
points of eccentric loads of 15 and 25 mm in which the axial loads
were recorded from the testing machine and the bending moments
were calculated by Eq. (14), and (3) a pure bending moment
observed from the four-point loading test

M ¼ Pmaxðeþ δÞ ð14Þ

where Pmax = ultimate axial load; e = eccentricity of loading; and
δ = lateral deflection at the ultimate load.

In order to draw a theoretical interaction diagram (P–M), the
confined concrete models shown in the preceding sections were
utilized and two methods were derived. The compressive strength
of the confined concrete was estimated by the models as mentioned
in the preceding sections. An equivalent stress block was used to
transfer nonuniform compressive-confined concrete stresses to
rectangular distribution of stresses as recommended by AS 3600
(AS 2009).

For the first method, the centroid of a compressive concrete
region for a circular cross section was calculated by Fig. 2 and
Eqs. (15) (Case 1) and (16) (Case 2). The interaction diagram
was drawn by this methodology as equivalent computation

y ¼ 4Rðsin θÞ3
3ð2θ − sin 2θÞ ð15Þ

y ¼ 2RðsinϕÞ3
3ðπ − ϕþ sinϕ cosϕÞ ð16Þ

where y, R, ϕ, and θ are shown in Fig. 2.
For the second method, interaction diagrams were drawn as

described by Yazici and Hadi (2009). The cross section of the
column is assumed to contain parallel finite strips, which are small
enough to attain accurate precision, yet large enough for easy
calculations. In this paper, the width of strips was taken as
5 mm as shown in Fig. 3, where α = rectangular stress block param-
eter (AS 2009). This parameter is used to change the nonlinear
stress distribution in the compressive concrete to a uniform stress
distribution.

Experimental Program

Design of Experiments

A total of 16 square RC columns, classified into four groups, were
cast and tested at the High Bay Laboratory of the University of
Wollongong. The dimensions of the columns were 150 ×
150 mm2 in cross section and 800 mm in length. The first group
(Group N) was considered as a reference group with no external
confinement or any modification of the section. The second group
(Group RF columns) was cast to have 20-mm round corners
that were horizontally wrapped with three layers of CFRP
(75 mm in width). The third and fourth groups, Groups CF and
CS, were bonded with four segmental circular concrete covers
to modify the shapes of the cross sections from square to circular.
Columns of Group CF were horizontally wrapped with three
layers of CFRP, while columns of Group CS were confined with
steel straps (19.1 mm in width) at 30-mm spacing. From each
group the first column was concentrically loaded, while the second
and the third columns were subjected to eccentric load-
ing at 15 and 25 mm, respectively. The fourth specimen was
tested under four-point loading as a beam to observe the flexural
behavior.

The notation of the specimens consists of two parts: the first part
is N-, RF-, CF-, and CS- that states the name of the group to which
the specimens belong (normal, round corners with FRP, circular
with FRP, and circular with steel straps). The second part indicates
the loading conditions. For instance, 0 means concentric load,
F is flexural loading, 15 and 25 mean loading at 15 and 25 mm
eccentricity, respectively. Table 1 shows the test matrix of the
experiments.

Fig. 2. Centroid of compression zone of the column

Fig. 3. Stress-strain analysis for computing P–M diagram: (a) equivalent method; (b) small strips method
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The nominal compressive strength of concrete used was
32 MPa. The internal reinforcement of each of the specimens con-
sists of 4N12 (12-mm deformed bars with 500-MPa nominal tensile
strength) as longitudinal bars and R6 plain bars (6-mm plain bars
with 250-MPa nominal tensile strength) tied at 120-mm spacing.
Fig. 4 shows the cross sections of the specimens.

Loading System

For testing of specimens, a special loading head system was used to
apply the required eccentric loads as illustrated by Hadi and
Widiarsa (2012). The loading head contained two main parts: a
25-mm thick steel plate [see Fig. 5(a)] sitting on top of the column,
and a circular roller loading [see Fig. 5(b)] welded on another
25-mm thick steel plate with a specific distance which equals to
the eccentricity, offset from the center line of the plate. A pair

of two plates is placed as shown in Fig. 5(c). The details of the
eccentric loading system are depicted in Fig. 5(d), which shows
the configuration of the loading plates.

Specimen Construction

Normal-strength ready-mixed concrete was supplied by a local
supplier. Two formworks made from plywood were used to con-
struct the core specimens and the segmental circular concrete
covers (Fig. 6). For the segmental circles, a box of 34 rectangular
segments having a dimension of 51 × 170 mm2 was built. Next, a
section mold of foam was added to each rectangular segment in
order to create a mold for the concrete cover [Figs. 6 and 7(a)].
Each segmental circular concrete cover had a chord of 150 mm
(equal to the side length of the core column section) and the
height of the segment was 31 mm. After 28 days, any foam pieces
attached to the concrete surface covers were removed and surface
ground to ensure smooth contact when bonding with FRP or
steel straps.

For Groups CF and CS, each specimen was bonded with four
segmental circular concrete covers using microsphere blend, mixed
together with epoxy resin at 2∶1 ratio [Fig. 7(b)]. The epoxy resin
has a tensile strength of 54 MPa, tensile modulus of 2.8 GPa, and
3.4% tensile elongation (WEST SYSTEM n.d. 2012). After that,
Group CF specimens were wrapped with three layers of CFRP
and left to dry for 7 days as specified by the supplier. For the Group
CS specimens, steel straps were installed.

The adhesive used was a mixture of epoxy resin and hardener
at 5∶1 ratio. Before the first layer of CFRP was attached, the ad-
hesive was spread onto the surface of the column and CFRP
was attached onto the surface. After the first ring, the adhesive
was spread onto the surface of the first layer of CFRP and the sec-
ond layer was continuously bonded. The third layer of CFRP
was applied in a similar manner, ensuring that 100-mm overlap
was maintained. The main fiber orientation was perpendicular to
the longitudinal axis of the column. The steel straps were installed
by a bending tool (Product No. C00169), which was supplied by
Blackwoods (2012).

Table 1. Test Matrix

Specimens Modification
Internal

reinforcement
External

reinforcement Eccentricity

N-0 None 4N12 R6@120 None 0
N-15 15
N-25 25
N-F Flexural
RF-0 20-mm round

corners
4N12 R6@120 Three

layers
of CFRP

0
RF-15 15
RF-25 25
RF-F Flexural
CF-0 Concrete

covers
4N12 R6@120 Three

layers
of CFRP

0
CF-15 15
CF-25 25
CF-F Flexural
CS-0 Concrete

covers
4N12 R6@120 Steel

straps
0

CS-15 15
CS-25 25
CS-F Flexural

Fig. 4. Plan view of specimens

Fig. 5. Eccentric loading system: (a) loading head; (b) loading roller;
(c) a pair of loading head; and (d) whole loading system
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Preliminary Tests

Compression tests at 28 days showed that the average compres-
sive strength of the concrete was 27 MPa. To determine the
material properties of CFRP, which was used as the confining
material, the CFRP flat coupon tests were conducted according
to ASTM D7565 (ASTM 2010). The average width of the test
coupons was 28 mm and the average maximum tensile force
per unit width was 1;972 N=mm. The strain at the average
maximum tensile force and the average elastic modulus were
0.024 mm=mm and 82 kN=mm, respectively. Even though the
thickness of CFRP is not generally reported in accordance with
ASTM D7565 (ASTM 2010), the average thickness of three
CFRP layers was measured at 1.2 mm. The tensile strength of
CFRP was 1,461 MPa in accordance with ASTM 3039 (ASTM
2008). Three specimens of N12-deformed bars and R6 plain
bars (length: 250 mm) were prepared and tested in accordance
with AS 1391 (AS 2007). The tests revealed that the average
tensile strength of N12 and R6 is 568 and 478 MPa, respectively.
Three coupons of steel straps, which were used in confining the
columns in Group CS, were prepared and tested according to
ASTM D3953 (ASTM 2007). The tensile strength of the steel
straps was 434 MPa.

Column Tests

The Denison 5,000-kN testing machine was used for testing all the
specimens. The columns were capped with high-strength plaster at
both ends to ensure full contact between the loading heads and the
column. The first loading head was placed on the flat steel plate and
the column was then seated vertically upon it. Calibration was then
performed to ensure that the columns were placed at the center of
the testing machine. For the flexural tests, two four-point loading
systems were used. The square four-point loading frame by Hadi
and Widiarsa (2012) was used for Specimens N-F and RF-F, while
the circular four-point loading frame by Yazici and Hadi (2009)
was used for Specimens CF-F and CS-F.

Strain gauges, which were placed at midheight of the specimens
to investigate the actual strain of FRP, were connected to a data
logger to record the data every 2 s. In order to measure the lateral
deflection for the eccentrically loaded columns and the deflection
for the flexural tests, a laser triangulation was used and connected
to the data logger as well. For the column tests, the laser triangu-
lation was set up at midheight of the column, and for the beam tests,
the laser triangulation was placed on a hole, which is located at
midspan of the bottom loading plate. The tests were conducted
as deflection controlled with a rate of 0.3–0.5 mm=min.

Fig. 6. Formworks: (a) core columns and (b) concrete covers

Fig. 7. Segmental circular concrete covers and modified section columns: (a) concrete covers and (b) bonded specimens
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Experimental Results

Behavior of Specimens under Concentric Load

The first specimen in each group was tested under concentric load-
ing. Results are given in Table 2 with the axial load-deflection
diagrams shown in Fig. 8. Specimen N-0 failed by concrete spalling
on the surface and buckling of the longitudinal reinforcement.
Specimens RF-0 and CF-0 failed by rupture of CFRP at midheight
of the specimen, as shown in Fig. 9(a). The concrete of the whole
section at midheight was completely crushed but was restrained by
CFRP. As a consequence, aggregates of Specimens RF-0 and CF-0
were completely separated from each other, which were different
from the concrete of Specimens N-0 and CS-0. For Specimen RF-0,
the applied load was gradually increased to 1,542 kN, after which a
loud cracking sound could be heard when one ring of CFRP
ruptured, and the load immediately dropped to 1,194 kN.
Subsequently, a small part of a CFRP ring ruptured, which led
to a slow decrease of the compressive load. Moreover, the load
of Specimen CF-0 dropped faster than that of Specimen RF-0. That
load was witnessed by a sudden drop from 2,924 to 928 kN (68%).
At that time, a very loud sound was heard from two rings of CFRP
rupturing simultaneously. Specimen CS-0 failed by ruptures of
straps and crushing of the concrete at the upper height.

In Fig. 6, Specimens N-0 and RF-0 demonstrated identical
behavior during the first stage of the diagram, that is, the concrete
was not crushed. The same response was recorded from Specimens
CF-0 and CS-0. However, the slopes of the load-deflection dia-
grams of Specimens CF-0 and CS-0 were higher than that of
Specimens N-0 and RF-0 because the area of the cross sections
of the former was bigger than the latter. After reaching the yield
load, the loads of Specimens CF-0 and RF-0 were gradually in-
creased to the postultimate load, which was higher than the yield
load, at which point it was considered that the specimens were
effectively confined. In other words, the loads of Specimens
N-0 and CS-0 decreased after the yield load.

Behavior of Specimens under Eccentric Load

The second and third specimens in each group were subjected to 15
and 25 mm of eccentric loading, respectively. Tables 3 and 4 depict
the results of eccentric loading tests, while Figs. 10 and 11 dem-
onstrate the axial load-deflection graphs of the eccentrically loaded
specimens. During loading, Specimens N-15 and N-25 had their
covers spalled off and the concrete crushed in the compression
region. The longitudinal steels buckled in the compression region
of Specimen N-15. Specimen RF-15 failed by the concrete crushing
in the compression region while cracking of the specimen in the
tension region was observed between two rings of CFRP at mid-
height. Specimen RF-25 failed by the same means as Specimen
RF-15 except the rupture of the longitudinal steels in the tension
region led to a complete collapse of the specimen. Interestingly, no
CFRP rupture was observed in either of these cases.

For Groups CF and CS, the specimens failed by rupture of the
confinement materials at midheight and crushing concrete in the
compression region [Fig. 9(b)]. Cracks were observed in the ten-
sion region at the early stage. All specimens reached the ultimate
load and then decreased considerably due to ruptures of CFRP
rings or steel straps, which created a loud sound. Take Specimen

Table 2. Results of Specimens Tested under Concentric Loading

Specimens N-0 RF-0 CF-0 CS-0

Yield load (kN) 707 796 1,478 1,060
Corresponding axial deflection (mm) 1.31 1.85 2.01 1.85
Ultimate load (kN) 717 1,564 2,907 1,116
Corresponding axial deflection (mm) 1.46 22.76 13.35 2.68
Ductility (Method 1)a 1.41 13.42 6.98 1.88
Ductility (Method 2)a 1.71 32.41 16.94 2.77
aSee the “Ductility” section for the definition of the methods.
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Fig. 8. Axial load-deflection diagram for concentric loading tests

Fig. 9. Failure modes: (a) Specimen CF-0 and (b) Specimen CS-15

Table 3. Results of Specimens Tested under Eccentric Loading

Specimens N-15 RF-15 CF-15 CS-15

Yield load (kN) 563 635 1,202 905
Corresponding axial deflection (mm) 1.24 1.58 2.02 1.55
Ultimate load (kN) 579 686 1,489 917
Corresponding axial deflection (mm) 1.36 2.31 6.50 1.97
Corresponding lateral deflection (mm) 2.34 5.42 19.50 3.19
Ductility (Method 1)a 1.63 5.22 4.82 3.23
Ductility (Method 2)a 1.53 7.89 8.62 1.96

Note: e ¼ 15 mm.
aSee the “Ductility” section for the definition of the methods.
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CF-25 as a typical example: the specimen reached the ultimate
load of 1,170 kN, then a small cracking sound was heard and the
applied load dropped to 1,082 kN. Consequently, some continu-
ously small cracking sounds and a loud sound were heard during
which the applied load of the specimen dropped to 386 kN (67%).
Moreover, the specimens confined with steel straps showed a
strange response at the ultimate load. For example, Specimen
RF-25 reached the ultimate load then a small sound was heard.
Immediately, the applied load dropped from 763 to 723 kN and
increased again with the same slope of load-axial deflection curve
as the first stage to the ultimate load at 766 kN. This response can
be explained as the specimen rearranged the structure of the core,
concrete covers, and steel straps to work together during the
next stage.

As can be seen in Figs. 10 and 11, the specimens with the same
section behaved in a similar manner during the first stage of the
diagram when concrete was not crushed. As a result, specimens
in Groups CF and CS showed the same slope of curve in the
load-axial deflection diagram while the applied load of the speci-
mens in Groups N and RF increased at the same rate. Furthermore,
the behavior of the specimens under eccentric load was different
from that under concentric load after the yield loads. After reaching
the yield loads, the confined specimens under concentric load kept
raising toward the ultimate loads with other slopes of the load-axial
deflection diagrams, which belonged to the ascending branch. In
other words, the confined specimens of Groups CF and CS under
eccentric load soared directly to the ultimate loads from the value of
zero and then failed shortly by rupture of the confinement materi-
als. It can be clearly seen that the confined specimens showed the
ascending branch under concentric load but the descending branch
under eccentric load. A summary of the confinement efficacy can
be seen in Tables 3 and 4.

Flexural Behavior

The last specimen in each group was tested under four-point
loading as a beam. Table 5 summarizes the test results and Fig. 12
demonstrates the load-midspan deflection graphs.

Specimen N-F failed by debonding of concrete and longitudinal
steels at the ends. Specimens RF-F and CF-F failed by huge de-
flections, which resulted from a very big crack width and long
cracks in the tension region between CFRP rings at the midspan
and at the ends of the beams, respectively. The load-midspan
deflection diagrams of Specimens RF-F and CF-F are divided into
two stages with two different slopes of the diagram as mentioned in
the concentric behavior. The same behavior of Specimen CS-F was
observed when it failed, but one steel strap ruptured at the biggest
crack near the ends. All confinement specimens took a long way to
reach the ultimate load, which denotes that their ductility was
very high.

Table 4. Results of Specimens Tested under Eccentric Loading

Specimens N-25 RF-25 CF-25 CS-25

Yield load (kN) 414 515 1,011 766
Corresponding axial deflection (mm) 0.96 1.68 1.69 1.40
Ultimate load (kN) 427 562 1,170 766
Corresponding axial deflection (mm) 1.08 2.91 6.12 1.40
Corresponding lateral deflection (mm) 2.33 8.10 21.75 1.69
Ductility (Method 1)a 1.33 4.73 5.11 2.03
Ductility (Method 2)a 1.78 7.32 9.25 2.48

Note: e ¼ 25 mm.
aSee the “Ductility” section for the definition of the methods.

Fig. 10. Axial load-deflection diagram for eccentric loading tests
(e ¼ 15 mm)
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Fig. 11. Axial load-deflection diagram for eccentric loading tests
(e ¼ 25 mm)

Table 5. Results of Specimens in Flexural Tests

Specimens N-F RF-F CF-F CS-F

Yield load (kN) 74 108 149 160
Corresponding midspan deflection (mm) 2.34 4.82 4.78 5.94
Ultimate load (kN) 81 158 254 160
Corresponding midspan deflection (mm) 3.48 35.75 30.4 5.94
Ductility (Method 1)a 2.34 8.41 9.54 3.57
aSee the “Ductility” section for the definition of the methods.
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Fig. 12. Load-midspan deflection diagram for specimens under
flexural tests
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Analysis and Discussion

The nominal average axial stress of the specimens under concentric
load was calculated by dividing the axial load by the cross-sectional
area of the specimens. The axial stress-strain curves are presented
in Fig. 13. The slope of the postpeak curve of Specimen CF-0 is
higher than that of Specimen RF-0. Thus, it can be seen that the
most effective confinement occurred in Specimen CF-0, followed
by Specimen RF-0. No confinement effect could be found in Speci-
men CS-0. All the results of this study were plotted in the same
axial load-bending moment diagrams to clarify the effective con-
finement of these methods as shown in Fig. 12. The confinement
efficiency was compared with the corresponding value of Group N.
In case of Groups CF and CS, the concrete of covers and core
columns worked together until failure. No debonding between core
square columns and segmental circular concrete covers was found.

To evaluate the efficiency of these methods, Table 6 and Fig. 14
reveal that Groups RF and CF show the same trend, for which the
increment of the columns’ capacity under concentric load is 63%
higher than that of both eccentric load and flexural behavior. It can
be concluded that CFRP confinement is beneficial for concentri-
cally loaded specimens. For instance, the highest increase of ulti-
mate load is 402% for Specimen CF-0. Table 6 also shows that the
efficacy of Group CF is two times higher than Group RF. Com-
pared with the corresponding columns of Group N, furthermore,
the columns of Group CS depict the same efficiency for concentric,
eccentric load, and flexural behavior, which is approximately 70%
of the capacity increases. In other words, the relative ineffective
confinement of Group CS may have been caused by the confine-
ment ratio (fl=f 0

co), which was approximately 0.05 < 0.08 accord-
ing to ACI 440.2R-08 (ACI 2008).

Theoretical Verification

The aforementioned confinement models were adopted to carry
out the interaction diagrams, which were used to verify the

experimental results. The P–M diagram of circular-section speci-
men is calculated by two methods, which are the equivalent method
and the small strips method. For the equivalent method, the com-
pressive force in the compression zone of concrete can be repre-
sented by a force placed at the centroid, which is calculated using
Eqs. (15) and (16). In addition, the small strips method divides
the section into many small strips and the compressive stress of
concrete is calculated using Eq. (6).

The effect of the eccentricity on the axial load of Group CF is
much more sensitive than Group CS. When the applied load
changes from a concentric load to an eccentric one of 15 mm,
the decrease of the axial load of Group CF is 48% (from 2,907
to 1,490 kN) compared with 19% (from 1,160 to 945 kN) of Group
CS (see Fig. 15). Besides, this strengthening method is very effec-
tive for Group RF under concentric load (see Fig. 16).

In order to calculate the P–M diagram of Group RF, the actual
strain of CFRP that was obtained from the strain gauges attached on
the surface of CFRP was used. In such a case, the coefficient ke in
Eq. (2) was set to 1. For concentric loading, Specimen RF-0 was
damaged by rupture of CFRP, while Specimens RF-15 and RF-25
failed by crushing of concrete. Therefore, the strain of CFRP of
these specimens obtained (0.0071 and 0.0053 for Specimens
RF-15 and RF-25, respectively) from the actual reading of strain
gauges is used to estimate the actual strength of CFRP. Fig. 16 com-
pares the experimental and analytical values of Groups N and RF,
which have the similar cross-sectional areas. In Fig. 16, there is a
considerable gap (29.4%) between the theoretical analysis and the
experimental values for Group RF.

During the test period, standard 100-mm cylinders were tested
to check the actual compressive strength of concrete. The average
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Fig. 13. Axial stress-strain diagrams for concentric loading tests

Table 6. Summary of Confinement Efficiency

Group Load/increment e ¼ 0 e ¼ 15 e ¼ 25 Flexural

N Applied load (kN) 724 579 427 89
RF Applied load (kN) 1,562 686 562 131

Increment (%) 216 118 132 147
CF Applied load (kN) 2,907 1,490 1,171 254

Increment (%) 402 257 274 285
CS Applied load (kN) 1,116 917 766 163

Increment (%) 154 158 179 183
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Fig. 14. Experimental P–M diagrams
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Fig. 15. Comparison of theoretical and experimental P–M diagrams
(Groups CF and CS)
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compressive strength of cylinders was 43 MPa, which can be veri-
fied by tracing it to the actual axial load of Specimen CF-0.
A review of the P–M diagrams of Groups CF and CS reveals
comparable experimental and analytical results with only a 10%
difference. Two different methods were employed to draw
P–M diagrams for the circular specimens in this paper. Fig. 15
indicates that the second analytical method emulates the experi-
mental results closer than the first analytical method. However,
the first analytical method results in a graph, which is similar to
that of the experimental results.

Conclusions

From the experimental results and the theoretical analyses, the
following conclusions can be drawn:
1. Strengthening a column with segmental circular concrete cov-

ers and wrapping with CFRP as in Group CF is successful. The
experiments indicate that the whole section of the specimen
acts as a whole until failure (no debonding). The whole mod-
ified section was strengthened by the confinement materials.

2. All confined specimens showed higher load-carrying capacity
compared with the unconfined specimens. Among the three
groups that were externally confined, Group CF achieved
the highest load-carrying capacity followed by Group CS.
This enhancement is mainly because the segmental circular
concrete covers considerably increase the cross-sectional area
of the specimens.

3. Group CF significantly outperformed Groups CS and RF. The
main reason for the outstanding performance is largely due to
the reduction of stress concentration in the corners of square
specimens by bonding segmental circular concrete covers. The
bonding of segmental circular concrete covers significantly
increases the confinement efficacy and thus the load-carrying
capacity.

4. For CFRP-confined specimens in Groups RF and CF, the
descending branch of the load-deflection diagrams after
ultimate load can be witnessed for eccentric loading tests,
while the ascending branch was achieved from concentrically
loaded specimens. This phenomenon indicates that eccentri-
city decreases the confinement efficiency of CFRP.

5. The procedure used to calculate the interaction diagram
provides satisfactory estimates of the ultimate load and of the
bending moment of reinforced circular concrete specimens
confined with CFRP and steel straps.

Finally, the idea of modifying the cross-sectional area from
a square to a circle by the circularization process proved to be
effective in maximizing the load-carrying capacity of the

CFRP-confined concrete columns. It is evident that the efficiency
of the CFRP confinement of the circularized columns was higher
than that of the columns with round corners. This method can be
considered as an effective and efficient method in strengthening
columns in existing buildings and bridges.
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6.2 Circularizing by High Strength Concrete 

Summary 

A technique called circularization where segmental circular concrete covers made of 

different concrete strengths (40 MPa, 80 MPa and 100 MPa) was used to change a 

square column to a circular column. The applicability of the circularization method 

was experimentally studied for a wide range of concrete strengths (from 40 MPa to 

100 MPa). The behaviour of the strengthened specimens under different loading 

conditions including concentric loading, eccentric loading (25 mm and 50 mm) and 

flexural bending was investigated. The experimental results demonstrate that using 

high strength concrete (HSC) for the additional covers to strengthen existing square 

reinforced concrete (RC) columns provides higher load-carrying capacity than covers 

made of normal strength concrete. The HSC covers and the concrete cores worked as 

a composite material to failure. The FRP strain at peak load was observed for the 

purpose of estimating the specimens’ capacity. The distribution of FRP strain around 

the circumference of the column section was also reported. 
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7 CONCLUSIONS 

7.1 Introduction 

The confinement mechanism of FRP-confined concrete columns has been 

investigated in this study. A few models were proposed to predict the compressive 

strength and strain of confined concrete. These models were made to provide a better 

understanding of the confinement mechanism and more accurate predictions than 

existing models. Additionally, a new practical method was introduced to strengthen 

existing square reinforced concrete columns by circularisation and FRP confinement. 

From the results of the theoretical and experimental studies, some conclusions are 

drawn in the sections below. 

7.2 FRP-confined Circular Columns 

The confinement mechanism of FRP-confined circular concrete columns has been 

investigated in this study. Based on the experimental results in the literature, the 

effect of the jacket stiffness has been demonstrated and confirmed. The proposed 

model for FRP-confined circular normal- and high-strength concrete shows good 

performance. From the results of this study, some concluding remarks can be made 

as follows: 

a. In order to calculate the compressive strength of FRP-confined circular 

columns, the ratio between the FRP thickness and the column diameter 

should be taken into account. When this parameter is considered, only a 

unified equation is used to calculate the compressive strength of confined 

concrete with varied FRP types, which have significant difference in the 

jacket stiffness. 

b. The proposed strength model could estimate the compressive strength of 

confined concrete with unconfined concrete strength ranging between 15 

MPa and 170 MPa. 

c. The relationship between the energy absorption of the column and the energy 

absorbed by the jacket is developed. This relationship showed that only a 

portion of the energy absorbed by the column is transferred to rupture the 

FRP jacket. 
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d. This study confirms that using energy method could estimate well the 

compressive strain of FRP-confined concrete as compared to experimental 

results. The applicability of the energy-based strain model covers seven types 

of FRP. 

7.3 FRP-confined Rectangular/Square Columns 

The stress concentration at the four corners of the columns’ section has been 

analysed and discussed. This study assumed that the confining stress is transmitted to 

the concrete at the four corners of the section. The proposed models to calculate the 

compressive strength and strain of FRP-confined rectangular or square concrete 

columns show good correlation with the experimental results. Based on the proposed 

models and discussions, the following conclusions are drawn: 

a. The “membrane hypothesis” was utilized to analyse the behaviour of FRP-

confined rectangular columns. The confining pressure of confined columns is 

concentrated at the corners of the section. In order to comply with the 

“membrane hypothesis”, the corners of the sections should be rounded to 

have a radius being at least twenty times greater than the nominal FRP 

thickness. 

b. A new ratio reflecting the non-uniform confining pressure was proposed, 

which is the ratio of the corners and the perimeter of the whole section. This 

ratio is different from the common shape factor that simulates a similar sense. 

c. The corner effect ratio (kc) accounts for the effects of the non-uniform 

confining pressure around rectangular sections. It was used to distribute 

equally the confining pressure at corners of rectangular sections to the whole 

circumference of the sections. 

d. The actual rupture strain of FRP at corners of the sections depends on the 

ratio of the corner radius and the length of the shorter side in addition to the 

confinement stiffness ratio. An equation was proposed to calculate the actual 

rupture strain of FRP. 

e. A greater corner radius of a rectangular or square section provides double 

benefits. This greater corner radius firstly increases the corner effect ratio, 
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which means that the confinement effect is improved. Secondly, the greater 

corner radius results in higher rupture strain of the FRP jacket. 

f. The limit of FRP amount to obtain sufficient confinement was proposed. This 

limit is based not only on the ratio of the corner radius and the length of the 

shorter side but also the confinement stiffness ratio. 

7.4 Application of ANN 

ANN has been used to predict the compressive strength and strain of FRP-confined 

rectangular or square columns. The performance of the proposed ANN-based models 

is excellent as compared to other existing models. In addition, this study uses ANN 

not only to calculate the compressive strength and strain but also to generate simple-

form equations from a trained ANN. The subsequent conclusions were drawn based 

on the proposed models and discussions: 

a. The accuracy of the proposed ANN-based models significantly increases as 

compared to other existing models. The average absolute error (AAE) of the 

proposed ANN-based models is approximately 5% while the AAE of other 

existing models is around 10% and 30% for strength models and strain 

models, respectively. 

b. A new method was proposed to generate predictive simple-form equations 

from trained ANN-based models. The proposed simple equations predict the 

compressive strength and strain with small errors as compared to other 

models. 

c. From the results of ANN-based models, the corner radius of the section 

significantly affects the compressive strength but marginally affects the 

compressive strain of FRP-confined rectangular or square concrete columns. 

7.5 Maximum Usable Strain of FRP-Confined Concrete 

The progressive failure of FRP-confined concrete was investigated based on the 

failure of the concrete cores. The residual strengths of the concrete cores were 

determined experimentally and theoretically at many axial strain levels. The findings 

are summarized as follows: 
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a. The residual strengths of the concrete cores were reduced more than 56% at 

the axial strain 1% of FRP-confined concrete. 

b. A model was proposed to estimate the residual strength of the concrete cores 

of a FRP-confined concrete column at a certain axial strain. 

c. The maximum usable strain of FRP-confined concrete is much smaller than 

the value of 1% proposed by ACI 440-2R (2008). 

7.6 Circularization Technique 

A practical technique, namely circularization technique, was introduced to strengthen 

existing square reinforced concrete columns. The square columns were circularised 

and then wrapped with a number of FRP layers to improve its axial capacity. The 

applicability of the proposed technique was verified with two types of confinement 

materials including FRP jacket and steel straps. The use of normal strength concrete 

and high strength concrete is also verified. From the experimental results and 

discussions, the following concluding remarks are drawn: 

a. Strengthening a column with segmental circular concrete covers and 

wrapping with CFRP is successful. The experiments indicate that the whole 

section of the specimen acts as a whole until failure (no debonding). The 

whole modified section was strengthened by the confinement materials. 

b. The columns circularised and wrapped with FRP significantly outperformed 

the square columns wrapped with FRP. The main reason for the outstanding 

performance is largely due to the reduction of stress concentration at the 

corners of square specimens by bonding segmental circular concrete covers. 

The bonding of segmental circular concrete covers significantly increases the 

confinement efficacy and thus the load carrying capacity. 

c. For CFRP-confined specimens, the descending branch of the load – axial 

deflection diagrams after ultimate load can be witnessed for eccentric loading 

tests while the ascending branch was achieved from concentrically loaded 

specimens. This phenomenon indicates that eccentricity decreases the 

confinement efficiency of CFRP. 
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d. The procedure used to calculate the interaction diagram provides satisfactory 

estimates of the ultimate load and of the bending moment of reinforced 

circular concrete specimens confined with CFRP and steel straps. 

e. Two concrete components including the original concrete core and the 

additional concrete covers worked as a composite material to failure under 

pure axial load, flexure, and eccentric loads. The bonding of two components 

observed after testing was perfect bond. Thus, it is concluded that the 

proposed technique is able to improve the capacity of a noncircular column. 

f. The ductility of the strengthened columns significantly increased compared to 

the reference columns since FRP has the same full confinement effect on the 

tested columns as on a conventional original circular column. 

g. The applicability of the proposed technique was verified by a variety of 

concrete strength up to 100 MPa. The experiments demonstrated that this 

technique could be used for not only normal strength concrete but also high 

strength concrete. Bonding high strength concrete covers to the column core 

with low concrete strength was successfully confirmed. 

h. The FRP strain was recorded during the loading process. The rupture strain of 

FRP on the concentrically loaded columns was around 0.7 of the ultimate 

strain from flat coupon tests. The FRP strain at the peak load of the 

eccentrically loaded columns was much smaller than the rupture strain at the 

ultimate load. The measured FRP strain at the peak load was approximately 

0.34 of the ultimate strain from flat coupon tests. This value should be used to 

estimate the capacity of a FRP-confined concrete column under eccentric 

loads. 

7.7 Further Research 

Based on the conclusions of this study, the following future research areas are 

recommended: 

a. For FRP-confined circular columns, the behaviour of specimens under 

concentric loads has been extensively examined but not that under eccentric 

loads. Thus the behaviour of specimens under eccentric loads needs to be 
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investigated, specially, the distribution of the FRP jacket around the 

perimeter of the section. 

b. For FRP-confined rectangular or square columns, the actual rupture strain of 

the FRP jacket that depends on the jacket thickness, the corner radius, and the 

unconfined concrete strength need to be examined. 

c. For FRP-confined concrete, more studies should focus on predicting the axial 

strain of the confined concrete in order to improve the accuracy of existing 

strain models. 
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