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ABSTRACT

This study contains laboratory, field and numerical methodology to determine the
feasibility and performance of a permeable reactive barrier (PRB) utilising low cost
recycled concrete aggregates for the remediation of acidic groundwater in acid sulfate
soil (ASS) terrain. The PRB was installed in the Shoalhaven Floodplain about 100 km
South of Sydney (Australia), in an area where acidic groundwater generation from
pyritic soil poses a severe environmental and socio-economic problem. High
concentrations of dissolved aluminium (AI’") and total iron (Fe*" and Fe’") in the
groundwater along with low pH reflected the acidic conditions caused by pyrite
oxidation at the study site. Past remediation strategies through groundwater
manipulation using engineering solutions such as weirs and modified floodgates were

not effective in low-lying ASS terrain, as they increased the risk of flooding.

Long-term laboratory column experiments were carried out using synthetic
groundwater. The column experiments investigated the acid neutralisation behaviour
occurring within the PRB and the precipitation of Al and Fe from the acidic
groundwater. In addition, column experiments revealed the potential of recycled
concrete to remediate acidic groundwater from ASS by maintaining a near neutral pH
and complete removal of A" and total Fe from the influent for a considerable period
of time. Chemical armouring and clogging, caused as a result of secondary mineral
precipitation, was also studied which reduced the efficiency of the reactive material.
Moreover, chemical clogging reduces the porosity and hydraulic conductivity of the
reactive medium. It was found that chemical armouring/clogging by secondary Al-
and Fe- precipitates decreased the acid neutralisation capacity (ANC) of the recycled

concrete by ~50% as compared to its theoretical ANC.
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For the first time in Australia, this study mainly focuses on coupling geochemistry
with geo-hydraulics to allow time-dependant modelling and performance verification
with respect to the remediation of acidic groundwater. Chemical clogging of PRB due
to mineral precipitates has rarely been quantified and this thesis presents an original
modelling and experimental verification of the clogging model for PRBs in an ASS
terrain. This study developed an innovative model, capturing the geochemical reaction
kinetics coupled with transient groundwater flows. The modelling was incorporated
into commercial numerical codes, MODFLOW and RT3D. An algorithm was
developed for RT3D to simulate geochemical reactions occurring in the PRB. The
experimental and field observed results were in good agreement with the model
predictions, confirming that the porosity and hydraulic conductivity reduction due to
mineral precipitation occurred at the start of permeation and continued until halfway

through the testing phase.

Overall, this study provides a better understanding of the acid neutralisation process
occurring inside the PRB for the remediation of contaminated groundwater from ASS
terrain using recycled concrete aggregates as the reactive media. This first pilot-scale
PRB confirms that it is a suitable environmentally friendly and cost-effective
alternative compared to other conventionally utilised techniques for the in-situ
treatment of acidic groundwater. Most importantly, the developed numerical model is
beneficial for practising engineers and scientists who have to deal with ASS

especially in the coastal low-lying areas of Australia.
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Chapter 1 Introduction

1.1 Background of the study

Acidic groundwater generated from acid sulfate soil, which occupies over 200,000
km? of Australian land, is a major environmental and socio-economic problem.
Changes in land use pattern (e.g. construction of deep flood mitigation drains) and
hydrological systems (e.g. rainy and drought seasons) can promote the oxidation of
ASS (pyrite) in shallow zones, with the associated generation of sulfuric acid in the
soil, which results in mobilising toxic metals (aluminium (Al) and iron (Fe)) from the
soil (Dent, 1992, Indraratna et al., 1995a, Regmi et al., 2009b). Therefore, the
transportation of acidic water along with high concentrations of dissolved Al and Fe
towards water bodies has significantly degraded the coastal environment of

Australia.

A permeable reactive barrier (PRB) offers an in-situ technology for passive treatment
of contaminated groundwater (Blowes et al., 2000, Li et al., 2006, Kalinovich et al.,
2012, Kalinovich et al., 2008). It is a passive treatment method because groundwater
flows through natural gradient and no pump and treat method involved. Recycled
concrete has been recommended as a suitable reactive media for the PRB based on
batch test analysis among 24 different types of alkaline materials (Golab et al., 2006)
for its ability to remove Al and Fe effectively out of solution, and most importantly
to maintain near neutral pH for a considerable time. A pilot-scale PRB (17.7 m x 1.2
m % 3.0 m) was installed in ASS terrain located in the Lower Shoalhaven Floodplain

near the town of Bomaderry (about 100 km south of Sydney) in October 2006. The



PRB was filled with crushed recycled concrete (dsp = 40 mm) and the trench was
lined with geotextile fabric to protect the reactive media (media that the
contaminants react with and get treated) from physical clogging by soil and other
fine particles entering the barrier. A total of 36 observation wells and 15 piezometers
were installed inside, up-gradient and down-gradient of the PRB to monitor phreatic
surface variations, hydraulic gradients, permeability and groundwater chemistry.
Groundwater elevation and water quality parameters such as pH, oxidation reduction
potential (ORP) and temperature were directly measured in the field every month
from October 2006 using water level meter and multi-parameter field electrode
probes. In addition, pH, DO (dissolved oxygen), water pressure, and temperature
were measured hourly by two multi-parameter automated data loggers installed
within the barrier. Groundwater samples were collected frequently for analysis of Fe,
Al, major cations and anions. To the knowledge of the authors, this is only the
second pilot-scale PRB under reducing conditions that has been installed for treating

acidic water from ASS after a natural limestone PRB reported by Waite et al. (2002).

Generally the performance of PRBs has been satisfactory worldwide for numerous
geo-environmental applications (Blowes et al., 2000, McMahon et al., 1999, Puls et
al., 1999a, Vidic, 2001, Naftz et al., 2002, Wilkin et al., 2003). On the other hand,
questions remain about the long-term efficiency of PRBs that are expected to
function for decades or longer (Li et al., 2006, Sarr, 2001, Indraratna et al., 2010).
The performance of PRBs has been hindered by mineral fouling wherein the pore
space is reduced by mineral precipitation in the reactive media. Fouling of the pore
spaces reduces the porosity and hydraulic conductivity of the reactive medium

(Indraratna et al., 2010, Regmi et al., 2009a, Mackenzie et al., 1999, Rowe et al.,
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2000, Jeen et al., 2012), which then directly affects the reorientation of flow paths

and changes reactive times.

1.2 Scope of this study

Although the proposed PRB approach to negate the groundwater acidity is a
promising solution for specific sites, clogging and armouring (strong adhesion and
complete pacification of the reactive surface by encrustation) of the barrier is a major
hindrance that requires detailed study. Once the mechanisms of chemical clogging
and armouring are understood, the design of PRBs and the selection of materials can

be carried out to optimise long-term performance.

The intent of this study was to develop a model to understand mineral fouling (both
clogging and armouring) in PRBs in ASS terrain, incorporating a calibrated flow and
a reactive transport model to simulate mineral deposition and its effects on hydraulic
parameters. To achieve this, a comprehensive geochemical algorithm describing the
most dominant reactions was developed and coupled with a transient groundwater
flow model. This model will be beneficial for practising engineers and scientists who
have to deal with ASS especially in coastal areas of Australia. Clearly, the use of
PRBs before the acidic leachate reaches nearby waterways and strategic

infrastructure will benefit all downstream users of coastal waterways.

1.3 Research Aims and Outcomes

The ultimate goal of this project is not only to model the effectiveness of the PRB,
but also to monitor and quantify its performance with respect to time-dependent
chemical clogging and armouring with the help of analytical models and numerical

software.



The specific aims of this doctoral thesis are to:

1.

Establish a rational approach for quantifying chemical clogging/armouring of
alkaline PRBs treating acid sulfate landscapes through geo-hydrological and

geochemical modelling;

Develop a time-dependent porous medium flow model combining particle
retention with chemical precipitation to determine the corresponding reduction
in void space and effectiveness of the PRB, thereby analysing the inter-related
effects of acidic flow induced clogging and PRB effectiveness, i.e. the longevity

of such PRBs; and

Evaluate and quantify the in-situ effectiveness of the PRB through real-time
monitoring of groundwater chemistry up-gradient and down-gradient of the
barrier, and to examine the nature of precipitation causing clogging through

chemical analysis of barrier specimens.

The following outcomes are expected to significantly contribute to advancing the

current state-of-the-art in PRB technology, with particular reference to coastal acid

sulfate landscapes:

A novel approach for evaluating the performance and longevity of alkaline
PRBs in the localised treatment of acidic groundwater by evaluating the

chemical processes that cause clogging;

A comprehensive numerical model incorporating chemical clogging/armouring
that can be universally applied in the design and performance verification of

PRBs in ASS landscapes.



1.4 Structure of the Thesis

This dissertation is divided into seven chapters. This first chapter introduces the
background and aims of the thesis. It also outlines the structure and organisation of

this thesis.

Chapter 2 of this thesis presents a relevant literature review. It provides a general
background on ASS, their distribution and the processes involved in pyrite
formation. The pyrite oxidation process and, the impacts of ASS on the surrounding
landscape with particular reference to environmental, social and economic aspects
are briefly outlined. The performance of different types of reactive material used for
remediating contaminated groundwater is described, along with the risk of armouring
and clogging on the performance of reactive materials. The performance of PRBs
and the numerical approaches used to clarify their long-term performance is critically

analysed in this chapter.

Chapter 3 examines the potential of recycled concrete aggregates to remediate acidic
groundwater through detailed laboratory column experiments. The observed stepwise
acid neutralisation behaviour is discussed in depth with special reference to chemical
armouring and clogging due to secondary mineral precipitation and accumulation on

void spaces.

Chapter 4 outlines the study site information of the pilot-scale PRB installed in the
Shoalhaven Floodplain in Nowra, Australia. The monitoring network used to analyse
performance of the PRB is detailed. A brief outlook for the chemical attributes of the

soil and groundwater parameters at the field site are given. Finally, this chapter
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examines the performance of the PRB by comparing water quality data up-gradient,

inside and down-gradient of the PRB over a 6.5 year monitoring period.

Chapter 5 describes the development of the geochemical algorithm. This is the first
step involved in modelling the groundwater flow and contaminant transport through
PRB in ASS terrain. This chapter will focus on the chemical reactions involved in the
acid neutralisation and metal removal, and most importantly how they are captured in

the geochemical model.

Chapter 6 elaborates the multi-component reactive transport model developed for
acidic groundwater remediation with the use of recycled concrete. This chapter
shows how the geochemical algorithm developed (in Chapter 5) for the reactions
taking place between recycled concrete and acidic groundwater can be used to model
the fate and transport of contaminants. Moreover, the model application to laboratory

column experiments and field PRB is illustrated in this chapter.

Chapter 7 concludes the major contributions of this research concerning the
effectiveness of a PRB in remediating contaminated groundwater in ASS terrain and

offers some recommendations for future work.



Chapter 2 Literature Review

2.1 Introduction

Presence of ASS around coastal Australia has evoked many environmental and
socio-economic problems. This chapter presents a general background on ASS, their
spreading and gives a synopsis of the pyrite formation process. The impacts of ASS
on the surrounding landscape with special reference to environmental, social and
economic aspects are briefly outlined. A concise assessment of the currently
practised geo-environmental techniques for active management of ASS is presented
including the ASS preventative and active remediation techniques currently practiced

within Australia along with their limitations.

The next part of the literature review provides a critical overview of the application
of PRB technology in contaminated groundwater remediation. The results and
outcomes of different types of reactive material used for remediating contaminated
groundwater are presented. Moreover, the laboratory and field monitoring data is
briefly illustrated, to show how the performance of PRBs is hindered by the risk of
armouring and clogging on the reactive materials. The performance of PRBs and the
numerical approaches used to clarify their long-term performance is critically

analysed.

2.2 Acid Sulfate Soils

ASS contain iron sulfides (inorganic sulfur compounds) either in an oxidisable or

partially oxidised state (Dent, 1986, Sammut et al., 1996a, White et al., 1997). They



are naturally generating soils and sediments, which can be the worst soils in the
world because of their ability to generate sulfuric acid (H,SO4) and reduce the soil
pH to as low as 2 (Dent and Pons, 1995). Pyrite (FeS,) is the dominant iron sulfide in
coastal Australia although there can be smaller concentrations in the forms of iron

monosulfide (FeS), greigite (Fe,S4) and organic sulfides (Bush and Sullivan, 1997).

ASS contains sulfidic soil horizons or layers according to their oxidisable state,
mainly named as Actual Acid Sulfate Soil (AASS) and Potential Acid Sulfate Soil
(PASS). AASS is the soil layer or sediment layer that produces H,SO4 by the
oxidation of iron sulfides. AASS develops more when the quantity of H,SO,,
exceeds the acid neutralisation capacity (ANC) of the soil, when the pH drops below
4.0 (Pons et al., 1982). There is another layer of soil or sediment containing iron
sulfides and/or other sulfidic material which are not yet been exposed to air and
oxidised, thus is completely harmless to the environment. This layer is commonly
known as PASS. The PASS layer prevents further oxidation and acidification of ASS
by maintaining an anoxic environment in the soil. Usually ASS remains chemically
inert under reducing conditions. When they oxidise, complex chemical changes take
place, which has the ability to generate and store large amounts of H,SOy in the soil.
This will result in acidifying the soil pore water and frequently leaching unusually
high concentrations of Al and Fe from the soil (Dent, 1986). AASS and PASS can be
found in the same soil profile, where AASS usually in top of PASS (Fitzpatrick et
al., 1993). The term acid sulfate soil which can be found in literature, usually refer to

both AASS and PASS.



2.2.1 Formation of Acid Sulfate Soil

ASS and pyritic sediment usually occur in different geographical locations; however,
coastal floodplains are the most common places for formation of ASS. The most
favourable conditions for the formation of pyritic sediment in coastal floodplains are
reducing environments with a supply of decomposed organic matter, sulfate (SO4>),
Fe and reducing bacteria (Figure 2.1). Iron oxides such as hematite and iron oxide
(Fe,03), oxyhydroxides (goethite (FeOOH)) and hydroxides are the common sources
of Fe (Blunden, 2000). Dissolved SO,* is rich in seawater (~2700 mg/L). A
sufficient amount of dissolved SO,* comes from the inundation of low-lying land by
brackish water. In addition, wet conditions due to excess rainfall, long water
retention times and regular tidal inundation can create an environment for the
existence of SO4*-reducing bacteria (SRB, Desulfovibrio desulfuricans). In such
wetlands, D. desulfuricans reduces SO,* from the tidewater and Fe,O5 from the soil
in the presence of simply decomposable organic matter to form pyrite (Dent, 1986,
Dent and Pons, 1995). During this microbial oxidation, generated electrons, reduce
ferric iron (Fe’") to ferrous iron (Fe*") (Fanning, 1993). Addition to that pyrite
formation kinetics are enhanced due to the warmer temperatures and slightly acidic
conditions, but their influence is very slow compared to the microbial oxidation (e.g.

~100 years to form 1% pyrite by mass) (Dent and Pons, 1995, Lin et al., 1995).
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Figure 2.1 Formation and accumulation of ASS in an inundated scenario (Baldwin,
2011)
Dent (1986) has expressed the complex microbial-catalysed reaction involved in

pyrite formation process as (Dent, 1986):

bacterial driven with reducing conditions

Fe,0,, +4S07 ,, +8CH,0 + 40, - FeS, +8HCO; +4H,0 (2.1)
S — — —— —
iron sulfate organic matter pyrite bicarbonate

In these wet environments, bicarbonate ions (HCOj3") coming from Eqn. (2.1), remain
soluble and mix with the groundwater by leaching and tidal flushing. The above
reaction can occur in two stages; the first step invloved the bacterial reduction of
SO4%, in which the hydrogen sulfide (H,S) forms first, as shown in Eqn. (2.2) (Bohn

et al., 1989). Then H,S reacts with iron oxyhydroxides to produce pyrite, as shown in

Eqn. (2.3).
2- bacteria - (2 2 )
SOy +2CH, 0, —— > H, S, + 2HCO;

3H,S,,, +2FeOOH , —— FeS + FeS

@ ) ® 2) (2.3)

+ 4H20(l)
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2.2.2 Pyrite Oxidation Process

Pyritic soil is moderately chemically inert if left undisturbed and inundated under the
watertable (Dent and Pons, 1995, Indraratna et al., 1995b). However, once these
inundated soil is disturbed, it can cause oxidation of pyrite resulting in the generation
of H,SO4 (Stumm and Morgan, 1996, Lin et al., 1995). The pyrite oxidation process
is a complex and not well recognised process because it involves chemical, physical
and biological reactions (Dent, 1986). This complex series of reactions of pyrite with

atmospheric O, and water can be simplified to:

FeS,+ %0, +H,0—— Fe’* +2S07 +2H" (2.4)
pyrite atmospheric oxygen dissolved iron acid

The reaction (Eqn. (2.4)) involves the conversion of pyrite (FeS,) to Fe*" and SO4*
when O, and water are present in the environment. The outcomes of Eqn. (2.4),
which are dissolved Fe*", SO, and H' can be easily transported in within porewater,
groundwater and drainage water. With the presence of oxygen, Fe’™ can be further
oxidised to Fe’" as shown in Eqn. (2.5), which is soluble in acidic water at low pH (<
3.5). The Fe’™ can form insoluble ferric hydroxide with the presence of water, at a pH

greater than 3.5. This will result in generating more acidity as expressed in Eqn.

(2.6).
| Fez*} + 40, +H — Fe** + 4 H,0 (2.5)
dissolved iron atmospheric oxygen acid
Fe’* + 3H,0 < Fe(OH), + 3H" (2.6)
" M

Floc acid

Dent (1986) has combined Eqns. (2.4-2.6) to express the overall reaction for the

complete oxidation of pyrite by:
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FeS, +13%,0, + 3 H,0 —> Fe(OH), +2S0; +4H" (2.7)
\ﬁ——d

Floc

Acidithiobacillus ferrooxidans is an iron-oxidising bacteria, which are acidophilic
chemolithotrophic organisms that are global in pyritic environments (Nordstrom,
1982). A. ferrooxidans bacteria can catalyse and rapidly oxidise Fe*" to Fe’™ by a
factor > 10° at pH 2.5-3.5 (Singer and Stumm, 1970, Jaynes et al., 1984). Fe*" can
oxidise pyrite more hastily than by O, at pH less than 4.5, as shown in Eqn. (2.8)

(Singer and Stumm, 1970), further generating more acid in the soil.

FeS, +14Fe’ +8H,0 —2“ 5 15Fe* +2S0; +16H" (2.8)

2.2.3 Distribution of Acid Sulfate Soils

ASS is spread out in the coastal wetlands of many locations worldwide. Although
they occur mainly in low-lying coastal areas, they have been found in inland
environments as well, where pedogenesis has been influenced by iron sulfide-rich
rock (Kraus, 1998, Davison et al., 1985). Based on a survey done by van Breeman
(1980) for Holocene coastal plains and tidal swamp sediments, it was estimated that
there are 12-14 million hectares (ha) of ASS around the world. From this, two-thirds
are found to be in Indonesia, Vietnam, Thailand, Malaysia and northern Australia
(Ritsema et al., 2000). Table 2.1 shows an estimate of the worldwide distribution of

ASS (Brinkman, 1982).
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Table 2.1 Worldwide distribution of acid sulfate soil according to calculations of

Brinkman (1982)
Region Area of ASS (x 10° ha)
Africa 3.7
Asia 6.7
Latin America 2.1
Australia 1.0

As shown in Figure 2.2, ASS in Australia is widely distributed in estuarine lowlands
and coastal floodplains along the eastern (Walker, 1972) and northern Australia
(White et al., 1996, Best, 2005). Moreover, some distribution can be seen in parts of
Western Australia (White et al., 1997), South Australia and Victoria (Sammut et al.,
1996a, Berner, 1984). In most of these regions, the sulfidic horizon is close to the

mean sea level which arise a risk of oxidation.

AUSTRALIA

I Potential pyritic sediments

Figure 2.2 Acid sulfate soil distribution in Australia (Department of the Environment
and Heritage 2006, National coastal acid sulfate soils)

13



White et al., (1997) mentioned that the ASS inhabits over 3 million ha of the
Australian land. The entire estimated area of ASS in Australia contains 700 million
tonnes of environmentally harmful sulfidic material. The total amount of sulfidic
material present in 3 million ha of Australian land is equivalent to about 2.2 billion

tonnes of H,SOy if fully oxidised (Fitzpatrick et al., 2006). Figure 2.3 shows the total

area of ASS in coastal NSW.
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Figure 2.3 Area of high risk and total area of ASS in coastal NSW (White et al.,
1999)

2.2.4 Environmental and socio-economic problems associated with ASS
Discharge of acidic and metal-rich water into aquifers and nearby surface water
bodies from ASS is an intractable socio-environmental issue in many coastal regions

around the world (Sammut et al., 1996b, Indraratna et al., 2005, Driscoll et al., 1980).
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Following are some of the major environmental, social and economic impacts of

ASS in coastal Australia (Figure 2.4).

One of the main impacts is the unfavourable conditions generated for soil
productivity and plant growth. Major nutrients and trace elements cannot exist in
soils below pH 4, and the presence of soluble toxic metals under acidic conditions is
injurious to plant growth (Rorison, 1973). Lin et al. (2001) found that the ASS scalds
have less organic matter and soluble phosphorus high salinity, acidity and soluble Al,
Manganese and Zinc concentrations. ASS scalds are the bare lands where pyritic
layers are close to the soil surface due to lack of alluvium coverage or where

overlying peat has been washed or burned away.
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(B) Fish kills

(C) Fe flocs
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igure 2.4 Impacts of acid sulfate soil in coastal Australia
(A and D: Baldwin (2011))
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High concentrations of soil acidity also create unfavourable conditions for grass
growth and other vegetation. This adversely and directly affects the dairy farming
industry. Very few plants can bare the high acidity and high concentrations of toxic
metals (e.g. Al and Fe) except sugar cane and tea tree. As a result of that many
coastal Australian land have remained un-vegetated for many years. In south east
NSW, UOW researchers (Blunden, 2000, Indraratna et al., 2002) have found that the
Al concentration was three times higher than the accepted limits given in ANZECC
guidelines (2000). These high concentrations of Al and Fe restrict the plant growth
and promote grass which can tolerate the acidity such as smartweed (Sammut et al.,
1996b). These environmental and ecological problems directly impact the potential

revenue capacity.

Impact on the aquatic environment by the transportation of acidic water with high
concentrations of dissolved Al and Fe towards water bodies (either by infiltration
into aquifers or by discharging into nearby drains after rainfall events) is immense in
Australia. Excessive use of groundwater in ASS terrains can lower the water table.
This will result in further oxidation of ASS and the groundwater quality will be
degraded due to highly acidic pH and high concentrations of soluble metals (Powell

and Martens, 2005).

Aquatic marine organisms (e.g. fish, worms, shellfish and oysters) in Australia
undergo death and epizootic ulcerative syndrome (EUS, commonly known as ‘red-
spot disease’) as a direct effect of acidic groundwater. Moreover, the loss of aquatic
biodiversity occur due to the high acidity, low dissolved O, and high Al, and

overwhelming by Fe flocs (Lin and Melville, 1992, Sammut et al., 1996a, Sammut
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and Melville, 1994, Dove, 2003, Driscoll et al., 1980). One of the biggest problems
aroused in aquatic environment is the harmfulness of acidic drainage on breeding and

nursery areas for reef fish as they result in chronic long-term effects.

In addition, ASS has numerous social and economic problems that are of national
importance. In Australia, the damage to local fish and oyster farming industries due
to acidic groundwater is estimated at several millions of dollars per year in NSW and
QLD only (Indraratna et al., 1995b). There have been considerable financial losses in
fish and oyster farming industries because of the loss of consumer confidence in
product quality after fish kill events reported in these areas. As an example, the loss
of discarded sea mullet due to EUS by NSW commercial fishers were estimated to be

over one million dollars (Callinan et al., 1995).

ASS also has adverse effects on infrastructures due to acidic groundwater generated
at ASS terrains. White and orange-red precipitates forming from Al and Fe
respectively clog pipes and drains. Moreover, the weathering of ASS can form
ettringite and gypsum minerals that are related to breakdown concrete structures (van
Holst and Westerveld, 1973). High concentrations of Fe*" in groundwater precipitate
as iron oxy’/hydroxides and as an adverse effect, release H' ions, as shown in Eqn.
(2.9).

Fe** + 40, + % H,0—— FeOOH | + 2H" (2.9)

red-brown floc acid
One of the biggest problems of ASS occurs when neutral pH water meets acid and
Fe-rich water, which will result in blocking or damaging surface water drain systems

due to the precipitation of iron oxy/hydroxide.
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Acid attack on concrete and steel infrastructures (e.g. foundations, bridge piers,
culverts and pipelines) weakens the concrete, and rusts the steel reinforcing. This is a
common problem observed in coastal Australia. In order to get rid of the acid
corrosion, SO, -resistant concrete and galvanised steel have been suggested in the
construction of public infrastructure in many parts of NSW. ASS in nature has a low
load-bearing capacity due to their high volumetric moisture content. As a result,
foundations built on ASS may settle or sink unequally because of the dewatering of

the unconsolidated material.

2.2.5 Previous Management methods of Acid Sulfate Soils

As long as ASS can be left undisturbed, that would be the best way of minimising the
impacts from ASS. That option is cost effective and environmentally friendly. In the
meantime, ASS areas that have already been disturbed need to be treated. In
Australia, various remediation methods have been practised and currently being used
by government and private sectors to minimise the acidification and decrease the
oxidation of ASS. The following is a critical review of some of the main preventive

remediation techniques.

Water Table Manipulation using v-notch weirs and self-tilting weirs

As discussed previously, maintaining the groundwater table above the ASS horizon
can prevent the exposure of ASS to atmospheric O,, thus preventing oxidation.
Groundwater manipulation techniques have been practised before in acid rock
drainage. This method was successful for decreasing the oxidation of tailings by
complete inundation of acid producing materials (Pedersen, 1983). Several

researchers at the UOW (Indraratna et al., 1995b, Blunden et al., 1997) have found
19



that the handling of flood mitigation drain water levels can also affect the
surrounding groundwater in ASS. The simple v-notch weirs installed by UOW
research team (Indraratna et al., 1995b) could decrease acid production by
maintaining the water table above the pyritic soil horizon in ASS terrains of coastal

Australia.

A finite element model developed by Blunden et al. (1997), using a series of
hydrologic and hydraulic procedures, revealed that the installation of weirs would
allow the groundwater table to rise to a certain level without flooding. Therefore, the
preliminary modelling work was carried forward by Blunden and Indraratna (2000),
in which they undertook a detailed field and numerical study to uphold an elevated
groundwater table above the pyritic soil horizon by installing three v-notch weirs
near Berry, south east NSW (Figure 2.5). The pyrite oxidation analytical model
developed by Blunden and Indraratna (2001) could precisely assess the management
strategies at the sub-catchment scale and could demonstrate that the weirs had the
ability to considerably decrease pyrite oxidation. As a successful outcome of the
research carried out at UOW, water manipulation through weirs was adopted in
coastal Australia during the last decade. This is a cost effective management strategy
which can avoid further pyrite oxidation. The weirs were constructed from durable
yet inexpensive materials (Golab and Indraratna, 2009). With the same basic
mechanism of v-notch weirs with slight upgrading of the design, self-regulating
tilting weirs were installed adjacent to the flood mitigation drains in ASS terrain

(Figures 2.5 and 2.6).
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Figure 2.5 V-notch weir installed near Berry, south east NSW, Australia (Blunden,
2000)

Figure 2.6 A self-regulating tilting weir (built in 2001 by the UOW ASS research
team)
The installed weirs prevented the production of acid, but could not manage the
discharge of stored acid. However, these techniques are not practical in low-lying

ASS terrains because;
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e they elevate the risk of flooding during heavy rainfall;

e the technique is limited to a smaller area near the region, hence not able to
prevent pyrite oxidation far from the drain;

e they prevent the entry of tidal water, thus the water quality cannot be
improved; and

e scheduled maintenance is required to clean up the drain due to the

accumulation of sediments and growth of weeds.

Tidal Buffering

Various researchers (Pollard and Hannan, 1994, Williams and Watford, 1997, Dick
and Osunkoya, 2000, Blunden, 2000) suggested improvements in drain water quality
by tidal buffering within acid affected flood mitigation drains. The tidal flushing can
facilitate acid neutralisation through diminishing the Al flocculation, raising the
dissolved O, levels in groundwater, decreasing the ‘acid reservoir effect’ and
enhancing the runoff during the wet periods (Glamore, 2003, Glamore and
Indraratna, 2001, Indraratna et al., 2002, Portnoy and Giblin, 1997b, Portnoy and

Giblin, 1997a).

Two types of modified two-way floodgates were installed by UOW researchers
(Glamore and Indraratna, 2004, Glamore and Indraratna, 2002, Indraratna et al.,
2002, Johnston et al., 2002) as an alternative solution to weirs and one-way
floodgates near Berry, south east NSW. One of these was a winch-operated floodgate
that lifts vertically (Figure 2.7 (a)). This can control the amount of water entering the
drain. The other one is a more sophisticated automated Smart Gate system (Figure

2.7 (b)). This Smart Gate measures the real-time water quality parameters such as
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pH, electrical conductivity (EC), DO and temperature and only if they are up to the
standard limit, allows water to enter the drain (Figure 2.7, (Glamore, 2003,
Indraratna et al., 2002)). The Smart Gate system is a computerised arrangement of
real-time sensors that continually monitors the water chemistry and operates the
mechanical winch of the floodgate according to the transmitted intelligent electronic

signals.
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Figure 2.7 Modified Floodgates near Berry, south east NSW: (a) Two-way floodgate,
(b) Smart gate (Indraratna et al., 2002)
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The results obtained from two-way floodgate show that the drain water quality has
improved substantially upon re-establishment of tidal flushing (Figure 2.8).
Moreover, surface water quality measured for continuous three years also showed an
increase in drain water pH above 6, confirming its suitability for ASS remediation.
Furthermore, Al and Fe were removed by precipitation during tidal buffering as their
oxy/hydroxides (Glamore, 2003). Figure 2.9 clearly shows the rise of bicarbonate
alkalinity up to 90 mg/LL CaCOs in drain water after the setting up the two-way
floodgates. Numerous local government agencies and councils use Smart Gates

because of their ability to improve drain water.
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Figure 2.8 Modified Floodgates near Berry, south east NSW (Days 296-314)
(Adapted from (Glamore, 2003))
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Figure 2.9 Bicarbonate concentrations within the drain after floodgate modifications
with rainfall (Glamore, 2003)

Glamore (2003) reported that the performance of these floodgates was not sufficient
especially in heavy rainfall events as the amount of alkalinity generated was not
enough (10-90 mg/L CaCOs (Figure 2.9)). That is because the effectiveness of tidal
buffering depends on several factors such as the concentration of buffering agents,
the acid concentration within the drain and the hydrodynamics of the creek such as
flow velocity (Indraratna et al., 2005). Two-way floodgates also have a risk of
elevating the water table in low-lying areas with poor drainage. Maintenance is of
paramount importance to clean the sensors and make sure the debris have not
clogged the system, because the capital cost is high for electronic and mechanical

devices controlling the Smart Gates.
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Acid neutralisation through Liming

Neutralisation of soil and groundwater acidity through liming has been widely
applied in throughout the world for the management of ASS as an effective and easy
remediation method. However, soil liming produces a metal-rich sludge in the soil
(Benner et al., 1999a). This may result in subsequently leaching of metal ions when
mixed with the acidic groundwater, hence becoming ineffective in the long-term
(Pearson and McDonnell, 1975b, Webb and Sasowsky, 1994). Furthermore, soil
liming around coastal Australia would be an expensive methodology to treat the
whole estimated 3 million ha, although Dent (1992) suggested that raising the pH of
the soil above 5 should be adequate to remediate ASS. Although this method can
neutralise the acidity present in the top most soil layer with tidal flush, it releases

very mobile acid into the creeks.

Lime-Fly ash Barrier

A lime-fly ash barrier, suggested by researchers at the UOW (Banasiak, 2004,
Indraratna et al., 2006), is a modification of the soil liming concept. It is a passive
treatment system, which is relatively inexpensive for the benefit of the local farmers.
Accordingly, an alkaline slurry was injected at shallow depth above the pyritic layer
by radial grouting to form a semi-impermeable reactive horizontal barrier in ASS
terrain near Berry, south east NSW. The alkaline slurry consisted of water, fine
grained lime and fly ash (2:2:1) and was injected into the soil in a grid of 22 holes to
form a 100 mm thick barrier. There were 31 observation wells to monitor the

groundwater quality in an adjacent drain (Figure 2.10).
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Figure 2.10 Layout of the horizontal semi-impermeable barrier installed in ASS,
south east NSW (Banasiak, 2004)
Considerable improvements in groundwater were witnessed from the data taken from
the observation wells for pH, Al and Fe concentrations. The average pH improved
from 3.5 to 4.6, and Al and Fe concentrations were decreased from 65.5 to 20.3 mg/L
and 161 to 42 mg/L, respectively (Figure 2.11) (Banasiak, 2004, Indraratna et al.,
2006). The lime-fly ash barrier could reduce the infiltration of oxygen to the pyritic
soil layer. As a result, the rate of pyrite oxidation decreased, in addition to

neutralising any acidity stored in the soil.
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Figure 2.11 Average groundwater pH measured at I m and 2 m from the barrier and
rainfall (Indraratna et al., 2006)

2.3 Permeable reactive barriers (PRBS)

A PRB is defined as an emplacement of reactive materials in the subsurface designed
to intercept a contaminant plume, providing a flow path through the reactive media
(Figure 2.12). The objective is to transform the contaminant(s) into environmentally
acceptable forms to attain the remediation goals down-gradient of the barrier (Regmi
et al., 2011a). The remediation is through physical, chemical and/or biological
processes, including precipitation, sorption, and oxidation/reduction (Rumer and

Ryan, 1995, Golab et al., 2006).
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Figure 2.12 Diagram of a permeable reactive barrier (PRB) intercepting a plume of
contaminated groundwater (Stewart, 2008)

In this remediation procedure, the reactivity of the reactive material is exhausted
slowly providing the environment to remediate the contamination. As a result of
PRB’s long-term performance, they have the potential to treat contaminants over
several years or decades (Gavaskar et al., 1998). Despite higher installation costs
compared to conventional remediation techniques such as weirs and modified two-
way floodgates, pump-and-treat methods, soil liming and direct addition of lime to
streams; PRBs have low operation and maintenance costs. PRBs are proven to be
promising, as they do not show any unexpected malfunction before the costs are
recovered (Birke et al., 2003). Perhaps the only possible maintenance is the
replacement of the reactive material once its reactive potential has been depleted or if
it is clogged by precipitates and/or microorganisms (Vidic, 2001). Most importantly,
land use patterns can remain unchanged as the remediation is happening underground

and only monitoring wells are visible aboveground.

In practice, usually two types of PRB installations are used as shown in Figure 2.13:

(a) continuous reactive barrier (CRB) and (b) funnel-and-gate (F&G) barrier. A CRB
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is a trench filled with reactive material across the entire contaminated groundwater
plume. In F&G barriers, sheet piles and slurry walls are constructed to direct the
contaminated groundwater flow towards the gate containing the reactive material(s)

which is located between the ends of the walls (Figure 2.13 (b)).

The first full-scale commercial zero valent iron (ZVI) PRB is a F&G type barrier
installed at Sunnyvale, California (CA), USA in 1995 for treating chlorinated
solvents TCE, dichloroethylene (DCE), vinyl chloride (VC), and chlorinated
fluorocarbons (CFCs) (Birke et al., 2003). The concept was based on the first pilot-
scale PRB (CRB type), which was installed at Borden, Ontario, Canada, in June 1991
after the concept development by the University of Waterloo in 1990. The
application of PRBs for real world applications progressively increased after 1995
and till then, over 100 PRBs have been installed worldwide for remediation of

different kind of contaminants (USEPA, 2002).

a Continuous reactive barrier b Reactive gate )

Py Aem——— o a e -

\ N
Groundwater Contaminant  Groundwater  Groundwater Contaminant
flowe plume level flow plume

Figure 2.13 PRB configurations: (a) continuous reactive barrier (CRB) and (b)
funnel-and-gate (F&G) GW is groundwater (Kaksonen, 2000)
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2.4 Selection of reactive medium

Selection of correct material is the first important step involved in PRB design as it
determines its reactivity, contaminant removal capacity and most significantly,
longevity. According to Gavaskar et al. (1998), the reactive material should be fully
characterised to confirm:
e adequate reactivity to reduce contaminants;
e maintain the reactivity and ability to run over long periods of time;
e low cost and readily available
e to make sure the reactions taking place between contaminants and reactive
material in stable and environmentally friendly forms;
e do not generate adverse chemical reactions and do not serve as a source of
contaminants (different or same contaminants);
e minimise precipitation, to allow continued flow of water with time; and

e comprise of the correct particle size for the anticipated porosity.

2.5 Types of reactive material used for acidic water remediation

The reactive material should be capable of remediating the groundwater in a timely
manner and without clogging or weakening, as stated in Section 2.4. Therefore, the
reactive materials are chosen such that they react with the contaminants to convert
them to harmless products by the time they pass out the other side of the PRB. Some
of the most common reactive materials used to treat acidic groundwater worldwide
are organic carbon-rich materials, ZVI and acid neutralising materials. Their
characterisation, application in PRBs and long-term performance are described

below.
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Organic Carbon-rich Materials

Acidic groundwater generated from acid mine drainage (AMD) enriched with SO4*
and heavy metals have being treated with microbial-based PRBs consisting of
organic carbons such as wood chips, municipal compost and paper mill pulp (Benner
et al., 1999b, Benner et al., 2000). These organic carbons can reduce the SO,* and
extensively precipitate the metal sulfides (Blowes et al., 2003, Waybrant et al.,
1998). The SRB oxidise organic carbon by using SO4* and generate H,S. This would
result in increasing the alkalinity and pH. Dissolved H,S has the ability to combine
with metal cations to form metal sulfide precipitates, which are stable below the
water table inside the PRB (Waybrant et al., 1998). However, it is a drawback as the
extensive precipitation in addition to the growth of bacteria can armour the reactive

surface of organic carbon-rich materials.

Zero-valent Iron (ZV1)

About three-quarters of all full-scale PRBs used worldwide for acidic groundwater
remediation use ZVI as the reactive media (Blowes et al., 2000). It has the capacity
to remove a range of contaminants such as inorganic contaminants like
radionuclides, nickel (Ni), chromium (Cr), arsenic (As), uranium (U), SO, and
NO;> and chlorinated organic solvents (Gillham and O'Hannesin, 1994, Regmi at
al., 2011a, Blowes et al., 2000, Blowes et al., 1997). Jenk et al. (2003) examined the
use of ZVI to remediate mine waste containing high concentrations of acid, SO4*, Fe
and Al. ZVI was mixed with chips and lignitic coal and the whole mixture was
capable of neutralising acid and removing contaminants in the mine water. As
groundwater flows through the PRB, DO and water rust the ZVI, elevating the

groundwater pH and precipitating the secondary minerals from the dissolved Fe from

33



the influent. However, ZVI PRBs too have limitation as same as in organic carbon-
rich material by both the corrosion of the reactive material as well as by mineral
precipitation hence reducing the anticipated porosity of the PRB (Phillips et al.,

2000, Liang et al., 2003, Li and Benson, 2005).

Acid neutralisation materials

Due to the disadvantage of extensive precipitation caused by using organic rich
material and ZVI, the need for alternative reactive materials to treat acidic
groundwater arose. Blowes et al. (1997) reported that mine waste had a self-
neutralisation capacity because the amount of carbonate minerals present in mine
waste exceeds that of the sulfide minerals. The most significant pH buffering
minerals in the mine waste were carbonate minerals; calcite (CaCOs), dolomite
(CaMg(COs),) and ankerite (Ca(Fe,Mg,Mn)(COs3),) (Jurjovec et al., 2002). The small
amount of Ca-bearing minerals present in the soil about 3.1% by weight, could
suggestively increase the groundwater pH to near-neutral pH of 6 (Figure 2.14). The
effluent pH was controlled by dissolution-precipitation of carbonate, Al and Fe
hydroxides and aluminosilicates present in the soil as shown by long plateaus at ~pH

6.0, 4.0 and 1.5, respectively (Figure 2.14).

The research carried out by Jurjovec et al. (2002) supported the application of acid
neutralisation materials in PRBs. Following this, different types of acid neutralising
materials such as Bauxsol™, lime have been examined, in laboratory scale, for the
treatment of acidic groundwater. Lime is not ideal as it is slightly soluble in water
and when in contact with acidic groundwater it can be leached out from a PRB.

However, hydrated lime (Ca(OH),), can be a better alternative for this purpose
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(McElnea and Ahern, 2002). Bauxsol™ is a by-product from the Bayer process. It
contains caustic red mud residues formed during alumina production (Lin et al.,
2002, McConchie et al., 2002a). It consists of minerals such as gibbsite (AI(OH)3),
hematite (Fe,Os3), boehmite (y-AlO(OH)), quartz (SiO,), sodalite (NasAI3Si30;,Cl)
and cancrinite (NagCay[(CO3),|AlsS16024]-:2H,0), and a little of calcite (CaCOs),
aragonite (CaCOs), brucite (Mg(OH;), gypsum (CaSO4:2H,0), diaspore (o-
AlO(OH)), ferrihydrite ((Fe’"),03+0.5H,0), hydrocalumite (Ca,Al(OH);.3H,0),
hydrotalcite (MgsAl,CO3(OH)6-4(H,0)), portlandite (Ca(OH),), ilmenite (FeTiOs),
lepidocrocite (y-FeO(OH)) and p-alumohydrocalcite (CaAly,(CO3)2(OH)43H,0)
(McConchie et al., 2002a). PRBs containing Bauxsol™ can operate under oxic or
anoxic conditions. Most importantly, neither gypsum precipitation nor armouring
reduces the performance of the Bauxsol™ PRB. Bauxsol™ also increases the

nutrient retention capacity of soil (McConchie et al., 2002b).

Limestone has been used as a suitable reactive material for remediating acidic
groundwater in limestone ponds, constructed wetlands, successive alkalinity
producing systems (SAPS), open limestone channels (OLC) and oxic limestone
drains (OLD). The acidity in groundwater is reduced, by using limestone as an
ameliorant, therefore turbulence or mechanical aeration is required to degas carbon
dioxide (CO;) from the water (Pearson and McDonnell, 1975a, Webb and Sasowsky,
1994). Pearson and McDonnell (1975b) reported that armouring in an OLD hinder
the remediation process. However, when significant concentrations of Fe and Al
metals exist in groundwater, the reactivity of the limestone will be severely

exhausted.
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Figure 2.14 Self neutralisation behaviour of soil in acid mine tailing (Jurjovec et al.,
2002)
Laboratory column tests are commonly carried out with wide range of alkaline
reactive material to determine the potential reactive materials’ effectiveness while
continuous flow of contaminated groundwater is simulated, prior to the installation
of a PRB (Gillham and O'Hannesin, 1994, Mackenzie et al., 1999, Park et al., 2002,
Waybrant et al., 2002, Kamolpornwijit et al., 2003, Amos et al., 2004, Logan et al.,
2005, Indraratna et al., 2010, Regmi et al.,, 2011b). Amos and Younger (2003)

conducted batch tests for four alkaline reactive mixtures consisting of limestone
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chips, cattle slurry, compost, and pea gravel for a possible PRB to treat AMD run-
off. The mixtures consisted of different percentages of each material: (1) 50%
limestone chips, 25% cattle slurry screenings, 25% compost; (i) 50% pea gravel,
25% slurry screenings, 25% compost; (ii1) 75% limestone chips, 12.5% slurry
screenings, 12.5% compost; and (iv) 50% limestone chips, 50% compost. Komnitsas
et al. (2004) examined the possibility of a limestone and red mud mixed PRB to
remove heavy metals from AMD by precipitation and adsorption using column tests.
The main remediation mechanism was the precipitation of contaminants such as Mn,
Zn, Fe, Al, Cu, Co, SO4* and Ni as hydroxides and also through sorption of Cd.
High contaminant concentration may create adverse effects within the reactive media
by accelerated reductions in reactivity and longevity of a PRB due to fast
consumption of alkalinity, decrease in the reactive surface area due to armouring

effect by secondary mineral precipitation, and the desorption of heavy metals.

A number of recycled material from chemical and metallurgical processes have been
explored for the suitability of PRBs in order to remediate acidic groundwater via
precipitation, degradation or immobilisation of contaminants (Amos and Younger,
2003, Golab et al., 2006, Regmi et al., 2011b). The reason for using recycled material
as the reactive media is that the cost of an in-situ PRB system is quite high when
pure reactive materials are used. Therefore it is important to find out a cost effective
reactive medium in the selection process (Gavaskar, 1999). Recycled concrete,
zeolitic breccia, air-cooled blast-furnace slag (ACBFS) and red mud, with a suitable
grain size, can be used for the removal of metals and the successive neutralisation of

acidic groundwater (Komnitsas et al., 2004, Golab et al., 2006). The screening
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process and selection of cost-effective alkaline materials for this current research is

elaborated in Chapter 3.

2.6 Long-term performance of PRBs

Most of the previous literature is available for ZVI and SRB PRBs and their long-
term performance, as they were extensively used in the early development stage of
PRB technology. The performance of PRBs is decreasing basically due to the
armouring effect from secondary mineral precipitation (Indraratna et al., 2012,
Regmi et al., 2009a, Li and Benson, 2005, Wilkin et al., 2003). Armouring is defined
as the strong adhesion and complete pacification of the reactive surface by
encrustation (coating by the secondary minerals). Armouring will result in decreasing
the rate and extent of dissolution of reactive material and capability to remove
contaminants (Hedin and Watzlaf, 1994, Cravotta and Watzlaf, 2002). Depending on
the groundwater chemistry and composition of the reactive materials inside the
barrier, different types of surface coatings have been observed (Puls et al., 1999b,
Puls et al., 1999a). Therefore, the methods to quantitatively analyse the secondary

minerals and modelling techniques vary accordingly.

Clogging of the porous media can be divided into three main categories; physical
clogging by soil particles (Reddi and Bonala, 1997, Indraratna and Vafai, 1997,
Reddi et al., 2000), chemical clogging by the accumulation of precipitated
compounds (Li and Benson, 2005, Pathirage et al., 2012, Regmi et al., 2011b) and by
biological clogging from the growth of bacteria within pores (Rowe, 2005, Fleming
and Rowe, 2004, VanGulck and Rowe, 2004). Any of this clogging would result in

accumulation in the pore spaces and a decrease in porosity and hydraulic
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conductivity. Such a decrease in porosity and hydraulic conductivity inside a PRB
reduces flow through the barrier, which has a consequence in changing the flow
paths, residence time and probably bypassing the barrier (Mackenzie et al., 1999,
Phillips et al., 2000, Roh et al., 2000, Wilkin et al., 2003, Li et al., 2006). Therefore,
clogging inside a PRB can decrease the lifetime of a PRB before the reactivity of the
material diminishes (Gavaskar, 1999). The following literature shows various studies

carried out for performance monitoring and longevity predictions.

ZV1 PRB, Y-12 plant site, Oak Ridge, USA

Phillips et al. (2000) carried out a comprehensive mineralogical analysis of cores
(Figures 2.15 and 2.16) from a field-scale ZVI PRB to study the armouring and
clogging effect by secondary minerals precipitation after 15 months following the
installation. The intention of this PRB was to remove U from contaminated
groundwater at the Y-12 plant site, Oak Ridge, USA. It was reported that corrosion
of ZVI and the consequent precipitation of secondary minerals (Figure 2.15) might
lead to strong cementation, affecting its long-term performance. This led to a
decrease in porosity and permeability of the reactive material. Furthermore, the
precipitation of secondary minerals would decrease the reactivity due to surface

coating which shortens the longevity of the PRB to less than a decade.
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Figure 2.15 The distribution of minerals of the cores from the ZVI portion of the
barrier. Note: Akaganeite, which is not shown in the diagram, was present
throughout all the cores collected from the PRB (Phillips et al., 2000)
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Figure 2.16 SEM-EDX results on the surfaces of ZVI in the barrier: (a) hexagonal
shaped crystals of goethite (4-FeOOH) around an aragonite crystal (lower right
corner), (b) aragonite (CaCO3) crystals (c) amorphous FeS, and (d) precipitates of
aragonite, amorphous FeS and FeOOH on the surfaces of an ZVI filing from the
shallow down-gradient of the soil and barrier (Phillips et al., 2000)

ZV1 PRBs, Elizabeth City, North California and Denver Federal Centre, Colorado

Two ZVI PRBs used for the removal of Cr and chlorinated solvents were installed at
Elizabeth City, North California and Denver Federal Centre, Colorado. In both these
PRBs mineral precipitation was detected after four years of installation (Puls et al.,
1999a, Puls et al., 1999b, Furukawa et al., 2002). The PRB at Elizabeth City was a
continuous wall barrier and the PRB at Denver Federal Centre was a funnel-and-gate
configuration. Puls et al. (2000) reported that the corrosion layer was highest within

the first 50 mm and decreased considerably within 200 mm from the up-gradient
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aquifer/Fe interface. XRD data from Furukawa et al. (2002) listed all the possible
secondary minerals precipitated in the Elizabeth City PRB. The Elizabeth City fine-
grained fraction show all the major peaks for magnetite, mackinawite and carbonate
green rust as well as three major peaks for calcite, aragonite, siderite, goethite and

lepidocrocite (Figure 2.17).

Y S
R Y S S
PR P s

a- - Upgradient Interface
0 ' 20 ' 40 ' 60 ' 80

Magnetite

Carbonate
| Green Rust

| Mackinawite

Calcite

I Aragonite

‘ Siderite

I Goethite

‘ ‘ | Lepidocrocite

| [ |
20 40 60
Figure 2.17 XRD results of Elizabeth City samples from near the up-gradient
boundary and mid-barrier (Furukawa et al., 2002)
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After four years of operation, Wilkin et al. (2003) calculated the rate of inorganic
carbon and sulfur accumulation as 0.09 and 0.02 kg/m?/yr, respectively, at Elizabeth
City PRB; and 2.16 and 0.80 kg/m?/yr, respectively, at the Denver Federal Centre
PRB. The maximum porosity reductions due to secondary mineral precipitation and
microbial activity were 0.032 and 0.062 at Elizabeth City and Denver Federal Centre,
respectively. USEPA (2004) report mentions the maximum and minimum porosity
reductions were 5.9% in the first 25 mm of the ZVI material and 0.1% in 80 mm
from the up-gradient interface. This is a small decrease in porosity; therefore it
would not have any adverse effect from clogging the pore spaces of the reactive
material. Although, there might be a negative affect for the long-term reactivity of
ZVI particles by decreasing the reaction kinetics due to the biofilm coverage and

surface coating (armouring) by mineral precipitation (Wilkin et al., 2003).

ZV1 and sand PRB, Canadian Force Base, Ontario

A PRB composed of 22% granular ZVI and 78% sand was installed in 1991, for
treating chlorinated organic compounds at the Canadian Force Base, Ontario. These
have been running over 5 years, and were the longest available documented PRB
performance at the time. The results showed this PRB could remove about 90% of
chlorinated organic compounds through reductive dechlorination (O’Hannesin and
Gillham, 1998). Moreover, O’Hannesin and Gillham (1998) reported that there was
little evidence of precipitation and cementation of CaCQOj, hence proving negligible

armouring/clogging within the barrier.
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ZV1 PRB, New York

A pilot-scale ZVI PRB was installed at a formal industrial facility in New York to
remove volatile organic compounds (VOC). According to Vogan et al. (1999) the
performance of the PRB for two year operational period was satisfactory. The
porosity was decreased from ~0.5 to 0.45 (10% loss). From this, 6% was due to
carbonate precipitation observed towards the up-gradient interface. Nevertheless, the
performance of the PRB was not affected since microbial populations did not
increase in the ZVI zone compared to the aquifer and the minerals formed in the ZVI

zone.

ZV1 PRB, Monticello, Utah, USA

Morrison (2003) installed a full-scale PRB in Monticello, Utah, USA for the
treatment of contaminated groundwater containing 295 mg/L Ca, 1180 mg/L SO4~,
118 mg/L NO;*, 173 mg/L chlorite and 430 mg/L alkalinity, and observed 8.8
tonnes of CaCOj; and 24 kg of U- and V-bearing minerals precipitate. Figure 2.18
shows the distribution of solid-phase U and V concentrations. These large amounts
of precipitates decreased the porosity of the PRB by 9.3% in the up-gradient

gravel/ZVI zone and 3.2% within the ZVI zone 2.7 years after PRB installation.
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Figure 2.18 Contour maps of means of solid-phase (a) U concentrations (b) V
concentrations in samples from four random depths (mg/kg) (Morrison, 2003)

Mixed-media PRB, British Columbia, Canada

Ludwig et al. (2002) installed a PRB composed of 15% leaf compost, 84% pea

gravel and 1% limestone by volume to treat a site contaminated by heavy metals in

British Columbia, Canada. The leaf compost was used as laboratory column

experiments proved that it is a fine substrate for SRB. The use of pea gravel was to

achieve a minimum desired hydraulic conductivity of 10° m/s to guarantee favoured

flow through the barrier. After two months of operation there was hardly any change

in the hydraulic conductivity within the barrier (0.0018 m/s). Furthermore, there was

no any indication of change in hydraulic conductivity after 9 and 21 months. This

pointed out that there were no significant precipitation reactions of secondary

minerals taking place in the barrier which could have reduced the hydraulic

conductivity.
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The majority of literature is mainly on ZVI and SRB PRBs, while research has only
just begun on other alkaline reactive materials such as Ca-bearing minerals.
Therefore, very small amount of literature is present on the long-term performance of
PRBs utilising Ca-bearing minerals (limestone) for the remediation of acidic
groundwater. Desmier et al. (2002) and Indraratna et al. (2012) reported that
armouring is a problem in PRBs if limestone or recycled concrete are used to
remediate acidic groundwater, respectively. Limestone or recycled concrete PRBs
become less effective when the reactive surface is armoured by Fe and Al
precipitates, which can lead to clogging and failure in the future (Regmi et al., 2009a,

Regmi et al., 2011b).

Although field PRBs have shown good performance in remediating contaminated
groundwater, there are some concerns and drawbacks of this remediating strategy
(Vidic, 2001). The main reason is the lack of information on reaction kinetics and
geochemistry, insufficient information on the economic viability of PRBs (Birke et
al., 2003) and inability to verify hydraulic performance (Vidic, 2001). Some
laboratory and field investigations show that mineral fouling can be favourable in
PRBs in terms of better flow and/or blockage of flow (Sarr, 2001, Kamolpornwijit et
al., 2004, Kamolpornwijit et al., 2003). However, many researchers reported that the
rate of porosity reduction depends on groundwater chemistry and flow rates (Blowes
et al., 2000, Phillips et al., 2000). Therefore, a detailed and comprehensive
assessment of mineral fouling in PRBs using field data and laboratory experiments is
important with special reference to site-specific geochemical and hydro-geological
conditions (Phillips et al., 2000), aquifer heterogeneity (Li et al., 2006), and the

reactive times of mineral precipitation/dissolution (Vikesland et al., 2003).

46



In view of the above, it is impractical to carry out field work for performance
monitoring of a PRB to find out when the reactivity or the treatment capacity will
diminish. Therefore, it is difficult to make any precise conclusions on the longevity
of PRB. As a solution for this, numerical modelling has come in to play, which can
couple the geochemistry with groundwater flow. Previous researchers (Mayer et al.,
2001, Yabusaki, 2001, Li and Benson, 2005, Li et al., 2006, Liang et al., 2003) have
used various numerical modelling codes and software to capture the chemical
reactions inside PRB including mineral dissolution and precipitation and the effect of
mineral precipitation on hydraulic properties of PRBs. A detailed literature review on
numerical modelling applications for the long term performance monitoring in PRBs

is described in the following section.

2.7 Numerical modelling of PRBs

Contaminant transport models contain the governing equations together with the
boundary and initial conditions. Once a model has been formed and the proper
parameters have been finalised, a solution to the governing equations has to be found
with accordance to the suitable boundary and initial conditions. There are mainly five
categories of models used to get a solution to the governing equations; analytic,
boundary element, finite layer, finite element and finite difference techniques (Rowe

et al., 2004).

The finite layer techniques can be applicable when the properties of the system can
be idealised as horizontally layered as well as the soil properties stay at the same
horizontal location within the layer. The governing equations can be simplified by

using a Laplace and/or Fourier transform (the latter is applicable only for 2D or 3D
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problems). The transformed equations can then be solved. The difference between
the solutions from finite layer technique and analytic approach is that in the finite
layer technique, the solution is found numerically rather than analytically. This
allows to examine more complicated and accurate situations such as when dealing
with larger domains and a lot of unknown parameters. The advection-dispersion
equation is usually solved by the boundary element technique. Its main benefit over
finite layer technique is its ability to model more complicated geometries. Boundary
element approach has not been widely used for contaminant migration studies to date

(Rowe et al., 2004).

On the other hand, extensive research has been carried out using the finite difference
and finite element methods for the analysis of contaminant migration through soils.
These numerical methods are useful for;
i.  to define the velocity field by calculating the steady state flow pattern within
the hydro-geological system;
ii.  to solve the advection dispersion equation (using velocities determined from

(1)) by calculating the rate of contaminant migration (Rowe et al., 2004).

The steady state modelling techniques are well established and many commercial
software packages are available. The finite element technique is so powerful that it
has the capability to model problems with complicated geometries, complex flow
patterns, non-linearity and heterogeneity. There are plenty of literatures dealing with
different algorithms, which can be used to solve the advection dispersion equation.

Some of them are discussed in Section 2.8.
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The transportation of reactive contaminants through any reactive material comprises
a high complexity, as they are mutual and concurrent. The physical transportation,
chemical reactions and the mutual interaction of chemical species can be hard to
predict (Mayer, 1999). Contaminant transport modelling within the last three decades
mainly focus on developing equilibrium models for assessing geochemistry of
reactions (Parkhurst et al., 1980, Ball and Nordstrom, 1991, Wolery et al., 1990,
Allison et al., 1991). Geochemical equilibrium reactions include hydrolysis, ion
exchange and sorption, complexation, redox and dissolution-precipitation reactions.
Some of the geochemical equilibrium models frequently found in literature are
MINTEQAZ2 (Allison et al., 1991), PHREEQE (Parkhurst et al., 1980), PHREEQC
V1.6-2 (Parkhurst and Appelo, 1999) and EQ 3/6 (Wolery et al., 1990). Liang et al.
(2003) and Wilkin et al. (2003) mentioned that the equilibrium models are less useful
for predicting the quantitative accumulation of minerals with respect to space and
time but are helpful to understand the qualitative approximation of minerals likely to

form within the PRB.

In order to get a better idea about the fate and transport of contaminants, these
equilibrium models have also been coupled with advective-dispersive transport
models. Multi-component reactive transport models are very versatile compared to
equilibrium models as they can be applied to partially saturated and fully saturated
porous material. Different types of kinetic relationships have been developed
according to the contamination, such as kinetically-controlled reactions (Sverdrup
and Warfvinge, 1988), Monod kinetics (Borden and Bedient, 1986, Borden et al.,
1986) and the development of reactive networks (Hunter et al., 1998). Coupled

hydro-geochemical models are extremely useful for PRB studies to understand the
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groundwater quality and mineralogical composition of different systems and trial run
the conceptual models (Mayer et al., 2001, Li and Benson, 2005). In contrast to
equilibrium models, kinetic reactive models describe the rate at which the
geochemical reactions occur and produce the concentrations of dissolved/precipitated

ions as a function of time.

2.8 Case studies carried out using numerical modelling

Mayer (1999) developed a three dimensional reactive transport code: MIN3P for
simulating flow and multi-component reactive transport incorporating a kinetic
geochemical algorithm. MIN3P has the ability to solve the governing equation for
Darcy-type fluid flow in a variably saturated porous medium. Neuman (1973) and
Huyakorn et al. (1984) defined the governing equation for variably saturated flow
(Eqn. (2.11)). They adopted some assumptions as the fluid is incompressible, there is
no hysteresis and/or a passive air phase and came up with Eqn. (2.11) to calculate the
hydraulic head:

dh S,
Sa SSE-F@E_V. [kraKVh] _Qa:O (2-10)

where, S, is the volumetric water saturation of the aqueous phase (m’/m’); S, is the
specific storage coefficient (1/m); 4 is the hydraulic head (m); ¢ is time (s); & is the
porosity of the media (m*/m*); &, is the relative permeability of the porous medium
with respect to the water phase (dimensionless); K (p.gk/w,) is the saturated
hydraulic conductivity tensor (m/s), p, is the aqueous phase density (kg/m’), g is the
gravitational acceleration, (m/s®), p, is the aqueous phase viscosity and k is the

intrinsic permeability tensor (m?); and Q, is a source—sink term (1/s).
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The reactive transport equation for advective—dispersive transport is written in global
implicit form in MIN3P as (Lichtner, 1996, Mayer and MacQuarrie, 2010, Mayer et

al., 2002):

S

] aT; .
o [S.9.T7] + a—; + V. [qaT?] = V. [S.0D, VT — Q¢* — Qi =0, ) @.11)

=1,N,
where, T (kg/m® H,0) is the total water phase concentration of component J; T/ is
the total adsorbed component concentration, ¢, is the Darcy fluid flux (m/s); D, is the
dispersion tensor for the water phase components (including both hydrodynamic
dispersion and diffusion); ;" and Qf”’ represent external and internal source—sinks,

respectively, and N, defines the number of components.

Mayer et al. (2001) used MIN3P to simulate the flow and mineral precipitation in the
ZVI1 PRB at the US Coast Guard Support Center, Elizabeth City, North Carolina.
This PRB was used for treating contaminated groundwater enriched with hexavalent
Cr (Cr(VI)) and trichloroethylene. Mayer et al. (2001) carried out simulations for the
degradation of chlorinated solvents, transformation of Cr(VI), reduction of DO, NOs
and SO,% in groundwater. Moreover, he carried out simulations for Fe corrosion by
contaminated groundwater, precipitation of secondary minerals, microbial mediated
SO, reduction, and hydrogen gas evolution within the PRB. The results showed
altogether, twenty-five constituents and seventy-nine reactions possibly occurring
and eight possible secondary minerals assumed to form in the ZVI PRB (CaCOs3,
CaMg(CO3)2, MnCO3, FeCOs, Fe(OH)3, FeS (am), Fe(OH)2 (am) and Mn(OH)2
(am)). Transition state theory (Eqn. 2.12)) was used to model secondary mineral
formation in treatment zone and surface area reduction method to model the

depletion of the ZVI reactive material (Eqn. 2.13)).
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r:_kgﬂ[l_[(_] (212)

23
s =80, e (2.13)
e e ¢Fe0

where, r is the reaction rate (molm'3bu1ks'1), kg 1s the effective rate coefficient (molm’
ks ), IAP = ion activity product (depends on the reaction), K., is the solubility

constant (depends on the reaction), S, ,is the current reactive surface area of zero-
valent iron (m?), S260 is the initial reactive surface area of zero-valent iron (m?), P

is the current volume fraction of zero-valent iron and (/’1360 1s the initial volume

fraction of zero-valent iron.

The simulated results indicated that porosity reduction was high at the entrance of the
PRB, which decreased towards the down-gradient zone. The predicted results
showed average porosity near the entrance of the PRB was decreased by 28% from

0.50 to 0.36 over 20 years of operation (Figure 2.19).
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Figure 2.19 Porosity change associated with Fe corrosion and secondary mineral
formation (Mayer et al., 2001)
MIN3P has been extensively used for numerous applications including AMD
generation and attenuation (Bain et al., 2001, Brookfield et al., 2006), biodegradation
of organics (Watson et al., 2003), AMD remediation using PRBs (Mayer et al.,
2006), and the evaluation of redox stability in deep crystalline rock formations

considered for deep geologic repositories for nuclear waste (Spiessl et al., 2008).

Li et al. (2005) carried out a comprehensive numerical model that could capture the
reaction kinetics inside the PRB and most importantly the influence of mineral
fouling on the long-term performance of two PRBs using ZVI. MODFLOW
(McDonald and Harbaugh., 1988) and the reactive transport model RT3D (Clement,
1997) were used to predict the performance of PRBs at Moffett Federal Airfield and
the US Coast Guard Support Centre. They developed a geochemical algorithm
coupling all the redox and mineral precipitation-dissolution reactions occurring in the

ZV1 PRBs with the groundwater flow model (Li, 2004). Moreover, an assessment of
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mineral fouling and its effect on the longevity, due to the change in porosity and

hydraulic conductivity were predicted by the model.

Li et al. (2005) stated that both average and maximum porosity reductions in the
PRB was observed at the entrance face about 0.1 m in to the barrier, and then
decreased and remained constant for about 0.8 m from the entrance for different
simulation periods of 10, 30, and 50 years. Those results are shown in Figure 2.20. It
can be seen that both the average and maximum porosity reductions increased with
time, reaching a maximum porosity reduction in 50 years. It is obvious that they
could observe from the simulations that the maximum porosity reductions were at the
entrance zone of the PRB. That was probably due to the impact of flow heterogeneity

on the rate of mineral precipitation.
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Figure 2.20 Change in (a) porosity and (b) hydraulic conductivity as a function of
distance from the entrance face of the PRB for different time intervals (10, 30, and
50 years) (Li and Benson, 2005)

From the results obtained for first 10 year period, decrease in hydraulic conductivity
was not much, probably because of the negligible clogging effect during this period.

Noteworthy reductions in both porosity and hydraulic conductivity were observed for

the simulations carried out for 50 year of operation as a result of predicted complete
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blockage of pore spaces of the PRB (Figure 2.20). According to Li (2004), these
porosity changes depend on the flow rate and concentration of the influent
groundwater. When the influent groundwater flow is high, the reductions in porosity
and hydraulic conductivity would be faster because of the increase in contaminants
passing through the barrier. As a result of that reactions take place more and
precipitate secondary minerals out of solution, which would accumulate on the pore
spaces and armour the reactive surface. Figure 2.21 shows the results obtained for

different velocities and associated porosity reductions (Li and Benson, 2005).

0.014 T T T T T T T T T T T T T T T T T T T T T T T T
© o]
0.012 -
=
L2
©
=
°
Q
T 0.010 .
=
3
E og,’’ o
e L ] .“
o ® e
0.008 Mid-Plane” i
WAALAR AV ARAVVAVR ARABAR A VA & AV JATAA AT AT TIATR EX|t Face A A A
0.006 ettt ettt
0.0 0.1 0.2 0.3 0.4 0.5

Horizontal Darcy Velocity (m/d)

Figure 2.21 Porosity reduction at entrance face, mid-plane and exit face after 1 year
of operation as a function of Darcy velocity (Li et al. (2006))
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OS3D (three-dimensional reactive transport code) is another multi component
transport model developed by Steefel and Yabusaki (1996) which can couple kinetic
geochemical algorithms with flow through saturated porous media. This code was
used to predict the mineral precipitation and associated porosity reductions in a pilot-
scale ZVI PRB at Moffett Federal Airfield, CA, USA. The results obtained from the
model and the field data for the concentration profiles for TCE, DCE, pH, alkalinity,
total Mg, total SO4*, and NOs> were in good agreement (Figure 2.22). According to
Yabusaki (2001), porosity changes were predicted to reduce by 0.030 and 0.014

annually towards the entrance and middle zones of the PRB respectively.
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Figure 2.22 Model predicted and field observed results after 1 year of operation in the PRB located at Moffett Federal Airfield, CA, USA
(Yabusaki, 2001)
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2.9 Summary

The acidic groundwater resulting from pyrite oxidation in ASS is a major
environmental and socio-economic problem in coastal Australia. Previous research
demonstrated that groundwater manipulation using engineering solutions such as
weirs and modified two-way floodgates in creeks and flood mitigation drains was not
effective in low-lying floodplains due to the risk of flooding and the occurrence of

pyrite oxidation even under submerged conditions.

PRBs have been widely used worldwide for the remediation of contaminants such as
AMD, chlorinated organic compounds, chromate, heavy metals and radionuclides.
However, their application for ASS problems has been very rare to date, except for
one trial OLD reported by Waite et al. (2002), which failed in a short period probably

due to rapid armouring and clogging by secondary mineral precipitation.

The performance of different types of reactive material used for remediating
contaminated groundwater highlighting laboratory and field monitoring data was
briefly illustrated in this chapter. The risk of armouring and clogging hindered the
performance of reactive materials in many literatures. Moreover, a critical overview
of the performance of PRBs and the numerical approaches used to clarify their long-
term performance is analysed. The results of the numerical models predicted that the
porosity reductions were a maximum at the entrance phase of the PRB due to

secondary mineral precipitation.
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Chapter 3 Laboratory column experiments

3.1 Introduction

This chapter examines the potential of recycled concrete aggregates to remediate
acidic groundwater through detailed laboratory column experiments. Stepwise acid
neutralisation behaviour is observed, which is attributed to (a) bicarbonate buffering
zone, (b) re-dissolution of Al minerals and (c) re-dissolution of Fe minerals as
similar to that reported by Regmi et al. (2011a). The reason to carry out column
experiments apart from the results provided by Regmi et al. (2011a) was to
determine the mineral precipitation/dissolution behaviour along the column. The
results obtained in this study are used to validate the developed model in Chapter 6.
The efficiency of acid neutralisation behaviour is hindered by chemical armouring
and clogging due to secondary mineral precipitation and accumulation on void
spaces. This is evident from the calculated porosity from the volumes of precipitated
secondary minerals and calculated hydraulic conductivity reduction from the

pressure transducers throughout the column length.

3.2 Potential Reactive Material

Apart from cost-effectiveness, the reactive material should be entirely characterised
before implementing so that they maintain their reactivity over a long period of time,
do not cause any adverse chemical reactions with the constituents of the
contaminated plume, and have low cost (Gavaskar et al., 1998). Many alkaline
materials can be used to remediate the acidity in groundwater as described in Chapter

2. As the main contaminants in groundwater associated with ASS are acidity, soluble
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AP’" and total Fe, the reactive material should be able to increase the pH to a level

that causes Al and Fe to precipitate out of solution.

Previous UOW researcher, Golab et al. (2006) tested a total of 25 different possible
alkaline materials in a series of batch tests followed by short-term column tests
(Golab et al., 2009a, Golab and Indraratna, 2009) using the acidic groundwater
collected from the same study site. The materials used by Golab et al. (2009b) were
basically waste materials, including fresh and recycled concrete, oyster shells,
calcite-bearing zeolitic breccias, ACBFS, lime and fly-ash, with some pure materials
such as limestone and lime. Recycled concrete was collected from a demolished

construction site.
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Figure 3.1 pH vs. time for the selected reactive materials (Adapted from Golab et al.,
2006)
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The results of these batch tests are shown in Figure 3.1. All the above mentioned
reactive materials achieved a better pH (a pH above the acidic groundwater) due to
the Ca-bearing alkaline material present within them such as Ca(OH), and CaCO;
(Golab et al., 2006). The fresh concretes (concrete 1 and concrete 2), recycled
concrete, lime and ACBFS, all achieved a consistent pH with the dissolution of
portlandite/lime (pH 11 to 12) in the batch tests. The limestone and zeolitic breccia
achieved a consistent pH with the dissolution of calcite (~ pH 7.4). Lime and fly ash
were considered unsuitable for different reasons including excessively small grain
size. ACBFS had insufficient ANC and breccia gave insufficient removal of Al and
Fe (Golab et al., 2006). The results of the batch tests showed that recycled concrete
performed well by neutralising large volumes of acidity and removing Al and Fe
from solution without leaching harmful ions into the groundwater (Golab et al., 2006,

Golab et al., 2009a).

In this research, the recycled concrete aggregates used in the laboratory column
experiments were collected from a refuse depot, after the demolition of old concrete
elements from road expansion works in rural NSW. They were from the same batch
of concrete used in the pilot-scale PRB installed in ASS terrain, Nowra. Large pieces
of the recycled concrete were crushed to smaller particle sizes to suit the column.
Accurate identification of the composition of hydration products in the concrete was
complicated due to the physical, chemical and mechanical changes in solidified
cementitious systems. Additionally, accurate quantification of the minerals was a
challenge due to the heterogeneity of the concrete particles. Regmi et al. (2009b)
carried out chemical analysis to determine the elementary composition of recycled

concrete by inductively coupled plasma—mass spectrometry (ICP-MS) with 1:1 nitric
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acid/hydrochloric acid (HNOs/HCl) digestion following APHA 3120. The recycled
concrete contained a negligible amount of heavy metals compared to the major

cations (Table 3.1).

Quantitative X-ray diffraction (QXRD) analysis carried out by Regmi et al. (2011a)
lists the chemical composition of the major cations present in the recycled concrete
as shown in Figure 3.2. The large amount of extractable Ca (58%) and Ca-bearing
minerals (anorthite, calcite and feldspars) indicate that recycled concrete can

generate significant amounts of alkalinity to neutralise the acidic water.

Table 3.1 Elemental analysis of major elements in recycled concrete by ICP-MS
(Regmi et al., 2009b)

Metals (mg/kg) | Metals (mg/kg)
Calcium (Ca) 63,935 Copper (Cu) 85
Iron (Fe) 23,909 | Vanadium (V) 75
Aluminium (Al) 10,984 | Nickel (Ni) 70
Magnesium (Mg) 5,872 Zinc (Zn) 64
Silica (Si) - acid soluble 3,416 Barium (Ba) 49
Phosphorus (P) 993 Chromium (Cr) 31
Manganese (Mn) 877 Lead (Pb) 9
Potassium (K) 770 Cobalt (Co) 9
Sodium (Na) 413 Mercury (Hg) <0.01
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Figure 3.2 Elemental composition of the recycled concrete used in the column

experiments (Regmi et al., 2011a)

3.3 Laboratory experimental set up

The input solution for the column was a synthetic acidic water (Table 3.2) prepared
as to be comparable to the average groundwater from ASS terrain in southeast NSW,
Australia as presented by Indraratna et al. (2014) and Pathirage et al. (2012).
Previous investigators (Regmi et al., 2011b, Jurjovec et al., 2002, Komnitsas et al.,
2004, Waybrant et al., 2002) have also used synthetic water in laboratory
experiments to understand the geochemistry behind the remediation of contaminated
groundwater as it provides consistent influent characteristics throughout the

experimental period.
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Table 3.2 Water Chemistry of the influent solution prepared for column experiment
simulating the water chemistry of the acidic groundwater in ASS terrain presented in
Indraratna et al. (2014) and Pathirage et al. (2012).

Parameter Values
pH 2.67
ORP * (mV) 610
Acidity ° (mmol eq/L) 6.45
Na' (mg/L) 504.2
K" (mg/L) 50.1
Ca™" (mg/L) 152.2
Mg”" (mg/L) 118.0
A’ (mg/L) 54.0
Fe'" (mg/L) 49

CI (mg/L) 849.0
SO4” (mg/L) 1450.0

Note: * ORP — Oxygen Reduction Potential, ° Acidity was measured equivalent with respect
to CaCO:s.

Laboratory column experiments were carried out under constant flow condition. A
flow rate of 1.2 mL/min was applied using a Masterflex peristaltic pump (Figure
3.3). Two simultaneous column experiments were run as suggested by Johnson et al.
(2005). One column was for sampling and the other one to take pressure readings
along the column length at every 100 mm interval. The purpose of running two
simultaneous columns instead of one column was to eliminate the impact of
sampling activities on the pressure in the column (Johnson et al., 2005). It was
important to not disturb the pressure of the column, because pressure readings
collected by pressure transducers were used to calculate the hydraulic conductivity
along the column. The inlet and outlet column pressures at the onset were measured,

which were almost the same. The input and environmental conditions were
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maintained the same for both columns, so the pressure readings calculated at each
port was assumed similar to the respective sampling port at the same height in the
other column. The experiments were conducted in transparent acrylic columns
(Figure 3.3; Internal diameter x Length = 50 mm x 650 mm). The columns had 100
mm of silica sand at the bottom followed by 500 mm of crushed recycled concrete,
and topped with another 50 mm of silica sand. Pure silica sand (chemically inert)
placed at the top and bottom of the columns provided effective filtration for the
simulated groundwater. The influent and effluent ports were separated from the silica
sand using a geotextile separator to prevent physical clogging by sand. The water
flow was directed from bottom to top to maintain saturated conditions. The physical
parameters of the packing materials and flow rate used in these columns are shown in
Table 3.3. The porosity was determined by dividing the total void volume by the
volume of the column while the total void volume was determined by weighing the

column dry and fully saturated.

Table 3.3 Physical parameters of the column experiments.

Physical parameters SC PTC
Porosity (%) 69 69
Mass of concrete (g) 1415 1413
Bulk density (g/cm”) 1.22 1.22
Flow rate (mL/min) 1.2 1.2
ANC (g/Kg) 146 146
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Figure 3.3 Schematic diagram of the laboratory column experiments: A is the

sampling column and B is the pressure measuring column

The packed columns were flushed with 4 to 5 pore volumes (PV, defined here as the

void volume of the column) of deionised water before commencing the experiments.

All column experiments were conducted at room temperature, which varied from

14.9 to 24°C as the experiments were carried out during the winter and spring

seasons. The pH, temperature, EC and ORP were measured immediately after the

samples were collected, after which they were filtered through 0.45 um cellulose

acetate filter paper. Both acidified and non-acidified samples were collected and

stored in a refrigerator at 4°C prior to analysis.
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Major cations (Na", K7, Ca2+, Mg%, total Fe, and Al3+) in the samples were
determined using inductively coupled plasma optical emission spectroscopy (ICP-
OES) and atomic absorbance spectroscopy (AAS). Anions (SO4* and CI") were
measured using ion chromatography (IC). All chemical analyses (acidity, alkalinity,
major cations, major anions and other trace metals) were performed following

standard methods for the examination of water and wastewater (APHA, 1998).

E e S o 8

Figure 3.4: Photo of the laboratory column experiments using constant flow method
(Left: Sampling column, Right: Pressure transducer column).
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3.4 Results and Discussion

3.4.1 Acid neutralisation behaviour
A step-wise decrease in pH profile was observed in the sampling column (SC) and
pressure transducer column (PTC) as the number of PVs passed through the column
increased (Figure 3.5). The pH of the effluent collected at the beginning of the
experiment for the SC and PTC was high (pH 9.69 and 9.14, respectively). From
here onwards the change in pH will be discussed for the results obtained with respect
to the SC as both SC and PTC have a similar pH profile. The reaction between the
acidic water and the concrete that caused leaching of the Ca also reduced the pH of
the effluent from pH 9.7 initially to 8 within 15 PVs (Figure 3.5), after which there
was a slow decrease (pH dropped from 7.9 at 25 PV to 7.5 at 125 PV), a faster drop
from pH 7.5 at 125PV to about 6.8 at about 185 PV, a rapid drop from pH 6.8 at 185
PV to 4 at about 215 PV, and then another period with a slower rate of decrease from
pH 4 at 215 PV to 3.1 to about 295 PV at test termination. According to Indraratna et
al. (2010), the initial drop in pH (after 15 PVs was passed through the column) was
assumed to be due to the depletion of carbonate alkalinity. However, after reaching a
pH value of 6.8 (after 190 PVs), it subsequently diminishes to 4 (Figure 3.5). This is
probably due to the OH™ being in equilibrium during the depletion of carbonate
minerals (Indraratna et al., 2010). Overall, the three different pH plateaus in Figure
3.5 can be attributed to three distinct pH-buffering reactions as similar to seen in
Regmi et al. (2011a):

(1) dissolution of carbonate/bicarbonate alkalinity from the concrete at

near-neutral pH,
(2) re-dissolution of Al hydroxide minerals at pH ~4.5, and
(3) re-dissolution of ferric oxyhydroxide minerals at pH < 3.7.
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Bicarbonate Buffering

Among the above mentioned three buffering reactions, carbonate/bicarbonate
buffering was the most significant for remediating acidic groundwater by
maintaining an almost neutral pH and complete removal of AI’" and total Fe from the
influent solution. The effluent collected after flushing the recycled concrete column
with deionised water had a high pH (~9.7) due to the dissolution of a minor amount
of portlandite, which when reacted with acid maintained alkaline pH (pH above 8).
This initial condition lasted for 20 PVs corresponding to an ORP of 200 mV, which
indicates weak oxidising conditions inside the column (Figures 3.5 and 3.7). As
shown in Eqns. (3.1) and (3.2), hydroxyl and carbonate alkalinity are released by the

dissolution of portlandite and through carbonation, respectively.

Ca(OH), +2H* — Ca®™ +2H,0 (3.1
Ca(OH), + CO, — CaCO, + H,0 (32)

The total alkalinity released was not strong enough to buffer the pH for a long
period. This is evident from the rapidly decreasing pH at around 25 PVs Figure 3.5.
Therefore, the buffering effect from Eqns. (3.1) and (3.2) are not significant enough
for acid neutralisation. Moreover, total alkalinity decreased due to calcite
precipitation during this buffering period (Figure 3.8). Subsequently, the effluent pH
remained near-neutral (pH ~6.7-7.9) until ~180 PVs (Figure 3.8) due to the
dissolution of calcium aluminate hydrated compounds (C-A-H) with continuous

contact of acid with the reactive media (Eqn. (3.3)).

CaAl,SiO; +8H"* — Ca® + 24" +2H ,SiO, (3.3)

After about 25 PVs bicarbonate alkalinity is generated according to Eqns. (3.4)-(3.5)

resulting in an increase in alkalinity in the column.
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CaCO, +2H" < Ca’ + H,CO, (3.4)

CO, + H,0 < H,CO, (3.5)

Figure 3.8 shows the alkalinity generation by the dissolution of Ca-bearing minerals
from recycled concrete according to Eqns. (3.1)-(3.5). Al et al. (2000) observed that
armouring of reactive carbonate mineral grains by the accumulation of secondary
mineral precipitates during acid neutralisation diminished the rate of primary mineral
dissolution. In the same manner, in this column experiment the pH decreased slowly
when the mineral precipitates gradually coated the surface of the recycled concrete at
the first plateau reaching a pH of 6.7 at 180 PVs. The pH then dropped immediately
reaching the next plateau (pH 4.5-4.0) after the complete depletion of bicarbonate

alkalinity at 190 PVs.

The experimental values of pH at sampling points along the SC are shown in Figure
3.6. In the SC, the rapid drop in effluent pH to 6.5 or below is attained within 25 PVs
(Figure 3.6), which is fast due to the rapid neutralisation of acidity and the
exhaustion of the reactive material at the entrance of the column. In contrast in SP1,
2, 3, 4 and 5, excessive sampling of the column was avoided in order to ensure
minimum disturbance to the flow. That is probably the reason why a rapid drop was

not observed for the pH values inside the column (Figure 3.6).
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PV

Figure 3.5 Effluent pH of the sampling column (SC) and pressure transducer column
(PTC)

As shown in Figure 3.6, the pH at different sampling ports decreased rapidly in the
lower parts of the column, corresponding to a sharp increase in ORP (Figure 3.7) due
to a fast depletion of alkalinity at the advancing acid front. As a result of the decrease
in pH (Figure 3.6) and increase in ORP (Figure 3.7), the depletion of both alkalinity
(Figure 3.8) and Ca released from the system was slower in the top part of the

column relative to the bottom part of the column.
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Figure 3.6 pH at sampling points along the column

The increase in pH due to acid neutralisation reactions can lead to a prominent
decline in the concentration of dissolved metals, mainly AI’* and total Fe (Fe*" and
Fe*) due to precipitation. However, the observed concentrations of K, Mg®", Na",
Cl" and SO,4* at the sampling points were comparatively constant throughout the
entire experiment (Figure 3.9), which indicates that they were unaffected and were
not influenced by the neutralisation reactions. In the same manner, Watzlaf et al.
(2000) also reported that in 10 different anoxic limestone drains (ALDs), S04 levels

were unaffected by the ALDs.
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Figure 3.8 Alkalinity at sampling points along the column
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Figure 3.9 Concentration of other ions at different sampling points along the column

Aluminium oxy/hydroxide buffering

The Al oxy/hydroxide buffer zone is considered to occur after the rapid drop in pH
between 190 and 250 PVs when the effluent pH stabilised at ~4.5-3.7 (Figure 3.5).
This plateau was possibly due to the equilibrium reached by the re-dissolution of Al
precipitates similar to that reported by Blowes et al. (2003) and Jurjovec et al. (2002)

for AMD. Moreover, this interpretation is evident by the sharp increase in Al’"

concentration in the effluent at 190 PVs (Figure 3.10).
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Ferric oxy/hydroxide buffering

After the exhaustion of Al oxy/hydroxide buffering, the next pH plateau was
observed at around 270 PVs where the pH dropped to 3.5. This plateau was
identified as the Ferric oxy/hydroxide buffering zone, which reached a pH of 3.1 at
295 PVs (Figure 3.5). After that the column experiments were terminated as the
effluent pH almost reached the acidic influent pH. This interpretation is also
supported by the increase in the total Fe concentration after reaching the third pH

plateau at 265 PVs (Figure 3.10).
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Figure 3.10 Effluent concentrations of AI’" and total Fe

3.4.2 Al and Fe precipitation

Two of the most important attributes in the bicarbonate buffering zone are the almost
complete removal of AP (> 99%) (Figure 3.11) and total Fe (Figure 3.12). This

indicated that the AI’* and total Fe precipitated out of solution. In the early stages of
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the experiment, most of the Al in the synthetic groundwater precipitated shortly after

entering the column and was no longer in the pore water (Figure 3.11).

AP’ tends to precipitate when the pH is above 4.5. AI’" was observed in the effluent
water for the first time when the pH of the effluent dropped to 4, after which the
concentration of AI’" continued to increase (Figure 3.11) because of its high
solubility at pH<4. Correspondingly, Fe also precipitated when the pH exceeded 3.5.
Until 205 PV, the effluent pH did not drop below pH 3.5; accordingly, the Fe content

of the effluent (<1 mg/L) was negligible throughout the duration of the column test

(Figure 3.12).
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Figure 3.11 AI*" concentration at the sampling points along the column
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Figure 3.12 Total Fe (Fe*" and Fe*") concentration at the sampling points along
the column

In order to study the mineral precipitation out of solution, especially taking AI’" and
Total Fe (Fe’" and Fe’") into account, saturation indices (SI) were calculated using
PHREEQC software. The calculated SIs of minerals at all the sampling points is
illustrated in the geochemical algorithm development section in Chapter 5. These
results demonstrate that the effluent was saturated with respect to Al minerals
(gibbsite, boehmite and diaspore) and Fe minerals (hematite, maghemite, goethite,
lepidocrocite, ferrihydrite) in the first pH plateau, where almost neutral pH was
observed (Figure 3.5). Likewise, previous studies of field installations of PRBs and
column tests also report precipitates of ferrous/ferric (oxy/hydroxide) oxides and Al
hydroxides (Mackenzie et al., 1999, Puls et al., 1999a, Vogan et al., 1999, Phillips et

al., 2000, Roh et al., 2000, Golab et al., 2009b).
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Furthermore, in this study, the precipitation was evidenced by the hydraulic
conductivity reductions calculated using the pressure transducer data (from PTC) at
the corresponding sampling points. The hydraulic conductivity reductions were a
maximum near where the water entered the column (Zone 1) and decreased with
distance along the column (i.e. clogging in Zone 1 > Zone2 > Zone 3 etc.) (Figure
3.13). The precipitation of secondary minerals significantly decreases the efficiency
of the reactive material due to the armouring effect (armouring is the coating of

reactive surfaces of recycled concrete by precipitating minerals) (Indraratna et al.,

2014).
T I T I T I T I T I T I T I T
1.00 - CRERELLIIXK Y3 7
I g KKK XRRKRKK KKK KKK
2PN a5 CREKKEZLLL .
4 ?f(T TS A\ )-"EXVS" s L (‘Q‘(‘(((({(\(/((‘\<«‘ LR T
T DY
095 -1 ""'\lﬂ;s"," ) );x:)};};))\‘i"‘—\\‘. -
¢ %
4 .‘.i\'lii f'.f. ‘/A/‘// ‘I:V‘\v\“-‘_v 4
0.90 - b T rgy s R .
C Qr L) AR
(L @ 7Y v
] + Receg I'/“)/, e T
'm) ) Ly SV
0.85 - . s oy, .
0 “(fp' ‘//A
(I ¢ /A A
1 u) N ) 1
Mo & & A175N
0.80 < Ty <ol —
= Q
Q 0 e
. lFrr ‘(("( i
r'Hrmr'\i %/('fo
0.75 1 —0— zonel Uy & 7]
1 —O— zone2 Q ey, 1
T
"‘Fm.,i (f'((c(“
0.70 —4— zone3 Lin @
=
- —v— zone4 " -
—O— zoneS L g
0.65 ‘r"'"r'wrrlm. —
0.60 T 1 T T T T T T T T T T T T T
40 60 80 100 120 140 160 180 200
PV

Figure 3.13 Hydraulic conductivity values in Zone (1): SPO-SP1, Zone (2): SP1-SP2,
Zone (3): SP2-SP3, Zone (4): SP3-SP4, Zone (5): SP4-SP5

Direct measurement of porosity using the porosity meter (Trani and Indraratna,

2010) did not provide reliable readings due to the internal disturbance of the

specimen surrounding the probe tip. In order to get a basic idea of changes in
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porosity within the column due to the precipitation of Al- and Fe-bearing minerals,
the method adopted by Banasiak et al. (2014) was used. First, the influent and
effluent concentration of Al and total Fe throughout the column experiment was
plotted. As a constant influent concentration was employed, the volume of AI*" and
total Fe retained within the column was obtained through subtraction of the
integrated data of the influent curve (computed using OriginPro 9) from the
integrated data of the effluent curve. This was then multiplied by the pore volume of
the column (0.8035 L) to give the volume of A" and total Fe precipitated. Using the
molar volume of the predominant Al- and Fe-bearing precipitates formed within the
column (gibbsite AI(OH); 31.97 cm’/mole; goethite FeOOH 20.33 cm’/mole), the
volume occupied by each mineral (Vp) was calculated. V7 is the total volume of the
column. The porosity within the column (n,) at different PVs with the change of

precipitated minerals with time was calculated using Eqn. (3.6):

n, = ny —(Z—‘T’] (3.6)

It is evident from Figure 3.14, that at SP1, 2 and 3 the porosity reductions were
taking place due to Al and Fe mineral precipitation. When Al oxy/hydroxide
buffering started at 190 PVs the change in porosity started to increase further proving
the re-dissolution of Al minerals in this zone. Furthermore, the reduction in porosity
at SP2 and 3 slowed down after 250 PVs due to the re-dissolution of Fe minerals.
Once the ANC was exhausted at the entrance and middle zones (SP1, 2 and 3), the
neutralisation process started to take place at the exit zone of the column (SP4 and
5). As a result, a rapid decrease in porosity was observed at SP4 and 5 after 200 PVs

till the end of the experiment.
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Figure 3.14 Normalised porosity (manually calculated) within the column

The efficiency of recycled concrete would already have decreased to some extent by
the exhaustion of the alkalinity of the materials. The theoretical ANC of the recycled
concrete in the columns was 146 g/Kg. ANC of the recycled concrete was analysed
following the Acid Sulfate Soil Laboratory Method Guidelines 2004 (Ahern et al.,
2004). The actual ANC was measured as the number of PVs of acidic water treated
before the pH fell below the near-neutral value, and the theoretical ANC was the
total PVs of the acid that the material should treat without armouring. Likewise, the
column (PTC) treated 185 PVs (Figure 3.5). However, the theoretical ANC of the
concrete until the complete depletion of alkalinity without armouring was 400 PVs.
Therefore, the loss in ANC of the reactive material by armouring was considerable
(>50% in all cases) compared to the loss of ANC efficiency by exhaustion of
alkalinity. This situation arises because of the reduction in dissolved ions in the

solution available to precipitate as the water moves through the column. The pores in
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the column were large enough that complete occlusion of the pores did not occur due
to secondary mineral precipitation and hence the flow could be maintained (with an
increase in pressure) throughout the experiment (Indraratna et al., 2014). Although
accelerated field conditions were provided in the column experiment, the clogging
amount was not significant to totally clog the porous media. This provides stable
information that the longevity of the field PRB would not significantly be hindered
due to clogging. A similar trend in hydraulic properties was observed by Li et al.
(2005) for the pilot-scale PRB (containing granular Fe) conducted at Moffett Federal

Airfield and U.S. Coast Guard Support Centre.

3.5 Summary

This chapter described the laboratory column experiments carried out to confirm the
suitability of the reactive material for remediating the acidic leachate full with high
concentrations of metal ions such as Al and Fe. Two laboratory column tests were
conducted with synthetic groundwater to evaluate the acid neutralisation behaviour
and assess the capacity of recycled concrete for treating acidic water under
accelerated flow conditions. The results confirmed that the treatment mechanism is
mainly controlled by the release of carbonate/bicarbonate alkalinity into the system
and the precipitation of Al and Fe in forms of oxide, oxy-hydroxide and hydroxide
minerals. The results established that recycled concrete could effectively treat acidic
groundwater from ASS terrain, resulting in near-neutral effluent pH over a long

period with complete removal of Al’* and total Fe.

The accumulation of secondary minerals on the reactive surface of recycled concrete
and in the void spaces decreased the reactivity of the reactive medium. Chemical

armouring decreased the ANC of the recycled concrete more than 50% compared to
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its theoretical ANC. Furthermore, high concentrations of Al’* and total Fe caused a
rapid decrease in ANC efficiency due to neutralisation. As a result of that hydraulic
conductivity reduction was evident from the pressure transducer data. The hydraulic
conductivity reductions were a maximum near where the water entered the column
(Zone 1) and decreased with distance along the column (i.e. clogging in Zone 1 >

Zone2 > Zone 3 etc.)
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Chapter 4 Permeable Reactive Barrier

4.1 Introduction

This chapter outlines the information pertaining to the study site information of the
pilot-scale PRB installed in the Shoalhaven Floodplain, about 100 km south of
Sydney, Australia. This PRB was installed in a shallow aquifer containing acidic
water from ASS affected agricultural farmland, near Bomaderry, in October 2006.
Moreover, this chapter provides detailed information of the monitoring network used
to analyse performance of the PRB and a brief outlook for the chemical properties of
the soil and groundwater parameters at the field site. Finally, this chapter examines
the performance of the PRB by comparing water quality data up-gradient, inside and
down-gradient of the PRB over a 6.5 year monitoring period. pH, ORP,
concentration of major anions and cations of groundwater at the study site are the

main parameters discussed.

4.2 Study site

The study site is situated in the Lower Shoalhaven Floodplain, near Bomaderry
(34°49°S, 150°39°E), south-eastern NSW, Australia (Figure 4.1). The PRB is
installed in farming land (1000 ha) on Manildra Group’s Environmental Farm. The
study site is adjacent to a flood mitigation drain that flows into Broughton Creek, a
left bank tributary of the Shoalhaven River. A DEM of the catchment (Figure 4.1)
shows that the topography of the study site is very low-lying (prone to flood in heavy
rainfall events) with an elevation ranging from 0 to 1.25 m AHD (Australia height

datum).
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Figure 4.1 DEM of the Broughton Creek catchment
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Figure 4.2 Location of the study site, as indicated by star, showing ASS high risk areas (Indraratna et al., 2010)
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The distribution and location of ASS in the Broughton Creek catchment with
different level of risks susceptible to acidification are shown in Figure 4.2. Both the
DEM and ASS risk map of the Broughton Creek catchment (Figures 4.1 and 4.2,
respectively) show that the surface topography of the study site is typical of ASS

sites found in low-lying landscapes throughout NSW.

A detailed site characterisation was carried out for over a year prior to installing the
PRB to understand the site specific parameters, which include monitoring of
variations in the phreatic surface and chemical composition of the groundwater,
analysis of soil hydraulic conductivity, porosity and grain size, and the geophysical

techniques to estimate the hydraulic conductivity of the area (Indraratna et al., 2010).

The PRB site has the following properties (Golab and Indraratna, 2009, Indraratna et
al., 2010):
1) The groundwater is acidic with high Al (< 60 mg/L) and Total Fe (< 300
mg/L) concentrations;
2) A drain is in close proximity for the treated groundwater to flow into;
3) The site is low-lying (0-1 m AHD) and, therefore, not suitable for weirs or
two-way floodgates because of the elevated risk of flooding;
4) Easily accessibility, thus allowing monitoring during both wet and dry
periods; and
5) No man-made structures present at the site; therefore, providing easy access

for excavators and other heavy equipment to be brought to the site.
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In early October 2006, a pilot-scale PRB (17.7 m long, 1.2 m wide and 3 m deep)
was installed by cut and fill method, parallel and 15 m from the flood mitigation
drain to intersect the zone of maximum groundwater flow. The PRB was designed to
maximise the groundwater residence time within the barrier and to minimise
bypassing of the barrier. The excavation and backfilling techniques were used based
on careful geotechnical testing and calculations to ensure that the trench did not
collapse during the installation process. A geotextile fabric was stretched over the
trench and was backfilled with the crushed recycled concrete (dsp = 40 mm) (Figure
4.3). This geotextile fabric was used to protect the reactive media (i.e. recycled
concrete) from physical clogging by soil and other fine particles entering the barrier.
Figure 4.4 shows current appearance of the study site with monitoring wells and data

loggers installed in the PRB.

Figure 4.3 Installation of PRB at the study site
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Figure 4.4 (A) and (B) Pilot-scale PRB and monitoring network at study site
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Figure 4.5 Layout of PRB and monitoring network at the study site
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Observation wells and data loggers were installed to obtain the water quality
parameters in a timely manner to monitor the performance of the PRB. In total, 10
observation wells (50 mm in diameter), two wells for data loggers (100 mm in
diameter) and six piezometers were initially installed inside the PRB along five
transects roughly parallel to the groundwater flow, as shown in Figure 4.5. Two
multi-parameter automated data loggers were mounted to the data logger wells so
that the tip of each data logger was around 300 mm from the well base, to ensure that
the data logger probes are submersed in groundwater, even in extreme drought
conditions. Each data logger was calibrated and set to record pH, DO, water pressure
and temperature every hour. In addition, 20 more observation wells (2 m deep, 50
mm external diameter) were installed up and down-gradient of the PRB. Overall, a
total of 36 observation wells and 15 piezometers were installed inside, up-gradient
and down-gradient of the PRB to monitor phreatic surface variations, hydraulic

gradients, permeability and groundwater chemistry (Figure 4.4).

4.3 Properties of soil at the study site

Soil samples were collected at two bore holes to characterise the vertical distribution
of soil at the study site. A wide range of soil chemical properties can be used to
describe pyritic soils, such as, total actual acidity (TAA) and reduced organic sulfur
content. A Drillmite petrol fuelled hydraulic powered auger was used to excavate the
boreholes. The auger was fitted with a 63 mm cutting head that had a 300 mm length
hollow section for soil retrieval. Measurement marks were made along the auger
shaft to make excavation depth more easily identifiable during the drilling process.
Two boreholes were sampled and soil was extracted at 500 mm intervals starting 0.5

m below the ground level. The first bore, was located up-gradient of the PRB and
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samples were taken to 2 m depth below ground level. The second borehole was
down-gradient of the PRB and samples were extracted to 2.5 m below the ground

level.

Total Actual Acidity (TAA)

The TAA is the amount of acidity stored in the soil. This does not include un-
oxidised pyrite or any potential acid sources. Analysis was conducted by Southern
Cross University Environmental Analysis Laboratory for net acidity in mole H'/
tonne. This Net acidity value is derived from Eqn. (4.1) showing that the key
elements are TAA and reduced inorganic sulfur or potential sulfidic acidity. As the
values for retained acidity and acid neutralising factor are zero they have no
significance.

NA =TAA + PSA + RA- ANC/FF 4.1)
where, NA is the net acidity, PSA is the potential sulfidic acidity, RA is the retained
acidity and ANC/FF is the acid neutralising factor with an FF of 1.5, all in moles

H/tonne.

As can be seen in Figure 4.6 there is a significant change in acidity below a depth of
1.5 m in both the up-gradient and down-gradient samples. The soils below this depth
have a relatively lower TAA. This indicated the transition of AASS into PASS. The
higher TAA values at 1.5 m demonstrate the generation of acid from past pyrite
oxidation. Under acidic conditions, the hydrolysis of ferrous sulfate ions (Fanning,
1993), and the dissolution of Fe oxyhydroxide mottles and/or jarosite, can generate
acid in or above the AASS layer and add to the TAA concentration according to

Eqns. (4.2)-(4.4).
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FeSOs+ ¥ H2SO04+ %, 02 — ¥ Fex(S04)s + % H20 (4.2)

FeSOs + 1, 024 % H:O0 — Fe(OH)s + H2SO4 4.3)
KFe;(SO,),(OH), +3H,0 — 3Fe(OH); + SO; +K* +3H" (4.4)
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Figure 4.6 Titratable actual acidity at different depths in the up-gradient and down-

gradient of PRB
As can be seen in Figure 4.7 (A) at 0.6 m below the soil surface, evidence of ASS
oxidation can be observed by the presence of yellow jarosite mottles. Jarosite is a by-
product of the pyrite oxidation process. This formation is dependent on the pH being

less than 4. The resulting jarosite further hydrolyses the soil producing more acidity.
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Figure 4.7 (A) and (B): Excavated pits showing the different layer with iron oxide mottling in the study site ((B) photo courtesy of A. Golab)
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Soil stratigraphy at the study site can be described based on the visual information
from an excavated pit (Figure 4.7 (B)). In general, Holocene estuarine deposits
overlie undisturbed Pleistocene clays, but within the Holocene sediments, an AASS
soil layer commonly overlies a PASS layer. Above the estuarine clays, alluvial
deposits, formed within the past 4000 years (Umitsu et al., 2001), range in thickness
depending on their geomorphic location (i.e. levee banks, levee toe or back swamp).
In the Shoalhaven Floodplain, the layer of loamy alluvium overlying the AASS layer
increases in thickness moving from the backswamp (0.5 m) to the levee toe (0.75 m)
(Blunden, 2000). The soil layers at the study site can be generally divided into four
(Figure 4.7 (B)): (i) topsoil enriched with organic soil and peat loam; (ii) AASS layer
with Fe oxy/hydroxide mottles and/or jarosite; (iii) transition layer which includes
seasonally oxidized sulfidic minerals; and (iv) PASS layer. Orange Fe oxy/hydroxide
mottles and rusty yellowish mottles of jarosite are commonly found in the AASS
layer. The elevation of this pyritic layer gradually increases towards the back

swamps in the Shoalhaven Floodplain (Blunden, 2000, Glamore, 2003).

Reduced Inorganic Sulfur Content

Reduced inorganic sulfur (Stratful et al., 2001) is present in the form of pyrite for this
particular site. Although the pyrite is not yet oxidised, should oxidisation occur then
sulfur becomes soluble producing further acidity which mobilises heavy metals. In
contrast to TAA, reduced inorganic sulfur content measures the potential for further
acid generation under oxidising conditions. Therefore, reduced inorganic sulfur
content is used to identify ASS and to estimate the amount of acid that could be
formed by complete oxidation of the soil (Blunden and Naylor, 1995). As per the

guidelines provided by Ahern et al. (2004), the classification of potential acid sulfate
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material for fine grain soils is Scg > 0.1% or 62 mole H'/tonne. From the graph in
Figure 4.8, it can be seen that there is a significant change in reduced inorganic sulfur
from 1.5 m depth. The values are over 0.1% indicating that un-oxidised pyrite is
present at this depth. There is significant variation in values between the up-gradient
and down-gradient sample. This graphical representation can be compared to that of
the TAA results. As would be expected, typically where TAA is high, reduced
inorganic sulfur is low and similar can be said for the reverse. Comparison of TAA

and Scg shows the extensive storage of potential acidity throughout the PASS layer at

this study site.
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Figure 4.8 Inorganic reduced sulfur (Scr, %) at different depths in the up-gradient
and down-gradient of PRB

4.4 Performance monitoring in the PRB

The performance of the pilot-scale PRB is demonstrated by the spatial and temporal
distribution of water quality parameters such as groundwater pH and different ion

concentrations after installation of the PRB. Groundwater quality parameters up-
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gradient, inside and down-gradient of the PRB were compared. Groundwater
samples were collected monthly from the observation wells in acid washed
polyethylene plastic bottles and analysed for basic cations (Ca®’, Mg®", Na", K"),
acidic cations (AI’" and total Fe), anions (Cl" and SO4%), acidity and alkalinity. Ca
and Al were analysed using ICP-MS and Fe was analysed using AAS. All chemical
analyses were performed following the standard method for water and wastewater

I’ and total

(APHA, 1998). Results from column experiments confirmed that Ca®", A
Fe were the elements of primary importance in the acid neutralisation procedure
taking between the recycled concrete and the acidic groundwater. Therefore, these
three ions were monthly measured in the field samples. The remaining ions had no

significant change, therefore, they were measured quarterly each year (Figures 4.15

(B, C and D) and 4.16.

4.4.1 Acid neutralisation

After installation of the PRB on 20™ October 2006, the groundwater pH inside the
PRB increased slowly from 7.0 to 10.2 (Figure 4.9 (A)). In the same manner, a high
pH value of 9.7 was observed at the start of the column experiments (Figure 3.5).
The significant increase of pH in the PRB at the early stage was because at the start
the recycled concrete in PRB was not fully saturated. Therefore, the PRB monitoring
period was considered unstable until the concrete was fully saturated by heavy
rainfall in March 2007 (Figure 4.9 (B)). Since then, the groundwater inside the PRB
has consistently been alkaline to neutral ranging from pH 10.2 to 7.2 till now. This
illustrates the success of the pilot-scale PRB in neutralising the acidic groundwater.
Due to variability in groundwater flow patterns soon after the installation of PRB, pH

down-gradient of the PRB did not increase immediately. However, after reaching
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steady-state flow in February 2007, the average pH down-gradient of the PRB started
to increase and reached ~6.2. The lower pH in the down-gradient compared with that
inside the PRB is due to: (i) dilution of the effluent from the PRB and (i1) occasional
mixing of acid generated in the soil because the PRB cannot control acid generation
in the soil by pyrite oxidation. In addition, low pH at some observation wells down-
gradient during some dry periods (e.g. November 2006 and 2008) is possibly due to
the flushing of large amounts of acidity stored within the soil by small rainfall

events.

The groundwater pH along the centreline shows significant improvement in
groundwater inside and down-gradient of the PRB (Figure 4.10). This clearly
illustrates the potential of the recycled concrete’s alkalinity generation to improve the
down-gradient water quality. The groundwater pH in the observation wells varied
greatly from 4.2 to 7.5 which are 4-12 m away from PRB (Figure 4.10). This is lower
than the pH inside the PRB, but certainly higher than the acidic pH up-gradient of the

PRB.
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Figure 4.11 shows pH values of all the observation wells up-gradient of the PRB. All
of them have very acidic pH below 4 from 2006 to 2013 indicating the widespread

nature of acidic conditions at the study site.
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Figure 4.11: Groundwater pH up-gradient of the PRB (OW-Observation Well)
(updated after Regmi (2012))

101



The ORP in groundwater up-gradient of the PRB varies from 20 mV to 470 mV
(Figure 4.12) indicating strong oxidising conditions. In ASS, high ORP
measurements indicate the potential for pyrite oxidation. The variation in ORP

depends on the diffusion of atmospheric oxygen into the soil matrix and is controlled

by the groundwater elevation.
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Figure 4.12 Groundwater ORP up-gradient of the PRB (updated after Regmi (2012))
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Figure 4.13 Groundwater pH inside the PRB (Entrance zone: OW18, OW21, OW25;
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(updated after Regmi (2012))

The pH values in all the observation wells inside the PRB are neutral from the day it
was installed and to date (Figure 4.13). This pH plateau observed inside the PRB is

consistent with the first pH plateau observed in the column experiments caused by
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the buffering by Ca-bearing minerals (i.e. anorthite, feldspars and calcite). These
field conditions of 6.5 years further emphasize that recycled concrete is a promising
and cost-effective alkaline material for the long-term remediation of acidic
groundwater. However, the pH of some of the observation wells inside the PRB has
been decreasing slowly at the entrance zone (i.e. OW18 and OW25, Figure 4.13).
This might be due to exhaustion of the alkalinity generating minerals within the
recycled concrete at the first point of contact with the acidic groundwater as well as

assumed armouring of the reactive surface of the concrete by precipitates.

442 Removal of A’ and total Fe (Fe*" and Fe’") from groundwater

High concentrations of Al and Fe were observed up-gradient of PRB ranging from
1.5-60 mg/L and 2-290 mg/L, respectively (Figure 4.14). The results obtained during
the 6.5 years monitoring period in the PRB showed that most of the A" and Fe
contained in the groundwater precipitated rapidly when Ca-bearing alkaline minerals
from the recycled concrete started to dissolve and thereby increased the groundwater
pH. A rapid decrease in AI’" and Total Fe can be seen inside the PRB and most
importantly has been consistently less than 2 and 0.5 mg/L, respectively (Figure

4.14).

The concentrations of Al and Fe in the down-gradient increased with distance away
from the PRB. This is probably due to the active and ongoing oxidation of pyrite in
the soil, generating fresh acid, and the release of these metals from the clay minerals
in the soil. During rainfall events, the treated groundwater from the PRB would mix
with the in-situ acidic groundwater, thus causing an increase in Al and Fe

concentration and decrease in pH. Furthermore, there is a chance that some untreated
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groundwater from above, below and to the side of the PRB flows towards the down-
gradient monitoring area. Although, the concentrations down-gradient were higher

than those inside the PRB, they were still lower than those up-gradient of the PRB.
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Figure 4.14 (a) AP’ and (b) Total Fe concentrations in groundwater along the
centreline of PRB from July 2007 to April 2013 (updated after Regmi (2012))

Although the PRB cannot prevent further pyrite oxidation in the soil, the treated
groundwater leaving the PRB can significantly improve the down-gradient water
quality. These results indicate the outstanding removal efficiency (~95%) of the

recycled concrete for both A’ and total Fe.
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4.4.3 Other ions in groundwater chemistry

Except for Ca®’, there is no apparent change in Na', K", Mg”", CI" and SO4*
concentrations in the groundwater up-gradient and within the PRB as plotted in
Figures 4.15 and 4.16. This confirms that these ions are not influenced by the
neutralisation reactions occurring within the PRB. The inert nature of these ions is
discussed in Chapter 5, where the geochemical algorithm is developed considering

the most significant chemical reactions.

Ca” was continuously released from the recycled concrete inside the PRB
throughout the monitoring period. The dissolution of Ca-bearing minerals such as
anorthite and calcite present in the recycled concrete has the potential to generate
large amounts of carbonate/bicarbonate alkalinity to bring the pore water to near-
neutral pH. Chapter 5 elaborates all the associated chemical reactions in this

carbonate/bicarbonate alkalinity buffering process.
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Figure 4.16 Concentration of anions: (A) CI” and (B) SO,* in the groundwater inside
and up-gradient of the PRB (updated after Regmi (2012))

All the above data presents the performance of PRB over 6.5 years since the time it
was installed. The neutral to alkaline pH and ~95% removals of AI’" and total Fe
from groundwater inside the PRB (Figure 4.13 and 4.14) shows its ability to
remediate the acidic groundwater in ASS terrain. Concrete samples were removed

from the PRB near OW26 (i.e. 40 cm from PRB entrance) 6.5 years after the PRB
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was installed in order to study chemical armouring. These concrete samples had a
negligible amount of precipitates coating the surface. The mineralogical analysis of

these specimens is discussed later in Chapter 6.

45 Summary

This chapter described the outcomes of the first pilot-scale PRB using recycled
concrete as the reactive media for the in-situ remediation of acidic groundwater in
ASS terrain. Monitoring data showed that the recycled concrete could effectively
sustain a near-neutral pH removing the main heavy metals, Al and Fe from
groundwater over the 6.5 year monitoring period following installation of the PRB.
However, it managed to improve the groundwater chemistry for some extent only in

the down-gradient of the PRB due to on-going pyrite oxidation.

Overall, the PRB has shown satisfactory performance over a 6.5 year time period,
although a slight decrease in the pH and removal efficiencies (~95%) of Al and Fe
towards the entrance zone of the PRB was observed. This was because that, some
chemical armouring on the surface of the reactive media has occurred and affected
the reactivity of the recycled concrete in that zone. Continuous precipitation within
the PRB would decrease the surface area of the reactive material available for
neutralising acidity over time, thereby, decreasing the longevity of the PRB. Hence,
armouring is most likely the limiting factor on the performance of the PRB similar to

that explained earlier in Chapter 3 through the results of column tests.

In addition, the application of larger size concrete particles decreased the threat of

clogging by the accumulation of precipitates in the pore spaces even under high

109



influent concentrations of AI’" and total Fe. The recycled concrete is a suitable
material because of its ability to effectively neutralise acidity and remove Al’" and
total Fe in conjunction with chemical armouring, in PRBs for the treatment of acidic

water in ASS terrain.
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Chapter 5 Development of the Geochemical

Algorithm

5.1 Introduction

This chapter presents the development of the geochemical algorithm. This is the first
step involved in modelling the groundwater flow and contaminant transport through
PRB in ASS terrain. Chapter 3 described the acid neutralisation behaviour and metal
removal capacity of the recycled concrete. This chapter will focus on the chemical
reactions involved in the acid neutralisation and metal removal, and most importantly

how they could be captured in the geochemical model.

5.2 Bicarbonate buffering

Regmi et al. (2009a) and (2011b) proposed three buffering reactions attributed to
three distinct pH plateaus:
1. dissolution of carbonate/bicarbonate alkalinity from the concrete at near-
neutral pH,
2. re-dissolution of Al hydroxide minerals at pH ~4.5, and

3. re-dissolution of ferric oxyhydroxides minerals at pH < 3.7.

Among these three buffering reactions, carbonate/bicarbonate buffering was the most
significant and vital in terms of remediating acidic groundwater by maintaining an
almost neutral pH and complete removal of AI’" and total Fe from the influent
solution. The cementitious minerals responsible for alkalinity generation in the
concrete are portlandite (Ca(OH),) and C-A-H (Regmi et al., 2011b). Additionally,

some CaCO3; may have already formed in the recycled concrete aggregate due to the
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carbonation of these minerals present in hydrated cementitious materials (Tam et al.,
2005). Dissolution of the Ca-bearing minerals from the concrete, as shown in Eqns.
(5.1)-(5.5), released Ca and increased the alkalinity with a potential to maintain the

effluent pH near-neutral.

Ca(OH), +2H" — Ca** +2H,0 (5.1
Ca(OH), + CO,(aq) — CaCO, + H,0 (5.2)
CaAl,Si,O, +8H" — Ca® +2A4I*" +2H,SiO, (53)
CaCO, +2H" < Ca* + H,CO, (5.4)
CO,(aq)+ H,0 < H,CO, (5.5)

5.3 Precipitation of Al- and Fe-bearing minerals

The near-neutral pH maintained by carbonate/bicarbonate buffering favoured the
precipitation of Al and Fe as oxides, oxyhydroxides and hydroxides as shown in the

following chemical reactions in Eqns. (5.6)-(5.12) (Regmi et al., 2009a).

Fe* +3H,0 — Fe(OH)y, +3H,,, (5.6)
Fe* +2H,0 — F(OOH)+3H, (5.7)
2Fe +3H,0 - Fe,0, +6H, (5.8)
AP* +3H,0 — Al(OH) 55, +3H " (ap (5.9)
Fe’* +2(OH)™ <> Fe(OH) s, (5.10)
Fe*' +CO;™ <> FeCOy, (5.11)
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Ca* +COY ¢ CaCOy, (5.12)

5.4 Geochemical Algorithm

A systematic geochemical algorithm was developed using the Transition State
Theory (TST) used by Jeen et al. (2012), Li and Benson (2005), Mayer et al. (2006),
Regmi et al. (2011a) and Yabasuki (2001). This is the first time, a geochemical
algorithm has been developed for treating acidic groundwater using a recycled
concrete filled PRB. There are twelve primary mineral dissolution-precipitation

reactions as shown in Regmi et al. (2009b).

The Transition State Theory (TST) (Eyring, 1935) is used to model a hypothetical
transition state which exists between reactants and products during a chemical
reaction. The species formed during this hypothetical transition state is called the
activated complex, which is used to explain how chemical reactions take place
(Petrucci et al., 2006a). Transition state theory can be classified under three main
headings: (1) thermo-dynamic treatment, (2) kinetic-theory treatment, and (3)
statistical-mechanical treatment. The theory suggests that as reactant molecules
approach each other (closely), they are momentarily in a less stable state than either

the reactants or the products. The example below shows the transition stage clearly.
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Figure 5.1 Hypothetical schematic of the transition state

The above theory suggests that there are three major factors that determine whether a

reaction will occur or not;

The concentration of the activated complex (the species of the transition state)
The rate at which the activated complex breaks apart, and
The way in which the activated complex breaks apart: i.e., whether it breaks apart to

reform the reactants or whether it breaks apart to form a new complex (products).

TST has been widely used because if it relatively ease the application in comparison
to other treatments of rates. Most importantly, TST approach gives a better
understating of how even very complicated reactions take place, in which other
complex reaction models require much more labour and time (Laidler and King,
1983).
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To confirm the adoption of these twelve reaction equations in the geochemical
algorithm, inverse geochemical modelling has been carried out by Regmi et al.
(2009a) because the speciation calculation through equilibrium modelling could not
predict the minerals that were deposited by chemical reactions. This inverse
modelling considered all the possible mineral phases obtained in the speciation
calculation of the water sample up-gradient and inside the PRB. The phase mole
transfer in inverse geochemical modelling (Table 4.1) for different minerals which
confirms the precipitation of Fe and Al in different forms of hydroxides and
oxyhydroxides and carbonates. This verifies the possible reactions described in Eqns.

(5.6)-(5.12) (Regmi et al., 2009a).

Table 4.1 Phase Mole Transfer of minerals from inverse geochemical modelling (+
sign: Dissolution, — sign: Precipitation) (Regmi et al., 2009a)

Phase mole transfer

Minerals | Chemical Formula
minimum Maximum
Al(OH) 5 Al(OH); -7.51x 10" -4.57x10™
Alunite | KAl (SO4)2(OH)s | -2.73x10™ -1.27x10™
Anhydrite CaSO, -1.04x10" -6.58x10°
Aragonite CaCOs -1.54x10' +8.55%107
Calcite CaCOs -1.54x10" +8.55x107
Dolomite CaMg(COs), -9.5x10™ -9.47x107
Fe(OH) 3 Fe(OH); -3.47x107 -2.89x1077
Gibbsite Al(OH); -6.23x10™ -1.10x10™
Goethite FeOOH -3.47x107 -2.89x107’
Gypsum CaS04:2H,0 +6.58x10" +1.04x10"
Halite NaCl +3.89x107 +5.57x107
Hematite Fe,0; -1.74x107 -1.45x107
Siderite FeCO; -3.37x107 -7.64x10™
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The user-defined geochemical algorithm employs many of the principles and
approaches in Li (2004), Mayer et al. (2001) and Yabusaki (2001). The geochemical
reactions included in the model are from Eqns. (5.1)-(5.12). All these geochemical
reactions are assumed to take place in the column or in the PRB in parallel and are
solved simultaneously. The concentration of each species is calculated for each cell
in the domain during each time step. The kinetics of mineral precipitation was
assumed to follow transition state theory (Lichtner, 1996, Hunter et al., 1998, Steefel
and Lasaga, 1994, Mayer et al., 2001, Yabusaki, 2001, Li et al., 2006). The reaction

rate is expressed as:
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Figure 5.2 Concentration of other ions in the effluent as a function of pore volume

(Indraratna et al., 2014)
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where, r 1s the rate of mineral precipitation (» > 0) or dissolution (r < 0), ke 1s an
effective rate coefficient, /4P is the ion activity product, and K., is the solubility
constant for the reaction. The overall reaction rates for each aqueous and solid

species are shown in the following algorithm:

d[mCa(OH)z]_ld[H+]__d[Ca2+]_,, —k M_l
a2 a4 el e

eq,Ca** ,OH™
d[mCaAleiZOS] :ld[H+]=_d[Ca2+]=_l d[Al3+]= L aCa2+ajl3+ 1
dt 8 dr dt 2 dr o] Redae e
eq,Ca
d[mwcq]:ld[H+]:_d[Ca2+]:_d[H2C03]: i A Ao B
dt 2 dt dt dt 2lea] ™ e T
d[F€3+]__d[mFe(OH)3]—_ld[H+]_r[ ]_k { aFehagH, _1]
- - R 3+
dt dt 3 dt F I K s o

dlre]__dmoon] _vdlat]_ | g
e L o L o

eq,Fe** , OOH>~

ld[Fe3+]:_d[mFezOs]z_ld[Hﬂ:r P
2 dt dt 6 dt S e O
d[A13+]__d[mAl(OH)3]__ld[H+]_ i ClAl3+CléH, 1
. a3 ar T ] ot OH
d[F€2+]=ld[0H_]=_d[mFe(0H)2]:r —k aFe“aéfr _1
a2 di R L T

it it dt 2[re] =

eq,FezJ’,CO;Z*

d[Fe%] _ d[COfi] _d[mFeCO3 ] = o] = k { Dpe Do _1}
(7]
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d[Ca%] _ d[COf_] _ d[mCaCO3] - _k aCa“aCOf’ _
e dt  di et ™ ey

eq,Ca** ,CO¥~

The overall reactive kinetics for each species in the algorithm is listed as:

1-Ca2+:|:—]" 2] — IR b S SR I oD 24
" ifca] T Mearrart] ™ Hafcar] T Talea ]
1_Fe3+] _ rl[ 3+] + rz[ 3+] + 21"3[ 3+]
dt e e e
—d[Fe2+] =r 2+ + 7 2+
r [rer] T 1a[re?]
dar*]
- dr Nars] ™~ 27[Ca2*A13*]
d[H*]
T~ Pl )t ¥ ar |t 2] T 3ilee ] 7 3afpe ] 7 O] T3]
iHCO;] =—r +7r +7
dt 2[Ca2+] 2[F62+] 4[C02+]

All the m; values are considered for a volume of 107 m3, which is equivalent to 1 L (i

= all the solid phase minerals) (Indraratna et al., 2014).

5.5 Saturation index (SI)

Li (2005) used the extended Debye-Huckle equation for the activity correction and
data provided in Krauskopf et al. (1995) for the solubility constants. In this study,
saturation indices (SI), which can be calculated from PHREEQC software, were used
to get the value for /4P/ K., as given in Eqn. 5.14 (Regmi et al., 2011b, Walter et al.,

1994a).
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SI =log(14P)~log(K,, ) (5.14)

SIs for minerals dissolving (S/<0) and precipitating (S/>0) were calculated from
PHREEQC software based on the concentration of Na', K, Ca", Mg2+, A", Fe*,
CI' and SO,”in the influent water along with alkalinity, pH and temperature. The
mineral reactions and geochemical algorithm are given in Sections 5.3 and 5.4,
respectively. The effective rate coefficient (k.;) was assumed to be time invariant and

spatially homogeneous throughout the simulation (Li and Benson, 2005).

Figures 5.3-5.9 show the saturation indices of Ca, Al and Fe minerals for the column
experiments. PHREEQC was run for five different zones as the model output was
expected to give effluent concentrations at five different heights along the column.
At Zone 1, influent concentrations were the synthetic water prepared at the
laboratory. For Zone 2, the effluent water concentrations coming out of Zone 1 from
the model output was used as influent concentrations. Likewise for Zone 3, model
output from Zone 2, for Zone 4: model output from Zone 3 and for Zone 5: model
outputs from Zone 4 were used as the input concentrations. The results obtained for

SIs show a promising trend of precipitating and dissolving minerals.

The SIs of Ca-bearing minerals (Figure 5.3 A) in the recycled concrete are negative,
implying that they dissolve at that stage (Zone 1) of the experiment. These dissolved
Ca-bearing minerals provide the alkalinity to remediate the acidity and precipitate
out the Al and Fe as their oxyhydroxides and/or hydroxides. Positive SI values
shown in Figure 5.3 B and C indicate the precipitation of these minerals. This model

was run from 40 PV, and that is why the Al minerals still show negative SI values,
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suggesting re-dissolution of some Al minerals that precipitated during the early phase
of the experiment from the bottom of the column. This supposition was supported by
rapid depletion of pH and alkalinity the bottom of the column at all sampling points

(Chapter 3 Figures 3.6 and 3.8, respectively).
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calculated using PHREEQC with respect to the PV of synthetic groundwater passed
through Zone 1 during the column experiment
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Figure 5.5 SI of different (A) calcium, (B) aluminium and (C) iron minerals
calculated using PHREEQC with respect to the PV of synthetic groundwater passed
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Figure 5.4 A, clearly indicates the dissolution of Ca bearing minerals in Zone 2 and
the associated precipitation of Al and Fe oxyhydroxides/hydroxides. Compared to the
precipitation of Al and Fe oxyhydroxides/hydroxides in Zone 1 (Figure 5.3), Zone 2
and 3 had more Al and Fe oxyhydroxides/hydroxides precipitating (Figure 5.4 B, C

and Figure 5.5 B and C).

Moreover, with the saturation indices being positive, there is evidence of Ca bearing
minerals getting precipitated out of solution as calcite (CaCOj;), dolomite
(CaMg(COs),) and gypsum (CaSO4.2H,0) in Zone 3 (Figure 5.5 A). Almost similar
behaviour can be seen at the exit face (Zone 4 and 5) of the column as shown in
Figures 5.6 and 5.7, respectively. The saturation indices of Al and Fe are also higher
than that of seen in the entrance and middle zones of the column (Figure 5.6 B, C and
Figure 5.7 B, C). This implies that the favourable condition of neutral pH is available

at the exit zones throughout the experiment until the termination of the experiment.

The laboratory column experiments were terminated soon after the effluent
concentration dropped to around pH 3.5, because as a whole, the reactive material in
the column gets exhausted. The reactivity or the alkalinity produced by the recycled
concrete was not enough to cope up with the influent acidity. If the column
experiment was run for some more time, the reactivity of the recycled material
present at Zones 3, 4 and 5 would also be exhausted totally and the precipitated Al
and Fe oxyhydroxides/hydroxides would start to re-dissolute as seen in Zone 1

(Figure 5.3).
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5.6  Summary

Development of the geochemical algorithm was the first step involved in modelling
the groundwater flow and contaminant transport through PRB in ASS terrain.
Twelve primary chemical reactions involved in the acid neutralisation and metal
removal were captured in the geochemical model. These reactions are responsible for
the most important phase of the acid neutralisation: bicarbonate buffering zone, for
the ability to remediate acidic groundwater by maintaining an almost neutral pH and
complete removal of AI’" and total Fe from the influent solution. The kinetics of
mineral precipitation/dissolution was assumed to follow transition state theory. Sls
for minerals dissolving (S/<0) and precipitating (S/>0) were calculated from
PHREEQC software based on the concentration of Na', K, Ca", Mg2+, A", Fe*,
CI" and SO,”in the influent water along with alkalinity, pH and temperature for all 5

zones in the column.
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Chapter 6 Model application to column

experiment and field PRB

6.1 Introduction

This chapter elaborates the multi-component reactive transport model developed for
acidic groundwater remediation with the use of recycled concrete. It shows how the
geochemical algorithm developed (in Chapter 5) for the reactions taking place
between recycled concrete and acidic groundwater will be used to model the fate and
transport of contaminants. Commercially available numerical codes, MODFLOW
and RT3D were used for this purpose. Formulation of these finite difference codes is
introduced and the mathematical model to calculate the head of groundwater flow
has been developed and illustrated. One-dimensional reactive transport modelling
was conducted based on data from laboratory column experiments to describe the
geochemical evolution of groundwater along a flow path in the column experiment.
Moreover, the model was applied to the field PRB, along a transect passing through
the centreline of the PRB. Changes in the geochemical composition of the
contaminated groundwater within the PRB after treatment with recycled concrete are
also addressed. The processes potentially affecting the long-term performance of the
PRB were investigated. The optimum width for another possible PRB is calculated

considering the reaction kinetics and residence times.

6.2 MODFLOW and RT3D

The software codes MODFLOW and RT3D were used to simulate the transport and
fate of contaminants in the PRB. In MODFLOW, groundwater flow is simulated
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using a block-centred finite-difference approach (Harbaugh, 2005). The three-
dimensional movement of groundwater of constant density through porous material

is described by the following partial differential Eqn. (6.1):

ox\_ “ox) oy Yoy) oz 0z * ot

where, K., Ky, and K. are values of hydraulic conductivity along the x, y, and z
coordinate axes, which are assumed to be parallel to the major axes of hydraulic
conductivity (L/T), 4 is the potentiometric head (L), W is volumetric flux per unit
volume representing sources and/or sinks of water, with #<0.0 for flow out of the
groundwater system, and #>0.0 for flow into the system (T™), Ss is the specific
storage of the porous material (the volume of water that can be injected per unit

volume of aquifer material per unit change in head) (L"), and ¢ is time (T).

Eqn. (6.1) describes groundwater flow under non-equilibrium conditions in a
heterogeneous and anisotropic medium, provided that the principal axes of hydraulic
conductivity are aligned with the coordinate directions x, y and z. Eqn. (6.1), implies
that the flow and/or head conditions at the boundaries of an aquifer and specification
of initial head conditions constitutes a mathematical representation of a groundwater
flow system. An analytical solution of Eqn. (6.1) is the algebraic expression giving
h(x,y,z,t) when the derivatives of & with respect to space and time are substituted into
Eqn. (6.1), provided that the equation and its initial and boundary conditions are
satisfied. A time varying head distribution of this nature characterises the flow
system. It measures both the energy of flow and the volume of water in storage, and
can be used to calculate directions and rates of movement. Except for very simple

systems, analytical solutions of Eqn. (6.1) are rarely possible, so various numerical
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methods must be employed to obtain approximate solutions (Harbaugh, 2005, Rowe

et al., 2004).

One such approach is the finite difference method, wherein the continuous system
described by Eqn. (6.1) is replaced by a finite set of discrete points in space and time.
The partial derivatives are replaced by terms calculated from the differences in head
values at these points. The process leads to systems of simultaneous linear algebraic
difference equations. Their solution yields values of head at specific points and
times. These values represent an approximation to the time varying head distribution
that would be given by an analytical solution of the partial differential equation of
flow. In Eqn. (6.1), head (#) is a function of time as well as space. Therefore, in the
finite difference formulation, discretisation of the continuous time domain is also

required. Time is broken into time steps, and the head is calculated at each time step.

Development of the groundwater flow equation in finite difference form pursues
from the application of the continuity equation. In the continuity equation, the sum of
all flows in and out of the cell must be equal to the rate of change in storage within
the cell. Assuming that the density of groundwater is constant, the continuity

equation expressing the balance of flow for a cell is:
Ah
>0 =SSEAV 6.2)

where, O; is the flow rate into the cell (L*T™"), AV is the volume of the cell (L*), and

Ah is the change in head over a time interval of At.
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The right side of the continuity equation is equivalent to the volume of water taken
into storage over a time interval of Az given a change in head of Ah. Eqn. (6.2) is
stated in terms of inflow and storage gain. Outflow and loss are represented by

defining outflow as negative inflow and loss as negative gain, respectively

(Harbaugh, 2005).

I,jk-1

-1,k

i+1,J,k

ij k1

Figure 6.1 Indices for the six adjacent cells surrounding cell 7,7,k (hidden) (Harbaugh,
2005)

Figure 6.1 shows six aquifer cells adjacent to cell 7,7,k (hidden) — i-1,j,k; i+1,j,k; i,j-
Lk; ij+1,k; ijk-1; and i,j,k+1. The flows are considered positive if they are entering
cell ij,k (the negative sign usually incorporated in Darcy’s law has been dropped
from all terms). Following these conventions, flow into cell 7,j,k in the row direction

from cell i,j-1,k (Figure 6.2), is given by Darcy’s law as:
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(h,. o~ i )
qij-1/2k = KRi,j—l/Z,kACAvk S (6.3)

T
where, A;; is the head at node i,j,k, and 4;;.;x is the head at node i,j-1,k, g;j.12k1s the
volumetric flow rate through the face between cells i,j,k and i,j-1,k (L3 T'l), KRij 1k
is the hydraulic conductivity along the row between nodes i,j,k and ij-1,k (LT™"),
AciAvy is the area of the cell faces normal to the row direction; and Ar;; is the

distance between nodes i,j,k and i,j-1,k (L).
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Figure 6.2 Flow into cell i,j,k from cell i, j-1,k (Harbaugh, 2005)

MODFLOW (a modular three dimensional finite difference groundwater flow
model) employs iterative methods to obtain the solution to the finite difference
equations for each time step. In the example given in Figure 6.3, a total of n
iterations are required to achieve closure for the heads at the end of time step m.
Therefore, the array of final head values for the time step is designated 4™". Figure

6.3 also shows that the array of final head values for the end of the earlier time step is
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R™"". Again it is assumed that 7 iterations were required for convergence. Because
they represent heads for the preceding time step, for which computations have
already been completed, they appear as predetermined constants in the equation for
time step m; thus they retain the same value in each iteration of the time step.
Similarly, the final values of head for time step m are used as constants in the storage

term during calculations for time step m+1.

g///; )
S airal
v /,/ =4 head values

A Vv for time slep,
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111 B4R wh)
Start time step m+1 ——'—1/
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W ke
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/,:/
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// / End tmo s1op m-1
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A /7 w1 Final head values for time step, m-1

Figure 6.3 Iterative calculation of head distribution (McDonald and Harbaugh., 1988)
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RT3D is a computer code which solves the coupled partial differential equations that
describe reactive flow and transport of multiple mobile and/or immobile species in
three dimensional saturated groundwater systems. The RT3D code includes an
implicit reaction solver. It makes the code sufficiently flexible for simulating various
types of chemical and microbial reaction kinetics. RT3D supports seven pre-
programmed reaction modules that can be used to simulate different types of reactive
contaminants. They are benzene-toluene-xylene mixtures (BTEX) of instantaneous
aerobic degradation, kinetic limited degradation, rate limited sorption reactions,
double monod model, sequential decay reactions, and chlorinated solvents such as
tetrachloroethene (PCE) and TCE. In addition, RT3D has a user-defined reaction
option that can be used to simulate any other type of user specified reactive transport
systems. In this study, a user-defined reaction module was used with the geochemical

algorithm explained in Chapter 5.

The general macroscopic equations describing the fate and transport of aqueous
(Egn. (6.4)) and solid phase species (Eqn. (6.5)), in multi-dimensional saturated

porous media are written as:

oCy - i D, oC, _i(vick)—l— qs C, +r,,wherek=1,2,..,m (6.4)
o ox;\ " ox; ) Ox ¢
d;’”’ =7, where, im=1,2,... (6.5)

where, k is the total number of species, m is the total number of aqueous-phase
(mobile) species (thus, £ minus m is the total number of solid phase or immobile

species), Cy is the aqueous phase concentration of the k” species [ML™], C;, is the
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solid phase concentration of the im" species [either MM (contaminant mass per unit
mass of porous media) or ML™ (contaminant mass per unit aqueous phase volume)
unit basis can be used], Dj is the hydrodynamic dispersion coefficient [L*T'], v is
the pore velocity [LT '], ¢ is the soil porosity, g, is the volumetric flux of water per
unit volume of aquifer representing sources and sinks [T'], C; is the concentration of
source/sink [ML™], r. represents the rate of all reactions that occur in the aqueous

phase [ML*T™], and 7. represents the rate of all reactions that occur in the soil phase

(either MM™'T™ or ML’T™! can be used).

RT3D code was developed to solve the multi-species reactive transport, Eqns. (6.4)
and (6.5). The code employs a reaction operator-split (OS) numerical strategy to
solve the coupled transport equations (of the form Eqn. (6.4) and Eqn. (6.5)). Walter
et al. (1994b) have successfully used a similar OS approach to solve multi-
component transport with geochemical reactions. Moreover, Clement et al. (1996)
used the OS strategy to solve a biologically reactive flow problem in a radial system.
Valocchi et al. (1992) and Kaluarachchi et al. (1995) brought attention to the fact that
the splitting the reaction terms using the standard OS strategy may have numerical
limitations. They recommended an improved alternative OS strategy that may give
more accurate numerical results. Nevertheless, Barry et al. (1995) states that the
improvement provided by the alternative OS may not be applicable for multi-
component nonlinear problems. In addition, they demonstrated the efficiency of the
standard OS approach, by solving a two-species reactive transport problem. In this
work, we used the standard OS strategy, to develop a general numerical solution

scheme for solving the coupled partial/ordinary differential Eqns. (6.4) and (6.5).
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Utilising the OS strategy, the mobile species transport equation (Eqn. (6.4)) is first

divided into four distinct equations: the advection equation:

oc _ o(v,C)
o ox (6.6)
the dispersion equation:
oc__9o]poC 6.7)
ot ox,\ 7 ox,
the source/sink mixing equation:
oC g,
) C, (6.8)
and, the reaction equation:
ac _
o r (6.9)

where, the term » represents all possible reaction terms that appear in a typical
mobile species transport equation. Note that in Eqn. (6.9), which is for a typical
immobile species, the advection, dispersion, and source-sink mixing terms are zero
and only the reaction term exists. The advection equation can be solved by the
method of characteristics, a modified method of characteristics, a hybrid method of
characteristics, or by the upstream finite difference solution scheme (Zheng and
Wang, 1999). The dispersion and source-sink mixing packages use explicit finite

difference approximations.

The reaction Eqn. (6.9) can be adjusted according to the study and the reactions
taking place. This is the most versatile option available in RT3D. Using this option,

one can describe and solve any type of kinetic-limited reactive transport problem.
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The reaction information is input through a Fortran 90 subroutine, which should be
compiled as a dynamic link library (DLL) using either the Microsoft Fortran Power

station 4.0 or the Digital DVF Fortran compiler (Clement, 1997).

6.3 Change of mineral quantity over time

The intent of this study was to develop a model to understand mineral fouling in
PRBs in ASS terrain, incorporating a calibrated flow and a reactive transport model
to simulate mineral deposition and its effects on hydraulic parameters. It has been
found that the key factors reducing PRB longevity and efficiency are geochemical
factors such as armouring and/or clogging. Chemical armouring is the strong
adhesion and entire pacification of the reactive surface by encrustation leading to a
decrease in the rate and extent of reactive material dissolution and alkalinity
production of the reactive material (Cravotta and Trahan, 1999, Indraratna et al.,
2014). Clogging is the accumulation of precipitates in the void spaces between the
reactive materials (Gavaskar, 1999). Both these phenomena directly affect the
change of porosity and, hence, decrease in hydraulic conductivity. Moreover, this
will result in reducing flow through the barrier, therefore changing the flow paths,
residence time and finally bypassing the PRB altogether (Johnson et al., 2005,
Mackenzie et al., 1999, Wilkin et al., 2002). Therefore, it is of utmost importance to
study the armouring and clogging behaviour in order to monitor the efficiency and

longevity of PRB.

Secondary minerals precipitated in the recycled concrete media were assumed to be
immobile. The pore space occupied by each mineral was calculated from the

respective molar volume. The volume prediction at a given location due to secondary
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mineral precipitation was computed as the total volume occupied by the mineral
precipitates minus the volume achieved by the dissolution of Ca-bearing minerals in
recycled concrete. The associated porosity reductions (Eqn. (6.11)) were calculated
using Eqn. (6.10) as suggested by Steefel and Lasaga (1994), thus:

a(I)k —
5 Mk, (6.10)

Hence, the change in porosity with time can be obtained from:
N/ll

n,=n,— > MRt (6.11)
k=1

where, @ . i1s the volume fraction of mineral, M, is the mineral molar volume

(m3mol'1), Ry 1s the overall reaction rate for the mineral (molm’3bulks'1), N,, 1s the
number of minerals, ¢ is the time 7, and n, are the porosities at the start and at time ¢,

respectively.

The product of MR, is constant for a given time step. In the next time step, the new
value of Ry is introduced to the equation based on the results obtained from Eqns.
5.14 and 5.15 (in Chapter 5) for respective time steps. The Kozeny Carmen equation
can be used to estimate the hydraulic conductivity at different PVs with the change

of dissolved/precipitated minerals with time:

_ 1 (pg) »

where, n is the porosity of the reactive medium, M is the specific surface of the
recycled concrete particles (ratio of surface area and bulk volume), p,, is the density
of water, g is the gravitational constant, and u is the absolute viscosity of water.

Mineral precipitation and dissolution may change the value of M. However, the
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relationship is a complex function of the geometry of the recycled concrete particles,
the shape of the minerals being precipitated, and the location of the mineral
precipitates. Therefore, M was assumed constant, which is a conservative approach

(L1 et al. 2005).

The normalised Kozeny Carmen equation (Eqn. (6.13)) was used to estimate the
hydraulic conductivity at different pore volumes (PV) with the change of
dissolved/precipitated minerals with time (Li et al., 2006, Pathirage et al., 2012,

Indraratna et al., 2014).

3 2
K:KO{nO—An,} /{1—n0+Ant} (6.13)

n, l1-n,

where, An, is the reduction in porosity at time ¢.

It is important to capture this change of porosity and hydraulic conductivity in the
groundwater flow model. The head solution for transient groundwater flow in one
dimension is given by Eqn. (6.16), which was used to calculate the starting head for
MODFLOW at every time step. The reason to adopt this approach was because
MODFLOW does not have a way of automatically changing the porosity or
hydraulic conductivity unless they are manually entered. It was important to update
these values at every time step due to the changes in volume fractions of primary and
secondary minerals. For instance, when the model is run for the 1% time step, the
corresponding values of porosity and hydraulic conductivity are updated for the 2™
time step, and Eqn. (6.16) is now required to determine the resulting head as that is
an essential input for MODFLOW to continue the analysis for subsequent time steps

(Indraratna et al., 2014). MODFLOW was used to couple the chemical reaction
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component developed in RT3D with advection, diffusion and dispersion (Eqn. (6.4))
using finite difference method. Once the starting head was calculated by the
analytical model, the results were put into MODFLOW. Then MODFLOW and

RT3D were run in tandem to get the concentrations of reactants at every time step.

Transient groundwater flow in one dimension is governed by:

0%h _S(on
ax_z_? 5 (6.14)
T =Kb (6.15)

The variation in hydraulic conductivity due to dissolution/precipitation of minerals
can be calculated from Eqn. (6.13). The solution for Eqn. (6.14) considering the

changes in hydraulic conductivity (Eqn. (6.13)) can be written as:

) (6.16a)
h=|exp|— ]{;l bK, (1 ’:0 { (1 5+/ﬂ) a+1n/3}
e
S> MR,
k=1
(C sin ox + D cos ux)
where,
Nm
a=ny+Y MRt ((6.16b)
k=1
Nm
B=1-ny—> MRt ((6.16¢)

k=1
The step by step procedure for obtaining Eqn. (6.16) is illustrated in Appendix I.

The following initial conditions can be used to calculate the values for ¢, C and D.

h=h, at x=0 and =0, (6.17)
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h = h, at x=I and t=0, (6.18)

oh _ _
5 =0 atx=0 and =0 (6.19)

6.4 Step by step involved in the model development

1. Groundwater flow through porous media is modelled by the 1D formulation

of Eqn. (6.1) in MODFLOW.

i(KM%]+i Kyya—h +2(K22%j+W:SS@ (6.20)
ox ox) oy oy) oz oz ot
2. Change of mineral quantity over time is calculated by the reaction kinetics

and molar volume of each mineral using Eqn. (6.10).

oD,

5 Mk, (6.21)
3. Change in porosity due to change in mineral fractions are captured by Eqn.
(6.11).
NWI
n,=ny— ) MRt (6.22)
k=1
4. The normalised Kozeny Carmen equation (Eqn. 6.13) is used to calculate the
associated change in hydraulic conductivity.
An, | [1=n,+an, |
K=K,| =20 | ) T AN, (6.23)
n, 1-n,

5. MODFLOW does not have a way of automatically changing the porosity or

hydraulic conductivity unless they are manually entered. It is important to
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capture this change of porosity and hydraulic conductivity in the groundwater
flow model. Thus Eqn. (6.1) is solved to capture the change in head with
respect to change in hydraulic conductivity from mineral dissolution and

precipitation. The solution is given by Eqn. (6.16).

6.24a)
bK, (1-n,) (
h=| exp| - 5 bK, | ZO) {a2(1.5+%3)—3(0{+lnﬁ)}
3 "
S> MR,
k=1
(C'sin zoc + D cos pux)
where,
N/ll
a=ny+Y MRt (6.16b)
k=1
Nm
B=1-n,—> MRt (6.16¢)

k=1
For instance, when the model is run for the 1* time step, the corresponding values of
porosity and hydraulic conductivity are updated for the 2™ time step, and Eqn. (6.16)
is now required to determine the resulting head as that is an essential input for

MODFLOW to continue the analysis for subsequent time steps.

6. The advection, diffusion and dispersion equation (Eqn. (6.4)) is used for the

contaminant transport. This equation is available in RT3D.

0C _01p 9| 0 c)edc 41 (6.25)
o ox, " ox; ) ox ¢

For the dissolution/precipitation reactions taking place between acidic groundwater
and recycled concrete, the kinetic reaction expression (7) in Eqn. 5.14 multiplied by

M (molar volume of the mineral) can be replaced by 7. in Eqn. 6.4.
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7. Then MODFLOW and RT3D were run in tandem to get the concentrations of

reactants at every time step.

8. Although, a 2D grid is used to show the discretisation of finite different
domain, 1D transport is considered in the mathematical model development

and model application to both column experiment and field PRB.

6.5 Model application to column experiment

Firstly, multi-component reactive transport simulations were undertaken for
quantitative simulation of the remediation process for more controlled conditions in
the laboratory column experiments. The focus was to develop a simple conceptual
model using reactive transport modelling, based on the detailed data obtained from
the column influent and effluent chemistry. Therefore, to investigate how the
mineralogical assembly within the recycled concrete affects the change in pH and
long-term metal removal capability of the reactive mixture. Secondly, the model was

applied for performance monitoring in the field PRB under varying field conditions.

The column experiment was considered to be a confined aquifer with transient flow
conditions. The crushed concrete in the column was assumed to be homogeneous and
isotropic. A relatively uniform particle gradation was selected for the column test and
also it was assumed that the particle angularity is generally similar (as it was
impossible to find all rounded particles of broken concrete aggregates). Therefore,
for simplicity the assumption of a continuum with homogeneity and isotropy is made
along the column length. Since, the flow is only vertical (one dimensional) in the

column, the negative implications of this assumptions are expected to be minimal.
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Indraratna et al. (1993) indicated that for granular media, the width or diameter of the
test chamber to maximum particle size ratio > 8 would make boundary effects
generally insignificant. The same concepts have been applied for filtration testing of
rail ballast and other rockfill for dams (Indraratna et al., 1998). In this study, given
the diameter of the column as 50 mm, and the maximum particle size approximately
4-5 mm, the corresponding ratio is above 10, hence, boundary effects can be

considered to be insignificant.

In the 1D column domain, 50 cm of recycled concrete was divided into five zones,
where the bottom most one is Zone 1 and the topmost one is Zone 5. This whole
domain was discretised uniformly into 50 x 5 sections, where 1 unit is 100 mm. A
schematic diagram of the boundary conditions is shown in Figure 6.4. The sides of

the column are no flow boundaries.

Table 6.1 summarises the experimental parameters and model inputs. Mineral
dissolution-precipitation reactions were modelled as kinetically-controlled reactions.
Because of their potential variability of in-situ rate coefficients (Li et al., 2006), the
kinetic reaction rate coefficient (k.;) was obtained for Ca®™, A’ and total Fe (Fe*"
and Fe’") (Table 6.2) by calibrating the model against the laboratory column data
provided by (Regmi et al., 2011b) and using the molar weights of Ca®", AI’", Fe**

and Fe’". The total Fe was calculated by adding the Fe’" and Fe’" according to their

stoichiometric relationships as illustrated in the geochemical algorithm in Chapter 5.
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Figure 6.4 Boundary conditions in 1D discretised solution domain of the column

Table 6.1 Experimental and model parameters

Property Experiment | Model (Lab) Model (Field)
Flow 1.2mL/min | 12mL/min | 1.1 x 10° L/year
Initial porosity (7o) 0.69 0.69 0.5
Initial hydraulic conductivity (Ko) | 0.9565m/d | 0.9565 m/d 0.1 m/s

pH of influent 2.8 2.8 3.6

The calibrated rate coefficients were obtained by manual trial and error as

undertaken by Li et al. (2006). The corresponding reaction kinetics (listed in Table
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6.2) were then used to validate the current model using the column experiment data
in this study. The calibration was done for the 40-190 PV range using data from
Regmi et al. (2011b) and the current model was validated for the same PV range.
This is an important experimental phase for maintaining neutral pH and for 100%
removal of Al and Fe ions. Model parameters used for calibration and validation
process are listed in Table 6.3.

Table 6.2 Kinetic reaction rate coefficients (k) for the mineral

dissolution/precipitation which are calibrated values from the data provided by
(Regmi et al., 2011Db).

Mineral phase Kinetic reaction rate Kinetic reaction rate
coefficient (ko) (mol/L.s) coefficient (k)

(mol/L.s) in literature®

Ca™ 227x 107 (1x 109
Al 6.86 x 10 (9.0x107-1.0x 10
Total Fe (Fe*" and Fe’") |5.87x 10® (1.0x107-12x10%)

Note: © Source: (Ouangrawa et al., 2009) and (Jurjovec et al., 2004)

Table 6.3 Calibration and validation parameters used in the model application for
range 40-190 PV.

Calibration Validation
Data set
keg for Ca”", A’ and Data from Regmi et al. Current data
Total Fe (Fe*" and Fe’) | (2011a)

State variables

[Ca™"], [AI’'], [Fe*"] and | Effluent concentrations Current data on

[Fe''] (after Regmi et al. (2011a)) effluent concentration

The reaction between the acidic water and the concrete that caused leaching of the

Ca also reduced the pH of the effluent from pH 9.6 initially to 8 within 15 PVs
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(Figure 6.5), after which there was a slow decrease (pH dropping from 7.9 at 25 PV
to 7.5 at 125 PV), a faster drop from pH 7.5 at 125 PV to about 6.8 at about 185 PV,
a rapid drop from pH 6.8 at 185 PV to 4 at about 215 PV, and then another period
with a slower rate of increase from pH 4 at 215 PV to 3.1 to about 295 PV at test
termination. According to Indraratna et al. (2010), the initial drop in pH (after 15
PVs passed through the column) was assumed to be due to the depletion of carbonate
alkalinity. The model predicted values for the first pH plateau is shown in Figure 6.5.

In this model prediction, OH" in the aqueous phase was assumed to be in equilibrium.

However, after reaching a pH value of 6.8 (after 190 PVs), the pH subsequently
diminishes to 4 (Figure 6.5). This is probably due to the OH ion in equilibrium state
during the depletion of carbonate minerals (Indraratna et al., 2010). The experimental
and predicted values of pH along the column are shown in Figure 6.6. In SP1, the
rapid jump occurred at pH 6.5, (Figure 6.5) which took place within 25 PVs, which is
fast due to the rapid neutralisation of acidity and the exhaustion of the reactive
material at the entrance of the column. In contrast in SP1, 2, 3 and 4, excessive
sampling of the column was avoided in order to ensure minimum disturbance to the
flow. That is probably the reason why a rapid jump was not visible in the pH values
inside the column. In the early stages of the experiment, most of the Al in the
synthetic groundwater precipitated shortly after entering the column and was no
longer in the pore water (Figure 6.8 and Figure 6.11). Al precipitates when the pH is
above 4.5. Al was observed in the effluent water for the first time when the pH of the
effluent dropped to 4, after which the concentration of Al continued to increase
(Figure 6.8) because of its high solubility at pH<4. Similarly, Fe also precipitated

when the pH exceeded 3.5. Until 255 PV, the effluent pH did not drop below pH 3.5;
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accordingly, the Fe content of the effluent (<1 mg/L) was negligible throughout the

duration of the column test (Figure 6.9 and Figure 6.12).

The predicted and measured concentration profiles of Ca*", A" and total Fe (Figures
6.7-6.9) are in very good agreement. Figures 6.10-6.12 show the model outputs for
Ca®", AI’" and total Fe. In the model, Fe*" and Fe’" are considered separately and
later combined to compare with the experiment values (Indraratna et al., 2014). The
precipitation of secondary minerals (i.e. Fe(OH);, Fe(OOH), Fe,Os, Fe(OH),,
FeCOs;, Al(OH);) significantly decreases the efficiency of the reactive material due

to the armouring effect.
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Figure 6.5 Predicted and experimental results of pH at the effluent (Indraratna et
al., 2014)
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Figure 6.6 Predicted and experimental results of pH at the sampling points along
the column (Indraratna et al., 2014)
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Figure 6.8 Calculated and measured AI’* concentrations at sampling points along
the column (Indraratna et al., 2014)
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Figure 6.9 Calculated and measured total Fe (Fe*" and Fe®") concentrations at
sampling points along the column (Indraratna et al., 2014)
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Figure 6.10 Model outputs for the Ca®" concentrations along the column
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Figure 6.11 Model outputs for the Al concentrations along the column
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Figure 6.12 Model outputs for the total Fe concentrations along the column
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The efficiency of recycled concrete would already have decreased to some extent by
the exhaustion of the alkalinity of the materials. The model results obtained for
porosity show that the precipitated secondary minerals subsequently reduce the
porosity and hydraulic conductivity. Direct measurement of porosity using the
porosity meter (Trani and Indraratna, 2010) did not provide reliable readings due to
the internal disturbance of the specimen surrounding the probe tip. Therefore, some
porosity values were back calculated from the Kozeny Carmen equation (Eqn.
(6.13)) using the hydraulic conductivity data from experiment at different PVs (Table
6.4). The results are very similar to the predicted porosity values from Eqn. (6.11),

further confirming the accuracy of the developed model.

Table 6.4: Comparison of porosities based on Kozeny Carmen relationship with
the model predictions (Eqn. (6.11)).

PV Experimental & (m/d) n back-calculated from n predicted from
based on Darcy’s Law | Kozeny-Carmen equation | geochemical model
(Eqn. (6.13) (Eqn. (6.11)
43 0.957 0.690 0.690
59 0.919 0.685 0.687
95 0.808 0.673 0.679
149 0.682 0.656 0.668
194 0.628 0.648 0.663

Several studies carried out for zero-valent Fe columns (Li and Benson, 2005,
Kamolpornwijit et al., 2004), organic sediment columns (Bilek, 2006), glass bead
columns (Rowe et al., 2000) and recycled concrete columns (Regmi et al., 2011b)
have reported that excessive clogging is greatest near the inlet to the column
(reactive materials) and is not uniform throughout the column. For the current case,

the porosity and hydraulic conductivity reductions due to mineral precipitation and
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dissolution were calculated from Eqns. (6.11) and (6.13) for each 100 mm interval
along the column (Figures 6.13 and 6.14). The porosity and hydraulic conductivity
reductions were maximum near the column inlet (Zone 1) and decreased with
distance along the column (i.e. clogging in Zone 1 > Zone 2 > Zone 3 etc.). This
situation arises because of the reduction in dissolved ions in the influent available to
precipitate as the water moves through the column. The pores in the column were
large enough that complete occlusion of the pores did not occur and, hence, the flow
could be maintained (with an increase in pressure) throughout the experiment. A
similar trend in hydraulic properties was observed by Li et al. (2006) for the pilot-
scale PRB (containing granular Fe) conducted at Moffett Federal Airfield and U.S.

Coast Guard Support Centre.
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Figure 6.13  Normalised porosity values in Zone (1): SPO-SP1, Zone (2): SP1-SP2,
Zone (3): SP2-SP3, Zone (4): SP3-SP4, Zone (5): SP4-SP5 (Indraratna et al., 2014)
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Figure 6.14  Experimental and predicted (normalised) hydraulic conductivity
values in Zone (1): SPO-SP1, Zone (2): SP1-SP2, Zone (3): SP2-SP3, Zone (4): SP3-
SP4, Zone (5): SP4-SP5 (Indraratna et al., 2014)

The largest porosity reduction during the experiment was most significant (4%) near
the influent end of the column and this reduced to 3% midway along the column and
0.5% near the end of the column. The porosity reduction arose from the precipitation
of secondary minerals (i.e. Fe(OH);, Fe(OOH), Fe,0s, Fe(OH),, FeCO3;, AI(OH)3).
The largest hydraulic conductivity reduction was 34% near the inlet to the column,

with a 27% reduction mid-way along the column and 4% near the end of the column.
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6.6 Model application to field PRB

PRB performance modelling using numerical solutions and field data is not simple or
straightforward because of several factors that govern the field conditions from being
constant and unique for a specific site. Some of them are site-specific geochemical
and hydro-geological conditions (Phillips et al., 2000), aquifer heterogeneity (Warner
and Sorel, 2002, Li et al., 2006) and the relatively long period over which mineral
deposition occurs inside the PRB (Vikesland et al., 2003). Analysing the field data
with a calibrated flow and reactive transport model that simulates mineral
precipitation and the impact on hydraulic behaviour of PRBs (Liang et al., 2000,
Mayer et al., 2001, Yabusaki, 2001) can be an alternative approach. One-dimensional
numerical simulation would be helpful in order to capture the full range of reactive
processes and the complex geochemical reactions occurring inside the PRB (Bain et

al., 2001).

The conceptual model for this purpose was a continuous trench PRB, containing
recycled concrete aggregates, that was placed in a homogeneous shallow aquifer. The
conceptual model of the field PRB was divided into three zones: Zone 1 (entrance),
Zone 2 (middle) and Zone 3 (exit). One-dimensional reactive transport analysis was
conducted considering a section passing through the centreline of the PRB. The
discretised solution domain is shown in Figure 6.15. In this zone, contaminants are
transformed by reduction reactions and immobilised by subsequent precipitation. A
number of secondary reactions occur simultaneously in this zone. The alkaline pH
promotes the precipitation of a number of secondary minerals throughout the
treatment zone. These reactions consume alkalinity and act to buffer further

increasing the groundwater pH. The groundwater leaving this treatment zone is
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characterised by low concentrations of dissolved total Fe and AI’* and exhibits near-

neutral pH (7.9-7.3 pH).

Reactive contaminant transport analysis was conducted along the centreline of the
PRB. A discretisation interval of 0.1 m in the horizontal direction was adopted for a
total width of 1.2 m (Figure 6.15). All the equations used in the model application to
the column experiment which was a vertical flow, was assumed equivalent to the
horizontal flow along the centreline of the field PRB. The geochemical algorithm is
independent of the effect of gravity. On the basis of field data observed during the
period from October 2006 to January 2012, the flow domain was simulated as a fully
saturated system with specified head boundaries and a mean hydraulic gradient of
0.006 to represent realistic field conditions. Table 6.5 lists all the input parameters of

the groundwater chemistry.

Table 6.5: Initial conditions (concentrations) of the model

Parameter Initial conditions
pH 3.6

Na" (mg/L) 435

K" (mg/L) 48

Ca™’ (mg/L) 115

Mg™ (mg/L) 90

A’ (mg/L) 27

Total Fe (mg/L) 80

CI' (mg/L) 825

SO4” (mg/L) 1135

The reaction rates for simulating the PRB conditions were the same as those
corresponding to laboratory column experiments albeit different boundary
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conditions. In addition, the primary and secondary mineral components considered in

the field were the same as those in the column experiments.

~ ~ ~

Entrance Zone Middle Zone Exit Zone

Figure 6.15 Discretisation of the field PRB

In the application of the model to the field PRB, favourable comparisons were
obtained between the predictions and field measurements for pH, Al and total Fe
concentrations. Figures 6.16-6.18 show the model predictions and field results for
pH, Al and total Fe concentrations respectively for 2012, after 6 years of operation.
The pH of groundwater up-gradient of the PRB varied between 3.2 and 4.1 with an
average of 3.6, whereas inside the PRB, the pH was higher and varied from 6.7 to 7.4
with an average of 7. Table 6.6 summarises the model inputs and averaged values of
field data and model outputs. The predicted pH values are in agreement with the

sharp increase in pH observed at the near-neutral plateau inside the PRB.

Table 6.6: Model predicted and measured pH, Al and total Fe concentrations in
the field PRB
Input values | Averaged measured Averaged model
values predicted values
pH 3.6 7 7.3
[Al] (mg/L) 27 1 0.5
[Total Fe] (mg/L) 80 1 0
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Field monitoring and column experiments indicate that the concentrations of Al’"
and total Fe reduce rapidly within the PRB to very low levels, in accordance with the
model output. The rapid decrease in these cations indicates that secondary minerals
precipitate inside the PRB resulting in a decrease in porosity and hydraulic
conductivity. However, the computed decrease in hydraulic conductivity from
October 2006 to October 2012 is only 3% at the entrance zone, which is not
surprising given the larger sized recycled concrete aggregates (dso=40 mm) used in
the PRB that prolong total clogging within relatively large pores of a coarse
aggregate assembly. Several researchers have reported that chemical precipitation
and clogging may occur excessively near the inlet of the reactive materials and not

homogeneously distributed throughout the barrier (Li et al., 2005; Bilek, 2006).
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Figure 6.16 Measured and predicted pH values for field PRB for 2012 (Indraratna et
al., 2014)
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Figure 6.17 Measured and predicted Al concentrations for field PRB for 2012
(Indraratna et al., 2014)
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(Indraratna et al., 2014)
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6.7 Mineralogical analysis

The PRB was excavated in selected locations to obtain the recycled concrete
specimens of the barrier in October 2013. One sample was collected at the entrance
zone of the PRB near observation well 22 (Figure 4.5 in Chapter 4). The purpose was
to compare them with the virgin recycled concrete samples in terms of mineralogy.
XRF, XRD and SEM/EDS analyse were undertaken to determine precipitation of the
secondary minerals. These analyses gave quantitative and qualitative measures of the

precipitates.

Due to the maintenance of neutral pH inside the PRB, Al and Fe precipitated out of
solution (e.g. low concentrations inside the PRB shown in (Figures 6.17 and 6.18) as
hydroxides or oxyhydroxides (Indraratna et al., 2014, Regmi et al., 2009a). Orange
and white precipitates on these specimens indicated that some chemical armouring of
the surface of the reactive media had occurred, which affected the reactivity of the
recycled concrete at the entrance of PRB. However, these concrete samples had a
negligible amount of precipitates coating the reactive surface (Figure 6.19). This is
probably due to a slow distribution of the precipitation as the groundwater velocity
within the site is very small (<10 cm/day). Furthermore, the porosity of the PRB is
high due to large sized recycled concrete and precipitates might have collected in the
voids towards the entrance of the PRB over time, which will take longer to fill due to
the slow groundwater flow rate. While chemical armouring was not significant at the
entrance of the PRB, it was evident that the precipitates would not be high towards
the middle of the PRB and at the exit face of the PRB. The precipitates were

probably causing armouring on the surface of the reactive materials towards the
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entrance of the PRB where the acidic groundwater enriched with Fe and Al directly

is exposed to the recycled concrete.

Figure 6.19 Precipitates coating the surface area of a recycled concrete sample
collected at the entrance zone of the PRB

Identification of the minerals in the precipitates was an important task for the study
of the acid neutralisation behaviour and chemical armouring of the recycled concrete
aggregates. Mineralogical characterisation of the recycled concrete and the
precipitates by XRD and XRF confirmed that Ca-bearing minerals were the primary
source of alkalinity, whereas Al and Fe minerals were the main precipitates formed

during the acid neutralisation process (Table 6.7).
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The recycled concrete aggregates used in the PRB are based on OPC (Ordinary
Portland Cement) of grades M25 and M30 with water to cement ratio of 0.4:0.43
(Indraratna et al., 2010) and from an ungraded mixture of concrete waste material.
The high amount of SiO, present in the recycled concrete was chemically inert in the
acid neutralisation processes. The presence of CaO supported the role of the
dissolution of C-A-H compounds (e.g. anorthite (CaAl,SiOg)], portlandite (Ca(OH),)
and calcite (CaCOs)), from the recycled concrete in generating alkalinity and
buffering the acidic influent in the PRB. Armouring on the surface of the recycled
concrete could result in a decrease in the rate of mineral dissolution, finally

decreasing the ANC of the reactive material.

SEM-EDS analysis was also carried out on a cut section of the armoured concrete to
compare the SEM image and EDS results of the armoured surface with the
unarmoured recycled concrete (Figure 6.20). Further EDS analysis showed the large
peaks of Si, moderate peaks for Ca and Al, and the small peaks for K, Fe and other
elements support the XRD and XRF results for the recycled concrete. Conversely,
higher peaks were obtained for Al and Fe in the armoured concrete, confirming the
precipitates were primarily Al and Fe-bearing precipitates in the form of hydroxide
and oxyhydroxides. Mineralogical analysis of the recycled concrete confirms the
presence of a significant amount of Ca-bearing minerals in the virgin concrete
minerals. Solidly cloudy images of the precipitates observed in SEM analysis with
high amounts of Al and Fe also confirmed that the precipitates were primarily Al and
Fe-bearing precipitates in the form of hydroxide and oxyhydroxides. Al- and Fe-
bearing minerals within the precipitates were in the ratio of 41:59 (by mass). These

results gave a clear idea about the dominant precipitating minerals but these values
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could not conclude the quantitative presence of minerals exactly, as the SEM-EDS
equipment in UOW was not calibrated for semi-quantitative compositional analysis.
In order to get a more precise analysis in terms of quantitative presence of minerals,

more sophisticated equipment is required.

Table 6.7: Comparison of metal oxide composition of the virgin concrete and
precipitates analysed by quantitative SEM-EDS

Mass (%)
Element Virgin recycled Armoured concrete
concrete from field PRB

C 17.46 14.91

O 44.57 57.5

Na 0.5 -

Mg 0.76 -

Al 3.21 4.61

Si 19.8 12.25

S 0.15 -

K 1.08 -

Ca 8.87 4.17

Fe 3.6 6.55
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Figure 6.20: EDS analysis of (a) recycled concrete (Regmi et al., 2011a) (b)
armoured concrete from PRB. Corresponding SEM image (inset) shows area

analysed.
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6.8 Optimum width of PRB

A PRB is commonly built with a reactive material having a higher hydraulic
conductivity than the surrounding soils. As a result, the contaminated groundwater is
forced to pass through the barrier itself, moving under its natural hydraulic gradient.
The mechanism of the remediation process of a PRB depends on the reactive

material chosen to build the barrier.

Before designing a barrier it is necessary to properly characterise the site, to assess
the contaminant properties, distribution and tracking; to describe the groundwater
flow within the aquifer; to determine the chemical-physical phenomena involved in
the reaction process and to meaningfully represent the results. The site
characterisation of this particular site is described in Chapter 4. The most important
thing when designing a PRB is that the residence time of the contaminated flow
travelling through the barrier should be long enough for the reaction processes to
take place. Therefore, the barrier width (/) must satisfy the following inequality:

o e )
w c, (6.26)
ok
where, v, represents groundwater flow velocity through the barrier, & is the overall
reaction rate and C, and C; represents the external effluent and influent
concentrations, respectively. It must be considered that influent concentrations may
vary due to the seasonal changes. Therefore, the barrier must be designed both to

retain intense concentration peaks and to guarantee long term performances.

PRB sizing is obtained iteratively, as reported schematically in the flow chart in

Figure 6.21. Specifically, after defining boundary conditions and all input data such
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as K (hydraulic conductivity), n (porosity), 4 (initial hydraulic head from Eqn.), Cy
(initial pollutant concentrations), k& (overall reaction kinetics)), MODFLOW
simulation was carried out, choosing W (PRB width), in order to calculate A(x,¢) and
u(x,t). Next step is RT3D simulation to compute pollutant concentration C,(x,?).
When C, is lower than an acceptable limit value (Cj,), PRB width is correct,
otherwise it must be increased until C, < Cj,,. The Cj;, values were taken from

Australian water guidelines (Sundaram et al., 2009) where the Cj;, for both Al and Fe

were 0.2 mg/L.
‘( PRB sizing
. w
v
MODFLOW Simulation Input data
(Eqn. (6.16a)) h K n
Increase h (x,t)
/4 A 4
7y RT3D Simulation Input data
(Eqn. (6.4)) Cin, Dy, k

Eqn. (6.29) for

optimum width

Figure 6.21 Flow chart of the optimum PRB width determination process
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Moreover, it is important to consider the different influent concentrations and check
whether the optimum width of the barrier can provide a reasonable residence time
especially in high concentrations. In order to accommodate the above, iterations were
carried out for several influent concentrations and then the optimum width was
finalised. Results shown in Figure 6.22 conclude the optimum width to be 0.45 m for
a range of influent concentrations from 50 to 250 mg/L. By applying a safety factor
(Eqn. (6.29)) of two, as suggested by Gavaskar (1998) and Nardo et al. (2010), the
width of the PRB would be 0.9 m. The pilot-scale PRB installed at Nowra has a
width of 1.2 m, which is allowable for the remediation of acidic groundwater with

the use of recycled concrete aggregates.
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Figure 6.22 Effluent concentrations vs. PRB width for different influent
concentrations
- (6.27)
Ce = Cin exp{ ij
\L
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ln(cf C,»,J (6.28)
t

h=——/ "/

Optimum W = W x SF (6.29)

6.9 Longevity prediction

The ultimate success of the PRB will be determined by the longevity over which Ca-
bearing mineral dissolution and metal oxy/hydroxide precipitation is maintained.
Due to maintenance of neutral to alkaline pH inside the PRB, Al and Fe precipitated
out of solution (e.g. low concentrations inside the PRB shown in Figures 6.17 and
6.18) as hydroxides or oxyhydroxides as indicated by the XRD, XRF and SEM
results. Observed steady piezometric head within the PRB over the 6 year monitoring
period after attaining steady state conditions in February 2007 (Figure 6.23) indicates
no threat of failure of the PRB from clogging. The continuous mineral precipitation
inside the PRB over time indicates that the effectiveness of the PRB may decrease
rapidly in the future due to the decreased surface area of the concrete by armouring
effect, further decreasing the longevity of the PRB as demonstrated by column

experiments.

PRB longevity can be estimated by comparing the column experiment results
discussed in Chapter 3 with respect to the PRB dimensions and groundwater
velocity. The synthetic water used in column experiment (~pH 2.67 and acidity 645
mg/L CaCOs;) was slightly more acidic than the groundwater in the field (average pH

~3.7 and average acidity ~550 mg/L eq. as CaCO3) (Indraratna et al., 2010).
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Figure 6.23: Groundwater elevation inside the PRB with respect to time. (P7-P12 are
the six piezometers inside the PRB) (updated after Regmi (2012))
In the column experiment, 49 mg/L Fe and 54 mg/L Al, and 645 mg/L CaCO;
equivalent acidity were removed with a residence time of 11.8 hr for a travel path
length of 0.5 m. Assuming a groundwater velocity in the aquifer of 10 cm/day (based
on the piezometric head and hydraulic conductivity), estimated residence time
through the PRB is 12 days for a PRB thickness of 1.2 m. Therefore, the
corresponding PRB residence time is around 24 times higher than the residence time

in column experiment run with medium flow rate of 1.2 mL/min.

Moreover, the longevity of the PRB depends on the amount of concrete used and the
seasonal changes in groundwater qualities in the field. The mass of the concrete used

inside the PRB was 80 tonnes, and the ANC of the recycled concrete is 146 g/kg,
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corresponding to which a theoretical total neutralisation capacity of the concrete used
inside the PRB is 11.6 tonnes (Indraratna et al., 2010). Considering a maximum
groundwater velocity of 0.1 m/day, the amount of acid passed through the PRB per
year is estimated to be ~1100 x 10° L and the consumption of the reactive material is
predicted to be ~0.70 tonnes per year. This indicates that the material will be
exhausted after 17 years, if there is no chemical armouring of the reactive media by
Al and Fe precipitates. However, it was observed from the column experiments
carried out by Regmi et al. (2011b) and Pathirage et al. (2012) that the recycled
concretes ANC could be reduced by ~50% due to armouring. Considering this, the
longevity of the PRB considering armouring and based on the acid flux passed
through the PRB per year would be 8.5 years for a groundwater velocity of 0.1 m/day
(Figure 6.24). However, the groundwater velocity at the PRB site is usually less than
0.1 m/day, which implies that the longevity of the barrier would be more than 8.5

years.

The estimated longevity from the pH profile and the current performance of the PRB
indicates that recycled concrete in the field will treat the acidic water for a longer
period, fulfilling the expectations of the local government for improving water

quality to protect the aquatic environments of nearby surface water sources.
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Figure 6.24 Longevity of the PRB

6.10 Summary

The software codes MODFLOW and RT3D were used to simulate the transport and
fate of the major cations (Ca**, AI’" and total Fe) in the column experiment. Eqn.
(6.16) was used to calculate the starting head for MODFLOW at every time step.
Eqn. (6.16) captured the change in head due to hydraulic conductivity reduction by
secondary mineral precipitation. The reason to adopt this approach was because
MODFLOW did not have a way of automatically changing the porosity or the
hydraulic conductivity unless they were manually entered. Once the starting head

was calculated by the analytical model, the results were put into MODFLOW. Then

173



MODFLOW and RT3D were run in tandem to get the concentrations of reactants at

every time step.

The predicted and measured concentration profiles of Ca**, AI’", and total Fe were
found to be in very good agreement and hence confirming the feasibility of the
coupled hydro-geochemical model developed in this study. The precipitation of
secondary minerals (i.e. Fe(OH);, Fe(OOH), Fe,O3;, Fe(OH),, FeCO;, AI(OH);)
significantly decreased the efficiency of the reactive material due to armouring and
clogging in the column experiments. The model results obtained for porosity showed
that the precipitated secondary minerals subsequently reduced the porosity and
hydraulic conductivity. The largest porosity reduction during the experiment was
most significant (4%) near the influent end of the column and this reduced to 3%
midway along the column and 0.5% near the end of the column. The largest
hydraulic conductivity reduction of 34% was found to be near the inlet to the
column, with a 27% reduction mid-way along the column and 4% near the end of the

column.

In the application of the model to field PRB, favourable comparisons were obtained
between the predictions and field measurements for pH, AI’" and total Fe
concentrations. Field monitoring and column experiments indicated that the

: +
concentrations of Al’

and total Fe reduced rapidly within the PRB to very low
levels, in accordance with the model output. The rapid decrease in these cations
indicated that secondary minerals precipitate inside the PRB resulting in a decrease

of porosity and hydraulic conductivity. However, the computed decrease in hydraulic

conductivity from October 2006 to October 2012 was noticed to be only 3%, which
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was not surprising given the larger sized recycled concrete aggregates (dsp=40 mm)
used in the PRB that prolong total clogging within relatively large pores of a coarse

aggregate assembly.

MODFLOW and RT3D simulations were carried out to find the optimum width of
PRB. The model was run for different influent contaminant concentrations and till
the inequality, C, < Cy;, satisfied (when the effluent concentration (C,) is lower than
an acceptable limit value (Cjy,). The optimum width of the PRB was 0.9 m from
these iterative simulations. The pilot-scale PRB installed at Nowra consisted of a
width of 1.2 m, which was allowable for the remediation of acidic groundwater with
the use of recycled concrete aggregates. The longevity prediction of the PRB
considering armouring and based on the acid flux passed through the PRB per year
was 8.5 years for a maximum groundwater velocity of 10 cm/day. However, the
groundwater velocity at the PRB site is usually less than 10 cm/day, which implies

that the longevity of the barrier would be more than 8.5 years.
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Chapter 7 Conclusions and

Recommendations

7.1 Introduction

This chapter is a synopsis of all the major findings of the research and its practical
implications, followed by recommendations for future research. This study monitors
the performance of a novel PRB for the remediation of contaminated groundwater
from ASS terrain. The application of recycled concrete as the reactive material was
thoroughly studied through laboratory column experiments and validated with a
groundwater flow model coupled with contaminant transport and geochemistry.
Commercially available numerical codes, MODFLOW and RT3D were used for this
purpose. Moreover, the model was applied to the field PRB, along a transect passing
through the centreline of the PRB. Changes in the geochemical composition of the
contaminated groundwater within the PRB after treatment with recycled concrete are

also addressed.

7.2 Conclusions

Laboratory column experiments carried out using synthetic groundwater confirm the
suitability of the reactive material in decontaminating acidic leachate consisting of
high concentrations of dissolved acidic cations AI’" and total Fe (Fe*" and Fe’"). The
results of the column experiments proposed conceptual acid neutralisation reactions,
1.e. the pH of the effluent groundwater is controlled by a series of dissolution-
precipitation reactions, namely Ca-bearing minerals (portlandite, anorthite, and
calcite) and Al and Fe oxy/hydroxides. Three distinct pH plateaus observed during

the column experiments can be attributed to three different pH-buffering reactions:
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1. dissolution of carbonate/bicarbonate alkalinity from the concrete at near-
neutral pH (bicarbonate buffering zone),
2. re-dissolution of Al hydroxide minerals at pH ~4.5, and
3. re-dissolution of ferric oxy/hydroxide minerals at pH < 3.7.
The results confirmed that recycled concrete is an effective and promising reactive
medium, especially considering the long-term treatment of acidic groundwater from

ASS terrain.

The dissolution potential of Ca-bearing minerals in recycled concrete and
precipitation potential of secondary minerals out of acidic groundwater has been
examined with particular attention to their impact on the hydraulic properties of
crushed recycled concrete in a test column and a pilot-scale PRB. MODFLOW and
RT3D were used to simulate flow and the reactive transport of mineral components.
A geochemical algorithm was developed for the input in RT3D specifically for
simulating the geochemical reaction that occur in PRBs composed of recycled
concrete for the treatment of acidic groundwater. The calculated concentrations of
Ca™, AI’" and total Fe were found to be in good agreement with the observed
experimental and field values. Based on the results reported herein, the following
conclusions can be derived:
e The dissolved AI’" and total Fe were precipitated out of solution as their
oxy/hydroxides (i.e. Fe(OH)s, Fe(OOH), Fe,03, Fe(OH),, FeCOs, Al(OH)»);
e Chemical armouring/clogging of the reactive material due to the secondary
mineral precipitation, decreased the ANC of the recycled concrete by up to

50% compared to its theoretical ANC;
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e Clogging, and hence the reduction in porosity and hydraulic conductivity,
was most significant where the groundwater entered the column and
decreased with distance along the column. The largest porosity reduction
during the experiment was most significant (4%) near the influent end of the
column and this reduced to 3% midway along the column and 0.5% near the
end of the column;

e The largest hydraulic conductivity reduction was 34% near the inlet of the
column, with a 27% reduction mid-way along the column and 4% near the

end of the column;

Field monitoring data over 6.5 years is reported in this thesis. They indicate that the
recycled concrete has effectively maintained near-neutral pH and removed AI’" and
total Fe in a manner similar to the column experiments. These findings further
confirm that the groundwater chemistry inside the PRB is primarily controlled by the
alkalinity generated by the dissolution of Ca-bearing minerals in the concrete and the
precipitation of insoluble Al- and Fe-hydroxides and oxy-hydroxides. The
competence of the PRB to remove AI’" and total Fe depends on the variation of the
acidity of the groundwater due to pyrite oxidation, the long-term generation of
alkalinity by the minerals present in the recycled concrete and the reduction of the
reactive surface area by chemical armouring/clogging due to the precipitated
minerals. Despite the excellent performance of the recycled concrete inside the PRB,
groundwater chemistry down-gradient of the PRB could be improved to some extent
only, due to the dilution of the effluent from the PRB and the occasional mixing of

acid generated in the soil by pyrite oxidation.
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Overall, the PRB has performed well so far but a slight decrease in the pH and Fe
and Al removal efficiencies towards the entrance of the PRB was observed due to the
chemical armouring of the surface of the reactive media which affected the reactivity

of the recycled concrete in that zone.

Model results were validated using the data from the pilot-scale PRB along the
centreline of the PRB. The predicted values from MODFLOW and RT3D
simulations for pH, concentrations of AI’" and total Fe are found to be in good
agreement with the observed field values throughout 2012. The average pH was
around 7 within the PRB. The pH of the PRB has been decreasing slowly, attributed
to exhaustion of the alkalinity generating materials as well as fouling by precipitates

over the surface of the reactive materials.

Mineralogical analysis of the recycled concrete confirms the presence of a significant
amount of Ca-bearing minerals in the virgin concrete minerals. Solidly cloudy
images of the precipitates observed in SEM analysis with high amounts of Al and Fe
also confirmed that the precipitates were primarily Al and Fe-bearing precipitates in
the form of hydroxide and oxyhydroxides. Al- and Fe-bearing minerals within the

precipitates were in the ratio of 41:59 (by mass).

Clogging, and hence the reduction in porosity and hydraulic conductivity, was most
significant where the groundwater entered the PRB. However, the computed
decrease in hydraulic conductivity at the entrance zone from October 2006 to

October 2013 was only 3%, which is not surprising given the larger sized recycled
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concrete aggregates (dspg=40 mm) used in the PRB that delays total clogging within

relatively large pores of a coarse aggregate assembly.

The optimum PRB sizing is obtained iteratively, defining boundary conditions and
input data such as K (hydraulic conductivity), n (porosity), 4 (initial hydraulic head),
Cy (initial pollutant concentrations) and k& (overall reaction kinetics). MODFLOW
and RT3D simulations were carried out till the inequality, C, < Cj;, is satisfied (when
the effluent concentration (C,) is lower than an acceptable limit value (Cj;,). The
model was run for different influent contaminant concentrations and the optimum
width of the PRB would be 0.9 m. The pilot-scale PRB installed at Nowra has a
width of 1.2 m, thus is acceptable for the remediation of acidic groundwater with the

use of recycled concrete aggregates.

The longevity prediction of the PRB considering armouring, and based on the acid
flux passing through the PRB per year would be 8.5 years for a maximum
groundwater velocity of 100 mm/day. However, the groundwater velocity at the PRB
site is usually less than 100 mm/day, which implies that the longevity of the barrier

would be more than 8.5 years.

The findings from the pilot-scale PRB confirms that recycled concrete is a suitable
environmentally friendly and cost-effective alternative compared to other
conventionally utilised techniques (e.g. watertable manipulation, lime neutralisation)
for the in-situ treatment of acidic groundwater in ASS terrain. The ability to make
comparisons between the geochemically complex transport scenarios coupled with

transient groundwater flows within the column experiments and pilot-scale PRB is an
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important benefit of this numerical model. Moreover, the models ability to predict
the porosity and hydraulic conductivity reductions due to secondary minerals
precipitation is of paramount importance to estimate the longevity of the PRB. The
developed model can be used as an analysis tool for the performance verification of

PRBs in ASS terrain.

7.3 Recommendations for Future Research

Field investigations carried out over the 6.5 years monitoring show that although
acidic groundwater is neutralised and acidic cations (AI’" and total Fe) were removed
significantly by the PRB, acidic conditions still exist with distance down-gradient of
the PRB. This is due to the active and ongoing oxidation of pyrite in the soil and
generation of acid followed by the liberation of AI’" and total Fe from the clay
minerals in the soil, and subsequently mixing with treated groundwater. The amount
of mixing of the treated water from the PRB and the acidic water generated at the
down-gradient, can be predicted by coupling the PRB effluent from the model
predictions with the pyrite oxidation model (Blunden and Indraratna, 2001). This will
allow further understanding on the installation distance of a new PRB from the drain
or creek to obtain the maximum neutral conditions in groundwater down-gradient of

the PRB.

This study revealed that small-sized PRBs would function more effectively for large
areas of ASS terrain, if they were constructed in series before discharging the
effluent into the surface water. A funnel-and-gate design could be used to decrease

the risk of mixing of treated water with untreated groundwater. Hence, the
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application of a series of horizontal PRBs or funnel-and-gate PRB can be a potential

solution for ASS management that needs to be investigated.

The laboratory column experiments revealed that chemical armouring by the
precipitated Al and Fe minerals could decrease the ANC of the recycled concrete by
up to 50% compared to its theoretical ANC, which results in decreasing the longevity
significantly. The longevity of the PRB and down-gradient water quality could be
improved if an alkaline effluent (preferably alkaline waste effluent for cost-effective
management) is intermittently injected into the PRB as discussed by Banasiak et al.,
(2014). Further examination is vital in laboratory scale to quantify the change in
porosity and hydraulic conductivity prior to the application of such alkaline effluent

as it may shorten the life span of the PRB due to chemical clogging more rapidly.

This study involved the development of a 1D numerical model through the centreline
of the PRB, which was useful for evaluating the acid neutralisation behaviour of the
recycled concrete and its performance with especial reference to the geochemistry
coupled with transient groundwater flows. However, this 1D model cannot capture
the lateral groundwater flow and cross flow. The development of a 3D reactive
transport model is recommended to quantitatively evaluate changes in flow
behaviour due to chemical dissolution/precipitation. This 3D numerical model would
be useful to determine the decrease in void space within the PRB per unit volume
and analysis of the interconnected effects of acidic flow-induced clogging, PRB

effectiveness and longevity.
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This study extensively describes and models the chemical clogging phenomena
within the reactive medium and acidic groundwater in ASS terrain. However,
biological clogging of porous media when exposed to acidic influent has not been
investigated or modelled for ASS terrain. The problem of chemical and biological
clogging in porous media is of great importance in the fields of geotechnical and
geo-environmental engineering and in the application of PRB technology. While
bacteria present in soil on the Shoalhaven Floodplain, A. ferrooxidans, is acidophilic
with optimum growth occurring at a pH < 4, it can survive to a pH as high as 6-7, as
currently observed in groundwater within the PRB (Rudens, 2001). Thus, bacterial
growth on the recycled concrete within the PRB (as a biofilm) could occur under
submerged and anaerobic conditions. The abundance of Fe, as precipitated on the
recycled concrete in the PRB, would act as a food source for 4. ferroxidans and
enhance its growth and the subsequent rate of pore space reduction and bioclogging
of the PRB with time. Thus, it is of utmost importance to determine the rate of
bioclogging and the change in the rate of growth of microorganisms through
carefully controlled experiments and the application of mathematic formula, in order
to couple the geochemical and biological processes occurring in the PRB. In fact, this

will be an area that the writer of this thesis will continue to study in near future.
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APPENDIX I: Mathematical model derivation

The groundwater flow at transient condition is considered, and the governing

equation for one dimension flow is given by;

2 A.l
aﬁzvzhzi[%j (A1)
Ox T\ ot
T =Kb (A.2)

The solution for Eq. (A.1) can be written as,

Let b/S =4, as S and b are assumed to be constants throughout the simulation, hence,

A3
V%:L(@j (A.3)
AK \ ot

Now, we assume a solution of separating variable type for Eq. (A.1) as follows;

h(x,t)= X (x)T(¢) and K(z,)=T,(z,) (A.4)

Substitution of 2=X.T and K=T into Eq. (A.3) yields;

' A.

wr-XT (A9
4T,

where the prime denotes differentiation with respect to the appropriate variable.

Dividing by X.T, we obtain,

T (A6)
X AT T #

where L is an arbitrary constant, thus,

X' e (A.7)
Y H

And
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dt
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k=1

In(T) =44 ;
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Let a = n, +ZMkRkt and f=1-n, —ZMkRkt

k=1 k=1
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2 3
In(7) = Nﬂ 4K, (1_’310) (la )2da
n -a
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2
In(T)= - A’L,:bKO (1 no [ (15+/ﬂ) a+lnﬂ}
S MR, g

k=1

2
T =exp| — IﬁbKo (1 no { (15+/ﬁ) a+ln,8}
S MR, g

k=1

From Eq. (B.4);

X = Csin ux + D cos ux
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(A.11)
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(A.13)
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where, C and D are integral constants.

Therefore, the general solution for Eq. (A.3) can be written as,

wbK, (1-n,Y [ , .
h=|expl———" = {a (1.5+%6,)—3(a+1n,3)} -(C'sin goc + D cos pux)
SS MR,

k=1

(A.17)
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APPENDIX II: Field Work

Collecting undisturbed samples of ASS for permeability test
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Surveying the piezometers and monitoring wells to locate them in the map and to determine the water table according to AHD
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Collecting the soil and water samples and storing them in an esky till Collecting the bore hole samples using the mechanical auger

refrigerated
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