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Application of the largest Lyapunov exponent algorithm for feature 

extraction in low speed slew bearing condition monitoring 

Abstract 

This paper presents a new application of the largest Lyapunov exponent (LLE) algorithm for 

feature extraction method in low speed slew bearing condition monitoring. The LLE algorithm is 

employed to measure the degree of non-linearity of the vibration signal which is not easily 

monitored by existing methods. The method is able to detect changes in the condition of the bearing 

and demonstrates better tracking of the progressive deterioration of the bearing during the 139 

measurement days than comparable methods such as the time domain feature methods based on 

root mean square (RMS), skewness and kurtosis extraction from the raw vibration signal and also 

better than extracting similar features from selected intrinsic mode functions (IMFs) of the 

empirical mode decomposition (EMD) result. The application of the method is demonstrated with 

laboratory slew bearing vibration data and industrial bearing data from a coal bridge reclaimer 

used in a local steel mill. 

Keywords: Empirical mode decomposition; Feature extraction; Largest Lyapunov exponent; Low 

speed slew bearing. 

Nomenclature 

d0 initial Euclidean distance between phase space matrix X and the replicated matrix Xrep 
d0_new new Euclidean distance d0 

d measured distance 
dnew new measured distance 

i time duration of the acquired vibration data, (i =30 seconds) 
J number of samples delay to construct the phase space matrix X 
M number of rows of the phase space matrix X 
m embedding dimension of the phase space matrix X 
N number of sampled data points of vibration data x 
n number of measurement days, n = 139 
Si initial separation of original LLE algorithm 
X phase space matrix of LLE algorithm 

Xrep row-vector replication of the phase space matrix X  
x vibration data, x = [x1, x2, …, xN] 
Δt sampling period of vibration data x 
δ elements of Euclidean distance calculation, ||X - Xrep|| 
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λ1 largest Lyapunov exponent (LLE) 
μ  number of nearest neighbors after and before the zero value 
Δa minimum value of d0_new 
Δb identifier of the minimum value Δa 

 

1. Introduction 

Slew bearings are commonly used in large industrial machineries such as turntables, steel mill 

cranes, off-shore cranes, rotatable trolleys, excavators, reclaimers, stackers, swing shovels and ladle 

cars. They typically support high axial and radial loads. In the steel industry, slew bearings are often 

critical production parts. An unplanned downtime caused by the breakdown of the bearing can be 

very costly due to the interruption in production. In addition, since it takes a long time to replace the 

slew bearing due to long manufacturing and delivery times, plants often need to carry spare 

bearings in order to guard against such unforeseen circumstances, adding extra cost. In order to 

prevent extended unplanned downtime, an accurate method to monitor and analyse the condition of 

the bearings is needed. 

To date, the signal processing technique based on vibration is the main technique used in the 

detection of change of bearing conditions and as a warning of impending deterioration of rotating 

machinery. In the case of slew bearings, special signal processing is necessary to detect the changes 

in the condition of the bearing based on the vibration signal. With appropriate signal processing, the 

fault signal can be detected from the processed signal. It is well known that the vibration 

characteristic of rotating machinery is altered when a bearing has failed. As the change is identified 

by the non-linear trend, a non-linear dynamical analysis technique is necessary for fault detection 

and diagnosis [1]. Unlike linear dynamic systems where the system has constant natural frequencies 

and vibrates at the frequency of an externally applied harmonic excitation, in non-linear systems 

there are amplitude-dependant natural frequencies called ‘internal resonances’ and this kind of 

system may vibrate at a frequency different from an externally applied harmonic excitation [2]. In 

practice, a rolling element bearing has internal resonances due to the different parts of the system 

(e.g. interactions between shaft and bearing, between rolling element and raceway) vibrating at 

different frequencies, all with steady amplitudes. The combination of these internal resonances 

appears in the non-linear vibration signal. Certain methods which can analyze the non-linear time 

series characteristic (in this paper referred to as the ‘vibration signal characteristic’) are phase space 

dissimilarity techniques [3, 4] which are Kolmogorov entropy, fractal dimension, correlation 

dimension, approximate entropy, permutation entropy, and the largest Lyapunov exponent. These 
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techniques use reconstruction vectors or phase space as the input matrix to identify the existence 

and to measure the degree of non-linearity of the time series data. Most of these techniques have 

already been applied to vibration signal monitoring for machine health diagnostic, for example: the 

Kolmogorov-Smirnov test [5], fractal dimension [6], correlation dimension [7], approximate 

entropy [8] and permutation entropy [9].  

This paper presents a new application of the largest Lyapunov exponent (LLE) algorithm as a 

feature extraction method for low speed slew bearing vibration signals. Although the LLE algorithm 

has been widely used in some disciplines such as the bio-medical [10, 11] and finance [12] areas, it 

has not been explored previously in vibration-based condition monitoring. For instance, in 

biomedical applications [10, 11], the LLE algorithm is used to analyze the EEG signals to detect 

epileptic seizures. In finance, [12] the LLE algorithm is used to analyze the stability of electricity 

prices. The LLE algorithm is usually used for non-linear time series analysis to quantify the 

appearance of signal non-linearity. Basically, the LLE algorithm measures the exponential 

divergence (positive or negative) of two initial neighboring trajectories in the phase space based on 

the Euclidean distance. The LLE algorithm is presented in detail in section 2. 

The paper is organized as follows: Section 2 discusses the theoretical background of the LLE 

algorithm as a non-linear feature extraction method; Section 3 describes the experimental set-up of 

the laboratory slew bearing test rig; Section 4 describes the coal bridge reclaimer data; Section 5 

presents the results and discussion of the vibration-based FFT, statistical time domain feature 

extraction, empirical mode decomposition (EMD)-based feature extraction and the LLE results 

including the comparison between the LLE feature and the time domain features extracted from raw 

vibration data and from selected IMFs of EMD; Section 6 presents results and discussion of coal 

bridge reclaimer data; Section 7 presents the assessment or evaluation criteria; and Section 8 

presents the conclusions of the current work. 

2. The largest Lyapunov exponent (LLE) algorithm 

To analyze the non-linearity or chaotic characteristic of time-series data, the vibration data, 

)...,,,( 21 Nxxx=x  with N samples is reconstructed first. The reconstructed vector is done in phase 

space [13]. The phase space reconstruction technique used is the method of delays (MOD) 

introduced by Takens [14]. The phase space has been used in non-linear time series analyses [3-9] 

where the phase space matrix is defined as follows: 
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Once J and m are determined, and the sampling rates of the vibration data N, is known, the relation 

between these variables and the number of reconstructed vectors M can be calculated in the 

following way: M = N - (m - 1)J. The preparatory LLE algorithm flowchart including the phase 

space and the initial Euclidean distance calculation is presented in Fig. 1. 

x = [x1  x2  x3  x4  x5  x6  x7  x8  x9  x10  x11  x12  x13  x14  x15]

Vibration data

Parameter determination
J = 2, m = 6

Phase space matrix

Phase space matrix

Replicated matrix

=)1(

1197531

1197531

1197531

1197531

1197531

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

repX

Set i = 1

Initial Euclidean 
distance at index i

)1(-=)1( repXXd0

Save initial Euclidean distance

i = M ?
Iterate

Stop

Yes

No

=

151311975

141210864

13119753

12108642

1197531

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

X

=

151311975

141210864

13119753

12108642

1197531

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

X

 

 

 

 

 

 

)()2()1(

)()2()1(
)()2()1(

=

000

202020

101010

0

MMM Mddd

Mddd
Mddd









d

 

  
Fig. 1. The flowchart of preparatory LLE algorithm (note: N=15, J=2 and m=6). 
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Further explanation of the LLE algorithm in this section is based on the actual slew bearing data. 

In the case of slew bearing data, the parameters J and m have been determined as J = 48 and m = 

100. The number of samples of slew bearing data N is 4880. Hence, the number of reconstructed 

vector M can be calculated, M = 128. The reason why these values were selected is explained in 

detail in section 5.4. Once the phase matrix X and the replicated matrix Xrep have been obtained, the 

initial Euclidean distance, vector d0, can be calculated as shown in Fig. 1. It should be noted that the 

calculation of the Euclidean distance vector in the LLE algorithm plays an important role. The 

divergence of the LLE result (λ1) can be analysed based on the Euclidean distance. The divergence 

represents the characteristic of the vibration signal being analysed. If the bearing vibration signal is 

linear, typical of normal condition, the calculated Euclidean distance between each row in the phase 

space matrix is constant and divergence is not detected, and thus the λ1 will be negative. On the 

other hand, if the vibration signal has non-linear characteristics, the Euclidean distance between 

each row in the phase space matrix is no longer constant (it typically manifests exponentially), and 

thus the value of λ1 will be positive. The physical reason for the LLE result (λ1) mentioned above is 

discussed again in detail at the end of the LLE algorithm procedure in this section. However, the 

important Euclidean distance vector for the LLE result (λ1) is not d0. To get the appropriate 

Euclidean distance vector for calculating λ1, the initial Euclidean distance vector d0 described above 

needs to be processed by the two following steps: 

Step 1: Calculate the new initial Euclidean distance value d0_new 

The first step to process the Euclidean distance vector d0(i) is to determine the identifier of the 

minimum value of the Euclidean distance vector d0(i) for each index i. The index i in the case of 

slew bearings is i = 1, 2, …, 128. Prior to the calculation of the minimum identifier, it is necessary 

to calculate the minimum value of d0(i) for each i, then the identifier of the minimum value of d0(i) 

for each i can be obtained. If we compute the minimum value directly from d0(i) as i progresses 

from 1, 2, …, 128, the minimum value will always be ‘zero’. The reason for the ‘zero’ value is that 

at the particular index i, for instance at i = 1, the d0(1) is computed from ||X- Xrep(1)||. As mentioned 

before, Xrep(1) is obtained by replicating the 1st row of the phase space matrix X. If the Euclidean 

norm between X and Xrep(1) is calculated, the first row of the Euclidean distance vector d0 will be 

zero value, because the first row element of the phase space matrix X and the replicated matrix Xrep 

are identical. When i progresses up to, for example, i = 64, the d0(64) is computed from ||X- 

Xrep(64)||. In a similar way, the matrix Xrep(64) is obtained by replicating the 64th row of the phase 

space matrix X. If the Euclidean norm between X and Xrep(64) is applied, the 64th row of the 

Euclidean distance vector d0 will be zero as well. The process which produces the zero value of d0 
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as i progresses is repeated up to the last i index, that is i = 128. The illustration of the three 

calculation examples of d0 at three different i (at i = 1, at i = 64 and at i = 128) are shown in Figs. 

2(a)–4(a). 

To overcome the problem mentioned above, an additional constraint is employed in the LLE 

algorithm to remove the ‘zero’ value as i progresses and to change nearest zero value neighbors 

become constant (to provide a clearer illustration figure, a maximum value of d0 is used as a 

constant value). The reason why the nearest zero value neighbors need to be changed to a constant 

is because the nearest zero value neighbors of d0 shows some transient behavior as shown in Figs. 

2(a)–4(a). This is important to ensure an accurate measurement of the new initial distance value 

d0_new. Once the transient part of d0 has been removed, the minimum value of the Euclidean 

distance vector d0(i) will be calculated from the stationary part. To determine the constraint 

mentioned above, another index called j is used inside the sub-routine of index i in the LLE 

algorithm. The constraint is defined as follows: 

μ≤- ji                       (2) 
 
where j = 1, 2, ..., M and μ is the number of nearest zero value neighbors that need to be changed to 

a constant value. The μ in this paper is selected as 50 (the reason is given in Section 5.4). In 

addition, Eq. (2) means: if the absolute value of subtraction ith
 and jth as i and j progresses from 1 to 

128 is less than or equal to the μ, the element of d0 (with respect to current j) is replaced by the 

highest value of d0(i). A more detail explanation of Eq. (2) is presented in the LLE algorithm in 

Table 1. The new Euclidean distance vector after the LLE algorithm is shown in Table 1 and is 

called the new Euclidean distance vectors d0_new(j). It can be seen from Table 1 that the algorithm 

consists of two sub-routines based on the indices i and j. The results of d0_new are presented in Figs. 

2(b)–4(b). It can be seen in Fig. 2(b) that when i = 1, the fifty data points after the nearest neighbors 

of the zero value are replaced by the maximum value and became constant. Further example i = 64, 

when i = 64, the nearest neighbors which need to be changed are 50 points before the zero value 

and 50 points after the zero value. Thus the result is shown in Fig. 3(b). When i reaches the last 

number i.e. i = 128, the fifty points before the nearest neighbors of the zero value are replaced by 

the maximum value and became constant as well, as shown in Fig. 4(b). Note that points are the 

result of Eq. (2) or line 6 in the LLE algorithm for j’s progression from 1, 2, …, 128. 

Once the d0_new(j) is computed, the minimum value of d0_new(j) denoted by Δa(i) and the index of the 

minimum value as denoted by Δb(i) are defined as follows: 

( ))(min])(),([ 0_new jii ba d=∆∆                               (3) 
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Eq. (3) is incorporated in the LLE algorithm shown in Table 1 line 11 inside the sub-routine of 

index i. It should be noted that the minimum value Δa(i) is no longer used for further calculations. 

Only the identifier of the minimum distance value Δb(i) is used again in the next step. This index is 

necessary to create a new matrix, matrix X(Δb(i)). The element of the matrix X(Δb(i)) at particular 

index i is based on the result of Δb(i). Further use of matrix X(Δb(i)) is shown later in Eq. (4) and 

Table 2 line 19. 

 
Table 1. The LLE algorithm showing the subroutines of i and j in order to calculate the new 

Euclidean distance d0_new. 

LLE Algorithm 

  1: X, Xrep and d0 (are calculated from Fig. 1) 
  2: μ is predetermined mean period (e.g. μ = 50) 
  3: Create the new matrix d0_new. Set d0_new = d0 initially 
  4: for  i = 1 to M   do 
  5:   for  j = 1 to M   do 
  6:         if  | j – i | ≤

 
μ   do 

  7:              d0_new(j) = max(d0) 
  8:         end if 
  9:       end for j 
10:       Vector d0_new obtained. This vector contain 1, 2, … M row 
11:       Find the minimum value of d0_new(j) and its identifier: [Δa(i), Δb(i)] = min(d0_new(j)) 
12: end for i 
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Fig. 2. (a) The initial Euclidean distance d0 at i = 1; (b) The new initial Euclidean distance value 

d0_new at i = 1. 
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Fig. 3. (a) The initial Euclidean distance d0 at i = 64; (b) The new initial Euclidean distance value 

d0_new at i = 64. 
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Step 2: Calculate measured distance d and new measured distance dnew 

The next step is the calculation of measured distance d(i) by estimating the distance between the 

phase space X(i) and the new matrix X(Δb(i)) (with respect to i). The elements of matrix X(Δb(i)) is 

the row vector data set of the phase space X based on the minimum index Δb(i). 

d(i) = || X – X(Δb(i) ||                     (4) 
 

Even though the LLE result (λ1) can be computed using the measured distance d(i), to improve the 

accuracy of the measured distance d(i), Sato et. al. [16] used k iteration. In this paper k = 1, 2, …, 

70 iteration is used. In order to show an adequate exponential graph of the measured distance d and 

to decrease the computational time, it is recommended that k be any value which is greater than the 

mean period μ and less than the embedding dimension m. The algorithm used to improve the 

accuracy of the measured distance d(i) is presented in Table 2. The algorithm in Table 2 is an 

extension of the algorithm shown in Table 1. The result after the k iteration is called the new 

measured distance matrix dnew(i). 

Table 2. The algorithm to calculate dnew(i) based on k iteration and the index of minimum value 
Δb(i). 

LLE Algorithm (Cont.) 

13: for  k = 1 to 70  do  
14: bound = M - k 
15: evolve = 0 
16: point = 0 
17: for  i = 1 to M  do  
18: if i <= bound and Δb(i) <= bound do 
19:   d = sqrt(sum((X(i+(k-1) , :) - X(Δb (i)+(k-1) , :)).^2,2)) 
20: if d ~= 0 do 
21: evolve = evolve + log(d) 
22: point = point+1 
23: end if 
24: end if 
25: end for i  
26: if point > 0 
27: dnew(k) = evolve/point 
28: else 
29: dnew(k) = 0 
30: end if 
31: end for k 
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The final step is the calculation of the LLE result (λ1). Using the original largest Lyapunov 

exponent formula [15], the relation between dnew(i) and the LLE result λ1(i) is defined by the 

following: 

).(1)( ti
ieSi ∆= λ

newd                      (5) 

By taking the natural logarithm of both sides and removes the part ‘ln Si’, the largest Lyapunov 

exponent can be computed using a least-square fit equation defined by 

)(ln1)(1 i
t

i newd
∆

=λ                      (6) 

where λ1 < 0 indicates normal condition and λ1 > 0 indicates non-linear condition. The physical 

interpretation of negative LLE (λ1 < 0) and positive LLE (λ1 > 0) is shown in Section 5.4 Figs. 12(a) 

and (b). 

3. Laboratory slew bearing data 

The vibration of accelerated wear test data used in this paper was acquired from a laboratory slew 

bearing test rig as shown in Fig. 5. The test rig was operated in continuous rotation at 1 rpm. The 

slew bearing used was an INA YRT260 type axial/radial bearing supplied by Schaeffler with an 

inner and outer diameter of 260 mm and 385 mm, respectively. The vibration data was acquired 

from four accelerometers installed on the inner radial surface at 90 degrees to each other (see Fig. 

5(b)) with 4880 Hz sampling rates. The accelerometers were IMI608 A11 ICP type sensors. The 

accelerometers were connected to a high speed Pico scope DAQ (PS3424). The bearing began 

running in 2006, however in order to provide continuous monitoring and produce run-to-failure 

bearing data, the bearing data was collected from February to August 2007 (139 days). In order to 

accelerate the bearing service life, coal dust was injected into the bearing in mid-April 2007 (58 days 

from the beginning). In practice, especially in steel making companies, the slew bearing is located in 

the open air where the bearing is exposed to a dusty environment and for this reason, the coal dust 

was inserted in mid-April to simulate the real working conditions. 

The schematic of the slew bearing test rig showing the main drive reducer, the hydraulic load and 

how the bearing is attached is shown in Fig. 5 (a). The axial load was applied via a hydraulic load of 

approximately 30 tons. 
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(a)                                                                           (b) 

Fig. 5. (a) Schematic of laboratory slew bearing test-rig; (b) sensor attachment. 

4. Coal bridge reclaimer data 

Industrial bearing data used in this paper was acquired from a slew bearing used in a coal bridge 

reclaimer. The bearing usually rotates at approximately 4.5rpm. The type of slew bearing used is 

Rothe Erde 4.3m diameter. The accelerometers employed were IMI512, 500mV/g ICP type 

piezoelectric. Data was collected from 2003 to 2006 at each sample point, approximately once per 

month and was captured via an industrialized portable DAQ unit (NI 5102) with a sampling rate of 

240.  

5. Results and discussion of laboratory slew bearing data 

5.1 Vibration-based FFT 

Initially, the vibration-based fast Fourier transform (FFT) was used to identify the dominant 

frequencies of the vibration signal. The bearing fault frequencies of the slew bearing when the 

bearing runs at 1 rpm are presented in Table 2. It has been known that if the FFT of the vibration 

signal contains one or more dominant frequencies which are identical to or match one of the fault 

frequencies shown in Table 2, a certain fault type has occurred. The three selections of slew bearing 

data and their FFT are presented in Figs. 6 to 8. 

Table 2. Fault frequencies of slew bearing run at 1 rpm [calculation is given in Appendix A]. 

Defect mode 
Fault frequencies (Hz)  

        Axial             Radial  

  Outer ring (BPFO)         1.32              0.55  
  Inner ring (BPFI)         1.37              0.55  
  Rolling element (BSF)         0.43              0.54  

Accelerometer AE sensor 
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The vibration data and its FFT before dust contamination on February 24, one month after dust 

insertion on May 3 and three days before bearing failure on August 30 are depicted in Fig. 6, Fig. 7 

and Fig. 8, respectively. The FFT result in Fig. 6(b) shows that the frequency is less than 100 Hz. 

After dust insertion, the frequency of the vibration signal is dominated by high frequencies of 1356 

Hz, 1770 Hz and 2167 Hz, as shown in Fig. 7(b). When the level of bearing deterioration has 

increased and the time remaining is close to bearing collapse, the frequency is dominated by a 

frequency of 103.1 Hz as shown in Fig. 8(b). 
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Fig. 6. Vibration data acquired on 24 February: (a) raw vibration data; (b) FFT. 

 

According to the results, it can be concluded that the fault frequencies listed in Table 2 are 

difficult to identify using the FFT from the incipient defect (after dust insertion) to complete failure. 

One piece of information which can be identified from the raw vibration data is that the amplitude 

of the vibration signal increased gradually from February 24, May 3 to August 30 shown in Figs. 

6(a) – 8(a). As FFT-based vibration is not appropriate, the feature extraction method was then 

considered.  
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Fig. 7. Vibration data acquired on 3 May: (a) raw vibration data; (b) FFT. 
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Fig. 8. Vibration data acquired on 30 August: (a) raw vibration data; (b) FFT. 

 

5.2 Time domain feature extraction 

 As seen in the previous section, the vibration-based FFT is unable to provide the information 

related to the changes in the bearing condition, so the common time domain features such as mean, 

a 

b 

a 
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root mean square (RMS), shape factor, crest factor, skewness, kurtosis and entropy are extracted 

from the raw vibration signal of the slew bearing. These features have been applied for vibration-

based condition monitoring and have shown superior performance [17]. Recent study shows the 

application of the aforementioned features in low speed slew bearings [6]. According to the feature 

extraction result presented in [6], the changes in the condition of the slew bearing are not clearly 

visible in the mean, the RMS or the skewness feature. Only kurtosis can better show the changes in 

the bearing condition than those features. In this paper, the RMS, the skewness and the kurtosis are 

extracted from 10 seconds of vibration signal. The extracted features for 139 days of measurement 

are presented in Fig. 9. Due to the unsatisfactory result of the time domain features, the advanced 

signal processing method, empirical mode decomposition (EMD), is used. 
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Fig. 9. Time domain features: (a) Root mean square (RMS); (b) skewness and (c) kurtosis. 

5.3 EMD-based feature extraction 

EMD [19] has been demonstrated to be useful in a wide variety of applications for extracting 

signals from data generated in noisy non-linear and non-stationary processes [20]. Recently, EMD 

has been applied for slew bearing data as presented in [21, 22]. In [21], the open source EMD 

MATLAB program developed by Rilling et al. [23] is utilized to decompose the slew bearing signal 

into several frequency components called intrinsic mode functions (IMFs). Since the low frequency 

components are important in the case of slew bearings, the results of IMF with low frequency 

a 

b 
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content are then compared to the bearing fault frequencies presented in Table 2. Similar to the 

method presented in section 4.1, the three distinct data acquired on different days, namely February 

24, May 3, and August 30, are used. According to the results, EMD was able to reveal bearing fault 

frequencies such as: a rolling element fault frequency of 0.43 Hz on May 3 and a bearing inner race 

fault of 1.37 Hz on August 30 [21]. In [22], the EMD is used as a comparison method for circular 

domain features. The selected EMD results of slew bearing data acquired on March 1, May 25 and 

August 30 are presented in Table 3. It is worth noting that the EMD result in this paper can also be 

found in [22]. It can also be seen that one identical fault frequency presented in Table 2 appeared in 

one of the IMF’s results and is highlighted in yellow. Although the EMD is able to reveal the 

bearing fault frequency component and the result is better than the vibration-based FFT method, the 

result is not consistent with day-to-day measurement e.g. the frequency of 0.459 Hz which occurred 

on May 25 at IMF 12 did not appear again on August 30. Since the low frequency components are of 

the utmost importance in low speed slew bearings, the sum of these low IMF frequencies is used for 

feature extraction to identify whether or not the feature can show the bearing condition changes 

between February and August. Using EMD, the unwanted high frequency noise signals can also be 

removed and only the bearing signal with low frequencies is used for further feature extraction. We 

expected that the EMD-based feature extraction result would be better than the feature extraction of 

the raw vibration signal presented in section 4.2. The result of EMD-based feature extraction is 

presented in Fig. 10. 

It can be seen from Fig. 10 that features extracted from the EMD has almost the identical pattern 

to the features extracted from the raw vibration data. In addition, the skewness of EMD is better that 

the skewness of the raw vibration signal. Despite the fact that the features presented in section 4.2 

and 4.3 show some fluctuation in the last measurement period, approximately from July to August 

(from day 90 to 139), the trend is not increased. As a consequence, the progressive deterioration is 

difficult to identify based only on the features extracted from raw vibration data and the features 

extracted from EMD. 
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Table 3. EMD results of three vibration data [22]. 

     IMF 
EMD results of three vibration data (Hz) 

      March 1st      May 25th  August 30th 

    IMF 1       703.511      667.759    651.717 
    IMF 2        688.399      550.533    679.863 
    IMF 3        339.951      270.841    245.924 
    IMF 4        135.495      132.749    121.320 
    IMF 5          84.989        68.341      63.555 
    IMF 6          41.812        34.238      28.892 
    IMF 7          20.336        17.494      13.682 
    IMF 8            8.183          8.620        6.465 
    IMF 9            3.973          4.270        3.054 
    IMF 10            2.058        28.112        1.374 
    IMF 11            1.142          1.035        0.682 
    IMF 12            0.544          0.459        0.332 
    IMF 13            0.284          0.295        0.099 
    IMF 14            0.100          0.099           - 
    IMF 15               -          0.096           - 
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Fig. 10. Features extracted from EMD: (a) RMS; (b) skewness and (c) kurtosis. 

a 

b 

c 



18 

 

5.4 LLE feature 

LLE algorithm for one second vibration data 

The objective of using the LLE algorithm in this paper is to identify the onset of the deterioration 

of the bearing. As the slew bearing rotates at very low rotational speed (≈ 1 rpm), the bearing signal 

generated from the contact between the rolling element and the defective point is very weak and 

buried in unwanted noise, thus the onset of the deterioration in the condition of the bearing and the 

progression of the deterioration cannot be clearly identified as shown in the extracted features of the 

raw vibration data presented in section 5.2 and the extracted features from EMD as presented in 

section 5.3. 

The total data length for laboratory slew bearing data is 60 seconds multiplied by the 4880 

samples produced 292800 samples acquired at the same time each day. In the first application of the 

LLE algorithm for laboratory slew bearing data, the 30 second data containing 146400 samples was 

processed by the LLE algorithm. To identify non-linear characteristic of the vibration data, every 

one second containing 4880 samples (N=4880) was inputted into the LLE algorithm. The illustration 

of the LLE algorithm applied at one second intervals is presented in Fig. 11. The result is the LLE 

feature denotes by λ1. As can be seen in the table in Fig. 11, the result of the LLE feature (λ1) can be 

positive or negative depending on the input data at a certain time (second). The detail λ1 result for 

each second during the 30 second vibration signal is depicted in Table 4. It can be seen from Fig. 11 

and Table 4 that during 30 second’ measurement in one day, the majority of the LLE results are 

negative λ1 (-λ1) and only a few of them are positive λ1 (+λ1). The negative or positive λ1 is the 

computational result of Eq. (13), where, negative λ1 indicates the newly measured distance dnew(i) is 

unchanged or fixed. The physical interpretation of negative λ1 is given at the 9th second of the 

vibration data on April 26, as shown in Fig. 11(a). If, instead, the newly measured distance dnew(i) 

increases exponentially, the value of λ1 is positive. The physical interpretation of positive λ1 is given 

at the 16th second, as shown in Fig. 11(b). In addition, the negative λ1 means the processed vibration 

data at one particular second is in a stable or normal category, while positive λ1 indicates the 

vibration data is non-linear. As time progresses and the condition of the slew bearing deteriorates or 

an unsustainable fault develops, it is expected that the count of positive λ1 will increase. This is 

shown by the plotted count of positive λ1 against 139 days’ measurement as shown in Fig. 12. It can 

be seen that in the last measurement period (i.e. August 2007), the count of positive λ1 increases 

significantly. This indicates the vibration data on August 2007 is more non-linear than in the 

previous months. 
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The LLE parameters to obtain the LLE features (λ1), as shown in Fig. 11, are determined as 

follows: It has been mentioned in section 2 that J is equal to 48. This value is determined based upon 

the dominant frequency of the vibration signal and the number of samples N. From Fig. 8(b), it can 

be seen that the dominant frequency of the vibration signal is 103.1 Hz. J is calculated as follows: 

(1/103.1 Hz) multiplied by 4880 samples = 47.33 (rounding it up to the nearest integer, thus J = 48). 

For selection of the μ, it is recommended to remove the first sinusoidal cycle of d0(i) which is the 

nearest neighbor of zero value at particular i, as shown, for example, in Fig. 2 (at i = 1). This is 

because the first sinusoidal cycle that is close to zero value at particular i typically demonstrates 

some transient behavior. Thus, μ is selected as 50. In addition, to have faster computation time, m is 

determined empirically to get M as low as possible (note that it is possible to get a negative M value 

if the combination of the value m and J are inappropriate). If J = 48, the optimal m = 100, using the 

equation M = N - (m - 1)J , M = 128. If J = 48 and m = 110, M will be negative (M = -352). On the 

other hand, if J is still 48 and m is decreased (m = 90), the value of M is increased to about 608 (if M 

is higher, the computational time will be slower). 

Table 4. The LLE result (λ1) at one second intervals during the 30 second vibration signal (data 

April 26). 

Time (sec) LLE result (λ1)  Time (sec) LLE result (λ1) 

1 -7.3658  16 12.9481 
2 -61.2420  17 -24.1665 
3 -20.6105  18 -33.0387 
4 -62.2330  19 -37.3419 
5 -75.1535  20 -53.4996 
6 11.2430  21 -9.4541 
7 -52.0686  22 -63.5334 
8 -49.3602  23 -10.2493 
9 -10.1467  24 -65.9973 
10 -60.8948  25 -24.5865 
11 -2.9959  26 -36.1825 
12 -74.9254  27 -7.0326 
13 -52.4728  28 -50.9032 
14 -49.9062  29 -6.5783 
15 -101.4999  30 -21.7180 
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Fig. 11. One day LLE result (data April 26): (a) at the 9th second (stable condition, negative λ1); (b) 

at the 16th second (non-linear condition, positive λ1). 
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Fig. 12. Number of positive λ1 over the 139 measurement days from February to August 
2007. 
 

LLE algorithm for ten second vibration data 

One practical challenge in monitoring low speed slew bearings is the large amount of data 

acquired over a long duration (e.g. 30 to 60 seconds). An efficient method that can be applied for 

only short duration vibration data is, therefore, necessary. The method must also be able to provide 

rapid condition monitoring information for maintenance engineers to make the computational time 

faster. Instead of using the 30 second or 60 second vibration data, 10 second vibration data is used. 

The LLE algorithm is applied to every one second, as shown previously, but in this case, the 

duration of the vibration data used in only 10 seconds. The maximum (λ1) is collected from 10 

results for each day. To explain the advantage of the proposed method, the LLE feature (largest λ1) 

extracted from the 10 second vibration data each day during 139 measurement days is plotted in the 

same figure with other comparable methods: kurtosis feature extracted from raw vibration data and 

kurtosis feature extracted from EMD, as shown in Fig. 13(a). The LLE feature is normalized to the 

minimum and maximum values of the kurtosis feature extracted from raw vibration data before it is 

plotted in the same figure. Although the three comparable kurtosis features presented in Fig. 13(a) 

show fluctuation in the last measurement days which indicates changes in the condition of the 

bearing, the LLE has an additional benefit. It can be seen that the LLE feature also increases 

exponentially over the last measurement days (approximately from day 110 to day 139) indicating 

the increased deterioration. Such an exponential trend cannot be extracted using time domain 
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features extracted from raw vibration signals and features extracted from EMD. It should be noted 

that the increased progression deterioration is a warning of complete bearing failure. The LLE 

feature is supported by the inspection of the slew bearing damage after day 139 as shown in Fig. 14. 

Some defective regions in the roller element and the outer race can be clearly seen in Fig. 14. 
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Fig. 13. Comparison condition monitoring performance between the LLE feature and other features: 

time domain features of raw vibration data and features of EMD: (a) features before smoothing; (b) 

features after smoothing of 100 samples. 
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To present clearly the progression of the deterioration, a smoothing technique is used. The 

standard smoothing technique of 100 samples is employed. Using a moving window, an average of 

100 samples is calculated. The moving window progresses from 1, 2, …, 139. It can be seen from 

Fig. 13(b) that the LLE feature after smoothing is increased exponentially. In contrast, the kurtosis 

of the raw vibration signal and the kurtosis of EMD did not increase exponentially and suddenly 

dropped over the last few days. 

     

Fig. 14. Slew bearing damage: (a) a view of damaged rollers in the axial row; (b) outer raceway 

damage. 

6. Results and discussion of coal bridge reclaimer data 

6.1 Vibration-based FFT 

Similar to vibration based monitoring discussed in the laboratory slew bearing test rig section, 

the FFT is calculated initially from all 45 raw vibration data sets acquired from a slew bearing 

installed in a coal bridge reclaimer used to support the production of a local steel mill. The 45 raw 

vibration data sets were collected once a month from May 2003 to November 2006. The detail of 45 

measurement dates of vibration data sets are presented in Table 5. The example of FFT results 

calculated from three different measurement dates are shown in Fig. 15. The three different 

measurement dates for FFT are 28 July 2003, 16 September 2004 and 14 September 2005. It can be 

seen from Fig. 15 that there are at least 5 dominant frequencies appearing: 16.7 Hz, 23.44 Hz, 33.34 

Hz, 50.04 Hz and 66.75 Hz. Those dominant frequencies are above the fault frequencies shown in 

Table 6. Although the exact age of the bearing was not provided, the vibration data collected on 1 

May 2003 (the first measurement) indicated that it was still in a normal condition. The coal bridge 

reclaimer was located in the open air and subjected to the elements, including all the various forms 

of dust particles that are part of a steelmaking complex. Because the vibration data were acquired in 

a dusty environment, it was supposed that the bearing was in fault mode (even if at a low level of 

fault) after having run continuously for more than two years. Thus, the FFT of the vibration data on 

14 September 2005, as shown in Fig. 15(c), should have the dominant frequencies which match 

a b 
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bearing fault frequencies. However, it was difficult to detect the fault frequencies of slew bearing 

using FFT as shown in Fig. 15. In addition, it was found that none of the dominant frequencies of 

FFT shown in Fig. 15 matched with the fault frequencies depicted in Table 6. This indicates that the 

level of fault is very low and masked by the background noise. Further, feature extraction methods 

based on time domain features and the LLE feature are applied to the similar raw vibration data. 

Table 5. Detailed measurement dates of coal bridge reclaimer data 

Measurement 
day 

Date  Measurement 
day 

Date Measurement 
day 

Date 

1 1 May 2003  16 29 Jun 2004 31 12 Aug 2005 
2 28 May 2003  17 22 Jul 2004 32 14 Sep 2005 
3 24 Jun 2003  18 19 Aug 2004 33 13 Oct 2005 
4 28 Jul 2003  19 16 Sep 2004 34 28 Nov 2005 
5 19 Aug 2003  20 14 Oct 2004 35 22 Dec 2005 
6 18 Sep 2003  21 29 Oct 2004 36 27 Jan 2006 
7 16 Oct 2003  22 18 Nov 2004 37 28 Feb 2006 
8 13 Nov 2003  23 16 Dec 2004 38 30 Mar 2006 
9 12 Dec 2003  24 13 Jan 2005 39 27 Apr 2006 
10 8 Jan 2004  25 8 Feb 2005 40 25 May 2006 
11 5 Feb 2004  26 3 Mar 2005 41 30 Jun 2006 
12 16 Mar 2004  27 7 Apr 2005 42 28 Jul 2006 
13 1 Apr 2004  28 12 May 2005 43 7 Sep 2006 
14 5 May 2004  29 2 Jun 2005 44 31 Oct 2006 
15 7 Jun 2004  30 7 Jul 2005 45 30 Nov 2006 

 

 

Table 6. Fault frequencies of slew bearing coal bridge reclaimer run at 4.5 rpm 

[calculation is given in Appendix A]. 

Defect mode 
Fault frequencies (Hz)  

        Axial             Radial  

  Outer ring (BPFI)         13.41              11.38  
  Inner ring (BPFO)         13.58              11.56  
  Rolling element (BSF)           5.65                4.87  

 

 



25 

 

0 10 20 30 40 50 60 70 80 90 100
0

2

4
x 10

-3

A
m

pl
itu

de
 (m

V
)

0 10 20 30 40 50 60 70 80 90 100
0

2

4
x 10

-3

A
m

pl
itu

de
 (m

V
)

0 10 20 30 40 50 60 70 80 90 100
0

2

4
x 10

-3

Frequency (Hz)

A
m

pl
itu

de
 (m

V
)

 

Fig. 15. FFT of coal bridgre reclaimer: (a) data 28 July 2003; (b) data 16 September 2004 and (c) 

data 14 September 2005. 

 

6.2 Feature extraction (time domain and LLE feature) 

The RMS, skewness and kurtosis features extracted from 45 vibration data sets of the slew 

bearing coal bridge reclaimer are presented in Fig. 16. Because the slew bearing is located in an 

open environment, the degradation of the bearing is expected to increase during the approximately 

3.5 year measurement from May 2003 to November 2006. However, the RMS, skewness and 

kurtosis features did show such a condition. It can be seen from Figs. 16(a) to (c) that the RMS, 

skewness and kurtosis features did not show the progressive deterioration over 3.5 years. The only 

information that can be extracted is the two high peaks appear in the skewness and the kurtosis 

feature. The LLE algorithm was then applied to the similar data. 

In contrast to the result of the time domain features, the LLE feature (λ1) presented in Fig. 16(d) 

shows the significant increase on the last measurement dates, especially in measurement 44 and 

measurement 45. It also clearly seen that the two high peaks which are identified on the skewness 

and the kurtosis feature were also appear in the LLE feature. The first peak indicates the onset of 

deteriorating bearing condition and the second peak shows the deterioration of the bearing will 

increase in the future. Additional information can also be found from the LLE feature that the 
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second peak is greater that the first peak. This indicates that LLE feature can extract more 

information regarding to the development of bearing deterioration. In contrast, the second high peak 

of the time domain kurtosis is remaining in the same level with the first high peak which is difficult 

to evaluate the bearing deterioration. Unfortunately, the measurement had to stop at measurement 

45, which is 30 November 2006, due to the commencement of preparation for the acquisition of 

vibration data from the laboratory slew bearing test rig. The LLE feature of the bridge reclaimer 

data shows that the actual vibration slew bearing data is more non-linear than the laboratory slew 

bearing vibration data. It is proved by the fact that the number of positive λ1 is greater than the 

number of negative λ1. In the beginning, there is negative λ1, but as time progresses, the λ1 will swift 

become positive. As wear developed, the value of the positive λ1 will increase correspondently. 

The LLE parameters to obtain the LLE features (λ1) as shown in Fig. 16(d) and Table 7 are 

determined as follows: based on the known sampling rate of 240 samples per second acquired for 

17.067 seconds, 4096 samples were produced. The first step for the LLE algorithm is to determine 

the variables J and m. Once J, m and N are known, M can be calculated. As shown in section 5.4, J 

can be calculated based upon the first dominant frequency of the vibration signal being analyzed. 

As shown in Fig. 15, the first dominant frequency is 16.7 Hz. Thus J is calculated in the following 

way: (1/16.7 Hz) multiplied by 4096 Hz = 14.37. The numerical computation required the non-

negative integer of J and also required that J should be the element of factorial 4096. Thus we 

round up 14.37 to greater integer number 16. The integer 16 is selected because it an element of 

factorial 4096. The reason why it needs to be an element of factorial 4096 is because of the phase 

space requirement. If J is an element of factorial 4096, embedding dimension m will be easy to 

calculate. The next variable which needed to be determined once J is known is m. As shown in 

section 5.4, m is selected to get the M as low as possible in order to speed up the computation time. 

The computation time of the feature extraction method is necessary in practice to provide a rapid 

condition monitoring result. Thus m in this paper for the coal bridge reclaimer data is 248. The 

variables μ and k are selected as 30 and 40, respectively. 
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Fig. 16. Comparison between time domain features and LLE feature extracted from the coal bridge 

reclaimer data: (a) RMS feature; (b) skewness feature; (c) kurtosis feature and (d) LLE feature. The 

measurement in the x-axis is related to Table 5. 
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Table 7. Detailed of LLE result (λ1) related to the measurement dates 

Measurement 
day 

λ1  Measurement 
day 

λ1 Measurement 
day 

λ1 

1 -0.01667  16 -0.031 31 0.05518 
2 -0.06506  17 0.0296 32 0.01014 
3 0.0003934  18 0.002878 33 0.007898 
4 -0.0008573  19 0.02163 34 0.1046 
5 0.0106  20 0.03241 35 0.02563 
6 0.03377  21 0.06081 36 0.557 
7 0.01959  22 0.03731 37 0.3844 
8 0.02359  23 -0.007276 38 0.1947 
9 0.01857  24 0.007093 39 0.1491 
10 0.005054  25 -0.01873 40 0.0309 
11 0.004379  26 -0.01511 41 0.1214 
12 0.0271  27 -0.02856 42 0.2491 
13 0.3485  28 -0.02158 43 0.1337 
14 -0.008846  29 0.004501 44 0.8137 
15 0.02722  30 0.1925 45 0.8475 

 

7. Evaluation criteria in tracking progressive slew bearing failure 

In this study, four evaluation criteria for tracking the progressive failure of low speed slew 

bearings were proposed. The criteria are: 

1. Count of high peaks 

2. High peak difference 

3. Time of first peak detection 

4. Interval between peaks 

In order to substantiate the benefits of the LLE method, the four criteria above were applied to 

the time domain kurtosis feature, the EMD kurtosis feature and the LLE feature for laboratory slew 

bearing data and were also applied to the kurtosis and the LLE feature of coal bridge reclaimer data. 

The result is presented in Tables 8 and 9. The definition of and the formula for each evaluation 

criterion are described in Appendix B. In the case of laboratory slew bearing data, it can be seen 

that the overall evaluation score of the LLE feature was higher than the time domain kurtosis 

feature and the EMD feature. A negative of the E2 criterion of EMD kurtosis feature is due to the 

anterior peaks are lower than the detection of the first peak. In the same way, the overall evaluation 

score of the LLE feature was greater than the kurtosis feature extracted from original vibration data 

for the case of coal bridge reclaimer data. 

1st peak 

2nd peak 

2 highest 
levels 
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Table 8. Evaluation comparison result for laboratory slew bearing data (Appendix B) 

 

Time domain kurtosis 
feature EMD kurtosis feature LLE feature 
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1 
Count of high peaks 
(E1) 

0.4 0.3 0.6 

2 
High peak difference 
(E2) 

0.413 -0.264 0.416 

3 Time of first peak 
detection (E3) 

0.338 0.179 0.345 

4 
Interval between peaks 
(E4) 

0.913 0.938 0.939 

 Overall assessment or 
evaluation band score 0.516 0.288 0.575 

 

Table 9. Evaluation comparison result for coal bridge reclaimer data (Appendix C) 

 

Time domain kurtosis 
feature 

LLE feature 
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1 Count of high peaks (E1) 0.2 0.5 

2 High peak difference (E2) 0.007 0.311 

3 Time of first peak detection (E3) 0.711 0.711 

4 Interval between peaks (E4) 0.555 0.822 

 Overall assessment or evaluation band score 0.368 0.586 
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8. Conclusion 

One of the phase space dissimilarity techniques called the largest Lyapunov exponent (LLE) 

algorithm has been employed as a feature extraction method for large low speed slew bearing of lab 

test condition monitoring and in a coal bridge reclaimer used in a local steel mill industry. 

According to the result, this method can be used as an alternative method to deal with low energy 

non-linear vibration bearing signals in cases where the existing methods which have been applied 

for rolling element bearing condition monitoring such as vibration-based FFT, time domain feature 

extraction (e.g. RMS, skewness, kurtosis, etc.), and advance fault diagnosis methods, e.g. empirical 

mode decomposition (EMD) are not suitable. The step-by-step computational algorithm has been 

presented in detail. It must be noted, that the most important LLE parameter is reconstruction delay 

J. This parameter must be calculated before the other parameters m and M. This paper has also 

proposed a simple and effective technique to select parameter J. Four evaluation criteria has also 

been proposed and described to substantiate the benefits of LLE method. 
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Appendix A: The formula for calculating bearing fault frequencies [24] 

1. Fault frequency of outer ring: 

( )( )cos
1

2
rpm rpm r

OR
m

IR OR d
F z

d

 − α ⋅
= ⋅ − ⋅ 

  
                             (A1) 

2. Fault frequency of inner ring: 

( )( )cos
1

2
rpm rpm r

IR
m

IR OR d
F z

d

 − α ⋅
= ⋅ + ⋅ 

  
                              (A2) 

3. Fault frequency of rolling element: 

( )( )2
cos

2
rpm rpm rm

R
r m

IR OR ddF
d d

 − α ⋅
 = ⋅ −
 
 

                                  (A3) 

where IRrpm and ORrpm are the rotational speeds of the inner ring and outer ring. For 1 rpm the value 

of IRrpm is 1 and the value of ORrpm is 0. dm  denotes the mean bearing diameter, dr is diameter of the 

rolling element and z is number of rolling elements. 
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Appendix B: The definition and the formula for evaluation of features extracted from laboratory 

slew bearing data 

1. Count of high peaks (E1): Since the deterioration of the slew bearing can be detected by the 

peaks in the monitored parameter or feature, this criterion counts the number of peaks which 

exceed the predetermined threshold level. The greater the number of such peaks detected, the 

more damaged the slew bearing. The formula for this calculation (E1)  is as follows: 

cCE ×=1                                                             (B1) 

where C is the number of peaks which exceed the predetermined threshold level (threshold = 

12), and c is the constant to normalize the E1 value (c = 0.1). It should be noted that each 

criterion value is expected to have a normalization value of less than 1. This is illustrated below: 
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2. High peak difference (E2): This criterion calculates the difference in the high peaks between 

anterior peaks and the detection of the first peak (P1). E2 is given by: 

( )
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a
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−= 2

1

2
1

1

                                         (B2) 

where Pa is the anterior peaks and P is the average peak amplitude. If the most anterior peak 

levels Pa are lower than the detection of the first peak P1, the result will be a negative value. 

This is illustrated below: 
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3. Time of first peak detection (E3): The initial failure of the slew bearing can be identified by the 

day of first peak detection, according to the monitored parameter or feature. The formula of the 

time of first peak detection (E3) is given as follows: 





 −

=
DL

DFDLE3                                              (B3) 

where DL is the last measurement day (i.e.139) and DF is the day of first peak detection, as 

shown below: 
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4. Interval between peaks (E4): This criterion measures the interval between two adjacent peaks. If 

the two adjacent peaks are close, it indicates the advance of the deterioration in the condition of 

the slew bearing. The interval between peaks (E4) is calculated as follows: 
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=4                                                (B4) 

where I is the average day interval, Da and Da-1 are the anterior and the posterior day of two 

adjacent peaks, respectively, as shown below: 
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Appendix C: Illustration figures for the evaluation criteria calculation of feature extracted from 

coal bridge reclaimer data 

1. Count of high peaks (E1): 
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2. High peak difference (E2): 
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3. Time of first peak detection (E3): 
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4. Interval between peaks (E4): 
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