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ABSTRACT 

This study contains laboratory, field and numerical methodology to determine the 

feasibility and performance of a permeable reactive barrier (PRB) utilising low cost 

recycled concrete aggregates for the remediation of acidic groundwater in acid sulfate 

soil (ASS) terrain. The PRB was installed in the Shoalhaven Floodplain about 100 km 

South of Sydney (Australia), in an area where acidic groundwater generation from 

pyritic soil poses a severe environmental and socio-economic problem. High 

concentrations of dissolved aluminium (Al3+) and total iron (Fe2+ and Fe3+) in the 

groundwater along with low pH reflected the acidic conditions caused by pyrite 

oxidation at the study site. Past remediation strategies through groundwater 

manipulation using engineering solutions such as weirs and modified floodgates were 

not effective in low-lying ASS terrain, as they increased the risk of flooding. 

 

Long-term laboratory column experiments were carried out using synthetic 

groundwater. The column experiments investigated the acid neutralisation behaviour 

occurring within the PRB and the precipitation of Al and Fe from the acidic 

groundwater. In addition, column experiments revealed the potential of recycled 

concrete to remediate acidic groundwater from ASS by maintaining a near neutral pH 

and complete removal of Al3+ and total Fe from the influent for a considerable period 

of time. Chemical armouring and clogging, caused as a result of secondary mineral 

precipitation, was also studied which reduced the efficiency of the reactive material. 

Moreover, chemical clogging reduces the porosity and hydraulic conductivity of the 

reactive medium. It was found that chemical armouring/clogging by secondary Al- 

and Fe- precipitates decreased the acid neutralisation capacity (ANC) of the recycled 

concrete by ~50% as compared to its theoretical ANC. 



 

v 

For the first time in Australia, this study mainly focuses on coupling geochemistry 

with geo-hydraulics to allow time-dependant modelling and performance verification 

with respect to the remediation of acidic groundwater. Chemical clogging of PRB due 

to mineral precipitates has rarely been quantified and this thesis presents an original 

modelling and experimental verification of the clogging model for PRBs in an ASS 

terrain. This study developed an innovative model, capturing the geochemical reaction 

kinetics coupled with transient groundwater flows. The modelling was incorporated 

into commercial numerical codes, MODFLOW and RT3D. An algorithm was 

developed for RT3D to simulate geochemical reactions occurring in the PRB. The 

experimental and field observed results were in good agreement with the model 

predictions, confirming that the porosity and hydraulic conductivity reduction due to 

mineral precipitation occurred at the start of permeation and continued until halfway 

through the testing phase. 

 

Overall, this study provides a better understanding of the acid neutralisation process 

occurring inside the PRB for the remediation of contaminated groundwater from ASS 

terrain using recycled concrete aggregates as the reactive media. This first pilot-scale 

PRB confirms that it is a suitable environmentally friendly and cost-effective 

alternative compared to other conventionally utilised techniques for the in-situ 

treatment of acidic groundwater. Most importantly, the developed numerical model is 

beneficial for practising engineers and scientists who have to deal with ASS 

especially in the coastal low-lying areas of Australia. 
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Chapter 1 Introduction 

1.1 Background of the study 

Acidic groundwater generated from acid sulfate soil, which occupies over 200,000 

km2 of Australian land, is a major environmental and socio-economic problem. 

Changes in land use pattern (e.g. construction of deep flood mitigation drains) and 

hydrological systems (e.g. rainy and drought seasons) can promote the oxidation of 

ASS (pyrite) in shallow zones, with the associated generation of sulfuric acid in the 

soil, which results in mobilising toxic metals (aluminium (Al) and iron (Fe)) from the 

soil (Dent, 1992, Indraratna et al., 1995a, Regmi et al., 2009b). Therefore, the 

transportation of acidic water along with high concentrations of dissolved Al and Fe 

towards water bodies has significantly degraded the coastal environment of 

Australia.  

 

A permeable reactive barrier (PRB) offers an in-situ technology for passive treatment 

of contaminated groundwater (Blowes et al., 2000, Li et al., 2006, Kalinovich et al., 

2012, Kalinovich et al., 2008). It is a passive treatment method because groundwater 

flows through natural gradient and no pump and treat method involved. Recycled 

concrete has been recommended as a suitable reactive media for the PRB based on 

batch test analysis among 24 different types of alkaline materials (Golab et al., 2006) 

for its ability to remove Al and Fe effectively out of solution, and most importantly 

to maintain near neutral pH for a considerable time. A pilot-scale PRB (17.7 m × 1.2 

m × 3.0 m) was installed in ASS terrain located in the Lower Shoalhaven Floodplain 

near the town of Bomaderry (about 100 km south of Sydney) in October 2006. The 
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PRB was filled with crushed recycled concrete (d50 = 40 mm) and the trench was 

lined with geotextile fabric to protect the reactive media (media that the 

contaminants react with and get treated) from physical clogging by soil and other 

fine particles entering the barrier. A total of 36 observation wells and 15 piezometers 

were installed inside, up-gradient and down-gradient of the PRB to monitor phreatic 

surface variations, hydraulic gradients, permeability and groundwater chemistry. 

Groundwater elevation and water quality parameters such as pH, oxidation reduction 

potential (ORP) and temperature were directly measured in the field every month 

from October 2006 using water level meter and multi-parameter field electrode 

probes. In addition, pH, DO (dissolved oxygen), water pressure, and temperature 

were measured hourly by two multi-parameter automated data loggers installed 

within the barrier. Groundwater samples were collected frequently for analysis of Fe, 

Al, major cations and anions. To the knowledge of the authors, this is only the 

second pilot-scale PRB under reducing conditions that has been installed for treating 

acidic water from ASS after a natural limestone PRB reported by Waite et al. (2002). 

 

Generally the performance of PRBs has been satisfactory worldwide for numerous 

geo-environmental applications (Blowes et al., 2000, McMahon et al., 1999, Puls et 

al., 1999a, Vidic, 2001, Naftz et al., 2002, Wilkin et al., 2003). On the other hand, 

questions remain about the long-term efficiency of PRBs that are expected to 

function for decades or longer (Li et al., 2006, Sarr, 2001, Indraratna et al., 2010). 

The performance of PRBs has been hindered by mineral fouling wherein the pore 

space is reduced by mineral precipitation in the reactive media. Fouling of the pore 

spaces reduces the porosity and hydraulic conductivity of the reactive medium 

(Indraratna et al., 2010, Regmi et al., 2009a, Mackenzie et al., 1999, Rowe et al., 
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2000, Jeen et al., 2012), which then directly affects the reorientation of flow paths 

and changes reactive times. 

1.2 Scope of this study 

Although the proposed PRB approach to negate the groundwater acidity is a 

promising solution for specific sites, clogging and armouring (strong adhesion and 

complete pacification of the reactive surface by encrustation) of the barrier is a major 

hindrance that requires detailed study. Once the mechanisms of chemical clogging 

and armouring are understood, the design of PRBs and the selection of materials can 

be carried out to optimise long-term performance.  

 

The intent of this study was to develop a model to understand mineral fouling (both 

clogging and armouring) in PRBs in ASS terrain, incorporating a calibrated flow and 

a reactive transport model to simulate mineral deposition and its effects on hydraulic 

parameters. To achieve this, a comprehensive geochemical algorithm describing the 

most dominant reactions was developed and coupled with a transient groundwater 

flow model. This model will be beneficial for practising engineers and scientists who 

have to deal with ASS especially in coastal areas of Australia. Clearly, the use of 

PRBs before the acidic leachate reaches nearby waterways and strategic 

infrastructure will benefit all downstream users of coastal waterways. 

1.3 Research Aims and Outcomes 

The ultimate goal of this project is not only to model the effectiveness of the PRB, 

but also to monitor and quantify its performance with respect to time-dependent 

chemical clogging and armouring with the help of analytical models and numerical 

software.  
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The specific aims of this doctoral thesis are to: 

1. Establish a rational approach for quantifying chemical clogging/armouring of 

alkaline PRBs treating acid sulfate landscapes through geo-hydrological and 

geochemical modelling; 

2. Develop a time-dependent porous medium flow model combining particle 

retention with chemical precipitation to determine the corresponding reduction 

in void space and effectiveness of the PRB, thereby analysing the inter-related 

effects of acidic flow induced clogging and PRB effectiveness, i.e. the longevity 

of such PRBs; and 

 
3. Evaluate and quantify the in-situ effectiveness of the PRB through real-time 

monitoring of groundwater chemistry up-gradient and down-gradient of the 

barrier, and to examine the nature of precipitation causing clogging through 

chemical analysis of barrier specimens.  

 

The following outcomes are expected to significantly contribute to advancing the 

current state-of-the-art in PRB technology, with particular reference to coastal acid 

sulfate landscapes:  

 A novel approach for evaluating the performance and longevity of alkaline 

PRBs in the localised treatment of acidic groundwater by evaluating the 

chemical processes that cause clogging;  

 A comprehensive numerical model incorporating chemical clogging/armouring 

that can be universally applied in the design and performance verification of 

PRBs in ASS landscapes. 



5 

 

1.4 Structure of the Thesis 

This dissertation is divided into seven chapters. This first chapter introduces the 

background and aims of the thesis. It also outlines the structure and organisation of 

this thesis. 

 

Chapter 2 of this thesis presents a relevant literature review. It provides a general 

background on ASS, their distribution and the processes involved in pyrite 

formation. The pyrite oxidation process and, the impacts of ASS on the surrounding 

landscape with particular reference to environmental, social and economic aspects 

are briefly outlined. The performance of different types of reactive material used for 

remediating contaminated groundwater is described, along with the risk of armouring 

and clogging on the performance of reactive materials. The performance of PRBs 

and the numerical approaches used to clarify their long-term performance is critically 

analysed in this chapter. 

 

Chapter 3 examines the potential of recycled concrete aggregates to remediate acidic 

groundwater through detailed laboratory column experiments. The observed stepwise 

acid neutralisation behaviour is discussed in depth with special reference to chemical 

armouring and clogging due to secondary mineral precipitation and accumulation on 

void spaces. 

 

Chapter 4 outlines the study site information of the pilot-scale PRB installed in the 

Shoalhaven Floodplain in Nowra, Australia. The monitoring network used to analyse 

performance of the PRB is detailed. A brief outlook for the chemical attributes of the 

soil and groundwater parameters at the field site are given. Finally, this chapter 
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examines the performance of the PRB by comparing water quality data up-gradient, 

inside and down-gradient of the PRB over a 6.5 year monitoring period. 

 

Chapter 5 describes the development of the geochemical algorithm. This is the first 

step involved in modelling the groundwater flow and contaminant transport through 

PRB in ASS terrain. This chapter will focus on the chemical reactions involved in the 

acid neutralisation and metal removal, and most importantly how they are captured in 

the geochemical model. 

 

Chapter 6 elaborates the multi-component reactive transport model developed for 

acidic groundwater remediation with the use of recycled concrete. This chapter  

shows how the geochemical algorithm developed (in Chapter 5) for the reactions 

taking place between recycled concrete and acidic groundwater can be used to model 

the fate and transport of contaminants. Moreover, the model application to laboratory 

column experiments and field PRB is illustrated in this chapter. 

 

Chapter 7 concludes the major contributions of this research concerning the 

effectiveness of a PRB in remediating contaminated groundwater in ASS terrain and 

offers some recommendations for future work. 
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Chapter 2 Literature Review 

2.1 Introduction 

Presence of ASS around coastal Australia has evoked many environmental and 

socio-economic problems. This chapter presents a general background on ASS, their 

spreading and gives a synopsis of the pyrite formation process. The impacts of ASS 

on the surrounding landscape with special reference to environmental, social and 

economic aspects are briefly outlined. A concise assessment of the currently 

practised geo-environmental techniques for active management of ASS is presented 

including the ASS preventative and active remediation techniques currently practiced 

within Australia along with their limitations. 

 

The next part of the literature review provides a critical overview of the application 

of PRB technology in contaminated groundwater remediation. The results and 

outcomes of different types of reactive material used for remediating contaminated 

groundwater are presented. Moreover, the laboratory and field monitoring data is 

briefly illustrated, to show how the performance of PRBs is hindered by the risk of 

armouring and clogging on the reactive materials. The performance of PRBs and the 

numerical approaches used to clarify their long-term performance is critically 

analysed. 

 

2.2 Acid Sulfate Soils 

ASS contain iron sulfides (inorganic sulfur compounds) either in an oxidisable or 

partially oxidised state (Dent, 1986, Sammut et al., 1996a, White et al., 1997). They 
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are naturally generating soils and sediments, which can be the worst soils in the 

world because of their ability to generate sulfuric acid (H2SO4) and reduce the soil 

pH to as low as 2 (Dent and Pons, 1995). Pyrite (FeS2) is the dominant iron sulfide in 

coastal Australia although there can be smaller concentrations in the forms of iron 

monosulfide (FeS), greigite (Fe2S4) and organic sulfides (Bush and Sullivan, 1997). 

 

ASS contains sulfidic soil horizons or layers according to their oxidisable state, 

mainly named as Actual Acid Sulfate Soil (AASS) and Potential Acid Sulfate Soil 

(PASS). AASS is the soil layer or sediment layer that produces H2SO4 by the 

oxidation of iron sulfides. AASS develops more when the quantity of H2SO4, 

exceeds the acid neutralisation capacity (ANC) of the soil, when the pH drops below 

4.0 (Pons et al., 1982). There is another layer of soil or sediment containing iron 

sulfides and/or other sulfidic material which are not yet been exposed to air and 

oxidised, thus is completely harmless to the environment. This layer is commonly 

known as PASS. The PASS layer prevents further oxidation and acidification of ASS 

by maintaining an anoxic environment in the soil. Usually ASS remains chemically 

inert under reducing conditions. When they oxidise, complex chemical changes take 

place, which has the ability to generate and store large amounts of H2SO4 in the soil. 

This will result in acidifying the soil pore water and frequently leaching unusually 

high concentrations of Al and Fe from the soil (Dent, 1986). AASS and PASS can be 

found in the same soil profile, where AASS usually in top of PASS (Fitzpatrick et 

al., 1993). The term acid sulfate soil which can be found in literature, usually refer to 

both AASS and PASS. 
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2.2.1 Formation of Acid Sulfate Soil 

ASS and pyritic sediment usually occur in different geographical locations; however, 

coastal floodplains are the most common places for formation of ASS. The most 

favourable conditions for the formation of pyritic sediment in coastal floodplains are 

reducing environments with a supply of decomposed organic matter, sulfate (SO4
2-), 

Fe and reducing bacteria (Figure 2.1). Iron oxides such as hematite and iron oxide 

(Fe2O3), oxyhydroxides (goethite (FeOOH)) and hydroxides are the common sources 

of Fe (Blunden, 2000). Dissolved SO4
2- is rich in seawater (~2700 mg/L). A 

sufficient amount of dissolved SO4
2- comes from the inundation of low-lying land by 

brackish water. In addition, wet conditions due to excess rainfall, long water 

retention times and regular tidal inundation can create an environment for the 

existence of SO4
2--reducing bacteria (SRB, Desulfovibrio desulfuricans). In such 

wetlands, D. desulfuricans reduces SO4
2- from the tidewater and Fe2O3 from the soil 

in the presence of simply decomposable organic matter to form pyrite (Dent, 1986, 

Dent and Pons, 1995). During this microbial oxidation, generated electrons, reduce 

ferric iron (Fe3+) to ferrous iron (Fe2+) (Fanning, 1993). Addition to that pyrite 

formation kinetics are enhanced due to the warmer temperatures and slightly acidic 

conditions, but their influence is very slow compared to the microbial oxidation (e.g. 

~100 years to form 1% pyrite by mass) (Dent and Pons, 1995, Lin et al., 1995). 
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2.2.2 Pyrite Oxidation Process 

Pyritic soil is moderately chemically inert if left undisturbed and inundated under the 

watertable (Dent and Pons, 1995, Indraratna et al., 1995b). However, once these 

inundated soil is disturbed, it can cause oxidation of pyrite resulting in the generation 

of H2SO4 (Stumm and Morgan, 1996, Lin et al., 1995). The pyrite oxidation process 

is a complex and not well recognised process because it involves chemical, physical 

and biological reactions (Dent, 1986). This complex series of reactions of pyrite with 

atmospheric O2 and water can be simplified to: 

   
acid

-2
4

iron dissolved

2
2

oxygen catmospheri

22
7

pyrite

2 2H  2SO  Fe  OH  O  FeS   (2.4)
 

 

The reaction (Eqn. (2.4)) involves the conversion of pyrite (FeS2) to Fe2+ and SO4
2- 

when O2 and water are present in the environment. The outcomes of Eqn. (2.4), 

which are dissolved Fe2+, SO4
2- and H+ can be easily transported in within porewater, 

groundwater and drainage water. With the presence of oxygen, Fe2+ can be further 

oxidised to Fe3+ as shown in Eqn. (2.5), which is soluble in acidic water at low pH (< 

3.5). The Fe3+ can form insoluble ferric hydroxide with the presence of water, at a pH 

greater than 3.5. This will result in generating more acidity as expressed in Eqn. 

(2.6). 

   OH Fe  H  O  Fe 22
13

acidoxygen catmospheri

24
1

iron  dissolved

2   (2.5)
 


acid

Floc

32
3 3H Fe(OH)  O3H  Fe  


 (2.6)

 

Dent (1986) has combined Eqns. (2.4-2.6) to express the overall reaction for the 

complete oxidation of pyrite by: 
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 4H  2SO  Fe(OH)  OH  O  FeS -2
4

Floc

322
7

24
15

2 
(2.7) 

 

 

Acidithiobacillus ferrooxidans is an iron-oxidising bacteria, which are acidophilic 

chemolithotrophic organisms that are global in pyritic environments (Nordstrom, 

1982). A. ferrooxidans bacteria can catalyse and rapidly oxidise Fe2+ to Fe3+ by a 

factor > 106 at pH 2.5–3.5 (Singer and Stumm, 1970, Jaynes et al., 1984). Fe3+ can 

oxidise pyrite more hastily than by O2 at pH less than 4.5, as shown in Eqn. (2.8) 

(Singer and Stumm, 1970), further generating more acid in the soil. 

   16H  2SO 15Fe  O8H  14Fe FeS -2
4

2
2

3
 2

bacteria (2.8)
 

2.2.3 Distribution of Acid Sulfate Soils 

ASS is spread out in the coastal wetlands of many locations worldwide. Although 

they occur mainly in low-lying coastal areas, they have been found in inland 

environments as well, where pedogenesis has been influenced by iron sulfide-rich 

rock (Kraus, 1998, Davison et al., 1985). Based on a survey done by van Breeman 

(1980) for Holocene coastal plains and tidal swamp sediments, it was estimated that 

there are 12-14 million hectares (ha) of ASS around the world. From this, two-thirds 

are found to be in Indonesia, Vietnam, Thailand, Malaysia and northern Australia 

(Ritsema et al., 2000). Table 2.1 shows an estimate of the worldwide distribution of 

ASS (Brinkman, 1982). 
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Following are some of the major environmental, social and economic impacts of 

ASS in coastal Australia (Figure 2.4). 

 

One of the main impacts is the unfavourable conditions generated for soil 

productivity and plant growth. Major nutrients and trace elements cannot exist in 

soils below pH 4, and the presence of soluble toxic metals under acidic conditions is 

injurious to plant growth (Rorison, 1973). Lin et al. (2001) found that the ASS scalds 

have less organic matter and soluble phosphorus high salinity, acidity and soluble Al, 

Manganese and Zinc concentrations. ASS scalds are the bare lands where pyritic 

layers are close to the soil surface due to lack of alluvium coverage or where 

overlying peat has been washed or burned away. 
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High concentrations of soil acidity also create unfavourable conditions for grass 

growth and other vegetation. This adversely and directly affects the dairy farming 

industry. Very few plants can bare the high acidity and high concentrations of toxic 

metals (e.g. Al and Fe) except sugar cane and tea tree. As a result of that many 

coastal Australian land have remained un-vegetated for many years. In south east 

NSW, UOW researchers (Blunden, 2000, Indraratna et al., 2002) have found that the 

Al concentration was three times higher than the accepted limits given in ANZECC 

guidelines (2000). These high concentrations of Al and Fe restrict the plant growth 

and promote grass which can tolerate the acidity such as smartweed (Sammut et al., 

1996b). These environmental and ecological problems directly impact the potential 

revenue capacity. 

 

Impact on the aquatic environment by the transportation of acidic water with high 

concentrations of dissolved Al and Fe towards water bodies (either by infiltration 

into aquifers or by discharging into nearby drains after rainfall events) is immense in 

Australia. Excessive use of groundwater in ASS terrains can lower the water table. 

This will result in further oxidation of ASS and the groundwater quality will be 

degraded due to highly acidic pH and high concentrations of soluble metals (Powell 

and Martens, 2005). 

 

Aquatic marine organisms (e.g. fish, worms, shellfish and oysters) in Australia 

undergo death and epizootic ulcerative syndrome (EUS, commonly known as ‘red-

spot disease’) as a direct effect of acidic groundwater. Moreover, the loss of aquatic 

biodiversity occur due to the high acidity, low dissolved O2 and high Al, and 

overwhelming by Fe flocs (Lin and Melville, 1992, Sammut et al., 1996a, Sammut 
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and Melville, 1994, Dove, 2003, Driscoll et al., 1980). One of the biggest problems 

aroused in aquatic environment is the harmfulness of acidic drainage on breeding and 

nursery areas for reef fish as they result in chronic long-term effects.  

 

In addition, ASS has numerous social and economic problems that are of national 

importance. In Australia, the damage to local fish and oyster farming industries due 

to acidic groundwater is estimated at several millions of dollars per year in NSW and 

QLD only (Indraratna et al., 1995b). There have been considerable financial losses in 

fish and oyster farming industries because of the loss of consumer confidence in 

product quality after fish kill events reported in these areas. As an example, the loss 

of discarded sea mullet due to EUS by NSW commercial fishers were estimated to be 

over one million dollars (Callinan et al., 1995). 

 

ASS also has adverse effects on infrastructures due to acidic groundwater generated 

at ASS terrains. White and orange-red precipitates forming from Al and Fe 

respectively clog pipes and drains. Moreover, the weathering of ASS can form 

ettringite and gypsum minerals that are related to breakdown concrete structures (van 

Holst and Westerveld, 1973). High concentrations of  Fe2+ in groundwater precipitate 

as iron oxy/hydroxides and as an adverse effect, release H+ ions, as shown in Eqn. 

(2.9). 


acidflocbrown -red

22
3

22
12 2H  FeOOH  OH  O  Fe   

(2.9)
 

One of the biggest problems of ASS occurs when neutral pH water meets acid and 

Fe-rich water, which will result in blocking or damaging surface water drain systems 

due to the precipitation of iron oxy/hydroxide. 
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Acid attack on concrete and steel infrastructures (e.g. foundations, bridge piers, 

culverts and pipelines) weakens the concrete, and rusts the steel reinforcing. This is a 

common problem observed in coastal Australia. In order to get rid of the acid 

corrosion, SO4
2--resistant concrete and galvanised steel have been suggested in the 

construction of public infrastructure in many parts of NSW. ASS in nature has a low 

load-bearing capacity due to their high volumetric moisture content. As a result, 

foundations built on ASS may settle or sink unequally because of the dewatering of 

the unconsolidated material. 

 

2.2.5 Previous Management methods of Acid Sulfate Soils 

As long as ASS can be left undisturbed, that would be the best way of minimising the 

impacts from ASS. That option is cost effective and environmentally friendly. In the 

meantime, ASS areas that have already been disturbed need to be treated. In 

Australia, various remediation methods have been practised and currently being used 

by government and private sectors to minimise the acidification and decrease the 

oxidation of ASS. The following is a critical review of some of the main preventive 

remediation techniques. 

 

Water Table Manipulation using v-notch weirs and self-tilting weirs 

As discussed previously, maintaining the groundwater table above the ASS horizon 

can prevent the exposure of ASS to atmospheric O2, thus preventing oxidation. 

Groundwater manipulation techniques have been practised before in acid rock 

drainage. This method was successful for decreasing the oxidation of tailings by 

complete inundation of acid producing materials (Pedersen, 1983). Several 

researchers at the UOW (Indraratna et al., 1995b, Blunden et al., 1997) have found 
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that the handling of flood mitigation drain water levels can also affect the 

surrounding groundwater in ASS. The simple v-notch weirs installed by UOW 

research team (Indraratna et al., 1995b) could decrease acid production by 

maintaining the water table above the pyritic soil horizon in ASS terrains of coastal 

Australia. 

 

A finite element model developed by Blunden et al. (1997), using a series of 

hydrologic and hydraulic procedures, revealed that the installation of weirs would 

allow the groundwater table to rise to a certain level without flooding. Therefore, the 

preliminary modelling work was carried forward by Blunden and Indraratna (2000), 

in which they undertook a detailed field and numerical study to uphold an elevated 

groundwater table above the pyritic soil horizon by installing three v-notch weirs 

near Berry, south east NSW (Figure 2.5). The pyrite oxidation analytical model 

developed by Blunden and Indraratna (2001) could precisely assess the management 

strategies at the sub-catchment scale and could demonstrate that the weirs had the 

ability to considerably decrease pyrite oxidation. As a successful outcome of the 

research carried out at UOW, water manipulation through weirs was adopted in 

coastal Australia during the last decade. This is a cost effective management strategy 

which can avoid further pyrite oxidation. The weirs were constructed from durable 

yet inexpensive materials (Golab and Indraratna, 2009). With the same basic 

mechanism of v-notch weirs with slight upgrading of the design, self-regulating 

tilting weirs were installed adjacent to the flood mitigation drains in ASS terrain 

(Figures 2.5 and 2.6). 
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 they elevate the risk of flooding during heavy rainfall; 

 the technique is limited to a smaller area near the region, hence not able to 

prevent pyrite oxidation far from the drain; 

 they prevent the entry of tidal water, thus the water quality cannot be 

improved; and 

 scheduled maintenance is required to clean up the drain due to the 

accumulation of sediments and growth of weeds. 

 

Tidal Buffering  

Various researchers (Pollard and Hannan, 1994, Williams and Watford, 1997, Dick 

and Osunkoya, 2000, Blunden, 2000) suggested improvements in drain water quality 

by tidal buffering within acid affected flood mitigation drains. The tidal flushing can 

facilitate acid neutralisation through diminishing the Al flocculation, raising the 

dissolved O2 levels in groundwater, decreasing the ‘acid reservoir effect’ and 

enhancing the runoff during the wet periods (Glamore, 2003, Glamore and 

Indraratna, 2001, Indraratna et al., 2002, Portnoy and Giblin, 1997b, Portnoy and 

Giblin, 1997a). 

 

Two types of modified two-way floodgates were installed by UOW researchers 

(Glamore and Indraratna, 2004, Glamore and Indraratna, 2002, Indraratna et al., 

2002, Johnston et al., 2002) as an alternative solution to weirs and one-way 

floodgates near Berry, south east NSW. One of these was a winch-operated floodgate 

that lifts vertically (Figure 2.7 (a)). This can control the amount of water entering the 

drain. The other one is a more sophisticated automated Smart Gate system (Figure 

2.7 (b)). This Smart Gate measures the real-time water quality parameters such as 
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pH, electrical conductivity (EC), DO and temperature and only if they are up to the 

standard limit, allows water to enter the drain (Figure 2.7, (Glamore, 2003, 

Indraratna et al., 2002)). The Smart Gate system is a computerised arrangement of 

real-time sensors that continually monitors the water chemistry and operates the 

mechanical winch of the floodgate according to the transmitted intelligent electronic 

signals. 
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The results obtained from two-way floodgate show that the drain water quality has 

improved substantially upon re-establishment of tidal flushing (Figure 2.8). 

Moreover, surface water quality measured for continuous three years also showed an 

increase in drain water pH above 6, confirming its suitability for ASS remediation. 

Furthermore, Al and Fe were removed by precipitation during tidal buffering as their 

oxy/hydroxides (Glamore, 2003). Figure 2.9 clearly shows the rise of bicarbonate 

alkalinity up to 90 mg/L CaCO3 in drain water after the setting up the two-way 

floodgates. Numerous local government agencies and councils use Smart Gates 

because of their ability to improve drain water. 

 

 

Figure 2.8 Modified Floodgates near Berry, south east NSW (Days 296-314) 
(Adapted from (Glamore, 2003)) 
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Figure 2.9 Bicarbonate concentrations within the drain after floodgate modifications 
with rainfall (Glamore, 2003) 

 

 

Glamore (2003) reported that the performance of these floodgates was not sufficient 

especially in heavy rainfall events as the amount of alkalinity generated was not 

enough (10-90 mg/L CaCO3 (Figure 2.9)). That is because the effectiveness of tidal 

buffering depends on several factors such as the concentration of buffering agents, 

the acid concentration within the drain and the hydrodynamics of the creek such as 

flow velocity (Indraratna et al., 2005). Two-way floodgates also have a risk of 

elevating the water table in low-lying areas with poor drainage. Maintenance is of 

paramount importance to clean the sensors and make sure the debris have not 

clogged the system, because the capital cost is high for electronic and mechanical 

devices controlling the Smart Gates. 
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Acid neutralisation through Liming 

Neutralisation of soil and groundwater acidity through liming has been widely 

applied in throughout the world for the management of ASS as an effective and easy 

remediation method. However, soil liming produces a metal-rich sludge in the soil 

(Benner et al., 1999a). This may result in subsequently leaching of metal ions when 

mixed with the acidic groundwater, hence becoming ineffective in the long-term 

(Pearson and McDonnell, 1975b, Webb and Sasowsky, 1994). Furthermore, soil 

liming around  coastal Australia would be an expensive methodology to treat the 

whole estimated 3 million ha, although Dent (1992) suggested that raising the pH of 

the soil above 5 should be adequate to remediate ASS. Although this method can 

neutralise the acidity present in the top most soil layer with tidal flush, it releases 

very mobile acid into the creeks.  

 

Lime-Fly ash Barrier 

A lime-fly ash barrier, suggested by researchers at the UOW (Banasiak, 2004, 

Indraratna et al., 2006), is a modification of the soil liming concept. It is a passive 

treatment system, which is relatively inexpensive for the benefit of the local farmers. 

Accordingly, an alkaline slurry was injected at shallow depth above the pyritic layer 

by radial grouting to form a semi-impermeable reactive horizontal barrier in ASS 

terrain near Berry, south east NSW. The alkaline slurry consisted of water, fine 

grained lime and fly ash (2:2:1) and was injected into the soil in a grid of 22 holes to 

form a 100 mm thick barrier. There were 31 observation wells to monitor the 

groundwater quality in an adjacent drain (Figure 2.10). 
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Figure 2.10 Layout of the horizontal semi-impermeable barrier installed in ASS, 
south east NSW (Banasiak, 2004) 

 

Considerable improvements in groundwater were witnessed from the data taken from 

the observation wells for pH, Al and Fe concentrations. The average pH improved 

from 3.5 to 4.6, and Al and Fe concentrations were decreased from 65.5 to 20.3 mg/L 

and 161 to 42 mg/L, respectively (Figure 2.11) (Banasiak, 2004, Indraratna et al., 

2006). The lime-fly ash barrier could reduce the infiltration of oxygen to the pyritic 

soil layer. As a result, the rate of pyrite oxidation decreased, in addition to 

neutralising any acidity stored in the soil. 
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Figure 2.11 Average groundwater pH measured at 1 m and 2 m from the barrier and 
rainfall (Indraratna et al., 2006) 

 

2.3 Permeable reactive barriers (PRBs) 

A PRB is defined as an emplacement of reactive materials in the subsurface designed 

to intercept a contaminant plume, providing a flow path through the reactive media 

(Figure 2.12). The objective is to transform the contaminant(s) into environmentally 

acceptable forms to attain the remediation goals down-gradient of the barrier (Regmi 

et al., 2011a). The remediation is through physical, chemical and/or biological 

processes, including precipitation, sorption, and oxidation/reduction (Rumer and 

Ryan, 1995, Golab et al., 2006). 
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2.4 Selection of reactive medium 

Selection of correct material is the first important step involved in PRB design as it 

determines its reactivity, contaminant removal capacity and most significantly, 

longevity. According to Gavaskar et al. (1998), the reactive material should be fully 

characterised to confirm: 

 adequate reactivity to reduce contaminants; 

 maintain the reactivity and ability to run over long periods of time; 

 low cost and readily available 

 to make sure the reactions taking place between contaminants and reactive 

material in stable and environmentally friendly forms; 

 do not generate adverse chemical reactions and do not serve as a source of 

contaminants (different or same contaminants); 

 minimise precipitation, to allow continued flow of water with time; and 

 comprise of the correct particle size for the anticipated porosity. 

2.5 Types of reactive material used for acidic water remediation 

The reactive material should be capable of remediating the groundwater in a timely 

manner and without clogging or weakening, as stated in Section 2.4. Therefore, the 

reactive materials are chosen such that they react with the contaminants to convert 

them to harmless products by the time they pass out the other side of the PRB. Some 

of the most common reactive materials used to treat acidic groundwater worldwide 

are organic carbon-rich materials, ZVI and acid neutralising materials. Their 

characterisation, application in PRBs and long-term performance are described 

below. 
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Organic Carbon-rich Materials 

Acidic groundwater generated from acid mine drainage (AMD) enriched with SO4
2- 

and heavy metals have being treated with microbial-based PRBs consisting of 

organic carbons such as wood chips, municipal compost and paper mill pulp (Benner 

et al., 1999b, Benner et al., 2000). These organic carbons can reduce the SO4
2- and 

extensively precipitate the metal sulfides (Blowes et al., 2003, Waybrant et al., 

1998). The SRB oxidise organic carbon by using SO4
2- and generate H2S. This would 

result in increasing the alkalinity and pH. Dissolved H2S has the ability to combine 

with metal cations to form metal sulfide precipitates, which are stable below the 

water table inside the PRB (Waybrant et al., 1998). However, it is a drawback as the 

extensive precipitation in addition to the growth of bacteria can armour the reactive 

surface of organic carbon-rich materials. 

 

Zero-valent Iron (ZVI) 

About three-quarters of all full-scale PRBs used worldwide for acidic groundwater 

remediation use ZVI as the reactive media (Blowes et al., 2000). It has the capacity 

to remove a range of contaminants such as inorganic contaminants like 

radionuclides, nickel (Ni), chromium (Cr), arsenic (As), uranium (U), SO4
2- and 

NO3
2-  and chlorinated organic solvents (Gillham and O'Hannesin, 1994, Regmi at 

al., 2011a, Blowes et al., 2000, Blowes et al., 1997). Jenk et al. (2003) examined the 

use of ZVI to remediate mine waste containing high concentrations of acid, SO4
2-, Fe 

and Al. ZVI was mixed with chips and lignitic coal and the whole mixture was 

capable of neutralising acid and removing contaminants in the mine water. As 

groundwater flows through the PRB, DO and water rust the ZVI, elevating the 

groundwater pH and precipitating the secondary minerals from the dissolved Fe from 
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the influent. However, ZVI PRBs too have limitation as same as in organic carbon-

rich material by both the corrosion of the reactive material as well as by mineral 

precipitation hence reducing the anticipated porosity of the PRB (Phillips et al., 

2000, Liang et al., 2003, Li and Benson, 2005). 

 

Acid neutralisation materials 

Due to the disadvantage of extensive precipitation caused by using organic rich 

material and ZVI, the need for alternative reactive materials to treat acidic 

groundwater arose. Blowes et al. (1997) reported that mine waste had a self-

neutralisation capacity because the amount of carbonate minerals present in mine 

waste exceeds that of the sulfide minerals. The most significant pH buffering 

minerals in the mine waste were carbonate minerals; calcite (CaCO3), dolomite 

(CaMg(CO3)2) and ankerite (Ca(Fe,Mg,Mn)(CO3)2) (Jurjovec et al., 2002). The small 

amount of Ca-bearing minerals present in the soil about 3.1% by weight, could 

suggestively increase the groundwater pH to near-neutral pH of 6 (Figure 2.14). The 

effluent pH was controlled by dissolution-precipitation of carbonate, Al and Fe 

hydroxides and aluminosilicates present in the soil as shown by long plateaus at ~pH 

6.0, 4.0 and 1.5, respectively (Figure 2.14). 

 

The research carried out by Jurjovec et al. (2002) supported the application of acid 

neutralisation materials in PRBs. Following this, different types of acid neutralising 

materials such as BauxsolTM, lime have been examined, in laboratory scale, for the 

treatment of acidic groundwater. Lime is not ideal as it is slightly soluble in water 

and when in contact with acidic groundwater it can be leached out from a PRB. 

However, hydrated lime (Ca(OH)2), can be a better alternative for this purpose 
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(McElnea and Ahern, 2002). BauxsolTM is a by-product from the Bayer process. It 

contains caustic red mud residues formed during alumina production (Lin et al., 

2002, McConchie et al., 2002a). It consists of minerals such as gibbsite (Al(OH)3), 

hematite (Fe2O3), boehmite (γ-AlO(OH)), quartz (SiO2), sodalite (Na4AI3Si3O12Cl) 

and cancrinite (Na6Ca2[(CO3)2|Al6Si6O24]·2H2O), and a little of calcite (CaCO3), 

aragonite (CaCO3), brucite (Mg(OH2), gypsum (CaSO4·2H2O), diaspore (α-

AlO(OH)), ferrihydrite ((Fe3+)2O3•0.5H2O), hydrocalumite (Ca2Al(OH)7.3H2O), 

hydrotalcite (Mg6Al2CO3(OH)16·4(H2O)), portlandite (Ca(OH)2), ilmenite (FeTiO3), 

lepidocrocite (γ-FeO(OH)) and p-alumohydrocalcite (CaAl2(CO3)2(OH)4•3H2O) 

(McConchie et al., 2002a). PRBs containing BauxsolTM can operate under oxic or 

anoxic conditions. Most importantly, neither gypsum precipitation nor armouring 

reduces the performance of the BauxsolTM PRB. BauxsolTM also increases the 

nutrient retention capacity of soil (McConchie et al., 2002b). 

 

Limestone has been used as a suitable reactive material for remediating acidic 

groundwater in limestone ponds, constructed wetlands, successive alkalinity 

producing systems (SAPS), open limestone channels (OLC) and oxic limestone 

drains (OLD). The acidity in groundwater is reduced, by using limestone as an 

ameliorant, therefore turbulence or mechanical aeration is required to degas carbon 

dioxide (CO2) from the water (Pearson and McDonnell, 1975a, Webb and Sasowsky, 

1994). Pearson and McDonnell (1975b) reported that armouring in an OLD hinder 

the remediation process. However, when significant concentrations of Fe and Al 

metals exist in groundwater, the reactivity of the limestone will be severely 

exhausted. 
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chips, cattle slurry, compost, and pea gravel for a possible PRB to treat AMD run-

off. The mixtures consisted of different percentages of each material: (i) 50% 

limestone chips, 25% cattle slurry screenings, 25% compost; (ii) 50% pea gravel, 

25% slurry screenings, 25% compost; (iii) 75% limestone chips, 12.5% slurry 

screenings, 12.5% compost; and (iv) 50% limestone chips, 50% compost. Komnitsas 

et al. (2004) examined the possibility of a limestone and red mud mixed PRB to 

remove heavy metals from AMD by precipitation and adsorption using column tests. 

The main remediation mechanism was the precipitation of contaminants such as Mn, 

Zn, Fe, Al, Cu, Co, SO4
2- and Ni as hydroxides and also through sorption of Cd. 

High contaminant concentration may create adverse effects within the reactive media 

by accelerated reductions in reactivity and longevity of a PRB due to fast 

consumption of alkalinity, decrease in the reactive surface area due to armouring 

effect by secondary mineral precipitation, and the desorption of heavy metals. 

 

A number of recycled material from chemical and metallurgical processes have been 

explored for the suitability of PRBs in order to remediate acidic groundwater via 

precipitation, degradation or immobilisation of contaminants (Amos and Younger, 

2003, Golab et al., 2006, Regmi et al., 2011b). The reason for using recycled material 

as the reactive media is that the cost of an in-situ PRB system is quite high when 

pure reactive materials are used. Therefore it is important to find out a cost effective 

reactive medium in the selection process (Gavaskar, 1999). Recycled concrete, 

zeolitic breccia, air-cooled blast-furnace slag (ACBFS) and red mud, with a suitable 

grain size, can be used for the removal of metals and the successive neutralisation of 

acidic groundwater (Komnitsas et al., 2004, Golab et al., 2006). The screening 
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process and selection of cost-effective alkaline materials for this current research is 

elaborated in Chapter 3. 

 

2.6 Long-term performance of PRBs 

Most of the previous literature is available for ZVI and SRB PRBs and their long-

term performance, as they were extensively used in the early development stage of 

PRB technology. The performance of PRBs is decreasing basically due to the 

armouring effect from secondary mineral precipitation (Indraratna et al., 2012, 

Regmi et al., 2009a, Li and Benson, 2005, Wilkin et al., 2003). Armouring is defined 

as the strong adhesion and complete pacification of the reactive surface by 

encrustation (coating by the secondary minerals). Armouring will result in decreasing 

the rate and extent of dissolution of reactive material and capability to remove 

contaminants (Hedin and Watzlaf, 1994, Cravotta and Watzlaf, 2002). Depending on 

the groundwater chemistry and composition of the reactive materials inside the 

barrier, different types of surface coatings have been observed (Puls et al., 1999b, 

Puls et al., 1999a). Therefore, the methods to quantitatively analyse the secondary 

minerals and modelling techniques vary accordingly. 

 

Clogging of the porous media can be divided into three main categories; physical 

clogging by soil particles (Reddi and Bonala, 1997, Indraratna and Vafai, 1997, 

Reddi et al., 2000), chemical clogging by the accumulation of precipitated 

compounds (Li and Benson, 2005, Pathirage et al., 2012, Regmi et al., 2011b) and by 

biological clogging from the growth of bacteria within pores (Rowe, 2005, Fleming 

and Rowe, 2004, VanGulck and Rowe, 2004). Any of this clogging would result in 

accumulation in the pore spaces and a decrease in porosity and hydraulic 
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conductivity. Such a decrease in porosity and hydraulic conductivity inside a PRB 

reduces flow through the barrier, which has a consequence in changing the flow 

paths, residence time and probably bypassing the barrier (Mackenzie et al., 1999, 

Phillips et al., 2000, Roh et al., 2000, Wilkin et al., 2003, Li et al., 2006). Therefore, 

clogging inside a PRB can decrease the lifetime of a PRB before the reactivity of the 

material diminishes (Gavaskar, 1999). The following literature shows various studies 

carried out for performance monitoring and longevity predictions. 

 

ZVI PRB, Y-12 plant site, Oak Ridge, USA 

Phillips et al. (2000) carried out a comprehensive mineralogical analysis of cores 

(Figures 2.15 and 2.16) from a field-scale ZVI PRB to study the armouring and 

clogging effect by secondary minerals precipitation after 15 months following the 

installation. The intention of this PRB was to remove U from contaminated 

groundwater at the Y-12 plant site, Oak Ridge, USA. It was reported that corrosion 

of ZVI and the consequent precipitation of secondary minerals (Figure 2.15) might 

lead to strong cementation, affecting its long-term performance. This led to a 

decrease in porosity and permeability of the reactive material. Furthermore, the 

precipitation of secondary minerals would decrease the reactivity due to surface 

coating which shortens the longevity of the PRB to less than a decade. 
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After four years of operation, Wilkin et al. (2003) calculated the rate of inorganic 

carbon and sulfur accumulation as 0.09 and 0.02 kg/m2/yr, respectively, at Elizabeth 

City PRB; and 2.16 and 0.80 kg/m2/yr, respectively, at the Denver Federal Centre 

PRB. The maximum porosity reductions due to secondary mineral precipitation and 

microbial activity were 0.032 and 0.062 at Elizabeth City and Denver Federal Centre, 

respectively. USEPA (2004) report mentions the maximum and minimum porosity 

reductions were 5.9% in the first 25 mm of the ZVI material and 0.1% in 80 mm 

from the up-gradient interface. This is a small decrease in porosity; therefore it 

would not have any adverse effect from clogging the pore spaces of the reactive 

material. Although, there might be a negative affect for the long-term reactivity of 

ZVI particles by decreasing the reaction kinetics due to the biofilm coverage and 

surface coating (armouring) by mineral precipitation (Wilkin et al., 2003). 

 

ZVI and sand PRB, Canadian Force Base, Ontario 

A PRB composed of 22% granular ZVI and 78% sand was installed in 1991, for 

treating chlorinated organic compounds at the Canadian Force Base, Ontario. These 

have been running over 5 years, and were the longest available documented PRB 

performance at the time. The results showed this PRB could remove about 90% of 

chlorinated organic compounds through reductive dechlorination (O’Hannesin and 

Gillham, 1998). Moreover, O’Hannesin and Gillham (1998) reported that there was 

little evidence of precipitation and cementation of CaCO3, hence proving negligible 

armouring/clogging within the barrier.  
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ZVI PRB, New York 

A pilot-scale ZVI PRB was installed at a formal industrial facility in New York to 

remove volatile organic compounds (VOC). According to Vogan et al. (1999) the 

performance of the PRB for two year operational period was satisfactory. The 

porosity was decreased from ~0.5 to 0.45 (10% loss). From this, 6% was due to 

carbonate precipitation observed towards the up-gradient interface. Nevertheless, the 

performance of the PRB was not affected since microbial populations did not 

increase in the ZVI zone compared to the aquifer and the minerals formed in the ZVI 

zone. 

 

ZVI PRB, Monticello, Utah, USA 

Morrison (2003) installed a full-scale PRB in Monticello, Utah, USA for the 

treatment of contaminated groundwater containing 295 mg/L Ca, 1180 mg/L SO4
2-, 

118 mg/L NO3
2-, 173 mg/L chlorite and 430 mg/L alkalinity, and observed 8.8 

tonnes of CaCO3 and 24 kg of U- and V-bearing minerals precipitate. Figure 2.18 

shows the distribution of solid-phase U and V concentrations. These large amounts 

of precipitates decreased the porosity of the PRB by 9.3% in the up-gradient 

gravel/ZVI zone and 3.2% within the ZVI zone 2.7 years after PRB installation. 
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The majority of literature is mainly on ZVI and SRB PRBs, while research has only 

just begun on other alkaline reactive materials such as Ca-bearing minerals. 

Therefore, very small amount of literature is present on the long-term performance of 

PRBs utilising Ca-bearing minerals (limestone) for the remediation of acidic 

groundwater. Desmier et al. (2002) and Indraratna et al. (2012) reported that 

armouring is a problem in PRBs if limestone or recycled concrete are used to 

remediate acidic groundwater, respectively. Limestone or recycled concrete PRBs 

become less effective when the reactive surface is armoured by Fe and Al 

precipitates, which can lead to clogging and failure in the future (Regmi et al., 2009a, 

Regmi et al., 2011b). 

 

Although field PRBs have shown good performance in remediating contaminated 

groundwater, there are some concerns and drawbacks of this remediating strategy 

(Vidic, 2001). The main reason is the lack of information on reaction kinetics and 

geochemistry, insufficient information on the economic viability of PRBs (Birke et 

al., 2003) and inability to verify hydraulic performance (Vidic, 2001). Some 

laboratory and field investigations show that mineral fouling can be favourable in 

PRBs in terms of better flow and/or blockage of flow (Sarr, 2001, Kamolpornwijit et 

al., 2004, Kamolpornwijit et al., 2003). However, many researchers reported that the 

rate of porosity reduction depends on groundwater chemistry and flow rates (Blowes 

et al., 2000, Phillips et al., 2000). Therefore, a detailed and comprehensive 

assessment of mineral fouling in PRBs using field data and laboratory experiments is 

important with special reference to site-specific geochemical and hydro-geological 

conditions (Phillips et al., 2000), aquifer heterogeneity (Li et al., 2006), and the 

reactive times of mineral precipitation/dissolution (Vikesland et al., 2003). 
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In view of the above, it is impractical to carry out field work for performance 

monitoring of a PRB to find out when the reactivity or the treatment capacity will 

diminish. Therefore, it is difficult to make any precise conclusions on the longevity 

of PRB. As a solution for this, numerical modelling has come in to play, which can 

couple the geochemistry with groundwater flow. Previous researchers (Mayer et al., 

2001, Yabusaki, 2001, Li and Benson, 2005, Li et al., 2006, Liang et al., 2003) have 

used various numerical modelling codes and software to capture the chemical 

reactions inside PRB including mineral dissolution and precipitation and the effect of  

mineral precipitation on hydraulic properties of PRBs. A detailed literature review on 

numerical modelling applications for the long term performance monitoring in PRBs 

is described in the following section. 

 

2.7 Numerical modelling of PRBs 

Contaminant transport models contain the governing equations together with the 

boundary and initial conditions. Once a model has been formed and the proper 

parameters have been finalised, a solution to the governing equations has to be found 

with accordance to the suitable boundary and initial conditions. There are mainly five 

categories of models used to get a solution to the governing equations; analytic, 

boundary element, finite layer, finite element and finite difference techniques (Rowe 

et al., 2004). 

 

The finite layer techniques can be applicable when the properties of the system can 

be idealised as horizontally layered as well as the soil properties stay at the same 

horizontal location within the layer. The governing equations can be simplified by 

using a Laplace and/or Fourier transform (the latter is applicable only for 2D or 3D 
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problems). The transformed equations can then be solved. The difference between 

the solutions from finite layer technique and analytic approach is that in the finite 

layer technique, the solution is found numerically rather than analytically. This 

allows to examine more complicated and accurate situations such as when dealing 

with larger domains and a lot of unknown parameters. The advection-dispersion 

equation is usually solved by the boundary element technique. Its main benefit over 

finite layer technique is its ability to model more complicated geometries. Boundary 

element approach has not been widely used for contaminant migration studies to date 

(Rowe et al., 2004). 

 

On the other hand, extensive research has been carried out using the finite difference 

and finite element methods for the analysis of contaminant migration through soils. 

These numerical methods are useful for; 

i. to define the velocity field by calculating the steady state flow pattern within 

the hydro-geological system; 

ii. to solve the advection dispersion equation (using velocities determined from 

(i)) by calculating the rate of contaminant migration (Rowe et al., 2004). 

 

The steady state modelling techniques are well established and many commercial 

software packages are available. The finite element technique is so powerful that it 

has the capability to model problems with complicated geometries, complex flow 

patterns, non-linearity and heterogeneity. There are plenty of literatures dealing with 

different algorithms, which can be used to solve the advection dispersion equation. 

Some of them are discussed in Section 2.8. 
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The transportation of reactive contaminants through any reactive material comprises 

a high complexity, as they are mutual and concurrent. The physical transportation, 

chemical reactions and the mutual interaction of chemical species can be hard to 

predict (Mayer, 1999). Contaminant transport modelling within the last three decades 

mainly focus on developing equilibrium models for assessing geochemistry of 

reactions (Parkhurst et al., 1980, Ball and Nordstrom, 1991, Wolery et al., 1990, 

Allison et al., 1991). Geochemical equilibrium reactions include hydrolysis, ion 

exchange and sorption, complexation, redox and dissolution-precipitation reactions. 

Some of the geochemical equilibrium models frequently found in literature are 

MINTEQA2 (Allison et al., 1991), PHREEQE (Parkhurst et al., 1980), PHREEQC 

V1.6-2 (Parkhurst and Appelo, 1999) and EQ 3/6 (Wolery et al., 1990). Liang et al. 

(2003) and Wilkin et al. (2003) mentioned that the equilibrium models are less useful 

for predicting the quantitative accumulation of minerals with respect to space and 

time but are helpful to understand the qualitative approximation of minerals likely to 

form within the PRB. 

 

In order to get a better idea about the fate and transport of contaminants, these 

equilibrium models have also been coupled with advective-dispersive transport 

models. Multi-component reactive transport models are very versatile compared to 

equilibrium models as they can be applied to partially saturated and fully saturated 

porous material. Different types of kinetic relationships have been developed 

according to the contamination, such as kinetically-controlled reactions (Sverdrup 

and Warfvinge, 1988), Monod kinetics (Borden and Bedient, 1986, Borden et al., 

1986) and the development of reactive networks (Hunter et al., 1998). Coupled 

hydro-geochemical models are extremely useful for PRB studies to understand the 
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groundwater quality and mineralogical composition of different systems and trial run 

the conceptual models (Mayer et al., 2001, Li and Benson, 2005). In contrast to 

equilibrium models, kinetic reactive models describe the rate at which the 

geochemical reactions occur and produce the concentrations of dissolved/precipitated 

ions as a function of time. 

 

2.8 Case studies carried out using numerical modelling 

Mayer (1999) developed a three dimensional reactive transport code: MIN3P for 

simulating flow and multi-component reactive transport incorporating a kinetic 

geochemical algorithm. MIN3P has the ability to solve the governing equation for 

Darcy-type fluid flow in a variably saturated porous medium. Neuman (1973) and 

Huyakorn et al. (1984) defined the governing equation for variably saturated flow 

(Eqn. (2.11)). They adopted some assumptions as the fluid is incompressible, there is 

no hysteresis and/or a passive air phase and came up with Eqn. (2.11) to calculate the 

hydraulic head: 

	 ∅ . = 0 (2.10) 

where, Sa is the volumetric water saturation of the aqueous phase (m3/m3); Ss is the 

specific storage coefficient (1/m); h is the hydraulic head (m); t is time (s); Ø is the 

porosity of the media (m3/m3); kra is the relative permeability of the porous medium 

with respect to the water phase (dimensionless); K (ρagk/μa) is the saturated 

hydraulic conductivity tensor (m/s), ρa is the aqueous phase density (kg/m3), g is the 

gravitational acceleration, (m/s2), μa is the aqueous phase viscosity and k is the 

intrinsic permeability tensor (m2); and Qa is a source–sink term (1/s). 
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The reactive transport equation for advective–dispersive transport is written in global 

implicit form in MIN3P as (Lichtner, 1996, Mayer and MacQuarrie, 2010, Mayer et 

al., 2002): 

∅. . . ∅ 0,

1,  

(2.11)

 

where, Tj
a (kg/m3 H2O) is the total water phase concentration of component j; Tj

s is 

the total adsorbed component concentration, qa is the Darcy fluid flux (m/s); Da is the 

dispersion tensor for the water phase components (including both hydrodynamic 

dispersion and diffusion); Qj
ext and Qj

int represent external and internal source–sinks, 

respectively, and Nc defines the number of components. 

 

Mayer et al. (2001) used MIN3P to simulate the flow and mineral precipitation in the 

ZVI PRB at the US Coast Guard Support Center, Elizabeth City, North Carolina. 

This PRB was used for treating contaminated groundwater enriched with hexavalent 

Cr (Cr(VI)) and trichloroethylene. Mayer et al. (2001) carried out simulations for the 

degradation of chlorinated solvents, transformation of Cr(VI), reduction of DO, NO3
-

and SO4
2- in groundwater. Moreover, he carried out simulations for Fe corrosion by 

contaminated groundwater, precipitation of secondary minerals, microbial mediated 

SO4
2- reduction, and hydrogen gas evolution within the PRB. The results showed 

altogether, twenty-five constituents and seventy-nine reactions possibly occurring 

and eight possible secondary minerals assumed to form in the ZVI PRB (CaCO3, 

CaMg(CO3)2, MnCO3, FeCO3, Fe(OH)3, FeS (am), Fe(OH)2 (am) and Mn(OH)2 

(am)). Transition state theory (Eqn. 2.12)) was used to model secondary mineral 

formation in treatment zone and surface area reduction method to model the 

depletion of the ZVI reactive material (Eqn. 2.13)). 
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where, r is the reaction rate (molm-3
bulks

-1), keff is the effective rate coefficient (molm-

3
bulks

-1), IAP = ion activity product (depends on the reaction), Keq is the solubility 

constant (depends on the reaction),

 
0Fe

S is the current reactive surface area of zero-

valent iron (m2), 0
0Fe

S is the initial reactive surface area of zero-valent iron (m2), 0Fe


is the current volume fraction of zero-valent iron and 0
0Fe

 is the initial volume 

fraction of zero-valent iron. 

 

The simulated results indicated that porosity reduction was high at the entrance of the 

PRB, which decreased towards the down-gradient zone. The predicted results 

showed average porosity near the entrance of the PRB was decreased by 28% from 

0.50 to 0.36 over 20 years of operation (Figure 2.19). 
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mineral fouling and its effect on the longevity, due to the change in porosity and 

hydraulic conductivity were predicted by the model. 

 

Li et al. (2005) stated that both average and maximum porosity reductions in the 

PRB was observed at the entrance face about 0.1 m in to the barrier, and then 

decreased and remained constant for about 0.8 m from the entrance for different 

simulation periods of 10, 30, and 50 years. Those results are shown in Figure 2.20. It 

can be seen that both the average and maximum porosity reductions increased with 

time, reaching a maximum porosity reduction in 50 years. It is obvious that they 

could observe from the simulations that the maximum porosity reductions were at the 

entrance zone of the PRB. That was probably due to the impact of flow heterogeneity 

on the rate of mineral precipitation. 
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OS3D (three-dimensional reactive transport code) is another multi component 

transport model developed by Steefel and Yabusaki (1996) which can couple kinetic 

geochemical algorithms with flow through saturated porous media. This code was 

used to predict the mineral precipitation and associated porosity reductions in a pilot-

scale ZVI PRB at Moffett Federal Airfield, CA, USA. The results obtained from the 

model and the field data for the concentration profiles for TCE, DCE, pH, alkalinity, 

total Mg, total SO4
2-, and NO3

2- were in good agreement (Figure 2.22). According to 

Yabusaki (2001), porosity changes were predicted to reduce by 0.030 and 0.014 

annually towards the entrance and middle zones of the PRB respectively. 
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2.9 Summary 

The acidic groundwater resulting from pyrite oxidation in ASS is a major 

environmental and socio-economic problem in coastal Australia. Previous research 

demonstrated that groundwater manipulation using engineering solutions such as 

weirs and modified two-way floodgates in creeks and flood mitigation drains was not 

effective in low-lying floodplains due to the risk of flooding and the occurrence of 

pyrite oxidation even under submerged conditions. 

 

PRBs have been widely used worldwide for the remediation of contaminants such as 

AMD, chlorinated organic compounds, chromate, heavy metals and radionuclides. 

However, their application for ASS problems has been very rare to date, except for 

one trial OLD reported by Waite et al. (2002), which failed in a short period probably 

due to rapid armouring and clogging by secondary mineral precipitation.  

 

The performance of different types of reactive material used for remediating 

contaminated groundwater highlighting laboratory and field monitoring data was 

briefly illustrated in this chapter. The risk of armouring and clogging hindered the 

performance of reactive materials in many literatures. Moreover, a critical overview 

of the performance of PRBs and the numerical approaches used to clarify their long-

term performance is analysed. The results of the numerical models predicted that the 

porosity reductions were a maximum at the entrance phase of the PRB due to 

secondary mineral precipitation. 
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Chapter 3 Laboratory column experiments 

3.1 Introduction 

This chapter examines the potential of recycled concrete aggregates to remediate 

acidic groundwater through detailed laboratory column experiments. Stepwise acid 

neutralisation behaviour is observed, which is attributed to (a) bicarbonate buffering 

zone, (b) re-dissolution of Al minerals and (c) re-dissolution of Fe minerals as 

similar to that reported by Regmi et al. (2011a). The reason to carry out column 

experiments apart from the results provided by Regmi et al. (2011a) was to 

determine the mineral precipitation/dissolution behaviour along the column. The 

results obtained in this study are used to validate the developed model in Chapter 6. 

The efficiency of acid neutralisation behaviour is hindered by chemical armouring 

and clogging due to secondary mineral precipitation and accumulation on void 

spaces. This is evident from the calculated porosity from the volumes of precipitated 

secondary minerals and calculated hydraulic conductivity reduction from the 

pressure transducers throughout the column length. 

 

3.2 Potential Reactive Material 

Apart from cost-effectiveness, the reactive material should be entirely characterised 

before implementing so that they maintain their reactivity over a long period of time, 

do not cause any adverse chemical reactions with the constituents of the 

contaminated plume, and have low cost (Gavaskar et al., 1998). Many alkaline 

materials can be used to remediate the acidity in groundwater as described in Chapter 

2. As the main contaminants in groundwater associated with ASS are acidity, soluble 
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Al3+ and total Fe, the reactive material should be able to increase the pH to a level 

that causes Al and Fe to precipitate out of solution.  

 

Previous UOW researcher, Golab et al. (2006) tested a total of 25 different possible 

alkaline materials in a series of batch tests followed by short-term column tests 

(Golab et al., 2009a, Golab and Indraratna, 2009) using the acidic groundwater 

collected from the same study site. The materials used by Golab et al. (2009b) were 

basically waste materials, including fresh and recycled concrete, oyster shells, 

calcite-bearing zeolitic breccias, ACBFS, lime and fly-ash, with some pure materials 

such as limestone and lime. Recycled concrete was collected from a demolished 

construction site. 
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Figure 3.1 pH vs. time for the selected reactive materials (Adapted from Golab et al., 
2006) 
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The results of these batch tests are shown in Figure 3.1. All the above mentioned 

reactive materials achieved a better pH (a pH above the acidic groundwater) due to 

the Ca-bearing alkaline material present within them such as Ca(OH)2 and CaCO3 

(Golab et al., 2006). The fresh concretes (concrete 1 and concrete 2), recycled 

concrete, lime and ACBFS, all achieved a consistent pH with the dissolution of 

portlandite/lime (pH 11 to 12) in the batch tests. The limestone and zeolitic breccia 

achieved a consistent pH with the dissolution of calcite (~ pH 7.4). Lime and fly ash 

were considered unsuitable for different reasons including excessively small grain 

size. ACBFS had insufficient ANC and breccia gave insufficient removal of Al and 

Fe (Golab et al., 2006). The results of the batch tests showed that recycled concrete 

performed well by neutralising large volumes of acidity and removing Al and Fe 

from solution without leaching harmful ions into the groundwater (Golab et al., 2006, 

Golab et al., 2009a). 

 

In this research, the recycled concrete aggregates used in the laboratory column 

experiments were collected from a refuse depot, after the demolition of old concrete 

elements from road expansion works in rural NSW. They were from the same batch 

of concrete used in the pilot-scale PRB installed in ASS terrain, Nowra. Large pieces 

of the recycled concrete were crushed to smaller particle sizes to suit the column. 

Accurate identification of the composition of hydration products in the concrete was 

complicated due to the physical, chemical and mechanical changes in solidified 

cementitious systems. Additionally, accurate quantification of the minerals was a 

challenge due to the heterogeneity of the concrete particles. Regmi et al. (2009b) 

carried out chemical analysis to determine the elementary composition of recycled 

concrete by inductively coupled plasma–mass spectrometry (ICP-MS) with 1:1 nitric 
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acid/hydrochloric acid (HNO3/HCl) digestion following APHA 3120. The recycled 

concrete contained a negligible amount of heavy metals compared to the major 

cations (Table 3.1).  

 

Quantitative X-ray diffraction (QXRD) analysis carried out by Regmi et al. (2011a) 

lists the chemical composition of the major cations present in the recycled concrete 

as shown in Figure 3.2. The large amount of extractable Ca (58%) and Ca-bearing 

minerals (anorthite, calcite and feldspars) indicate that recycled concrete can 

generate significant amounts of alkalinity to neutralise the acidic water. 

Table 3.1 Elemental analysis of major elements in recycled concrete by ICP-MS 
(Regmi et al., 2009b)  

 

Metals (mg/kg) Metals (mg/kg) 

Calcium (Ca) 63,935 Copper (Cu) 85 

Iron (Fe) 23,909 Vanadium (V) 75 

Aluminium (Al) 10,984 Nickel (Ni) 70 

Magnesium (Mg) 5,872 Zinc (Zn) 64 

Silica (Si) - acid soluble 3,416 Barium (Ba) 49 

Phosphorus (P) 993 Chromium (Cr) 31 

Manganese (Mn) 877 Lead (Pb) 9 

Potassium (K) 770 Cobalt (Co) 9 

Sodium (Na) 413 Mercury (Hg) < 0.01 
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Figure 3.2 Elemental composition of the recycled concrete used in the column 

experiments (Regmi et al., 2011a) 

 

3.3 Laboratory experimental set up 

The input solution for the column was a synthetic acidic water (Table 3.2) prepared 

as to be comparable to the average groundwater from ASS terrain in southeast NSW, 

Australia as presented by Indraratna et al. (2014) and Pathirage et al. (2012). 

Previous investigators (Regmi et al., 2011b, Jurjovec et al., 2002, Komnitsas et al., 

2004, Waybrant et al., 2002) have also used synthetic water in laboratory 

experiments to understand the geochemistry behind the remediation of contaminated 

groundwater as it provides consistent influent characteristics throughout the 

experimental period.  
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Table 3.2 Water Chemistry of the influent solution prepared for column experiment 
simulating the water chemistry of the acidic groundwater in ASS terrain presented in 

Indraratna et al. (2014) and Pathirage et al. (2012). 
 

Parameter Values 

pH 2.67 

ORP a  (mV) 610  

Acidity b (mmol eq/L) 6.45  

Na+ (mg/L) 504.2  

K+ (mg/L) 50.1 

Ca2+ (mg/L) 152.2 

Mg2+ (mg/L) 118.0 

Al3+ (mg/L) 54.0 

Fe3+ (mg/L) 49 

Cl- (mg/L) 849.0 

SO4
2- (mg/L) 1450.0 

Note: a ORP – Oxygen Reduction Potential, b Acidity was measured equivalent with respect 
to CaCO3. 
 

 

Laboratory column experiments were carried out under constant flow condition. A 

flow rate of 1.2 mL/min was applied using a Masterflex peristaltic pump (Figure 

3.3). Two simultaneous column experiments were run as suggested by Johnson et al. 

(2005). One column was for sampling and the other one to take pressure readings 

along the column length at every 100 mm interval. The purpose of running two 

simultaneous columns instead of one column was to eliminate the impact of 

sampling activities on the pressure in the column (Johnson et al., 2005). It was 

important to not disturb the pressure of the column, because pressure readings 

collected by pressure transducers were used to calculate the hydraulic conductivity 

along the column. The inlet and outlet column pressures at the onset were measured, 

which were almost the same. The input and environmental conditions were 



66 

 

maintained the same for both columns, so the pressure readings calculated at each 

port was assumed similar to the respective sampling port at the same height in the 

other column. The experiments were conducted in transparent acrylic columns 

(Figure 3.3; Internal diameter × Length = 50 mm × 650 mm). The columns had 100 

mm of silica sand at the bottom followed by 500 mm of crushed recycled concrete, 

and topped with another 50 mm of silica sand. Pure silica sand (chemically inert) 

placed at the top and bottom of the columns provided effective filtration for the 

simulated groundwater. The influent and effluent ports were separated from the silica 

sand using a geotextile separator to prevent physical clogging by sand. The water 

flow was directed from bottom to top to maintain saturated conditions. The physical 

parameters of the packing materials and flow rate used in these columns are shown in 

Table 3.3. The porosity was determined by dividing the total void volume by the 

volume of the column while the total void volume was determined by weighing the 

column dry and fully saturated.  

 

Table 3.3 Physical parameters of the column experiments. 

Physical parameters SC PTC 

Porosity (%) 69 69 
Mass of concrete (g) 1415 1413 

Bulk density (g/cm3) 1.22 1.22 

Flow rate (mL/min) 1.2 1.2 

ANC (g/Kg) 146 146 
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3.4 Results and Discussion 

3.4.1 Acid neutralisation behaviour 

A step-wise decrease in pH profile was observed in the sampling column (SC) and 

pressure transducer column (PTC) as the number of PVs passed through the column 

increased (Figure 3.5). The pH of the effluent collected at the beginning of the 

experiment for the SC and PTC was high (pH 9.69 and 9.14, respectively). From 

here onwards the change in pH will be discussed for the results obtained with respect 

to the SC as both SC and PTC have a similar pH profile. The reaction between the 

acidic water and the concrete that caused leaching of the Ca also reduced the pH of 

the effluent from pH 9.7 initially to 8 within 15 PVs (Figure 3.5), after which there 

was a slow decrease (pH dropped from 7.9 at 25 PV to 7.5 at 125 PV), a faster drop 

from pH 7.5 at 125PV to about 6.8 at about 185 PV, a rapid drop from pH 6.8 at 185 

PV to 4 at about 215 PV, and then another period with a slower rate of decrease from 

pH 4 at 215 PV to 3.1 to about 295 PV at test termination. According to Indraratna et 

al. (2010), the initial drop in pH (after 15 PVs was passed through the column) was 

assumed to be due to the depletion of carbonate alkalinity. However, after reaching a 

pH value of 6.8 (after 190 PVs), it subsequently diminishes to 4 (Figure 3.5). This is 

probably due to the OH- being in equilibrium during the depletion of carbonate 

minerals (Indraratna et al., 2010). Overall, the three different pH plateaus in Figure 

3.5 can be attributed to three distinct pH-buffering reactions as similar to seen in 

Regmi et al. (2011a):  

(1) dissolution of carbonate/bicarbonate alkalinity from the concrete at 

near-neutral pH, 

(2) re-dissolution of Al hydroxide minerals at pH ~4.5, and  

(3) re-dissolution of ferric oxyhydroxide minerals at pH < 3.7. 



70 

 

Bicarbonate Buffering 

Among the above mentioned three buffering reactions, carbonate/bicarbonate 

buffering was the most significant for remediating acidic groundwater by 

maintaining an almost neutral pH and complete removal of Al3+ and total Fe from the 

influent solution. The effluent collected after flushing the recycled concrete column 

with deionised water had a high pH (~9.7) due to the dissolution of a minor amount 

of portlandite, which when reacted with acid maintained alkaline pH (pH above 8). 

This initial condition lasted for 20 PVs corresponding to an ORP of 200 mV, which 

indicates weak oxidising conditions inside the column (Figures 3.5 and 3.7). As 

shown in Eqns. (3.1) and (3.2), hydroxyl and carbonate alkalinity are released by the 

dissolution of portlandite and through carbonation, respectively. 

  OHCaHOHCa 2
2

2 22      (3.1)

  OHCaCOCOOHCa 2322         (3.2)

The total alkalinity released was not strong enough to buffer the pH for a long 

period. This is evident from the rapidly decreasing pH at around 25 PVs Figure 3.5. 

Therefore, the buffering effect from Eqns. (3.1) and (3.2) are not significant enough 

for acid neutralisation. Moreover, total alkalinity decreased due to calcite 

precipitation during this buffering period (Figure 3.8). Subsequently, the effluent pH 

remained near-neutral (pH ~6.7-7.9) until ~180 PVs (Figure 3.8) due to the 

dissolution of calcium aluminate hydrated compounds (C-A-H) with continuous 

contact of acid with the reactive media (Eqn. (3.3)).   

44
32

82 228 SiOHAlCaHSiOCaAl   (3.3)

After about 25 PVs bicarbonate alkalinity is generated according to Eqns. (3.4)-(3.5) 

resulting in an increase in alkalinity in the column. 
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32
2

3 2 COHCaHCaCO    (3.4)

3222 COHOHCO      (3.5)

 

Figure 3.8 shows the alkalinity generation by the dissolution of Ca-bearing minerals 

from recycled concrete according to Eqns. (3.1)-(3.5). Al et al. (2000) observed that 

armouring of reactive carbonate mineral grains by the accumulation of secondary 

mineral precipitates during acid neutralisation diminished the rate of primary mineral 

dissolution. In the same manner, in this column experiment the pH decreased slowly 

when the mineral precipitates gradually coated the surface of the recycled concrete at 

the first plateau reaching a pH of 6.7 at 180 PVs. The pH then dropped immediately 

reaching the next plateau (pH 4.5-4.0) after the complete depletion of bicarbonate 

alkalinity at 190 PVs. 

 

The experimental values of pH at sampling points along the SC are shown in Figure 

3.6. In the SC, the rapid drop in effluent pH to 6.5 or below is attained within 25 PVs 

(Figure 3.6), which is fast due to the rapid neutralisation of acidity and the 

exhaustion of the reactive material at the entrance of the column. In contrast in SP1, 

2, 3, 4 and 5, excessive sampling of the column was avoided in order to ensure 

minimum disturbance to the flow. That is probably the reason why a rapid drop was 

not observed for the pH values inside the column (Figure 3.6).  
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Figure 3.5 Effluent pH of the sampling column (SC) and pressure transducer column 

(PTC) 
 

 

As shown in Figure 3.6, the pH at different sampling ports decreased rapidly in the 

lower parts of the column, corresponding to a sharp increase in ORP (Figure 3.7) due 

to a fast depletion of alkalinity at the advancing acid front. As a result of the decrease 

in pH (Figure 3.6) and increase in ORP (Figure 3.7), the depletion of both alkalinity 

(Figure 3.8) and Ca released from the system was slower in the top part of the 

column relative to the bottom part of the column.  
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Figure 3.6 pH at sampling points along the column 
 

The increase in pH due to acid neutralisation reactions can lead to a prominent 

decline in the concentration of dissolved metals, mainly Al3+ and total Fe (Fe2+ and 

Fe3+) due to precipitation. However, the observed concentrations of K+, Mg2+, Na+, 

Cl- and SO4
2- at the sampling points were comparatively constant throughout the 

entire experiment (Figure 3.9), which indicates that they were unaffected and were 

not influenced by the neutralisation reactions. In the same manner, Watzlaf et al. 

(2000) also reported that in 10 different anoxic limestone drains (ALDs), SO4
2- levels 

were unaffected by the ALDs.  
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Figure 3.7 ORP at sampling points along the column 
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Figure 3.8 Alkalinity at sampling points along the column 
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Ferric oxy/hydroxide buffering 

After the exhaustion of Al oxy/hydroxide buffering, the next pH plateau was 

observed at around 270 PVs where the pH dropped to 3.5. This plateau was 

identified as the Ferric oxy/hydroxide buffering zone, which reached a pH of 3.1 at 

295 PVs (Figure 3.5). After that the column experiments were terminated as the 

effluent pH almost reached the acidic influent pH. This interpretation is also 

supported by the increase in the total Fe concentration after reaching the third pH 

plateau at 265 PVs (Figure 3.10). 
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Figure 3.10 Effluent concentrations of Al3+ and total Fe 
 

3.4.2 Al and Fe precipitation 

Two of the most important attributes in the bicarbonate buffering zone are the almost 

complete removal of Al3+ (> 99%) (Figure 3.11) and total Fe (Figure 3.12). This 

indicated that the Al3+ and total Fe precipitated out of solution. In the early stages of 
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the experiment, most of the Al in the synthetic groundwater precipitated shortly after 

entering the column and was no longer in the pore water (Figure 3.11). 

 

Al3+ tends to precipitate when the pH is above 4.5. Al3+ was observed in the effluent 

water for the first time when the pH of the effluent dropped to 4, after which the 

concentration of Al3+ continued to increase (Figure 3.11) because of its high 

solubility at pH<4. Correspondingly, Fe also precipitated when the pH exceeded 3.5. 

Until 205 PV, the effluent pH did not drop below pH 3.5; accordingly, the Fe content 

of the effluent (<1 mg/L) was negligible throughout the duration of the column test 

(Figure 3.12).  
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Figure 3.11 Al3+ concentration at the sampling points along the column 
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Figure 3.12 Total Fe (Fe2+ and Fe3+) concentration at the sampling points along 
the column 

 

In order to study the mineral precipitation out of solution, especially taking Al3+ and 

Total Fe (Fe2+ and Fe3+) into account, saturation indices (SI) were calculated using 

PHREEQC software. The calculated SIs of minerals at all the sampling points is 

illustrated in the geochemical algorithm development section in Chapter 5. These 

results demonstrate that the effluent was saturated with respect to Al minerals 

(gibbsite, boehmite and diaspore) and Fe minerals (hematite, maghemite, goethite, 

lepidocrocite, ferrihydrite) in the first pH plateau, where almost neutral pH was 

observed (Figure 3.5). Likewise, previous studies of field installations of PRBs and 

column tests also report precipitates of ferrous/ferric (oxy/hydroxide) oxides and Al 

hydroxides (Mackenzie et al., 1999, Puls et al., 1999a, Vogan et al., 1999, Phillips et 

al., 2000, Roh et al., 2000, Golab et al., 2009b). 
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Furthermore, in this study, the precipitation was evidenced by the hydraulic 

conductivity reductions calculated using the pressure transducer data (from PTC) at 

the corresponding sampling points. The hydraulic conductivity reductions were a 

maximum near where the water entered the column (Zone 1) and decreased with 

distance along the column (i.e. clogging in Zone 1 > Zone2 > Zone 3 etc.) (Figure 

3.13). The precipitation of secondary minerals significantly decreases the efficiency 

of the reactive material due to the armouring effect (armouring is the coating of 

reactive surfaces of recycled concrete by precipitating minerals) (Indraratna et al., 

2014).  
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Figure 3.13 Hydraulic conductivity values in Zone (1): SP0-SP1, Zone (2): SP1-SP2, 
Zone (3): SP2-SP3, Zone (4): SP3-SP4, Zone (5): SP4-SP5 

 
Direct measurement of porosity using the porosity meter (Trani and Indraratna, 

2010) did not provide reliable readings due to the internal disturbance of the 

specimen surrounding the probe tip. In order to get a basic idea of changes in 
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porosity within the column due to the precipitation of Al- and Fe-bearing minerals, 

the method adopted by Banasiak et al. (2014) was used. First, the influent and 

effluent concentration of Al and total Fe throughout the column experiment was 

plotted. As a constant influent concentration was employed, the volume of Al3+ and 

total Fe retained within the column was obtained through subtraction of the 

integrated data of the influent curve (computed using OriginPro 9) from the 

integrated data of the effluent curve. This was then multiplied by the pore volume of 

the column (0.8035 L) to give the volume of Al3+ and total Fe precipitated. Using the 

molar volume of the predominant Al- and Fe-bearing precipitates formed within the 

column (gibbsite Al(OH)3 31.97 cm3/mole; goethite FeOOH 20.33 cm3/mole), the 

volume occupied by each mineral (VP) was calculated. VT is the total volume of the 

column. The porosity within the column (nt) at different PVs with the change of 

precipitated minerals with time was calculated using Eqn. (3.6): 











T

P
t V

V
nn 0  (3.6)

 

It is evident from Figure 3.14, that at SP1, 2 and 3 the porosity reductions were 

taking place due to Al and Fe mineral precipitation. When Al oxy/hydroxide 

buffering started at 190 PVs the change in porosity started to increase further proving 

the re-dissolution of Al minerals in this zone. Furthermore, the reduction in porosity 

at SP2 and 3 slowed down after 250 PVs due to the re-dissolution of Fe minerals. 

Once the ANC was exhausted at the entrance and middle zones (SP1, 2 and 3), the 

neutralisation process started to take place at the exit zone of the column (SP4 and 

5). As a result, a rapid decrease in porosity was observed at SP4 and 5 after 200 PVs 

till the end of the experiment. 
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Figure 3.14 Normalised porosity (manually calculated) within the column 

 

The efficiency of recycled concrete would already have decreased to some extent by 

the exhaustion of the alkalinity of the materials. The theoretical ANC of the recycled 

concrete in the columns was 146 g/Kg. ANC of the recycled concrete was analysed 

following the Acid Sulfate Soil Laboratory Method Guidelines 2004 (Ahern et al., 

2004). The actual ANC was measured as the number of PVs of acidic water treated 

before the pH fell below the near-neutral value, and the theoretical ANC was the 

total PVs of the acid that the material should treat without armouring. Likewise, the 

column (PTC) treated 185 PVs (Figure 3.5). However, the theoretical ANC of the 

concrete until the complete depletion of alkalinity without armouring was 400 PVs. 

Therefore, the loss in ANC of the reactive material by armouring was considerable 

(>50% in all cases) compared to the loss of ANC efficiency by exhaustion of 

alkalinity. This situation arises because of the reduction in dissolved ions in the 

solution available to precipitate as the water moves through the column. The pores in 
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the column were large enough that complete occlusion of the pores did not occur due 

to secondary mineral precipitation and hence the flow could be maintained (with an 

increase in pressure) throughout the experiment (Indraratna et al., 2014). Although 

accelerated field conditions were provided in the column experiment, the clogging 

amount was not significant to totally clog the porous media. This provides stable 

information that the longevity of the field PRB would not significantly be hindered 

due to clogging. A similar trend in hydraulic properties was observed by Li et al. 

(2005) for the pilot-scale PRB (containing granular Fe) conducted at Moffett Federal 

Airfield and U.S. Coast Guard Support Centre. 

3.5 Summary 

This chapter described the laboratory column experiments carried out to confirm the 

suitability of the reactive material for remediating the acidic leachate full with high 

concentrations of metal ions such as Al and Fe. Two laboratory column tests were 

conducted with synthetic groundwater to evaluate the acid neutralisation behaviour 

and assess the capacity of recycled concrete for treating acidic water under 

accelerated flow conditions. The results confirmed that the treatment mechanism is 

mainly controlled by the release of carbonate/bicarbonate alkalinity into the system 

and the precipitation of Al and Fe in forms of oxide, oxy-hydroxide and hydroxide 

minerals. The results established that recycled concrete could effectively treat acidic 

groundwater from ASS terrain, resulting in near-neutral effluent pH over a long 

period with complete removal of Al3+ and total Fe. 

 

The accumulation of secondary minerals on the reactive surface of recycled concrete 

and in the void spaces decreased the reactivity of the reactive medium. Chemical 

armouring decreased the ANC of the recycled concrete more than 50% compared to 
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its theoretical ANC. Furthermore, high concentrations of Al3+ and total Fe caused a 

rapid decrease in ANC efficiency due to neutralisation. As a result of that hydraulic 

conductivity reduction was evident from the pressure transducer data. The hydraulic 

conductivity reductions were a maximum near where the water entered the column 

(Zone 1) and decreased with distance along the column (i.e. clogging in Zone 1 > 

Zone2 > Zone 3 etc.) 
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Chapter 4 Permeable Reactive Barrier 

4.1 Introduction 

This chapter outlines the information pertaining to the study site information of the 

pilot-scale PRB installed in the Shoalhaven Floodplain, about 100 km south of 

Sydney, Australia. This PRB was installed in a shallow aquifer containing acidic 

water from ASS affected agricultural farmland, near Bomaderry, in October 2006. 

Moreover, this chapter provides detailed information of the monitoring network used 

to analyse performance of the PRB and a brief outlook for the chemical properties of 

the soil and groundwater parameters at the field site. Finally, this chapter examines 

the performance of the PRB by comparing water quality data up-gradient, inside and 

down-gradient of the PRB over a 6.5 year monitoring period. pH, ORP, 

concentration of major anions and cations of groundwater at the study site are the 

main parameters discussed. 

4.2 Study site 

The study site is situated in the Lower Shoalhaven Floodplain, near Bomaderry 

(3449’S, 15039’E), south-eastern NSW, Australia (Figure 4.1). The PRB is 

installed in farming land (1000 ha) on Manildra Group’s Environmental Farm. The 

study site is adjacent to a flood mitigation drain that flows into Broughton Creek, a 

left bank tributary of the Shoalhaven River. A DEM of the catchment (Figure 4.1) 

shows that the topography of the study site is very low-lying (prone to flood in heavy 

rainfall events) with an elevation ranging from 0 to 1.25 m AHD (Australia height 

datum). 

 



 

 
Fiigure 4.1 DEM o

85 

of the Broughtonn Creek catchmeent 

Study Sitee 



 

Figure 4.2 Locaation of the studyy site, as indicat

86 

ed by star, showwing ASS high ri

 

sk areas (Indraraatna et al., 2010))



87 

 

The distribution and location of ASS in the Broughton Creek catchment with 

different level of risks susceptible to acidification are shown in Figure 4.2. Both the 

DEM and ASS risk map of the Broughton Creek catchment (Figures 4.1 and 4.2, 

respectively) show that the surface topography of the study site is typical of ASS 

sites found in low-lying landscapes throughout NSW. 

 

A detailed site characterisation was carried out for over a year prior to installing the 

PRB to understand the site specific parameters, which include monitoring of 

variations in the phreatic surface and chemical composition of the groundwater, 

analysis of soil hydraulic conductivity, porosity and grain size, and the geophysical 

techniques to estimate the hydraulic conductivity of the area (Indraratna et al., 2010). 

 

The PRB site has the following properties (Golab and Indraratna, 2009, Indraratna et 

al., 2010): 

1) The groundwater is acidic with high Al (≤ 60 mg/L) and Total Fe (≤ 300 

mg/L) concentrations; 

2) A drain is in close proximity for the treated groundwater to flow into; 

3) The site is low-lying (0-1 m AHD) and, therefore, not suitable for weirs or 

two-way floodgates because of the elevated risk of flooding; 

4) Easily accessibility, thus allowing monitoring during both wet and dry 

periods; and 

5) No man-made structures present at the site; therefore, providing easy access 

for excavators and other heavy equipment to be brought to the site. 
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Observation wells and data loggers were installed to obtain the water quality 

parameters in a timely manner to monitor the performance of the PRB. In total, 10 

observation wells (50 mm in diameter), two wells for data loggers (100 mm in 

diameter) and six piezometers were initially installed inside the PRB along five 

transects roughly parallel to the groundwater flow, as shown in Figure 4.5. Two 

multi-parameter automated data loggers were mounted to the data logger wells so 

that the tip of each data logger was around 300 mm from the well base, to ensure that 

the data logger probes are submersed in groundwater, even in extreme drought 

conditions. Each data logger was calibrated and set to record pH, DO, water pressure 

and temperature every hour. In addition, 20 more observation wells (2 m deep, 50 

mm external diameter) were installed up and down-gradient of the PRB. Overall, a 

total of 36 observation wells and 15 piezometers were installed inside, up-gradient 

and down-gradient of the PRB to monitor phreatic surface variations, hydraulic 

gradients, permeability and groundwater chemistry (Figure 4.4).  

 

4.3 Properties of soil at the study site 

Soil samples were collected at two bore holes to characterise the vertical distribution 

of soil at the study site. A wide range of soil chemical properties can be used to 

describe pyritic soils, such as, total actual acidity (TAA) and reduced organic sulfur 

content. A Drillmite petrol fuelled hydraulic powered auger was used to excavate the 

boreholes. The auger was fitted with a 63 mm cutting head that had a 300 mm length 

hollow section for soil retrieval. Measurement marks were made along the auger 

shaft to make excavation depth more easily identifiable during the drilling process. 

Two boreholes were sampled and soil was extracted at 500 mm intervals starting 0.5 

m below the ground level. The first bore, was located up-gradient of the PRB and 
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samples were taken to 2 m depth below ground level. The second borehole was 

down-gradient of the PRB and samples were extracted to 2.5 m below the ground 

level. 

 

Total Actual Acidity (TAA) 

The TAA is the amount of acidity stored in the soil. This does not include un-

oxidised pyrite or any potential acid sources. Analysis was conducted by Southern 

Cross University Environmental Analysis Laboratory for net acidity in mole H+/ 

tonne. This Net acidity value is derived from Eqn. (4.1) showing that the key 

elements are TAA and reduced inorganic sulfur or potential sulfidic acidity. As the 

values for retained acidity and acid neutralising factor are zero they have no 

significance.  

NA = TAA + PSA + RA- ANC/FF  (4.1)

where, NA is the net acidity, PSA is the potential sulfidic acidity, RA is the retained 

acidity and ANC/FF is the acid neutralising factor with an FF of 1.5, all in moles 

H+/tonne. 

 

As can be seen in Figure 4.6 there is a significant change in acidity below a depth of 

1.5 m in both the up-gradient and down-gradient samples. The soils below this depth 

have a relatively lower TAA. This indicated the transition of AASS into PASS. The 

higher TAA values at 1.5 m demonstrate the generation of acid from past pyrite 

oxidation. Under acidic conditions, the hydrolysis of ferrous sulfate ions (Fanning, 

1993), and the dissolution of Fe oxyhydroxide mottles and/or jarosite, can generate 

acid in or above the AASS layer and add to the TAA concentration according to 

Eqns. (4.2)-(4.4).  
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Figure 4.6 Titratable actual acidity at different depths in the up-gradient and down-

gradient of PRB 
 

As can be seen in Figure 4.7 (A) at 0.6 m below the soil surface, evidence of ASS 

oxidation can be observed by the presence of yellow jarosite mottles. Jarosite is a by-

product of the pyrite oxidation process. This formation is dependent on the pH being 

less than 4. The resulting jarosite further hydrolyses the soil producing more acidity.   
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Soil stratigraphy at the study site can be described based on the visual information 

from an excavated pit (Figure 4.7 (B)). In general, Holocene estuarine deposits 

overlie undisturbed Pleistocene clays, but within the Holocene sediments, an AASS 

soil layer commonly overlies a PASS layer. Above the estuarine clays, alluvial 

deposits, formed within the past 4000 years (Umitsu et al., 2001), range in thickness 

depending on their geomorphic location (i.e. levee banks, levee toe or back swamp). 

In the Shoalhaven Floodplain, the layer of loamy alluvium overlying the AASS layer 

increases in thickness moving from the backswamp (0.5 m) to the levee toe (0.75 m) 

(Blunden, 2000). The soil layers at the study site can be generally divided into four 

(Figure 4.7 (B)): (i) topsoil enriched with organic soil and peat loam; (ii) AASS layer 

with Fe oxy/hydroxide mottles and/or jarosite; (iii) transition layer which includes 

seasonally oxidized sulfidic minerals; and (iv) PASS layer. Orange Fe oxy/hydroxide 

mottles and rusty yellowish mottles of jarosite are commonly found in the AASS 

layer. The elevation of this pyritic layer gradually increases towards the back 

swamps in the Shoalhaven Floodplain (Blunden, 2000, Glamore, 2003). 

 

Reduced Inorganic Sulfur Content  

Reduced inorganic sulfur (Stratful et al., 2001) is present in the form of pyrite for this 

particular site. Although the pyrite is not yet oxidised, should oxidisation occur then 

sulfur becomes soluble producing further acidity which mobilises heavy metals. In 

contrast to TAA, reduced inorganic sulfur content measures the potential for further 

acid generation under oxidising conditions. Therefore, reduced inorganic sulfur 

content is used to identify ASS and to estimate the amount of acid that could be 

formed by complete oxidation of the soil (Blunden and Naylor, 1995). As per the 

guidelines provided by Ahern et al. (2004), the classification of potential acid sulfate 
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material for fine grain soils is SCR ≥ 0.1% or 62 mole H+/tonne. From the graph in 

Figure 4.8, it can be seen that there is a significant change in reduced inorganic sulfur 

from 1.5 m depth. The values are over 0.1% indicating that un-oxidised pyrite is 

present at this depth. There is significant variation in values between the up-gradient 

and down-gradient sample. This graphical representation can be compared to that of 

the TAA results. As would be expected, typically where TAA is high, reduced 

inorganic sulfur is low and similar can be said for the reverse. Comparison of TAA 

and SCR shows the extensive storage of potential acidity throughout the PASS layer at 

this study site. 
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Figure 4.8 Inorganic reduced sulfur (SCR, %) at different depths in the up-gradient 
and down-gradient of PRB 

 

4.4 Performance monitoring in the PRB 

The performance of the pilot-scale PRB is demonstrated by the spatial and temporal 

distribution of water quality parameters such as groundwater pH and different ion 

concentrations after installation of the PRB. Groundwater quality parameters up-
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gradient, inside and down-gradient of the PRB were compared. Groundwater 

samples were collected monthly from the observation wells in acid washed 

polyethylene plastic bottles and analysed for basic cations (Ca2+, Mg2+, Na+, K+), 

acidic cations (Al3+ and total Fe), anions (Cl- and SO4
2-), acidity and alkalinity. Ca 

and Al were analysed using ICP-MS and Fe was analysed using AAS. All chemical 

analyses were performed following the standard method for water and wastewater 

(APHA, 1998). Results from column experiments confirmed that Ca2+, Al3+ and total 

Fe were the elements of primary importance in the acid neutralisation procedure 

taking between the recycled concrete and the acidic groundwater. Therefore, these 

three ions were monthly measured in the field samples. The remaining ions had no 

significant change, therefore, they were measured quarterly each year (Figures 4.15 

(B, C and D) and 4.16.  

 

4.4.1 Acid neutralisation 

After installation of the PRB on 20th October 2006, the groundwater pH inside the 

PRB increased slowly from 7.0 to 10.2 (Figure 4.9 (A)). In the same manner, a high 

pH value of 9.7 was observed at the start of the column experiments (Figure 3.5). 

The significant increase of pH in the PRB at the early stage was because at the start 

the recycled concrete in PRB was not fully saturated. Therefore, the PRB monitoring 

period was considered unstable until the concrete was fully saturated by heavy 

rainfall in March 2007 (Figure 4.9 (B)). Since then, the groundwater inside the PRB 

has consistently been alkaline to neutral ranging from pH 10.2 to 7.2 till now. This 

illustrates the success of the pilot-scale PRB in neutralising the acidic groundwater. 

Due to variability in groundwater flow patterns soon after the installation of PRB, pH 

down-gradient of the PRB did not increase immediately. However, after reaching 
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steady-state flow in February 2007, the average pH down-gradient of the PRB started 

to increase and reached ~6.2. The lower pH in the down-gradient compared with that 

inside the PRB is due to: (i) dilution of the effluent from the PRB and (ii) occasional 

mixing of acid generated in the soil because the PRB cannot control acid generation 

in the soil by pyrite oxidation. In addition, low pH at some observation wells down-

gradient during some dry periods (e.g. November 2006 and 2008) is possibly due to 

the flushing of large amounts of acidity stored within the soil by small rainfall 

events.  

 

The groundwater pH along the centreline shows significant improvement in 

groundwater inside and down-gradient of the PRB (Figure 4.10). This clearly 

illustrates the potential of the recycled concrete’s alkalinity generation to improve the 

down-gradient water quality. The groundwater pH in the observation wells varied 

greatly from 4.2 to 7.5 which are 4-12 m away from PRB (Figure 4.10). This is lower 

than the pH inside the PRB, but certainly higher than the acidic pH up-gradient of the 

PRB. 
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Figure 4.9 (A) Average groundwater pH up-gradient (from 8 observation wells), 
inside (from 10 observation wells and 2 data loggers) and down-gradient (from 12 

observation wells) of the PRB (B) Rain fall 
(updated after Regmi (2012))
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Figure 4.11 shows pH values of all the observation wells up-gradient of the PRB. All 

of them have very acidic pH below 4 from 2006 to 2013 indicating the widespread 

nature of acidic conditions at the study site. 
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The ORP in groundwater up-gradient of the PRB varies from 20 mV to 470 mV 

(Figure 4.12) indicating strong oxidising conditions. In ASS, high ORP 

measurements indicate the potential for pyrite oxidation. The variation in ORP 

depends on the diffusion of atmospheric oxygen into the soil matrix and is controlled 

by the groundwater elevation.  
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Figure 4.12 Groundwater ORP up-gradient of the PRB (updated after Regmi (2012)) 
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(updated after Regmi (2012)) 
 

 

The pH values in all the observation wells inside the PRB are neutral from the day it 

was installed and to date (Figure 4.13). This pH plateau observed inside the PRB is 

consistent with the first pH plateau observed in the column experiments caused by 
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the buffering by Ca-bearing minerals (i.e. anorthite, feldspars and calcite). These 

field conditions of 6.5 years further emphasize that recycled concrete is a promising 

and cost-effective alkaline material for the long-term remediation of acidic 

groundwater. However, the pH of some of the observation wells inside the PRB has 

been decreasing slowly at the entrance zone (i.e. OW18 and OW25, Figure 4.13). 

This might be due to exhaustion of the alkalinity generating minerals within the 

recycled concrete at the first point of contact with the acidic groundwater as well as 

assumed armouring of the reactive surface of the concrete by precipitates.  

 

4.4.2 Removal of Al3+ and total Fe (Fe2+ and Fe3+) from groundwater 

High concentrations of Al and Fe were observed up-gradient of PRB ranging from 

1.5-60 mg/L and 2-290 mg/L, respectively (Figure 4.14). The results obtained during 

the 6.5 years monitoring period in the PRB showed that most of the Al3+ and Fe 

contained in the groundwater precipitated rapidly when Ca-bearing alkaline minerals 

from the recycled concrete started to dissolve and thereby increased the groundwater 

pH. A rapid decrease in Al3+ and Total Fe can be seen inside the PRB and most 

importantly has been consistently less than 2 and 0.5 mg/L, respectively (Figure 

4.14).  

 

The concentrations of Al and Fe in the down-gradient increased with distance away 

from the PRB. This is probably due to the active and ongoing oxidation of pyrite in 

the soil, generating fresh acid, and the release of these metals from the clay minerals 

in the soil. During rainfall events, the treated groundwater from the PRB would mix 

with the in-situ acidic groundwater, thus causing an increase in Al and Fe 

concentration and decrease in pH. Furthermore, there is a chance that some untreated 
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groundwater from above, below and to the side of the PRB flows towards the down-

gradient monitoring area. Although, the concentrations down-gradient were higher 

than those inside the PRB, they were still lower than those up-gradient of the PRB. 
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Figure 4.14 (a) Al3+ and (b) Total Fe concentrations in groundwater along the 
centreline of PRB from July 2007 to April 2013 (updated after Regmi (2012)) 

 
Although the PRB cannot prevent further pyrite oxidation in the soil, the treated 

groundwater leaving the PRB can significantly improve the down-gradient water 

quality. These results indicate the outstanding removal efficiency (~95%) of the 

recycled concrete for both Al3+ and total Fe. 
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4.4.3 Other ions in groundwater chemistry 

Except for Ca2+, there is no apparent change in Na+, K+, Mg2+, Cl- and SO4
2- 

concentrations in the groundwater up-gradient and within the PRB as plotted in 

Figures 4.15 and 4.16. This confirms that these ions are not influenced by the 

neutralisation reactions occurring within the PRB. The inert nature of these ions is 

discussed in Chapter 5, where the geochemical algorithm is developed considering 

the most significant chemical reactions.  

 

Ca2+ was continuously released from the recycled concrete inside the PRB 

throughout the monitoring period. The dissolution of Ca-bearing minerals such as 

anorthite and calcite present in the recycled concrete has the potential to generate 

large amounts of carbonate/bicarbonate alkalinity to bring the pore water to near-

neutral pH. Chapter 5 elaborates all the associated chemical reactions in this 

carbonate/bicarbonate alkalinity buffering process. 
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Figure 4.15 Concentration of cations: (A) Ca2+, (B) K+, (C) Na+ and (D) Mg2+ in the groundwater inside and up-gradient of the PRB (updated 

after Regmi (2012))  

(A) (B) 

(C) (D) 
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Figure 4.16 Concentration of anions: (A) Cl- and (B) SO4
2- in the groundwater inside 

and up-gradient of the PRB (updated after Regmi (2012)) 
 

All the above data presents the performance of PRB over 6.5 years since the time it 

was installed. The neutral to alkaline pH and ~95% removals of Al3+ and total Fe 

from groundwater inside the PRB (Figure 4.13 and 4.14) shows its ability to 

remediate the acidic groundwater in ASS terrain. Concrete samples were removed 

from the PRB near OW26 (i.e. 40 cm from PRB entrance) 6.5 years after the PRB 

(A) 

(B) 
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was installed in order to study chemical armouring. These concrete samples had a 

negligible amount of precipitates coating the surface. The mineralogical analysis of 

these specimens is discussed later in Chapter 6. 

 

4.5 Summary 

This chapter described the outcomes of the first pilot-scale PRB using recycled 

concrete as the reactive media for the in-situ remediation of acidic groundwater in 

ASS terrain. Monitoring data showed that the recycled concrete could effectively 

sustain a near-neutral pH removing the main heavy metals, Al and Fe from 

groundwater over the 6.5 year monitoring period following installation of the PRB. 

However, it managed to improve the groundwater chemistry for some extent only in 

the down-gradient of the PRB due to on-going pyrite oxidation. 

 

Overall, the PRB has shown satisfactory performance over a 6.5 year time period, 

although a slight decrease in the pH and removal efficiencies (~95%) of Al and Fe 

towards the entrance zone of the PRB was observed. This was because that, some 

chemical armouring on the surface of the reactive media has occurred and affected 

the reactivity of the recycled concrete in that zone. Continuous precipitation within 

the PRB would decrease the surface area of the reactive material available for 

neutralising acidity over time, thereby, decreasing the longevity of the PRB. Hence, 

armouring is most likely the limiting factor on the performance of the PRB similar to 

that explained earlier in Chapter 3 through the results of column tests. 

 

In addition, the application of larger size concrete particles decreased the threat of 

clogging by the accumulation of precipitates in the pore spaces even under high 
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influent concentrations of Al3+ and total Fe. The recycled concrete is a suitable 

material because of its ability to effectively neutralise acidity and remove Al3+ and 

total Fe in conjunction with chemical armouring, in PRBs for the treatment of acidic 

water in ASS terrain.  
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Chapter 5 Development of the Geochemical 

Algorithm 

5.1 Introduction 

This chapter presents the development of the geochemical algorithm. This is the first 

step involved in modelling the groundwater flow and contaminant transport through 

PRB in ASS terrain. Chapter 3 described the acid neutralisation behaviour and metal 

removal capacity of the recycled concrete. This chapter will focus on the chemical 

reactions involved in the acid neutralisation and metal removal, and most importantly 

how they could be captured in the geochemical model. 

5.2 Bicarbonate buffering 

Regmi et al. (2009a) and (2011b) proposed three buffering reactions attributed to 

three distinct pH plateaus: 

1. dissolution of carbonate/bicarbonate alkalinity from the concrete at near-

neutral pH, 

2. re-dissolution of Al hydroxide minerals at pH ~4.5, and  

3. re-dissolution of ferric oxyhydroxides minerals at pH < 3.7. 

 

Among these three buffering reactions, carbonate/bicarbonate buffering was the most 

significant and vital in terms of remediating acidic groundwater by maintaining an 

almost neutral pH and complete removal of Al3+ and total Fe from the influent 

solution. The cementitious minerals responsible for alkalinity generation in the 

concrete are portlandite (Ca(OH)2) and C-A-H (Regmi et al., 2011b). Additionally, 

some CaCO3 may have already formed in the recycled concrete aggregate due to the 
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carbonation of these minerals present in hydrated cementitious materials (Tam et al., 

2005). Dissolution of the Ca-bearing minerals from the concrete, as shown in Eqns. 

(5.1)-(5.5), released Ca and increased the alkalinity with a potential to maintain the 

effluent pH near-neutral. 

 

  OHCaHOHCa 2
2

2 22  

 
(5.1)

  OHCaCOaqCOOHCa 2322 )(   (5.2)

44
32

822 228 SiOHAlCaHOSiCaAl   (5.3)

32
2

3 2 COHCaHCaCO  

 
(5.4)

3222 )( COHOHaqCO   (5.5)

      

5.3 Precipitation of Al- and Fe-bearing minerals 

The near-neutral pH maintained by carbonate/bicarbonate buffering favoured the 

precipitation of Al and Fe as oxides, oxyhydroxides and hydroxides as shown in the 

following chemical reactions in Eqns. (5.6)-(5.12) (Regmi et al., 2009a). 

 

  aqS HOHFeOHFe 3)(3 )(32
3

 
(5.6)

  aqHOOHFeOHFe 3)(2 2
3

 
(5.7)

  aqHOFeOHFe 632 322
3

 
(5.8)

)()(32
3 3)(3 aqS HOHAlOHAl  

 
(5.9)

)(2
2 )()(2 SOHFeOHFe  

 
(5.10)

)(3
2
3

2
SFeCOCOFe  

 
(5.11)
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)(3
2
3

2
SCaCOCOCa  

 
(5.12)

   

5.4 Geochemical Algorithm 

A systematic geochemical algorithm was developed using the Transition State 

Theory (TST) used by Jeen et al. (2012), Li and Benson (2005), Mayer et al. (2006), 

Regmi et al. (2011a) and Yabasuki (2001). This is the first time, a geochemical 

algorithm has been developed for treating acidic groundwater using a recycled 

concrete filled PRB. There are twelve primary mineral dissolution-precipitation 

reactions as shown in Regmi et al. (2009b).  

 

The Transition State Theory (TST) (Eyring, 1935) is used to model a hypothetical 

transition state which exists between reactants and products during a chemical 

reaction. The species formed during this hypothetical transition state is called the 

activated complex, which is used to explain how chemical reactions take place 

(Petrucci et al., 2006a). Transition state theory can be classified under three main 

headings: (1) thermo-dynamic treatment, (2) kinetic-theory treatment, and (3) 

statistical-mechanical treatment. The theory suggests that as reactant molecules 

approach each other (closely), they are momentarily in a less stable state than either 

the reactants or the products. The example below shows the transition stage clearly. 
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To confirm the adoption of these twelve reaction equations in the geochemical 

algorithm, inverse geochemical modelling has been carried out by Regmi et al. 

(2009a) because the speciation calculation through equilibrium modelling could not 

predict the minerals that were deposited by chemical reactions. This inverse 

modelling considered all the possible mineral phases obtained in the speciation 

calculation of the water sample up-gradient and inside the PRB. The phase mole 

transfer in inverse geochemical modelling (Table 4.1) for different minerals which 

confirms the precipitation of Fe and Al in different forms of hydroxides and 

oxyhydroxides and carbonates. This verifies the possible reactions described in Eqns. 

(5.6)-(5.12) (Regmi et al., 2009a). 

Table 4.1 Phase Mole Transfer of minerals from inverse geochemical modelling (+ 
sign: Dissolution, – sign: Precipitation) (Regmi et al., 2009a) 

Minerals Chemical Formula 
Phase mole transfer 

minimum Maximum 

Al(OH) 3 Al(OH)3 -7.51× 10-4 -4.57×10-4 

Alunite KAl3(SO4)2(OH)6 -2.73×10-4 -1.27×10-4 

Anhydrite CaSO4 -1.04×101 -6.58×100 

Aragonite CaCO3 -1.54×101 +8.55×10-3 

Calcite CaCO3 -1.54×101 +8.55×10-3 

Dolomite CaMg(CO3)2 -9.5×10-4 -9.47×10-3 

Fe(OH) 3 Fe(OH)3 -3.47×10-3 -2.89×10-7 

Gibbsite Al(OH)3 -6.23×10-4 -1.10×10-4 

Goethite FeOOH -3.47×10-3 -2.89×10-7 

Gypsum CaSO4:2H2O +6.58×100 +1.04×101 

Halite NaCl +3.89×10-3 +5.57×10-3 

Hematite Fe2O3 -1.74×10-3 -1.45×10-7 

Siderite FeCO3 -3.37×10-3 -7.64×10-4 
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where, r is the rate of mineral precipitation (r > 0) or dissolution (r < 0), keff is an 

effective rate coefficient, IAP is the ion activity product, and Keq is the solubility 

constant for the reaction. The overall reaction rates for each aqueous and solid 

species are shown in the following algorithm: 
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The overall reactive kinetics for each species in the algorithm is listed as: 
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All the mi values are considered for a volume of 10-3 m3, which is equivalent to 1 L (i 

= all the solid phase minerals) (Indraratna et al., 2014). 

 

5.5 Saturation index (SI) 

Li (2005) used the extended Debye-Huckle equation for the activity correction and 

data provided in Krauskopf et al. (1995) for the solubility constants. In this study, 

saturation indices (SI), which can be calculated from PHREEQC software, were used 

to get the value for IAP/ Keq as given in Eqn. 5.14 (Regmi et al., 2011b, Walter et al., 

1994a). 
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   eqKIAPSI loglog   (5.14)

 

SIs for minerals dissolving (SI<0) and precipitating (SI>0) were calculated from 

PHREEQC software based on the concentration of Na+, K+, Ca2+, Mg2+, Al3+, Fe3+, 

Cl- and SO4
2-in the influent water along with alkalinity, pH and temperature. The 

mineral reactions and geochemical algorithm are given in Sections 5.3 and 5.4, 

respectively. The effective rate coefficient (keff) was assumed to be time invariant and 

spatially homogeneous throughout the simulation (Li and Benson, 2005).  

 

Figures 5.3-5.9 show the saturation indices of Ca, Al and Fe minerals for the column 

experiments. PHREEQC was run for five different zones as the model output was 

expected to give effluent concentrations at five different heights along the column. 

At Zone 1, influent concentrations were the synthetic water prepared at the 

laboratory. For Zone 2, the effluent water concentrations coming out of Zone 1 from 

the model output was used as influent concentrations. Likewise for Zone 3, model 

output from Zone 2, for Zone 4: model output from Zone 3 and for Zone 5: model 

outputs from Zone 4 were used as the input concentrations. The results obtained for 

SIs show a promising trend of precipitating and dissolving minerals. 

 

The SIs of Ca-bearing minerals (Figure 5.3 A) in the recycled concrete are negative, 

implying that they dissolve at that stage (Zone 1) of the experiment. These dissolved 

Ca-bearing minerals provide the alkalinity to remediate the acidity and precipitate 

out the Al and Fe as their oxyhydroxides and/or hydroxides. Positive SI values 

shown in Figure 5.3 B and C indicate the precipitation of these minerals. This model 

was run from 40 PV, and that is why the Al minerals still show negative SI values, 
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suggesting re-dissolution of some Al minerals that precipitated during the early phase 

of the experiment from the bottom of the column. This supposition was supported by 

rapid depletion of pH and alkalinity the bottom of the column at all sampling points 

(Chapter 3 Figures 3.6 and 3.8, respectively). 
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Figure 5.4 A, clearly indicates the dissolution of Ca bearing minerals in Zone 2 and 

the associated precipitation of Al and Fe oxyhydroxides/hydroxides. Compared to the 

precipitation of Al and Fe oxyhydroxides/hydroxides in Zone 1 (Figure 5.3), Zone 2 

and 3 had more Al and Fe oxyhydroxides/hydroxides precipitating (Figure 5.4 B, C 

and Figure 5.5 B and C).  

 

Moreover, with the saturation indices being positive, there is evidence of Ca bearing 

minerals getting precipitated out of solution as calcite (CaCO3), dolomite 

(CaMg(CO3)2) and gypsum (CaSO4.2H2O) in Zone 3 (Figure 5.5 A). Almost similar 

behaviour can be seen at the exit face (Zone 4 and 5) of the column as shown in 

Figures 5.6 and 5.7, respectively. The saturation indices of Al and Fe are also higher 

than that of seen in the entrance and middle zones of the column (Figure 5.6 B, C and 

Figure 5.7 B, C). This implies that the favourable condition of neutral pH is available 

at the exit zones throughout the experiment until the termination of the experiment. 

 

The laboratory column experiments were terminated soon after the effluent 

concentration dropped to around pH 3.5, because as a whole, the reactive material in 

the column gets exhausted. The reactivity or the alkalinity produced by the recycled 

concrete was not enough to cope up with the influent acidity. If the column 

experiment was run for some more time, the reactivity of the recycled material 

present at Zones 3, 4 and 5 would also be exhausted totally and the precipitated Al 

and Fe oxyhydroxides/hydroxides would start to re-dissolute as seen in Zone 1 

(Figure 5.3). 
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5.6 Summary 

Development of the geochemical algorithm was the first step involved in modelling 

the groundwater flow and contaminant transport through PRB in ASS terrain. 

Twelve primary chemical reactions involved in the acid neutralisation and metal 

removal were captured in the geochemical model. These reactions are responsible for 

the most important phase of the acid neutralisation: bicarbonate buffering zone, for 

the ability to remediate acidic groundwater by maintaining an almost neutral pH and 

complete removal of Al3+ and total Fe from the influent solution. The kinetics of 

mineral precipitation/dissolution was assumed to follow transition state theory. SIs 

for minerals dissolving (SI<0) and precipitating (SI>0) were calculated from 

PHREEQC software based on the concentration of Na+, K+, Ca2+, Mg2+, Al3+, Fe3+, 

Cl- and SO4
2-in the influent water along with alkalinity, pH and temperature for all 5 

zones in the column. 
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Chapter 6 Model application to column 

experiment and field PRB 

6.1 Introduction 

This chapter elaborates the multi-component reactive transport model developed for 

acidic groundwater remediation with the use of recycled concrete. It shows how the 

geochemical algorithm developed (in Chapter 5) for the reactions taking place 

between recycled concrete and acidic groundwater will be used to model the fate and 

transport of contaminants. Commercially available numerical codes, MODFLOW 

and RT3D were used for this purpose. Formulation of these finite difference codes is 

introduced and the mathematical model to calculate the head of groundwater flow 

has been developed and illustrated. One-dimensional reactive transport modelling 

was conducted based on data from laboratory column experiments to describe the 

geochemical evolution of groundwater along a flow path in the column experiment. 

Moreover, the model was applied to the field PRB, along a transect passing through 

the centreline of the PRB. Changes in the geochemical composition of the 

contaminated groundwater within the PRB after treatment with recycled concrete are 

also addressed. The processes potentially affecting the long-term performance of the 

PRB were investigated. The optimum width for another possible PRB is calculated 

considering the reaction kinetics and residence times. 

 

6.2 MODFLOW and RT3D 

The software codes MODFLOW and RT3D were used to simulate the transport and 

fate of contaminants in the PRB. In MODFLOW, groundwater flow is simulated 
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using a block-centred finite-difference approach (Harbaugh, 2005). The three-

dimensional movement of groundwater of constant density through porous material 

is described by the following partial differential Eqn. (6.1): 
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(6.1) 

 

where, Kxx, Kyy, and Kzz are values of hydraulic conductivity along the x, y, and z 

coordinate axes, which are assumed to be parallel to the major axes of hydraulic 

conductivity (L/T), h is the potentiometric head (L), W is volumetric flux per unit 

volume representing sources and/or sinks of water, with W<0.0 for flow out of the 

groundwater system, and W>0.0 for flow into the system (T-1), SS is the specific 

storage of the porous material (the volume of water that can be injected per unit 

volume of aquifer material per unit change in head) (L-1), and t is time (T). 

 

Eqn. (6.1) describes groundwater flow under non-equilibrium conditions in a 

heterogeneous and anisotropic medium, provided that the principal axes of hydraulic 

conductivity are aligned with the coordinate directions x, y and z. Eqn. (6.1), implies 

that the flow and/or head conditions at the boundaries of an aquifer and specification 

of initial head conditions constitutes a mathematical representation of a groundwater 

flow system. An analytical solution of Eqn. (6.1) is the algebraic expression giving 

h(x,y,z,t) when the derivatives of h with respect to space and time are substituted into 

Eqn. (6.1), provided that the equation and its initial and boundary conditions are 

satisfied. A time varying head distribution of this nature characterises the flow 

system. It measures both the energy of flow and the volume of water in storage, and 

can be used to calculate directions and rates of movement. Except for very simple 

systems, analytical solutions of Eqn. (6.1) are rarely possible, so various numerical 
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methods must be employed to obtain approximate solutions (Harbaugh, 2005, Rowe 

et al., 2004).  

 

One such approach is the finite difference method, wherein the continuous system 

described by Eqn. (6.1) is replaced by a finite set of discrete points in space and time. 

The partial derivatives are replaced by terms calculated from the differences in head 

values at these points. The process leads to systems of simultaneous linear algebraic 

difference equations. Their solution yields values of head at specific points and 

times. These values represent an approximation to the time varying head distribution 

that would be given by an analytical solution of the partial differential equation of 

flow. In Eqn. (6.1), head (h) is a function of time as well as space. Therefore, in the 

finite difference formulation, discretisation of the continuous time domain is also 

required. Time is broken into time steps, and the head is calculated at each time step.  

 

Development of the groundwater flow equation in finite difference form pursues 

from the application of the continuity equation. In the continuity equation, the sum of 

all flows in and out of the cell must be equal to the rate of change in storage within 

the cell. Assuming that the density of groundwater is constant, the continuity 

equation expressing the balance of flow for a cell is: 

 



 V
t

h
SSQi  (6.2)

 

where, Qi is the flow rate into the cell (L3T-1), ΔV is the volume of the cell (L3), and 

Δh is the change in head over a time interval of Δt. 

 



 

The right 

into storag

stated in 

defining 

(Harbaugh

Figure 6.1

 

Figure 6.1

1,k; i,j+1,

cell i,j,k (

from all te

from cell i

side of the 

ge over a ti

terms of in

outflow as

h, 2005). 

1 Indices for

1 shows six 

k; i,j,k-1; an

(the negativ

erms). Follo

i,j-1,k (Figu

continuity 

ime interva

nflow and 

s negative 

r the six adj

aquifer cell

nd i,j,k+1. T

ve sign usu

owing these

ure 6.2), is g

13

equation is

al of Δt giv

storage gai

inflow an

jacent cells 

200

ls adjacent 

The flows a

ually incorp

e convention

given by Da

1 

s equivalent

ven a chang

in. Outflow

nd loss as

surrounding

5) 

to cell i,j,k

are consider

orated in D

ns, flow int

arcy’s law a

t to the volu

e in head o

w and loss 

s negative 

g cell i,j,k (h

(hidden) —

red positive 

Darcy’s law

to cell i,j,k i

s: 

ume of wat

of Δh. Eqn.

are represe

gain, resp

 

hidden) (Ha

— i-1,j,k; i+

e if they are 

w has been 

in the row d

ter taken 

. (6.2) is 

ented by 

pectively 

arbaugh, 

1,j,k; i,j-

entering 

dropped 

direction 



 

where, hi,j

volumetric

is the hyd

ΔciΔvk is 

distance b

 

 

MODFLO

model) em

equations 

iterations 

Therefore

6.3 also sh

,2/1,  kjiq

j,k is the hea

c flow rate 

draulic cond

the area of

between nod

Figure 6.2 

OW (a mo

mploys iter

for each t

are require

, the array 

hows that th

,2/1,   kjiKR

ad at node i,j

through the

ductivity al

f the cell f

des i,j,k and 

Flow into c

dular three

rative meth

time step. 

ed to achiev

of final hea

he array of f

 ,1. 


 ji

k

h
vc

132

,j,k, and hi,j-

e face betw

long the ro

faces norma

i,j-1,k (L).

cell i,j,k from

e dimensio

hods to obt

In the exa

ve closure 

ad values fo

final head v


2/1

,,,





j

kjik

r

h

2 

-1,k is the he

ween cells i,j

w between 

al to the ro

m cell i, j-1

onal finite 

tain the sol

ample given

for the hea

or the time 

values for th

 

ad at node 

j,k and i,j-1

nodes i,j,k

ow direction

,k (Harbaug

difference 

lution to th

n in Figure

ads at the e

step is desi

e end of the

i,j-1,k, qi,j-1

1,k (L3T-1), 

k and i,j-1,k

n; and Δrj-1

gh, 2005) 

groundwat

he finite di

e 6.3, a to

end of time

ignated hm,n

e earlier tim

/2,k is the 

KRi,j-1/2,k 

k (LT-1), 

1/2 is the 

 

ter flow 

ifference 

tal of n 

 step m. 

n. Figure 

me step is 

(6.3)



 

hm-1,n. Aga

they repre

already be

time step 

Similarly, 

term durin

Figure 6.3

ain it is ass

esent heads

een complet

m; thus th

the final va

ng calculatio

3 Iterative ca

sumed that n

s for the p

ted, they ap

hey retain t

alues of hea

ons for time

alculation o

13

n iterations

preceding t

ppear as pre

the same v

ad for time s

e step m+1.

of head distr

3 

s were requ

ime step, f

edetermined

value in ea

step m are u

 

ribution (M

ired for con

for which 

d constants 

ch iteration

used as cons

cDonald an

nvergence. 

computatio

in the equa

n of the tim

stants in the

nd Harbaugh

Because 

ons have 

ation for 

me step. 

e storage 

h., 1988) 



134 

 

RT3D is a computer code which solves the coupled partial differential equations that 

describe reactive flow and transport of multiple mobile and/or immobile species in 

three dimensional saturated groundwater systems. The RT3D code includes an 

implicit reaction solver. It makes the code sufficiently flexible for simulating various 

types of chemical and microbial reaction kinetics. RT3D supports seven pre-

programmed reaction modules that can be used to simulate different types of reactive 

contaminants. They are benzene-toluene-xylene mixtures (BTEX) of instantaneous 

aerobic degradation, kinetic limited degradation, rate limited sorption reactions, 

double monod model, sequential decay reactions, and chlorinated solvents such as 

tetrachloroethene (PCE) and TCE. In addition, RT3D has a user-defined reaction 

option that can be used to simulate any other type of user specified reactive transport 

systems. In this study, a user-defined reaction module was used with the geochemical 

algorithm explained in Chapter 5.  

 

The general macroscopic equations describing the fate and transport of aqueous 

(Eqn. (6.4)) and solid phase species (Eqn. (6.5)), in multi-dimensional saturated 

porous media are written as: 
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, where k = 1, 2,...,m 

 

(6.4) 
 

 

c
im r

dt

Cd ~
~

 , where, im = 1, 2,...  

 

(6.5)
 

where, k is the total number of species, m is the total number of aqueous-phase 

(mobile) species (thus, k minus m is the total number of solid phase or immobile 

species), Ck is the aqueous phase concentration of the kth species [ML-3], Cim is the 
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solid phase concentration of the imth species [either MM-1 (contaminant mass per unit 

mass of porous media) or ML-3 (contaminant mass per unit aqueous phase volume) 

unit basis can be used], Dij is the hydrodynamic dispersion coefficient [L2T-1], v is 

the pore velocity [LT-1], ϕ is the soil porosity, qs is the volumetric flux of water per 

unit volume of aquifer representing sources and sinks [T-1], Cs is the concentration of 

source/sink [ML-3], rc represents the rate of all reactions that occur in the aqueous 

phase [ML3T-1], and cr
~  represents the rate of all reactions that occur in the soil phase 

(either MM-1T-1 or ML3T-1 can be used). 

 

RT3D code was developed to solve the multi-species reactive transport, Eqns. (6.4) 

and (6.5). The code employs a reaction operator-split (OS) numerical strategy to 

solve the coupled transport equations (of the form Eqn. (6.4) and Eqn. (6.5)). Walter 

et al. (1994b) have successfully used a similar OS approach to solve multi-

component transport with geochemical reactions. Moreover, Clement et al. (1996) 

used the OS strategy to solve a biologically reactive flow problem in a radial system. 

Valocchi et al. (1992) and Kaluarachchi et al. (1995) brought attention to the fact that 

the splitting the reaction terms using the standard OS strategy may have numerical 

limitations. They recommended an improved alternative OS strategy that may give 

more accurate numerical results. Nevertheless, Barry et al. (1995) states that the 

improvement provided by the alternative OS may not be applicable for multi-

component nonlinear problems. In addition, they demonstrated the efficiency of the 

standard OS approach, by solving a two-species reactive transport problem. In this 

work, we used the standard OS strategy, to develop a general numerical solution 

scheme for solving the coupled partial/ordinary differential Eqns. (6.4) and (6.5). 
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Utilising the OS strategy, the mobile species transport equation (Eqn. (6.4)) is first 

divided into four distinct equations: the advection equation: 
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the dispersion equation: 
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the source/sink mixing equation: 

s
s C

q

t

C







 (6.8)
 

and, the reaction equation: 

r
t

C





 (6.9)
 

where, the term r represents all possible reaction terms that appear in a typical 

mobile species transport equation. Note that in Eqn. (6.9), which is for a typical 

immobile species, the advection, dispersion, and source-sink mixing terms are zero 

and only the reaction term exists. The advection equation can be solved by the 

method of characteristics, a modified method of characteristics, a hybrid method of 

characteristics, or by the upstream finite difference solution scheme (Zheng and 

Wang, 1999). The dispersion and source-sink mixing packages use explicit finite 

difference approximations. 

 

The reaction Eqn. (6.9) can be adjusted according to the study and the reactions 

taking place. This is the most versatile option available in RT3D. Using this option, 

one can describe and solve any type of kinetic-limited reactive transport problem. 



137 

 

The reaction information is input through a Fortran 90 subroutine, which should be 

compiled as a dynamic link library (DLL) using either the Microsoft Fortran Power 

station 4.0 or the Digital DVF Fortran compiler (Clement, 1997). 

 

6.3 Change of mineral quantity over time 

The intent of this study was to develop a model to understand mineral fouling in 

PRBs in ASS terrain, incorporating a calibrated flow and a reactive transport model 

to simulate mineral deposition and its effects on hydraulic parameters. It has been 

found that the key factors reducing PRB longevity and efficiency are geochemical 

factors such as armouring and/or clogging. Chemical armouring is the strong 

adhesion and entire pacification of the reactive surface by encrustation leading to a 

decrease in the rate and extent of reactive material dissolution and alkalinity 

production of the reactive material (Cravotta and Trahan, 1999, Indraratna et al., 

2014). Clogging is the accumulation of precipitates in the void spaces between the 

reactive materials (Gavaskar, 1999). Both these phenomena directly affect the 

change of porosity and, hence, decrease in hydraulic conductivity. Moreover, this 

will result in reducing flow through the barrier, therefore changing the flow paths, 

residence time and finally bypassing the PRB altogether (Johnson et al., 2005, 

Mackenzie et al., 1999, Wilkin et al., 2002). Therefore, it is of utmost importance to 

study the armouring and clogging behaviour in order to monitor the efficiency and 

longevity of PRB.  

 

Secondary minerals precipitated in the recycled concrete media were assumed to be 

immobile. The pore space occupied by each mineral was calculated from the 

respective molar volume. The volume prediction at a given location due to secondary 
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mineral precipitation was computed as the total volume occupied by the mineral 

precipitates minus the volume achieved by the dissolution of Ca-bearing minerals in 

recycled concrete. The associated porosity reductions (Eqn. (6.11)) were calculated 

using Eqn. (6.10) as suggested by Steefel and Lasaga (1994), thus: 

kk
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(6.10)

 

Hence, the change in porosity with time can be obtained from: 
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where, k  is the volume fraction of mineral, Mk is the mineral molar volume 

(m3mol-1), Rk is the overall reaction rate for the mineral (molm-3
bulks

-1), Nm is the 

number of minerals, t is the time no and nt are the porosities at the start and at time t, 

respectively. 

 

The product of MkRk is constant for a given time step. In the next time step, the new 

value of Rk is introduced to the equation based on the results obtained from Eqns. 

5.14 and 5.15 (in Chapter 5) for respective time steps. The Kozeny Carmen equation 

can be used to estimate the hydraulic conductivity at different PVs with the change 

of dissolved/precipitated minerals with time: 
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 (6.12)
 

where, n is the porosity of the reactive medium, M is the specific surface of the 

recycled concrete particles (ratio of surface area and bulk volume), ρw is the density 

of water, g is the gravitational constant, and µ is the absolute viscosity of water. 

Mineral precipitation and dissolution may change the value of M. However, the 
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relationship is a complex function of the geometry of the recycled concrete particles, 

the shape of the minerals being precipitated, and the location of the mineral 

precipitates. Therefore, M was assumed constant, which is a conservative approach 

(Li et al. 2005).  

 

The normalised Kozeny Carmen equation (Eqn. (6.13)) was used to estimate the 

hydraulic conductivity at different pore volumes (PV) with the change of 

dissolved/precipitated minerals with time (Li et al., 2006, Pathirage et al., 2012, 

Indraratna et al., 2014). 
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where, ∆nt is the reduction in porosity at time t. 

 

It is important to capture this change of porosity and hydraulic conductivity in the 

groundwater flow model. The head solution for transient groundwater flow in one 

dimension is given by Eqn. (6.16), which was used to calculate the starting head for 

MODFLOW at every time step. The reason to adopt this approach was because 

MODFLOW does not have a way of automatically changing the porosity or 

hydraulic conductivity unless they are manually entered. It was important to update 

these values at every time step due to the changes in volume fractions of primary and 

secondary minerals. For instance, when the model is run for the 1st time step, the 

corresponding values of porosity and hydraulic conductivity are updated for the 2nd 

time step, and Eqn. (6.16) is now required to determine the resulting head as that is 

an essential input for MODFLOW to continue the analysis for subsequent time steps 

(Indraratna et al., 2014). MODFLOW was used to couple the chemical reaction 



140 

 

component developed in RT3D with advection, diffusion and dispersion (Eqn. (6.4)) 

using finite difference method. Once the starting head was calculated by the 

analytical model, the results were put into MODFLOW. Then MODFLOW and 

RT3D were run in tandem to get the concentrations of reactants at every time step. 

 

Transient groundwater flow in one dimension is governed by:  
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The variation in hydraulic conductivity due to dissolution/precipitation of minerals 

can be calculated from Eqn. (6.13). The solution for Eqn. (6.14) considering the 

changes in hydraulic conductivity (Eqn. (6.13)) can be written as: 
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The step by step procedure for obtaining Eqn. (6.16) is illustrated in Appendix I. 

The following initial conditions can be used to calculate the values for µ, C and D. 

1hh   at x=0 and t=0, (6.17)
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2hh   at x=l and t=0, (6.18)
 

0



t

h
 at x=0 and t=0 (6.19)

6.4 Step by step involved in the model development 

1. Groundwater flow through porous media is modelled by the 1D formulation 

of Eqn. (6.1) in MODFLOW. 
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2. Change of mineral quantity over time is calculated by the reaction kinetics 

and molar volume of each mineral using Eqn. (6.10). 
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3. Change in porosity due to change in mineral fractions are captured by Eqn. 

(6.11). 
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4. The normalised Kozeny Carmen equation (Eqn. 6.13) is used to calculate the 

associated change in hydraulic conductivity. 
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5. MODFLOW does not have a way of automatically changing the porosity or 

hydraulic conductivity unless they are manually entered. It is important to 
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capture this change of porosity and hydraulic conductivity in the groundwater 

flow model. Thus Eqn. (6.1) is solved to capture the change in head with 

respect to change in hydraulic conductivity from mineral dissolution and 

precipitation. The solution is given by Eqn. (6.16). 
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where, 
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For instance, when the model is run for the 1st time step, the corresponding values of 

porosity and hydraulic conductivity are updated for the 2nd time step, and Eqn. (6.16) 

is now required to determine the resulting head as that is an essential input for 

MODFLOW to continue the analysis for subsequent time steps. 

 

6. The advection, diffusion and dispersion equation (Eqn. (6.4)) is used for the 

contaminant transport. This equation is available in RT3D. 
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 (6.25) 

For the dissolution/precipitation reactions taking place between acidic groundwater 

and recycled concrete, the kinetic reaction expression (r) in Eqn. 5.14 multiplied by 

M (molar volume of the mineral) can be replaced by rc in Eqn. 6.4. 
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7. Then MODFLOW and RT3D were run in tandem to get the concentrations of 

reactants at every time step. 

 

8. Although, a 2D grid is used to show the discretisation of finite different 

domain, 1D transport is considered in the mathematical model development 

and model application to both column experiment and field PRB. 

 

6.5 Model application to column experiment 

Firstly, multi-component reactive transport simulations were undertaken for 

quantitative simulation of the remediation process for more controlled conditions in 

the laboratory column experiments. The focus was to develop a simple conceptual 

model using reactive transport modelling, based on the detailed data obtained from 

the column influent and effluent chemistry. Therefore, to investigate how the 

mineralogical assembly within the recycled concrete affects the change in pH and 

long-term metal removal capability of the reactive mixture. Secondly, the model was 

applied for performance monitoring in the field PRB under varying field conditions. 

 

The column experiment was considered to be a confined aquifer with transient flow 

conditions. The crushed concrete in the column was assumed to be homogeneous and 

isotropic. A relatively uniform particle gradation was selected for the column test and 

also it was assumed that the particle angularity is generally similar (as it was 

impossible to find all rounded particles of broken concrete aggregates). Therefore, 

for simplicity the assumption of a continuum with homogeneity and isotropy is made 

along the column length. Since, the flow is only vertical (one dimensional) in the 

column, the negative implications of this assumptions are expected to be minimal. 
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Indraratna et al. (1993) indicated that for granular media, the width or diameter of the 

test chamber to maximum particle size ratio > 8 would make boundary effects 

generally insignificant. The same concepts have been applied for filtration testing of 

rail ballast and other rockfill for dams (Indraratna et al., 1998). In this study, given 

the diameter of the column as 50 mm, and the maximum particle size approximately 

4-5 mm, the corresponding ratio is above 10, hence, boundary effects can be 

considered to be insignificant.  

 

In the 1D column domain, 50 cm of recycled concrete was divided into five zones, 

where the bottom most one is Zone 1 and the topmost one is Zone 5. This whole 

domain was discretised uniformly into 50 × 5 sections, where 1 unit is 100 mm. A 

schematic diagram of the boundary conditions is shown in Figure 6.4. The sides of 

the column are no flow boundaries.  

 

Table 6.1 summarises the experimental parameters and model inputs. Mineral 

dissolution-precipitation reactions were modelled as kinetically-controlled reactions. 

Because of their potential variability of in-situ rate coefficients (Li et al., 2006), the 

kinetic reaction rate coefficient (keff) was obtained for Ca2+, Al3+ and total Fe (Fe2+ 

and Fe3+) (Table 6.2) by calibrating the model against the laboratory column data 

provided by (Regmi et al., 2011b) and using the molar weights of Ca2+, Al3+, Fe2+ 

and Fe3+. The total Fe was calculated by adding the Fe2+ and Fe3+ according to their 

stoichiometric relationships as illustrated in the geochemical algorithm in Chapter 5. 
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6.2) were then used to validate the current model using the column experiment data 

in this study. The calibration was done for the 40-190 PV range using data from 

Regmi et al. (2011b) and the current model was validated for the same PV range. 

This is an important experimental phase for maintaining neutral pH and for 100% 

removal of Al and Fe ions. Model parameters used for calibration and validation 

process are listed in Table 6.3. 

Table 6.2 Kinetic reaction rate coefficients (keff) for the mineral 
dissolution/precipitation which are calibrated values from the data provided by 

(Regmi et al., 2011b). 
 

Mineral phase Kinetic reaction rate 

coefficient (keff) (mol/L.s) 

Kinetic reaction rate 

coefficient (keff) 

(mol/L.s) in literaturee 

Ca2+ 2.27 x 10-7 (1 x 10-6) 

Al3+ 6.86 x 10-8 (9.0 x 10-7 – 1.0 x 10-8) 

Total Fe (Fe2+ and Fe3+) 5.87 x 10-8 (1.0 x 10-7 – 1.2 x 10-8) 

Note: e Source: (Ouangrawa et al., 2009) and (Jurjovec et al., 2004) 

 

Table 6.3 Calibration and validation parameters used in the model application for 
range 40-190 PV. 

 

 Calibration Validation 

Data set    

keff for Ca2+, Al3+ and 

Total Fe (Fe2+ and Fe3+) 

Data from Regmi et al. 

(2011a) 

Current data 

State variables   

[Ca2+], [Al3+], [Fe2+] and 

[Fe3+] 

Effluent concentrations  

(after Regmi et al. (2011a)) 

Current data on 

effluent concentration 

 
 
The reaction between the acidic water and the concrete that caused leaching of the 

Ca also reduced the pH of the effluent from pH 9.6 initially to 8 within 15 PVs 
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(Figure 6.5), after which there was a slow decrease (pH dropping from 7.9 at 25 PV 

to 7.5 at 125 PV), a faster drop from pH 7.5 at 125 PV to about 6.8 at about 185 PV, 

a rapid drop from pH 6.8 at 185 PV to 4 at about 215 PV, and then another period 

with a slower rate of increase from pH 4 at 215 PV to 3.1 to about 295 PV at test 

termination. According to Indraratna et al. (2010), the initial drop in pH (after 15 

PVs passed through the column) was assumed to be due to the depletion of carbonate 

alkalinity. The model predicted values for the first pH plateau is shown in Figure 6.5. 

In this model prediction, OH- in the aqueous phase was assumed to be in equilibrium.  

 

However, after reaching a pH value of 6.8 (after 190 PVs), the pH subsequently 

diminishes to 4 (Figure 6.5). This is probably due to the OH- ion in equilibrium state 

during the depletion of carbonate minerals (Indraratna et al., 2010). The experimental 

and predicted values of pH along the column are shown in Figure 6.6. In SP1, the 

rapid jump occurred at pH 6.5, (Figure 6.5) which took place within 25 PVs, which is 

fast due to the rapid neutralisation of acidity and the exhaustion of the reactive 

material at the entrance of the column. In contrast in SP1, 2, 3 and 4, excessive 

sampling of the column was avoided in order to ensure minimum disturbance to the 

flow. That is probably the reason why a rapid jump was not visible in the pH values 

inside the column. In the early stages of the experiment, most of the Al in the 

synthetic groundwater precipitated shortly after entering the column and was no 

longer in the pore water (Figure 6.8 and Figure 6.11). Al precipitates when the pH is 

above 4.5. Al was observed in the effluent water for the first time when the pH of the 

effluent dropped to 4, after which the concentration of Al continued to increase 

(Figure 6.8) because of its high solubility at pH<4. Similarly, Fe also precipitated 

when the pH exceeded 3.5. Until 255 PV, the effluent pH did not drop below pH 3.5; 
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The efficiency of recycled concrete would already have decreased to some extent by 

the exhaustion of the alkalinity of the materials. The model results obtained for 

porosity show that the precipitated secondary minerals subsequently reduce the 

porosity and hydraulic conductivity. Direct measurement of porosity using the 

porosity meter (Trani and Indraratna, 2010) did not provide reliable readings due to 

the internal disturbance of the specimen surrounding the probe tip. Therefore, some 

porosity values were back calculated from the Kozeny Carmen equation (Eqn. 

(6.13)) using the hydraulic conductivity data from experiment at different PVs (Table 

6.4). The results are very similar to the predicted porosity values from Eqn. (6.11), 

further confirming the accuracy of the developed model.  

Table 6.4: Comparison of porosities based on Kozeny Carmen relationship with 
the model predictions (Eqn. (6.11)). 

 

PV Experimental k (m/d) 

based on Darcy’s Law 

n back-calculated from 

Kozeny-Carmen equation 

(Eqn. (6.13) 

n predicted from 

geochemical model 

(Eqn. (6.11) 

43 0.957 0.690 0.690 

59 0.919 0.685 0.687 

95 0.808 0.673 0.679 

149 0.682 0.656 0.668 

194 0.628 0.648 0.663 

 

Several studies carried out for zero-valent Fe columns (Li and Benson, 2005, 

Kamolpornwijit et al., 2004), organic sediment columns (Bilek, 2006), glass bead 

columns (Rowe et al., 2000) and recycled concrete columns (Regmi et al., 2011b) 

have reported that excessive clogging is greatest near the inlet to the column 

(reactive materials) and is not uniform throughout the column. For the current case, 

the porosity and hydraulic conductivity reductions due to mineral precipitation and 
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6.6 Model application to field PRB 

PRB performance modelling using numerical solutions and field data is not simple or 

straightforward because of several factors that govern the field conditions from being 

constant and unique for a specific site. Some of them are site-specific geochemical 

and hydro-geological conditions (Phillips et al., 2000), aquifer heterogeneity (Warner 

and Sorel, 2002, Li et al., 2006) and the relatively long period over which mineral 

deposition occurs inside the PRB (Vikesland et al., 2003). Analysing the field data 

with a calibrated flow and reactive transport model that simulates mineral 

precipitation and the impact on hydraulic behaviour of PRBs (Liang et al., 2000, 

Mayer et al., 2001, Yabusaki, 2001) can be an alternative approach. One-dimensional 

numerical simulation would be helpful in order to capture the full range of reactive 

processes and the complex geochemical reactions occurring inside the PRB (Bain et 

al., 2001). 

 

The conceptual model for this purpose was a continuous trench PRB, containing 

recycled concrete aggregates, that was placed in a homogeneous shallow aquifer. The 

conceptual model of the field PRB was divided into three zones: Zone 1 (entrance), 

Zone 2 (middle) and Zone 3 (exit). One-dimensional reactive transport analysis was 

conducted considering a section passing through the centreline of the PRB. The 

discretised solution domain is shown in Figure 6.15. In this zone, contaminants are 

transformed by reduction reactions and immobilised by subsequent precipitation. A 

number of secondary reactions occur simultaneously in this zone. The alkaline pH 

promotes the precipitation of a number of secondary minerals throughout the 

treatment zone. These reactions consume alkalinity and act to buffer further 

increasing the groundwater pH. The groundwater leaving this treatment zone is 
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characterised by low concentrations of dissolved total Fe and Al3+ and exhibits near-

neutral pH (7.9-7.3 pH). 

 

Reactive contaminant transport analysis was conducted along the centreline of the 

PRB. A discretisation interval of 0.1 m in the horizontal direction was adopted for a 

total width of 1.2 m (Figure 6.15). All the equations used in the model application to 

the column experiment which was a vertical flow, was assumed equivalent to the 

horizontal flow along the centreline of the field PRB. The geochemical algorithm is 

independent of the effect of gravity. On the basis of field data observed during the 

period from October 2006 to January 2012, the flow domain was simulated as a fully 

saturated system with specified head boundaries and a mean hydraulic gradient of 

0.006 to represent realistic field conditions. Table 6.5 lists all the input parameters of 

the groundwater chemistry. 

Table 6.5: Initial conditions (concentrations) of the model 

Parameter Initial conditions 

pH 3.6 

Na+ (mg/L) 435 

K+ (mg/L) 48 

Ca2+ (mg/L) 115 

Mg2+ (mg/L) 90 

Al3+ (mg/L) 27 

Total Fe (mg/L) 80 

Cl- (mg/L) 825 

SO4
2- (mg/L) 1135 

 

The reaction rates for simulating the PRB conditions were the same as those 

corresponding to laboratory column experiments albeit different boundary 
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6.7 Mineralogical analysis 

The PRB was excavated in selected locations to obtain the recycled concrete 

specimens of the barrier in October 2013. One sample was collected at the entrance 

zone of the PRB near observation well 22 (Figure 4.5 in Chapter 4). The purpose was 

to compare them with the virgin recycled concrete samples in terms of mineralogy. 

XRF, XRD and SEM/EDS analyse were undertaken to determine precipitation of the 

secondary minerals. These analyses gave quantitative and qualitative measures of the 

precipitates.  

 

Due to the maintenance of neutral pH inside the PRB, Al and Fe precipitated out of 

solution (e.g. low concentrations inside the PRB shown in (Figures 6.17 and 6.18) as 

hydroxides or oxyhydroxides (Indraratna et al., 2014, Regmi et al., 2009a). Orange 

and white precipitates on these specimens indicated that some chemical armouring of 

the surface of the reactive media had occurred, which affected the reactivity of the 

recycled concrete at the entrance of PRB. However, these concrete samples had a 

negligible amount of precipitates coating the reactive surface (Figure 6.19). This is 

probably due to a slow distribution of the precipitation as the groundwater velocity 

within the site is very small (<10 cm/day). Furthermore, the porosity of the PRB is 

high due to large sized recycled concrete and precipitates might have collected in the 

voids towards the entrance of the PRB over time, which will take longer to fill due to 

the slow groundwater flow rate. While chemical armouring was not significant at the 

entrance of the PRB, it was evident that the precipitates would not be high towards 

the middle of the PRB and at the exit face of the PRB. The precipitates were 

probably causing armouring on the surface of the reactive materials towards the 
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The recycled concrete aggregates used in the PRB are based on OPC (Ordinary 

Portland Cement) of grades M25 and M30 with water to cement ratio of 0.4:0.43 

(Indraratna et al., 2010) and from an ungraded mixture of concrete waste material. 

The high amount of SiO2 present in the recycled concrete was chemically inert in the 

acid neutralisation processes. The presence of CaO supported the role of the 

dissolution of C-A-H compounds (e.g. anorthite (CaAl2SiO8)], portlandite (Ca(OH)2) 

and calcite (CaCO3)), from the recycled concrete in generating alkalinity and 

buffering the acidic influent in the PRB. Armouring on the surface of the recycled 

concrete could result in a decrease in the rate of mineral dissolution, finally 

decreasing the ANC of the reactive material.  

 

SEM-EDS analysis was also carried out on a cut section of the armoured concrete to 

compare the SEM image and EDS results of the armoured surface with the 

unarmoured recycled concrete (Figure 6.20). Further EDS analysis showed the large 

peaks of Si, moderate peaks for Ca and Al, and the small peaks for K, Fe and other 

elements support the XRD and XRF results for the recycled concrete. Conversely, 

higher peaks were obtained for Al and Fe in the armoured concrete, confirming the 

precipitates were primarily Al and Fe-bearing precipitates in the form of hydroxide 

and oxyhydroxides. Mineralogical analysis of the recycled concrete confirms the 

presence of a significant amount of Ca-bearing minerals in the virgin concrete 

minerals. Solidly cloudy images of the precipitates observed in SEM analysis with 

high amounts of Al and Fe also confirmed that the precipitates were primarily Al and 

Fe-bearing precipitates in the form of hydroxide and oxyhydroxides. Al- and Fe-

bearing minerals within the precipitates were in the ratio of 41:59 (by mass). These 

results gave a clear idea about the dominant precipitating minerals but these values 
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could not conclude the quantitative presence of minerals exactly, as the SEM-EDS 

equipment in UOW was not calibrated for semi-quantitative compositional analysis. 

In order to get a more precise analysis in terms of quantitative presence of minerals, 

more sophisticated equipment is required. 

Table 6.7: Comparison of metal oxide composition of the virgin concrete and 
precipitates analysed by quantitative SEM-EDS 

 

Element 

Mass (%) 

Virgin recycled 

concrete 

Armoured concrete 

from field PRB 

C 17.46 14.91 

O 44.57 57.5 

Na 0.5 - 

Mg 0.76 - 

Al 3.21 4.61 

Si 19.8 12.25 

S 0.15 - 

K 1.08 - 

Ca 8.87 4.17 

Fe 3.6 6.55 
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6.8 Optimum width of PRB 

A PRB is commonly built with a reactive material having a higher hydraulic 

conductivity than the surrounding soils. As a result, the contaminated groundwater is 

forced to pass through the barrier itself, moving under its natural hydraulic gradient. 

The mechanism of the remediation process of a PRB depends on the reactive 

material chosen to build the barrier. 

 

Before designing a barrier it is necessary to properly characterise the site, to assess 

the contaminant properties, distribution and tracking; to describe the groundwater 

flow within the aquifer; to determine the chemical-physical phenomena involved in 

the reaction process and to meaningfully represent the results. The site 

characterisation of this particular site is described in Chapter 4. The most important 

thing when designing a PRB is that the residence time of the contaminated flow 

travelling through the barrier should be long enough for the reaction processes to 

take place. Therefore, the barrier width (W) must satisfy the following inequality: 

k

C
C

v

W in

e

b









ln

 
(6.26)

 

where, vb represents groundwater flow velocity through the barrier, k is the overall 

reaction rate and Ce and Cin represents the external effluent and influent 

concentrations, respectively. It must be considered that influent concentrations may 

vary due to the seasonal changes. Therefore, the barrier must be designed both to 

retain intense concentration peaks and to guarantee long term performances. 

 

PRB sizing is obtained iteratively, as reported schematically in the flow chart in 

Figure 6.21. Specifically, after defining boundary conditions and all input data such 
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as K (hydraulic conductivity), n (porosity), h (initial hydraulic head from Eqn.), C0 

(initial pollutant concentrations), k (overall reaction kinetics), MODFLOW 

simulation was carried out, choosing W (PRB width), in order to calculate h(x,t) and 

u(x,t). Next step is RT3D simulation to compute pollutant concentration Ce(x,t). 

When Ce is lower than an acceptable limit value (Clim), PRB width is correct, 

otherwise it must be increased until Ce < Clim. The Clim values were taken from 

Australian water guidelines (Sundaram et al., 2009) where the Clim for both Al and Fe 

were 0.2 mg/L. 

 

Figure 6.21 Flow chart of the optimum PRB width determination process 
 

MODFLOW Simulation 

(Eqn. (6.16a)) 

Input data        

h, K, n 

RT3D Simulation 

(Eqn. (6.4))

Input data       

Cin, Dh, k 

h (x,t)

Ce (x,t)

Increase         

W 

NO 

Eqn. (6.29) for 

optimum width

YES

 

PRB sizing    

(W) 
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Moreover, it is important to consider the different influent concentrations and check 

whether the optimum width of the barrier can provide a reasonable residence time 

especially in high concentrations. In order to accommodate the above, iterations were 

carried out for several influent concentrations and then the optimum width was 

finalised. Results shown in Figure 6.22 conclude the optimum width to be 0.45 m for 

a range of influent concentrations from 50 to 250 mg/L. By applying a safety factor 

(Eqn. (6.29)) of two, as suggested by Gavaskar (1998) and Nardo et al. (2010), the 

width of the PRB would be 0.9 m. The pilot-scale PRB installed at Nowra has a 

width of 1.2 m, which is allowable for the remediation of acidic groundwater with 

the use of recycled concrete aggregates. 
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Figure 6.22 Effluent concentrations vs. PRB width for different influent 
concentrations 
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Optimum W = W × SF (6.29)

 

6.9 Longevity prediction 

The ultimate success of the PRB will be determined by the longevity over which Ca-

bearing mineral dissolution and metal oxy/hydroxide precipitation is maintained. 

Due to maintenance of neutral to alkaline pH inside the PRB, Al and Fe precipitated 

out of solution (e.g. low concentrations inside the PRB shown in Figures 6.17 and 

6.18) as hydroxides or oxyhydroxides as indicated by the XRD, XRF and SEM 

results. Observed steady piezometric head within the PRB over the 6 year monitoring 

period after attaining steady state conditions in February 2007 (Figure 6.23) indicates 

no threat of failure of the PRB from clogging. The continuous mineral precipitation 

inside the PRB over time indicates that the effectiveness of the PRB may decrease 

rapidly in the future due to the decreased surface area of the concrete by armouring 

effect, further decreasing the longevity of the PRB as demonstrated by column 

experiments. 

 

PRB longevity can be estimated by comparing the column experiment results 

discussed in Chapter 3 with respect to the PRB dimensions and groundwater 

velocity. The synthetic water used in column experiment (~pH 2.67 and acidity 645 

mg/L CaCO3) was slightly more acidic than the groundwater in the field (average pH 

~3.7 and average acidity ~550 mg/L eq. as CaCO3) (Indraratna et al., 2010). 



171 

 

10
/10

/20
06

10
/04

/20
07

10
/10

/20
07

10
/04

/20
08

10
/10

/20
08

10
/04

/20
09

10
/10

/20
09

10
/04

/20
10

10
/10

/20
10

10
/04

/20
11

10
/10

/20
11

10
/04

/20
12

10
/10

/20
12

10
/04

/20
13

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

P
ie

zo
m

et
ri

c 
H

ea
d 

(m
 A

H
D

)

Time

 P7    P8
 P9    P10
 P11  P12

 

Figure 6.23: Groundwater elevation inside the PRB with respect to time. (P7-P12 are 
the six piezometers inside the PRB) (updated after Regmi (2012)) 

 

In the column experiment, 49 mg/L Fe and 54 mg/L Al, and 645 mg/L CaCO3 

equivalent acidity were removed with a residence time of 11.8 hr for a travel path 

length of 0.5 m. Assuming a groundwater velocity in the aquifer of 10 cm/day (based 

on the piezometric head and hydraulic conductivity), estimated residence time 

through the PRB is 12 days for a PRB thickness of 1.2 m. Therefore, the 

corresponding PRB residence time is around 24 times higher than the residence time 

in column experiment run with medium flow rate of 1.2 mL/min.  

 

Moreover, the longevity of the PRB depends on the amount of concrete used and the 

seasonal changes in groundwater qualities in the field. The mass of the concrete used 

inside the PRB was 80 tonnes, and the ANC of the recycled concrete is 146 g/kg, 
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corresponding to which a theoretical total neutralisation capacity of the concrete used 

inside the PRB is 11.6 tonnes (Indraratna et al., 2010). Considering a maximum 

groundwater velocity of 0.1 m/day, the amount of acid passed through the PRB per 

year is estimated to be ~1100 × 103 L and the consumption of the reactive material is 

predicted to be ~0.70 tonnes per year. This indicates that the material will be 

exhausted after 17 years, if there is no chemical armouring of the reactive media by 

Al and Fe precipitates. However, it was observed from the column experiments 

carried out by Regmi et al. (2011b) and Pathirage et al. (2012) that the recycled 

concretes ANC could be reduced by ~50% due to armouring. Considering this, the 

longevity of the PRB considering armouring and based on the acid flux passed 

through the PRB per year would be 8.5 years for a groundwater velocity of 0.1 m/day 

(Figure 6.24). However, the groundwater velocity at the PRB site is usually less than 

0.1 m/day, which implies that the longevity of the barrier would be more than 8.5 

years. 

 

The estimated longevity from the pH profile and the current performance of the PRB 

indicates that recycled concrete in the field will treat the acidic water for a longer 

period, fulfilling the expectations of the local government for improving water 

quality to protect the aquatic environments of nearby surface water sources.  
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MODFLOW and RT3D were run in tandem to get the concentrations of reactants at 

every time step.  

 

The predicted and measured concentration profiles of Ca2+, Al3+, and total Fe were 

found to be in very good agreement and hence confirming the feasibility of the 

coupled hydro-geochemical model developed in this study. The precipitation of 

secondary minerals (i.e. Fe(OH)3, Fe(OOH), Fe2O3, Fe(OH)2, FeCO3, Al(OH)3) 

significantly decreased the efficiency of the reactive material due to armouring and 

clogging in the column experiments. The model results obtained for porosity showed 

that the precipitated secondary minerals subsequently reduced the porosity and 

hydraulic conductivity. The largest porosity reduction during the experiment was 

most significant (4%) near the influent end of the column and this reduced to 3% 

midway along the column and 0.5% near the end of the column. The largest 

hydraulic conductivity reduction of 34% was found to be near the inlet to the 

column, with a 27% reduction mid-way along the column and 4% near the end of the 

column.   

 

In the application of the model to field PRB, favourable comparisons were obtained 

between the predictions and field measurements for pH, Al3+ and total Fe 

concentrations. Field monitoring and column experiments indicated that the 

concentrations of Al3+ and total Fe reduced rapidly within the PRB to very low 

levels, in accordance with the model output. The rapid decrease in these cations 

indicated that secondary minerals precipitate inside the PRB resulting in a decrease 

of porosity and hydraulic conductivity. However, the computed decrease in hydraulic 

conductivity from October 2006 to October 2012 was noticed to be only 3%, which 
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was not surprising given the larger sized recycled concrete aggregates (d50=40 mm) 

used in the PRB that prolong total clogging within relatively large pores of a coarse 

aggregate assembly. 

 

MODFLOW and RT3D simulations were carried out to find the optimum width of 

PRB. The model was run for different influent contaminant concentrations and till 

the inequality, Ce < Clim satisfied (when the effluent concentration (Ce) is lower than 

an acceptable limit value (Clim). The optimum width of the PRB was 0.9 m from 

these iterative simulations. The pilot-scale PRB installed at Nowra consisted of a 

width of 1.2 m, which was allowable for the remediation of acidic groundwater with 

the use of recycled concrete aggregates. The longevity prediction of the PRB 

considering armouring and based on the acid flux passed through the PRB per year 

was 8.5 years for a maximum groundwater velocity of 10 cm/day. However, the 

groundwater velocity at the PRB site is usually less than 10 cm/day, which implies 

that the longevity of the barrier would be more than 8.5 years. 
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Chapter 7 Conclusions and 

Recommendations 

7.1 Introduction 

This chapter is a synopsis of all the major findings of the research and its practical 

implications, followed by recommendations for future research. This study monitors 

the performance of a novel PRB for the remediation of contaminated groundwater 

from ASS terrain. The application of recycled concrete as the reactive material was 

thoroughly studied through laboratory column experiments and validated with a 

groundwater flow model coupled with contaminant transport and geochemistry. 

Commercially available numerical codes, MODFLOW and RT3D were used for this 

purpose. Moreover, the model was applied to the field PRB, along a transect passing 

through the centreline of the PRB. Changes in the geochemical composition of the 

contaminated groundwater within the PRB after treatment with recycled concrete are 

also addressed. 

7.2 Conclusions 

Laboratory column experiments carried out using synthetic groundwater confirm the 

suitability of the reactive material in decontaminating acidic leachate consisting of 

high concentrations of dissolved acidic cations Al3+ and total Fe (Fe2+ and Fe3+). The 

results of the column experiments proposed conceptual acid neutralisation reactions, 

i.e. the pH of the effluent groundwater is controlled by a series of dissolution-

precipitation reactions, namely Ca-bearing minerals (portlandite, anorthite, and 

calcite) and Al and Fe oxy/hydroxides. Three distinct pH plateaus observed during 

the column experiments can be attributed to three different pH-buffering reactions:  
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1. dissolution of carbonate/bicarbonate alkalinity from the concrete at near-

neutral pH (bicarbonate buffering zone), 

2. re-dissolution of Al hydroxide minerals at pH ~4.5, and  

3. re-dissolution of ferric oxy/hydroxide minerals at pH < 3.7. 

The results confirmed that recycled concrete is an effective and promising reactive 

medium, especially considering the long-term treatment of acidic groundwater from 

ASS terrain. 

 

The dissolution potential of Ca-bearing minerals in recycled concrete and 

precipitation potential of secondary minerals out of acidic groundwater has been 

examined with particular attention to their impact on the hydraulic properties of 

crushed recycled concrete in a test column and a pilot-scale PRB. MODFLOW and 

RT3D were used to simulate flow and the reactive transport of mineral components. 

A geochemical algorithm was developed for the input in RT3D specifically for 

simulating the geochemical reaction that occur in PRBs composed of recycled 

concrete for the treatment of acidic groundwater. The calculated concentrations of 

Ca2+, Al3+ and total Fe were found to be in good agreement with the observed 

experimental and field values. Based on the results reported herein, the following 

conclusions can be derived: 

 The dissolved Al3+ and total Fe were precipitated out of solution as their 

oxy/hydroxides (i.e. Fe(OH)3, Fe(OOH), Fe2O3, Fe(OH)2, FeCO3, Al(OH)3);  

 Chemical armouring/clogging of the reactive material due to the secondary 

mineral precipitation, decreased the ANC of the recycled concrete by up to 

50% compared to its theoretical ANC; 
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 Clogging, and hence the reduction in porosity and hydraulic conductivity, 

was most significant where the groundwater entered the column and 

decreased with distance along the column. The largest porosity reduction 

during the experiment was most significant (4%) near the influent end of the 

column and this reduced to 3% midway along the column and 0.5% near the 

end of the column;  

 The largest hydraulic conductivity reduction was 34% near the inlet of the 

column, with a 27% reduction mid-way along the column and 4% near the 

end of the column; 

 

Field monitoring data over 6.5 years is reported in this thesis. They indicate that the 

recycled concrete has effectively maintained near-neutral pH and removed Al3+ and 

total Fe in a manner similar to the column experiments. These findings further 

confirm that the groundwater chemistry inside the PRB is primarily controlled by the 

alkalinity generated by the dissolution of Ca-bearing minerals in the concrete and the 

precipitation of insoluble Al- and Fe-hydroxides and oxy-hydroxides. The 

competence of the PRB to remove Al3+ and total Fe depends on the variation of the 

acidity of the groundwater due to pyrite oxidation, the long-term generation of 

alkalinity by the minerals present in the recycled concrete and the reduction of the 

reactive surface area by chemical armouring/clogging due to the precipitated 

minerals. Despite the excellent performance of the recycled concrete inside the PRB, 

groundwater chemistry down-gradient of the PRB could be improved to some extent 

only, due to the dilution of the effluent from the PRB and the occasional mixing of 

acid generated in the soil by pyrite oxidation. 
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Overall, the PRB has performed well so far but a slight decrease in the pH and Fe 

and Al removal efficiencies towards the entrance of the PRB was observed due to the 

chemical armouring of the surface of the reactive media which affected the reactivity 

of the recycled concrete in that zone. 

 

Model results were validated using the data from the pilot-scale PRB along the 

centreline of the PRB. The predicted values from MODFLOW and RT3D 

simulations for pH, concentrations of Al3+ and total Fe are found to be in good 

agreement with the observed field values throughout 2012. The average pH was 

around 7 within the PRB. The pH of the PRB has been decreasing slowly, attributed 

to exhaustion of the alkalinity generating materials as well as fouling by precipitates 

over the surface of the reactive materials.  

 

Mineralogical analysis of the recycled concrete confirms the presence of a significant 

amount of Ca-bearing minerals in the virgin concrete minerals. Solidly cloudy 

images of the precipitates observed in SEM analysis with high amounts of Al and Fe 

also confirmed that the precipitates were primarily Al and Fe-bearing precipitates in 

the form of hydroxide and oxyhydroxides. Al- and Fe-bearing minerals within the 

precipitates were in the ratio of 41:59 (by mass). 

 

Clogging, and hence the reduction in porosity and hydraulic conductivity, was most 

significant where the groundwater entered the PRB. However, the computed 

decrease in hydraulic conductivity at the entrance zone from October 2006 to 

October 2013 was only 3%, which is not surprising given the larger sized recycled 
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concrete aggregates (d50=40 mm) used in the PRB that delays total clogging within 

relatively large pores of a coarse aggregate assembly. 

 

The optimum PRB sizing is obtained iteratively, defining boundary conditions and 

input data such as K (hydraulic conductivity), n (porosity), h (initial hydraulic head), 

C0 (initial pollutant concentrations) and k (overall reaction kinetics). MODFLOW 

and RT3D simulations were carried out till the inequality, Ce < Clim is satisfied (when 

the effluent concentration (Ce) is lower than an acceptable limit value (Clim). The 

model was run for different influent contaminant concentrations and the optimum 

width of the PRB would be 0.9 m. The pilot-scale PRB installed at Nowra has a 

width of 1.2 m, thus is acceptable for the remediation of acidic groundwater with the 

use of recycled concrete aggregates. 

 

The longevity prediction of the PRB considering armouring, and based on the acid 

flux passing through the PRB per year would be 8.5 years for a maximum 

groundwater velocity of 100 mm/day. However, the groundwater velocity at the PRB 

site is usually less than 100 mm/day, which implies that the longevity of the barrier 

would be more than 8.5 years. 

 

The findings from the pilot-scale PRB confirms that recycled concrete is a suitable 

environmentally friendly and cost-effective alternative compared to other 

conventionally utilised techniques (e.g. watertable manipulation, lime neutralisation) 

for the in-situ treatment of acidic groundwater in ASS terrain. The ability to make 

comparisons between the geochemically complex transport scenarios coupled with 

transient groundwater flows within the column experiments and pilot-scale PRB is an 
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important benefit of this numerical model. Moreover, the models ability to predict 

the porosity and hydraulic conductivity reductions due to secondary minerals 

precipitation is of paramount importance to estimate the longevity of the PRB. The 

developed model can be used as an analysis tool for the performance verification of 

PRBs in ASS terrain. 

 

7.3 Recommendations for Future Research 

Field investigations carried out over the 6.5 years monitoring show that although 

acidic groundwater is neutralised and acidic cations (Al3+ and total Fe) were removed 

significantly by the PRB, acidic conditions still exist with distance down-gradient of 

the PRB. This is due to the active and ongoing oxidation of pyrite in the soil and 

generation of acid followed by the liberation of Al3+ and total Fe from the clay 

minerals in the soil, and subsequently mixing with treated groundwater. The amount 

of mixing of the treated water from the PRB and the acidic water generated at the 

down-gradient, can be predicted by coupling the PRB effluent from the model 

predictions with the pyrite oxidation model (Blunden and Indraratna, 2001). This will 

allow further understanding on the installation distance of a new PRB from the drain 

or creek to obtain the maximum neutral conditions in groundwater down-gradient of 

the PRB.  

 

This study revealed that small-sized PRBs would function more effectively for large 

areas of ASS terrain, if they were constructed in series before discharging the 

effluent into the surface water. A funnel-and-gate design could be used to decrease 

the risk of mixing of treated water with untreated groundwater. Hence, the 
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application of a series of horizontal PRBs or funnel-and-gate PRB can be a potential 

solution for ASS management that needs to be investigated. 

 

The laboratory column experiments revealed that chemical armouring by the 

precipitated Al and Fe minerals could decrease the ANC of the recycled concrete by 

up to 50% compared to its theoretical ANC, which results in decreasing the longevity 

significantly. The longevity of the PRB and down-gradient water quality could be 

improved if an alkaline effluent (preferably alkaline waste effluent for cost-effective 

management) is intermittently injected into the PRB as discussed by Banasiak et al., 

(2014). Further examination is vital in laboratory scale to quantify the change in 

porosity and hydraulic conductivity prior to the application of such alkaline effluent 

as it may shorten the life span of the PRB due to chemical clogging more rapidly. 

 

This study involved the development of a 1D numerical model through the centreline 

of the PRB, which was useful for evaluating the acid neutralisation behaviour of the 

recycled concrete and its performance with especial reference to the geochemistry 

coupled with transient groundwater flows. However, this 1D model cannot capture 

the lateral groundwater flow and cross flow. The development of a 3D reactive 

transport model is recommended to quantitatively evaluate changes in flow 

behaviour due to chemical dissolution/precipitation. This 3D numerical model would 

be useful to determine the decrease in void space within the PRB per unit volume 

and analysis of the interconnected effects of acidic flow-induced clogging, PRB 

effectiveness and longevity. 

 



183 

 

This study extensively describes and models the chemical clogging phenomena 

within the reactive medium and acidic groundwater in ASS terrain. However, 

biological clogging of porous media when exposed to acidic influent has not been 

investigated or modelled for ASS terrain. The problem of chemical and biological 

clogging in porous media is of great importance in the fields of geotechnical and 

geo-environmental engineering and in the application of PRB technology. While 

bacteria present in soil on the Shoalhaven Floodplain, A. ferrooxidans, is acidophilic 

with optimum growth occurring at a pH < 4, it can survive to a pH as high as 6-7, as 

currently observed in groundwater within the PRB (Rudens, 2001). Thus, bacterial 

growth on the recycled concrete within the PRB (as a biofilm) could occur under 

submerged and anaerobic conditions. The abundance of Fe, as precipitated on the 

recycled concrete in the PRB, would act as a food source for A. ferroxidans and 

enhance its growth and the subsequent rate of pore space reduction and bioclogging 

of the PRB with time. Thus, it is of utmost importance to determine the rate of 

bioclogging and the change in the rate of growth of microorganisms through 

carefully controlled experiments and the application of mathematic formula, in order 

to couple the geochemical and biological processes occurring in the PRB. In fact, this 

will be an area that the writer of this thesis will continue to study in near future. 
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APPENDIX I: Mathematical model derivation 

The groundwater flow at transient condition is considered, and the governing 

equation for one dimension flow is given by; 
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The solution for Eq. (A.1) can be written as, 

Let b/S =A, as S and b are assumed to be constants throughout the simulation, hence, 
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Now, we assume a solution of separating variable type for Eq. (A.1) as follows; 
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Substitution of h=X.T and K=T1 into Eq. (A.3) yields; 
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where the prime denotes differentiation with respect to the appropriate variable. 

Dividing by X.T, we obtain, 
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where µ is an arbitrary constant, thus, 
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From Eq. (B.4); 
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where, C and D are integral constants. 

Therefore, the general solution for Eq. (A.3) can be written as, 
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